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ABSTRACT
The popularity of Knowledge Graphs (KGs) both in industry and

academia owes credit to their flexible data model, which is suit-

able for data integration from multiple sources. Several KG-based

applications such as trust assessment or view maintenance on dy-

namic data rely on the ability to compute provenance explanations

for query results. The how-provenance of a query result is an ex-

pression that encodes the records (triples or facts) that explain its

inclusion in the result set. This article proposes NPCS, a Native

Provenance Computation approach for SPARQL queries. NPCS an-

notates query results with their how-provenance. By building upon

spm-provenance semirings, NPCS supports both monotonic and

non-monotonic SPARQL queries. Thanks to its reliance on query

rewriting techniques, the approach is directly applicable to already

deployed SPARQL engines using different reification schemes – in-

cluding RDF*. Our experimental evaluation on two popular SPARQL

engines (GraphDB and Stardog) shows that our novel query rewrit-

ing brings a significant runtime improvement over existing query

rewriting solutions, scaling to RDF graphs with billions of triples.

CCS CONCEPTS
• Information systems → World Wide Web; Database query
processing.
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1 INTRODUCTION
Thanks to the continuous advances in Web information extraction

and knowledge graph construction, the Web nowadays enjoys from

a plethora of machine-readable data, structured in large RDF knowl-

edge graphs (KGs). These KGs, often queried via SPARQL endpoints,

allow computers to “understand” the real world. They do so by en-

coding knowledge as collections of triples or statements (𝑠, 𝑝, 𝑜)
with subject 𝑠 , predicate 𝑝 , and object 𝑜 , e.g., (UK, capital, London).
A triple (𝑠, 𝑝, 𝑜) can also be seen as a directed 𝑝-labeled edge from

node 𝑠 to node 𝑜 . This data model serves as foundation for multiple

applications such as question answering, Web search, and smart

assistants.

Given the heterogeneity of data sources that contribute to mod-

ern KGs, the problem of identifying the provenance of query results
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is central for many KG-based tasks. The provenance of a query

result is an expression that encodes the lineage of data transforma-

tions and statements that contributed to that result. Provenance is

of great value for KG providers because it streamlines maintenance

tasks such as source selection and view maintenance. For data con-

sumers, query provenance serves as an explanation for answers.

This can be pivotal in use cases that need to assess data reliability,

or manage access control, trustworthiness, and data quality.

Among the existing formalisms to model provenance, how-
provenance is the most expressive [13] . In this model, the prove-

nance of a query result is an algebraic expression in a provenance
semiring. Consider, for instance the following KG,

{ 𝑢1: (UK, capital, London), 𝑢2: (Belfast, in, UK), 𝑢3: (Belfast, a, City) },

and the SPARQL query

select ?𝑥 where { {UK capital ?x } union {?𝑥 in UK; a City} }.

The solutions to this query are Belfast and London. How-provenance
explains the presence of London in the result set with the polynomial

expression 𝑢1 ⊕ (𝑢2 ⊗ 𝑢3). This polynomial tells us that there are

two way to get London as a solution: either via 𝑢1, or via the

conjunction of 𝑢2 and 𝑢3. There exist different algebraic structures

for provenance in the literature [7, 10, 13], but this paper focuses

on spm-semirings [10], because they are designed for the semantics

of SPARQL, including its non-monotonic fragment. We highlight

that query provenance assumes the availability of identifiers for

triples, in order words, it assumes that the KG has been reified using

some scheme. Examples of reification schemes are RDF* and named

graphs.

There are essentially two main strategies to compute how-

provenance annotations for query results. Methods such as

TripleProv [17], opt for customized engines designed to compute

provenance along query evaluation. Since provenance support is

embedded in the engine, such solutions allow for advanced opti-

mizations. On the downside, customized engines are not applicable

to already deployed SPARQL endpoints in the Web. The other al-

ternative is query rewriting [15]. By this logic, SPARQL queries are

rewritten so that the new query retrieves both the query solutions

and the polynomials that describe their provenance, potentially

with some post-processing. While rewriting the query induces a

runtime overhead, this design provides the flexibility to be applied

to any SPARQL endpoint on the Web.

