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Abstract

With the advent of the Transformer architecture,001
Neural Machine Translation (NMT) results002
have shown great improvement lately.003
However, results in low-resource conditions004
still lag behind in both bilingual and005
multilingual setups, due to the limited amount006
of available monolingual and/or parallel data;007
hence, the need for methods addressing data008
scarcity in an efficient, and explainable way, is009
eminent. We propose an explainability-based010
training approach for NMT, applied in011
Unsupervised and Supervised model training,012
for translation of three languages of varying013
resources, French, Gujarati, Kazakh, to and014
from English. Our results show our method015
can be promising, particularly when training in016
low-resource conditions, outperforming simple017
training baselines; though the improvement018
is marginal, it sets the ground for further019
exploration of the approach and the parameters,020
and its extension to other languages.021

1 Introduction022

Unsupervised Neural Machine Translation023

(UNMT) has seen remarkable progress in recent024

years, with a very large number of methods025

proposed aiming to NMT when parallel data are026

few or non-existent for certain Language Pairs027

(Artetxe et al., 2017; Lample et al., 2018; Conneau028

et al., 2017; Wang and Zhao, 2021; Lample and029

Conneau, 2019; Song et al., 2019; Liu et al.,030

2020; Marchisio et al., 2020; Kim et al., 2020;031

Lample et al., 2017; Artetxe et al., 2019; Garcia032

et al., 2020; Su et al., 2019; Nguyen et al., 2022).033

Training techniques such as Back-Translation034

(Sennrich et al., 2015) and Auto-Encoding have035

been widely studied, in order to efficiently train036

NMT models under those data scarcity conditions037

to obtain high quality translation results. However,038

there is little work in enhancing Neural Machine039

Translation models with utilizing explainability040

of the model in order to improve quality of the041

output. We propose a method, based on Layer-wise 042

Relevance Propagation (LRP), which leverages the 043

contribution of the input tokens to the output, to 044

boost NMT performance. Our results show LRP 045

may be beneficial during model training for NMT 046

output improvement, particularly in low-resource 047

conditions and for specific well defined model 048

setups. 049

2 Related Work 050

Layer-wise Relevance Propagation (LRP) 051

LRP was introduced by Bach et al. (2015), 052

measuring the contribution of the input 053

components, or the neurons of a network, 054

to the next layer’s output. Due to its nature, it is 055

directly applicable to layer-wise architectures, and 056

we extend its usage to the Transformer architecture, 057

measuring the relevance of source and target 058

sentences’ tokens to the NMT output during 059

training. 060

Explanations & Explanation-guided training 061

Several previous works outline and summarize 062

the findings of explainability and interpetability- 063

related research in NLP (Belinkov et al., 2020; Sun 064

et al., 2021b; Tenney et al., 2020; Madsen et al., 065

2021; Danilevsky et al., 2020; Qian et al., 2021). 066

Weber et al. (2022) provide a systematic review 067

of explainable AI methods employed in improving 068

various properties of Machine Learning models, 069

such as performance, convergence, robustness, 070

reasoning, efficiency and equality. Of these, of 071

particular interest, and the focus of our work, are 072

those that along with measuring feature importance 073

and distinguishing relevant from irrelevant features, 074

are utilized to augment the intermediate learned 075

features, and improve model performance or 076

reasoning (Anders et al., 2022; Sun et al., 2021a; 077

Zunino et al., 2021a; Fukui et al., 2019; Zhou et al., 078

2016; Mitsuhara et al., 2019; Schiller et al., 2019; 079

Zunino et al., 2021b). 080
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In our paper, we modify the approach of081