With this in mind we propose NPCS, a new query rewriting

method for how-provenance computation in RDF/SPARQL engines.

Unlike previous approaches [15], NPCS does not require any post-

processing to compute query solutions with how-provenance an-

notations. This makes NPCS the first fully native SPARQL solution

for how-provenance. Moreover, NPCS supports different data reifi-

cation schemes, including RDF*. Our experimental evaluation on

both synthetic and real data suggest that our fully native SPARQL

rewriting (a) incurs a reasonable runtime overhead, and (b) it is

consistently faster than SPARQLprov [15], the state of the art in

how-provenance in SPARQL.
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The rest of the paper is structured as follows. In Sections 2

and 3, we provide the basic background for this work in terms

of related work and preliminaries respectively. In Section 4 we

describe in detail our rewriting method, whereas Section 5 provides

a comprehensive evaluation of the performance of our approach.

We conclude in Section 6.

2 RELATEDWORK
We survey the literature on provenance for query results along two

axis: provenance models (Section 2.1), and provenance support for

RDF/SPARQL engines (Section 2.2).

2.1 Semirings and Provenance Models
Semirings were first used to model query provenance in the ground-

breaking work by Green et al. [13]. This work proposed commu-
tative semirings to annotate query results for selection, projection,

join, and union queries for Datalog and the positive fragment of

relational algebra. Commutative semirings cannot model prove-

nance for non-monotonic operators such as the left-outer join and

the difference [13], hence the algebraic structures were expanded

to include a monus operator that accounts for the relational dif-

ference [9]. Commutative semirings and their extensions model

provenance as polynomial expressions. These expressions, called

how-provenance, encode both the sources and the data transforma-

tions required to obtain (and sometimes exclude) a particular query

answer. How-provenance is more expressive than other provenance

models such as lineage [6] or why-provenance [5].

Damasio et al., [7] showed that by rewriting SPARQL queries

into relational algebra, it is possible to provide provenance anno-

tations for SPARQL queries using m-semirings. These, however,
can yield very long and complex provenance expressions [10], as

shown by Geerts and his colleagues. They therefore developed the

spm-semirings formalism (spm stands for SPARQL Minus) to over-

come these limitations. Spm-semirings guarantee more compact

explanations and offer native support for non-monotonic SPARQL

operators such as optional and minus. Since how-provenance

polynomials are abstract annotations, they are useful to a hand-

ful of metadata management applications [8, 14] via the notion of

commutation with homomorphisms.

2.2 Provenance-supported SPARQL engines
Wylot et al. [17] introduced TripleProv, a system to compute how-

provenance annotations in the commutative semiring model. This

approach supports queries with basic graph patterns, union, and

the optional operator. Because of its reliance on commutative

semirings, TripleProv cannot guarantee commutation with homo-

morphisms for queries involving the non-monotonic optional

operator. Additionally, TripleProv uses a customized engine that

organizes data into molecules—sort of indexes for star patterns. As

a result, TripleProv cannot be used on already deployed SPARQL

engines. This is why our approach resorts to query rewriting for

how-provenance computation.

But approaches based on query rewriting are not rare at all.

Perm [12] and GProM [3] are two examples. Such approaches

are tailored for relational databases, hence they are not applicable

to SPARQL queries out of the box. Similarly to TripleProv, none

of these methods can properly support non-monotonic SPARQL

queries, because Perm is based on the lineage model, and GProM

relies on commutative semirings.

While the work of Geerts et al [10] was the first to study prove-

nance for the non-monotonic fragment of SPARQL, the first con-

crete method to compute how-provenance under the spm-semiring

formalism was proposed by Hernandez et al. [15]. They introduced

SPARQLprov, a method based on query rewriting that can annotate

query results with how-provenance polynomials for both mono-

tonic and non-monotonic queries. Contrary to NPCS, SPARQLprov

is not a 100% SPARQL solution, because it relies on a subsequent

decoding phase to compute the final provenance annotations from

the results of the rewritten query. As our experimental evaluation

shows, this decoding phase can incur prohibitive runtime overheads

for non-selective queries.

3 PRELIMINARIES
3.1 RDF* and SPARQL*
We assume the existence of three (pairwise disjoint) countably

infinite sets: the set of IRIs 𝐼 , the set of blank nodes 𝐵, and the set

of literals 𝐿. An RDF triple 𝑡 = (𝑠, 𝑝, 𝑜) ∈ 𝑇 , where𝑇 = (𝐼 ∪𝐵) × 𝐼 ×
(𝐼 ∪ 𝐵 ∪ 𝐿), is a statement that consists of a subject 𝑠 , a predicate
𝑝 , and an object 𝑜 . A collection of RDF triples Γ is called an RDF

graph. The RDF* data model extends RDF by allowing arbitrarily

deep nesting of triples as subject or object arguments:

Definition 3.1. An RDF* triple is a 3-tuple defined recursively as

follows:

(1) Any RDF triple 𝑡 ∈ 𝑇 is an RDF* triple; and

(2) Given RDF triples 𝑡 and 𝑡 ′, and RDF terms 𝑠 ∈ (𝐼 × 𝐵), 𝑝 ∈ 𝐼 ,
and 𝑜 ∈ (𝐼 ×𝐵×𝐿), then the tuples (𝑡, 𝑝, 𝑜), (𝑠, 𝑝, 𝑡), and (𝑡, 𝑝, 𝑡 ′)
are also RDF* triples.

In a nutshell, RDF* allows us to “say things” about RDF statements,

which endows RDFwith native reification capabilities. This is crucial
when computing how-provenance for query results, because query

provenance builds upon identifiers for triples in the graph.

RDF graphs can be queried using the SPARQL language. The

fundamental building blocks of SPARQL queries are basic graph

patterns (BGPs). They are sets of tuples of the form (𝑠, 𝑝, 𝑜) ∈
(𝑉 ∪ 𝐼 ∪ 𝐵) × (𝑉 ∪ 𝐼 ) × (𝑉 ∪ 𝐼 ∪ 𝐵 ∪ 𝐿), where 𝑉 is a countably

infinite set of variables—prefixed by the character ‘?’. Analogously

to RDF*, SPARQL* extends BGPs by allowing nested patterns. Triple

patterns and BGPs in SPARQL queries are combined with operators

such as and, union or select. A (solution) mapping is a partial

function ` : 𝑉 → (𝐼 ∪ 𝐵 ∪ 𝐿) where the domain of `, denoted by

dom(`), is a finite set of variables. We write inScope(𝑄) for the
set of variables, called in-scope, that can occur in 𝑄 answers, and

variables that always occur are called strongly bound [4]. The details
of SPARQL evaluation semantics are detailed in [2, 16]. In short, the

evaluation of a SPARQL query 𝑄 on an RDF graph Γ is defined as a

function J𝑄KΓ , which returns a multiset of mappings ` ∈ 𝑈 . Our
goal is to annotate those mappings with their how-provenance.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

NPCS: Native Provenance Computation for SPARQL AAAI ’24, February 20–27, 2024, Vancouver, Canada

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3.2 How-provenance in SPARQL
3.2.1 Semirings. A commutative monoid M is an algebraic struc-

ture (𝑀, +M , 0M ) such that 𝑀 ≠ ∅ is a set closed under a com-

mutative and associate binary operation +M . The element 0M is

the identity operand for +M . Given two commutative monoids

(𝐾, +K , 0K ) and (𝐾,×K , 1K ) such that ×K is distributive over

+K , and 0K ×K 𝑥 = 0K (for every 𝑥 ∈ 𝐾), we call the struc-

ture K = (𝐾, +K ,×K , 0K , 1K ) a commutative semiring. An spm-
semiring (𝐾, +K ,×K ,−K , 0K , 1K ) extends a commutative semiring

with a minus operation −K . This operator follows a set of axioms

that allows us to model non-monotonic operations such as the

relational difference. For more details about spm-semirings, we

refer the reader to [11]. The algebraic expressions within an spm-

semiring are used to annotate query solutions. To see how, we need

to introduce the concepts of K-relations and K-graphs.