Sun et al. (2021a), that proposes a model-082

agnostic LRP-guided training method for few shot083

classification, to improve model generalization084

to new classes, extending it to a transformer-085

based masked language model for NMT. Every086

intermediate feature representation fp is weighted087

(multiplied) by its relevance R(fp), with respect088

to the feature processing output, normalized in [-089

1,1]. The model is then trained on a loss function090

taking into account both predictions and given by091

the following formula092

L = ξ ∗ Lce(y, p) + λ ∗ Lce(y, plrp) (1)093

where ξ, λ are positive scalars. In this way,094

the features more relevant to the prediction are095

emphasized, while the less relevant ones are096

downscaled. Other recent works utilize LRP097

for improving model performance in the medical098

domain (Sefcik and Benesova, 2021), mitigating099

the influence of language bias for image captioning100

models (Sun et al., 2022).101

3 Method & Experiments102

3.1 Model Translation Quality Evaluation103

In our experiments we use a 6-layers 8-104

heads encoder-decoder transformer-based model,105

XLM (Lample and Conneau, 2019), following106

the training configurations and hyperparameters107

suggested by the authors. We use Byte Pair108

Encoding (Sennrich et al., 2016) to extract a 60k109

vocabulary, and have an embedding layer size110

of 1024, a dropout value and an attention layer111

dropout value of 0.1, and a sequence length of 256.112

We measure the quality of the Language Model113

(LM) with perplexity, and quality of the NMT114

output with BLEU (Papineni et al., 2002), both115

used as training stopping criteria, when there is no116

improvement over 10 epochs. All further parameter117

values are provided in the Appendix. We first pre-118

train a Language Model in each language with the119

MLM objective, which is then used to initialize120

the encoder and decoder of the NMT model. We121

further train a NMT model, using backtranslation122

(BT) and denoising auto-encoding (AE) with the123

monolingual data used for LM pretraining for124

UNMT, the Machine Translation (MT) objective125

for the Supervised NMT model, and BT+MT for126

the joint Unsupervised and Supervised approach.127

3.2 Datasets 128

The languages we work with are English, French, 129

Gujarati, Kazakh, and we’re translating in all 130

English-centric directions, English–French (En– 131

Fr), French–English (Fr–En), English–Gujarati 132

(En–Gu), Gujarati–English (Gu–En), English– 133

Kazakh (En–Kk), Kazakh–English (Kk–En). 134

For English and French, we use 5 million 135

News Crawl 2007-2008 monolingual sentences 136

for each language, and 23 million WMT14 137

parallel sentences. For Gujarati, we have 1.4 138

million sentences and for Kazakh we have 139

9.5M monolingual sentences, collected for both 140

languages from Wikipedia, WMT 2018, 2019 141

and Leipzig Corpora (2016)1. As parallel data, 142

we have 22k and 132k from the WMT 2019 143

News Translation Task2 for Gu–En and Kk–En.As 144

development and test sets, we use newstest2013 145

and newstest2014, respectively, for En–Fr and Fr– 146

En, WMT19 for En–Gu and Gu–En and En–Kk 147

and Kk–En. 148

3.3 Layer-wise Relevance Propagation (LRP) 149

We follow the method proposed by Voita et al. 150

(2020) in calculating LRP in an encoder-decoder 151

Transformer architecture. The Relevance Score 152

is first propagated inversely through the decoder 153

and then the encoder, up to the input layer of the 154

architecture. The conservation principle only holds 155

across all processed tokens, and the score is defined 156

as relevance of the input neurons to the top-1 logit 157

predicted by the Transformer model, and the sum 158

of the input neurons’ relevance is regarded as the 159

token contribution. The total source and target 160

sentence contributions to the result are defined as 161

the summation of the Relevance of tokens in the 162

source sentence, x and that of those in the target 163

sentence, y, at generation step t. 164

Rt(source) =
∑
i

xi (2) 165

166

Rt(target) =
t−1∑
j=1

yj (3) 167

At every step t, Relevance of the source and 168

target sentences follow the conservation principle, 169

summing up to 1. Moreover, for every target token 170

past the currently generated one, Relevance Score 171

is 0. 172

1https://wortschatz.unileipzig.de/en/download/
2http://data.statmt.org/news-crawl/
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En–Fr Fr–En
Parameters’ Set Values v1 v2 v3 Regular v1 v2 v3 Regular
22k
MT 29.9 24.67 30.24 31.12 30.12 26.79 30.52 30.63
BT+AE+MT 30.01 28.62 32.15 34.54 29.94 29.87 33.03 34.02
1m
MT 39.12 38.12 35.44 41.25 39.2 38.43 36.04 41.33
BT+AE+MT 37.58 37.22 36.89 40.37 37.66 37.95 37.38 40.4
2.5m
MT 39.06 36.02 35.57 40.46 39.11 36.28 36.09 40.71
BT+AE+MT 37.68 36.21 37.74 39.88 40.71 37.48 36.66 38.15
5m
MT 39.21 37.55 39 41.52 39.33 38.01 39.2 41.18
BT+AE+MT 30.71 36.7 37.48 40.89 32.02 37.03 37.67 40.8
Other methods 45.9 -

Table 1: BLEU scores for Supervised, and Unsupervised + Supervised NMT Layerwise Relevance Propagation-
guided experiments, for En–Fr, Fr–En. AE, BT and MT stand for Auto-Encoding loss, Back Translation loss and
Machine Translation loss, respectively. Test and validation sets are from newstest2013-14 for French. State of the
art results (Other methods) for En–Fr come from http://www.deepl.com/press.html, http://nlpprogress.
com/english/machine_translation.html.

en–gu gu–en
Parameters’ Set Values v1 v2 v3 Regular v1 v2 v3 Regular
22k
MT 2 2.18 2.19 1.04 0.69 0.7 0.73 2.65
BT+AE+MT 0.76 1.36 0.89 1.16 0.71 1.06 0.67 2.19
Other methods 0.1 0.3

Table 2: BLEU scores for Supervised, and Unsupervised + Supervised NMT Layerwise Relevance Propagation-
guided experiments, for En–Gu, Gu–En. AE, BT and MT stand for Auto-Encoding loss, Back Translation loss and
Machine Translation loss, respectively. Test and validation sets are from WMT19 for Gujarati. State of the art results
(Other methods) can be found in https://github.com/google-research/bert/blob/master/multilingual.
md.