3.2.2 K-relations andK-graphs. Given a set of mappings𝑈 and an

spm-semiring K = (𝐾, +K ,×K ,−K , 0K , 1K ), an annotation func-

tion 𝑓 : 𝑈 → 𝐾 with finite support set supp(𝑓 ) = {` ∈ 𝑈 | 𝑓 (`) ≠
0K } is called a K-relation over 𝑈 . We call 𝑓 (`) the K-value of

` ∈ 𝑈 . An annotation function 𝐺 : Γ → 𝐾 is called a K-graph.

Example 3.2. Let K = (𝐾, ⊕, ⊗, ⊖, 0, 1) be an spm-semiring with

𝐾 = {𝑢1, 𝑢2, 𝑢3}, and let 𝐺 and 𝑄 be the following RDF* graph and

query:

𝐺 = { ((Alice, likes, pasta),wasDerivedFrom, 𝑢1),
((Alice, likes, pasta),wasDerivedFrom, 𝑢2),
((Alice, livesIn, Italy),wasDerivedFrom, 𝑢3) },

𝑄 = (?𝑥, likes, pasta) and (?𝑥, livesIn, Italy) .

It is easy to see that the predicate wasDerivedFrom defines a K-

graph𝐺 : Γ → 𝐾 , and that ` = {?𝑥 → Alice} is a solution mapping

for 𝑄 . The set {` → (𝑢1 ⊕ 𝑢2) ⊗ 𝑢3} is a K-relation that associates

𝑄’s solution to a provenance polynomial. This how-provenance

annotation tells us that Alice is a query solution for 𝑄 as long as

the triple identified by 𝑢3 is present in conjunction with either the

triples 𝑢1 or 𝑢2. We call those provenance identifiers the sources.

Definition 3.3. Given an spm-semiring K , a SPARQL query 𝑄

consisting of a combination of triple patterns with the operators

and, union, diff, filter, optional, and select, and a K-graph

𝐺 , we write L𝑃M𝐺 to denote the K-relation defined recursively as

follows:

L(𝑠, 𝑝, 𝑜)M𝐺 (`) = 𝐺 (` (𝑠, 𝑝, 𝑜)),
Lselect𝑊 where 𝑃M𝐺 (`) = ∑

`′ |𝑊 =` L𝑃M𝐺 (`′),
L𝑃 filter 𝜑M𝐺 (`) = L𝑃M𝐺 (`) ×K 1` |=𝜑 ,

L𝑃1 union 𝑃2M𝐺 (`) = L𝑃1M𝐺 (`) +K L𝑃2M𝐺 (`),
L𝑃1 and 𝑃2M𝐺 (`) = ∑

`=`1∪`2 (L𝑃1M𝐺 (`1) ×K L𝑃2M𝐺 (`2)),
L𝑃1 diff 𝑃2M𝐺 (`) = L𝑃1M𝐺 (`) −K (∑`′∼` L𝑃2M𝐺 (`′)),
L𝑃1 optional 𝑃2M𝐺 (`) = L𝑃1 and 𝑃2M𝐺 (`) +K L𝑃1 diff 𝑃2M𝐺 (`),

where

∑
denotes sums using the operation +K , and ∼ denotes

mapping compatibility. Two mappings ` and `′ are compatible if

` (?x) = `′ (?x) for every variable ?x ∈ dom(`) ∩ dom(`′).

Figure 1: The query rewriting process for NPCS.

4 PROVENANCE COMPUTATION WITH NPCS
In the following, we explain our method to annotate SPARQL query

solutions with how-provenance annotations as in Example 3.2.

Given a K-graph 𝐺 and a SPARQL query 𝑄 , NPCS rewrites 𝑄 into

𝑄 ′
so that the execution of 𝑄 ′

returns a K-relation that maps 𝑄’s

solutions to their how-provenance polynomials. Those polynomials

lie in an spm-semiring K = (𝐾, ⊕, ⊗, ⊖, 0, 1), where 𝐾 is the set of

triple identifiers in 𝐺 . We highlight that computing provenance

assumes that the triples in the graph are reified, i.e., identified. RDF*

is a natural way to do it, but as shown later, our approach supports

any reification scheme for RDF data. The architecture of NPCS is

depicted in Figure 1.

4.1 Our Query Rewriting in a Nutshell
Consider our K-graph 𝐺 and query 𝑄 from Example 3.2. For ped-

agogical reasons we rewrite our query 𝑄 as 𝑃1 and 𝑃2. We recall

that our goal is to return the following result set:[
?𝑥 ?𝑧

𝐴𝑙𝑖𝑐𝑒 (𝑢1 ⊕ 𝑢2) ⊗ 𝑢3

]
.

The column labeled ?𝑧 stores the how-provenance of each of the

query solutions. To compute such an expression, our strategy

must rewrite the query such that the rewritten query retrieves

the identifiers of the triples that match each of the triple pat-

terns. However, this is not enough. For instance, the triple pattern

𝑃1 = (?𝑥, likes, pasta) has two matches, i.e., 𝑢1 and 𝑢2, that must be

grouped into the expression (𝑢1 ⊕ 𝑢2). This term tells us that the

presence of at least one of those sources guarantees the inclusion of

Alice in the result set. Finally, the groups extracted from each of the

triple patterns must be combined with the ⊗ operator that explains

the semantics of and. We argue that to obtain the left-hand term

of the product we can rewrite 𝑃1 into the following sub-query:

𝑃 ′
1
= (select ?𝑥 (ProvAggSum(?𝑧⊕⊗1⊕⊙) as ?𝑧⊕⊗1)

where Reify(?𝑥, likes, pasta, ?𝑧⊕⊗1⊕⊙)
group by ?𝑥),

3
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The Reify function rewrites a triple pattern so that it matches the

reification scheme used in the K-graph. In our running example,

Reify is a shortcut for

((𝑠, 𝑝, 𝑜),wasDerivedFrom, ?𝑧⊕⊗1⊕⊙) .

The intermediate variable ?𝑧⊕⊗1⊕⊙ is introduced to capture the

sources that match 𝑃1, whereas ?𝑧⊕⊗1 groups all the sources asso-
ciated to a query solution, which explains the group clause on ?𝑥 .

The function ProvAggSum, later explained, combines the different

sources into a summation with the operator ⊕.
The signs ⊕, ⊗, and ⊙ in the intermediate variable names are

strings used to produce new variable names that do not clash with

the original query variables. The names of the variables encode the

different steps of the construction of the annotations. For instance,

the sign ⊙ at the end of a variable name tells us that the variable’s

bindings are triple identifiers. If this is followed by a ⊕ sign, then

those bindings will eventually be grouped into a summation by a

subsequent step. Those results will be stored in a variable with the

same prefix but without the suffix ⊕⊙. Furthermore, the ⊗1 sign
tells us that our results correspond to the first operand of a join

operation, namely and in SPARQL. If we apply the same logic to

𝑃2 our rewriting for 𝑄 takes the following form:

𝑄 ′ = ( select ?𝑥 (ProvAggSum(?𝑧⊕) as ?𝑧)
where ((𝑃1 and 𝑃2)

bind (ProvProd(?𝑧⊕⊗1, ?𝑧⊕⊗2)as ?𝑧⊕))
group by ?𝑥 ),

The operation ProvProd combines the expressions derived from

the product’s operands. We resort again to ProvAggSum to sum up

all the ways to produce a solution mapping from a join operation.

The operators ProvAggSum and ProvProd are defined in

terms of the standard SPARQL string operators concat and

aggregate_concat as follows.

Definition 4.1. Let ?𝑥 , ?𝑥1,. . . , ?𝑥𝑛 be variables. Then, we define

the following SPARQL operators:

ProvAggSum(?𝑥) = concat(“ (⊕”, aggregate_concat(?𝑥), “)”),
ProvSum(?𝑥1, . . . , ?𝑥𝑛) = concat(“ (⊕”, ?𝑥1, . . . , ?𝑥𝑛, “)”),
ProvProd(?𝑥1, . . . , ?𝑥𝑛) = concat(“ (⊗”, ?𝑥1, . . . , ?𝑥𝑛, “)”),
ProvDiff (?𝑥1, ?𝑥2) = concat(“ (⊖”, ?𝑥1, ?𝑥2, “)”) .

4.2 Base Rewriting Rules
Having provided the intuition behind our query rewriting in Sec-

tion 4.1, we now introduce our rewriting rules for arbitrary SPARQL

queries.