en–kk kk–en
Parameters’ Set Values v1 v2 v3 Regular v1 v2 v3 Regular
22k
MT 2.1 3 3.2 2.4 2.2 2.1 2.7 2.6
BT+AE+MT 1.6 3 2.3 2.8 2.1 2.6 2. 2.9
132k
MT 4.8 5.6 5.3 5.2 6.8 8.5 8.4 8
BT+AE+MT 5.2 6.8 6.4 6.6 8.7 9.4 9.2 8.9
Other methods 2.53 7.4

Table 3: BLEU scores for Supervised, and Unsupervised + Supervised NMT Layerwise Relevance Propagation-
guided experiments, for En–Kk, Kk–En. AE, BT and MT stand for Auto-Encoding loss, Back Translation loss and
Machine Translation loss, respectively. Test and validation sets are from WMT19. State of the art results (Other
methods) can be found in https://github.com/google-research/bert/blob/master/multilingual.md.
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3.4 LRP-weighted training173

Following Sun et al. (2021a), we attempt to utilize174

LRP contributions during training, and examine175

performance. In our case, the representation of176

every intermediate source or target token xi, with177

Relevance Score Rt(xi), is reweighted by its score178

at each layer, and included in a new loss term,179

Lce(y, xi). The loss then is the weighted sum of180

the previous and the new terms, each weighted181

by parameters ξ, λ respectively, for which we182

experiment with three sets of values:183

ξ, λ = {v1 = {1, 0.5}, v2 = {0, 1}, v3 = {1, 1}}.
(4)184

In the first layer we only weigh the word185

embedding of the token. We hypothesize that in186

this way, the tokens with a higher contribution to187

the NMT result are enhanced, while the effect of188

the ones contributing less is reduced.189

4 Results & Discussion190

In Tables 1, 2, 3, we present our results for LRP-191

guided training, in certain low- and high-resource192

Semi-Supervised and Supervised experiments, for193

all languages and directions, providing the regular194

NMT model results as our baselines.195

We see that for En–Fr and Fr–En NMT, in Table196

1, the method fails to outperform baseline NMT197

results in all cases. The model translation quality198

is usually on par with baselines, and state-of-the199

art results on high scale experiments, and small200

differences in BLEU scores in the range of 0.1-0.5201

can be considered negligible. Among the three202

hypermarameter settings, choosing v1 for training203

seems to outperform the other two in the majority204

of experiments under a MT-only setting. Results205

could indicate unsuitability of the method in low-206

resource settings; the original method was after207

all proposed in a few-shot classification context,208

hence we also seek more promising results in low-209

resource NMT experiments, examined below.210

A different model behavior is observed for211

all cases but one in English to Gujarati NMT,212

in Table 2 when either the MT-only or BT-AE-213

MT objectives are used in training. This is214

an interesting finding - we can hypothesize that215

LRP-guided training might be more useful when216

translating into highly complex morphological217

languages such as Gujarati; Results certainly218

outperform previous state-of-the-art approaches,219

however more research including other languages220

and potentially other parameter values is required 221

to verify that observation. 222

Very encouraging is also the case of LRP- 223

guided training in En–Kk and Kk–En NMT. 224

In a large number of settings, training with 225

Relevance guidance improves NMT BLEU scores 226

significantly compared to our regular models’ 227

results. More specifically, we see improvement 228

in both low- (22k) and mid-resource (132k) 229

experiments, with v2-parameterized models to 230

outperform our baselines in the majority of cases. 231

Also, all experiments we are able to perform 232

significantly better than the state of the art current 233

result, hence relevance guidance shows great 234

potential again in NMT experiments where few 235

parallel data are available. 236

5 Conclusions 237

We perform a series of Semi-Supervised 238

and Supervised Neural Machine Translation 239

experiments, using an explainability-based metric, 240

namely Relevance-guided propagation, during 241

training; we leverage the measure of influence 242

of the input and intermediate layer outputs to 243

the NMT result, in an attempt to improve NMT 244

for three quite different languages, lying in 245

both high- and low- resource data regimes. Our 246

results, though showing marginal and very small 247

improvements, indicate that Layerwise-relevance 248

propagation shows potential in boosting NMT 249

quality when training in small data scenarios. 250

Further exploration of the method, different 251

model hyperparameter setups, and expansion 252

of our method to other languages is strongly 253

recommended as a next step to identify the 254

efficiency and robustness of the proposed method. 255

Limitations 256

Training a large Neural Machine Translation 257

model from scratch is a hard task computationally, 258

and employing LRP-guidance during training 259

significantly raises training time, the amount and 260

usage of required computational resources, and the 261

complexity of the training process, calling for more 262

efficient training solutions, in terms of memory 263

distribution of the model and parallelization. These 264

factors constitute the limitations of our approach, 265

and allowed us to launch a small number of 266

experiments, hence addressing those factors and 267

expanding to more languages, in more efficient 268

training and computational ways, is a strong 269
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requirement for further generalization of the270

method.271

Ethics Statement272

Several ethical concerns ought to be addressed273

when working with large language models274

regarding quality, toxicity and bias related to their275

training process and output (Bender et al., 2021;276

Chowdhery et al., 2022; Brown et al., 2020),of277

which the authors of the paper are aware in their278

work.279
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