Definition 4.2 (Base SPARQL* query rewriting). Let 𝑄 be a

SPARQL query, ?𝑧 a variable, and Reify a reification scheme. Then,

the rewritten query for 𝑄 and variable ?𝑧 over scheme Reify, de-
noted 𝛽 (𝑄, ?𝑧), is defined recursively as follows:

(1) If 𝑄 is an empty basic graph pattern, then 𝛽 (𝑄, 𝑧) is the
query {} bind (1as ?𝑧).

(2) If 𝑄 is a triple pattern (𝑠, 𝑝, 𝑜), then 𝛽 (𝑄, 𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕⊙) as ?𝑧)
where Reify(𝑝 (𝑠, 𝑜), ?𝑧⊕⊙)
group by inScope(𝑄) ).

(3) If 𝑄 is (𝑃1 and 𝑃2), then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝛽 (𝑃1, ?𝑧⊕⊗1) and 𝛽 (𝑃2, ?𝑧⊕⊗2))

bind (ProvProd(?𝑧⊕⊗1, ?𝑧⊕⊗2) as ?𝑧⊕)
group by inScope(𝑄) ).

(4) If 𝑄 is (𝑃1 union 𝑃2), then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝛽 (𝑃1, ?𝑧) union 𝛽 (𝑃2, ?𝑧))
group by inScope(𝑄) ).

(5) If 𝑄 is (𝑃1 diff 𝑃2), then let a a variable substitution that

substitutes with fresh variables the variables in dom(𝑃1) ∩
dom(𝑃2) that are not strongly bound in 𝑃1. Then, 𝛼 (𝑄, ?𝑧)
is the query computed as follows.

( select inScope(𝑄)
(ProvDiff (𝑧⊖1, ProvAggSum(𝑧⊖2⊕)) as ?𝑧)

where (𝛽 (𝑃1, ?𝑧⊖1) optional𝐶a
𝛽 (a (𝑃2), ?𝑧⊖2⊕))

group by inScope(𝑄) ∪ {𝑧⊖1} ).
(6) If 𝑄 is (select𝑊 where 𝑃1), then 𝛽 (𝑄, ?𝑧) is the query

( select 𝑊 (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝛽 (𝑃1, ?𝑧⊕)
group by 𝑊 ) .

(7) If 𝑄 is (𝑃 filter 𝜑), then 𝛽 (𝑄, ?𝑧) is the query
(𝛽 (𝑃, ?𝑧) filter 𝜑).

(8) If 𝑄 is (𝑃 bind (𝐸 as ?𝑥)), then 𝛽 (𝑄, ?𝑧) is the query
(𝛽 (𝑃1, ?𝑧) bind (𝐸 as ?𝑥)).

We omit the rewriting rule for the optional operator because this

operator can be written in terms of and, union and diff, to be

precise, 𝑃1 optional 𝑃2 ≡ (𝑃1 diff 𝑃2) union (𝑃1 and 𝑃2).
Since the diff operation requires tracking the provenance of

both operands, diff translates to an optional operation, more

precisely, to an optional𝐶𝑣
operation, which extends the optional

operation by renaming variables in the optional pattern with fresh

ones. This renaming discards undesired bindings produced in the

subtrahend while tracking the provenance. For example, consider

the patterns 𝑃1 (?𝑥, ?𝑦) and 𝑃2 (?𝑥, ?𝑦, ?𝑧), whose in-scope variables
are indicated in the parenthesis, and let `1 = {?𝑥 ↦→ 𝑎} and `2 =

{?𝑥 ↦→ 𝑎, ?𝑦 ↦→ 𝑏, ?𝑧 ↦→} be the respective results of them. If instead

of optional𝐶𝑣
rule (5) uses optional, the query will return the

provenance for the mapping {?𝑥 ↦→ 𝑎, ?𝑦 ↦→ 𝑏} instead of the

mapping `1. If ?𝑥 is strongly bound for 𝑃1 (i.e., always bound in its

answers), then the operation (𝑃1 optional𝐶𝑣
𝑃2 will be:

((𝑃 (?𝑥, ?𝑦) optional 𝑃 (?𝑥, a (?𝑦), ?𝑧))
filter (¬ bound(?𝑦) ∨ ¬ bound(a (?𝑦))∨?𝑦 = a (?𝑦))) .

To define correctness of the query rewriting described in Defini-

tion 4.2 we need the notions of soundness and completeness. A query

rewriting is sound when the rewritten query returns right polyno-

mial expressions, and complete if it returns polynomial expressions

for all mappings with non-zero polynomials.

Definition 4.3 (Soundness and Completness). Let Reify be a func-

tion that implements a reification scheme, and 𝛾 be a function

that receives a SPARQL query 𝑄 and a variable ?𝑧 ∉ inScope(𝑄),
and returns a SPARQL query 𝛾 (𝑄, 𝑧) with inScope(𝛾 (𝑄, ?𝑧)) =

inScope(𝑄) ∪ {?𝑧}. Let 𝐺 be a K-annotated graph, and Reify(𝐺)
the RDF-star graph resulting from applying the Reify function to

each triple in 𝐺 in order to encode 𝐺 ’s triple annotations.
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(1) 𝛾 is called sound for Reify if, for every answer of the rewrit-
ten query `∪ {?𝑧 ↦→ 𝑒} ∈ J𝛾 (𝑄, ?𝑧)KReify(𝐺 ) , 𝑒 is an expres-

sion for the polynomial L𝑄M𝐺 (`).
(2) 𝛾 is called complete for Reify if, for every mapping ` such

that L𝑄M𝐺 (`) is a non-zero polynomial, there exists an ex-

pression 𝑒 such that ` ∪ {?𝑧 ↦→ 𝑒} ∈ J𝛾 (𝑄, ?𝑧)KReify(𝐺 ) .

Theorem 4.4. Let Reify be a reification scheme, and 𝛽 be the
function described in Definition 4.2. Then, function 𝛽 is sound and
complete for the reification scheme Reify.

Proof. It can be shown by induction on the query structure. □

We highlight that for queries of the form 𝑃1 diff 𝑃2, NPCS also

returns why-not provenance explanations of the form 𝑘1 ⊖ 𝑘2 (𝑘1
and 𝑘2 are polynomials) for the bindings that match both 𝑃1 and 𝑃2.

The polynomial 𝑘2 tells us which sources must be removed from the

graph so that the corresponding binding becomes a query solution.

4.3 Query Rewriting Optimization
If we look at our example rewritten query 𝑄 ′

described in Sec-

tion 4.1, we can notice that this query includes a group by clause,

and two subqueries, namely 𝑃 ′
1
and 𝑃 ′

2
, each of which also includes a

group by clause. In Definition 4.6 we describe an alternative query

rewriting that produces equivalent polynomial expressions, but

reduces the number of aggregate operations.

Definition 4.5. A sum-query 𝑄 is a query such that the query

rewriting 𝛽 described in Definition 4.2 returns a query of the form:

𝛽 (𝑄, ?𝑧) = ( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝑇

group by inScope(𝑄) ).
We call query 𝑇 the pattern of 𝛽 (𝑄, ?𝑧).

Note that, according to Definition 4.2, sum-queries are all queries

that match the rules 2, 3, 4, and 6.

Definition 4.6. Let 𝑄 be a SPARQL query, ?𝑧 be a variable, and

Reify a reification scheme. Then, the rewritten query for 𝑄 and

variable ?𝑧 over scheme Reify, denoted 𝛽 (𝑄, ?𝑧), is defined recur-

sively as is specified in Definition 4.2, but the following rules are

applied when possible:

(1) If𝑄 is (𝑃1 and · · · and 𝑃𝑛), and 𝑃1, . . . , 𝑃𝑛 are sum-queries,

such that for 1 ≤ 𝑖 ≤ 𝑛, the pattern of 𝛽 (𝑃𝑖 , ?𝑧⊕⊗𝑖) is 𝑇𝑖 ,
then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where ((𝑇1 and · · · and𝑇𝑛)

bind (ProvProd(?𝑧⊕⊗1⊕, . . .?𝑧⊕⊗𝑛⊕)
as 𝑧⊕⊗)

group by inScope(𝑄) ).
(2) If 𝑄 is (𝑃1 union · · · union 𝑃𝑛), where 𝑃1, . . . , 𝑃𝑛 are sum-

queries, and for 1 ≤ 𝑖 ≤ 𝑛, the pattern of 𝛽 (𝑃𝑖 , ?𝑧⊕) is 𝑇𝑖 ,
then 𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄) (ProvAggSum(?𝑧⊕) as ?𝑧)
where (𝑇𝑖 union · · · union𝑇𝑛)
group by inScope(𝑄) ).

(3) If 𝑄 is (𝑃1 diff 𝑃𝑛), and a is a variable substitution that

substitutes with fresh variables the variables in dom(𝑃1) ∩
dom(𝑃2) that are not strongly bound in 𝑃1, and 𝑃2 is a

sum-query where the pattern of 𝛽 (a (𝑄2), ?𝑧⊖2) is 𝑇2, then
𝛽 (𝑄, ?𝑧) is the query
( select inScope(𝑄)

(ProvDiff (𝑧⊖1, ProvAggSum(𝑧⊖2⊕)) as ?𝑧)
where (𝛽 (𝑃1, ?𝑧⊖1) optional𝐶a

𝑇2)
group by inScope(𝑄) ∪ {𝑧⊖1} ).

(4) If𝑄 is (select𝑊 where 𝑃), where 𝑃 is a sum-query such

that the pattern of 𝛽 (𝑃, ?𝑧⊕) is𝑇 , then 𝛽 (𝑄, ?𝑧) is the query
( select 𝑊 (ProvAggSum(?𝑧⊕) as ?𝑧)
where 𝑇

group by 𝑊 ) .

Note: In rules 1 and 2 of Definition 4.6, we omitted the parenthesis

for sequences of operations and and union, because these opera-

tors are associative. Intuitively, the associativeness of these oper-

ators allows considering the binary operation as a single variadic

operation with a single group by clause.

Example 4.7. Consider the query 𝑄 from Example 3.2. Then,

according to the query rewriting described in Definition 4.6 the

rewritten query of 𝑄 is:

𝛽 (𝑄, ?𝑧) = ( select ?𝑥 (ProvAggSum(?𝑧⊕⊗) as ?𝑧)
where (( Reify(?𝑥, likes, pasta, ?𝑧⊕⊗1⊕) and

Reify(?𝑥, likes, pasta, ?𝑧⊕⊗2⊕))
bind (ProvProd(?𝑧⊕⊗1⊕, ?𝑧⊕⊗2⊕)

as ?𝑧⊕⊗))
group by ?𝑥 ) .

This query has only one group by clause whereas the query 𝑄 ′

at the end of Section 4.1 (generated using the rewriting of Defini-

tion 4.2) has three.

Theorem 4.8. Let Reify be a reification scheme, and 𝛽 be the
function described in Definition 4.6. Then, function 𝛽 is sound and
complete for the reification scheme Reify.

Proof. It can be shown by induction on the query structure, that

the expressions resulting from the rules in Definition 4.6 produce

the same results that the rewriting in Definition 4.2. □

5 EVALUATION
We conducted an extensive evaluation of NPCS’s viability for com-

puting how-provenance by assessing the runtime overhead incurred

by the rewritten queries. This is measured by comparing the run-

time between the original queries without provenance annotations

and the queries obtained with our approach.

5.1 Experimental Setup
5.1.1 Environment. NPCS was implemented in Java, using the Java

Development Kit (JDK) version 11. All the experiments were con-

ducted on a computer with an AMD EPYC 7281 16-core processor,

256GB of RAM, and an 8 TB HDD disk running Ubuntu 18.04.6

LTS. We evaluated NPCS on two widely used RDF/SPARQL en-

gines, namely GraphDB
1
(version 10.2.0) and Stardog

2
(version

9.1.0). Throughout all experiments, we set a timeout of 350 seconds

to ensure consistent results and reported the average response time

of the queries over five executions in a cold setting, i.e., after having

cleared the disk cache.

1
https://graphdb.ontotext.com/

2
https://www.stardog.com/
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5.1.2 Competitor. We compare NPCS with SPARQLprov [15], a

state-of-the-art solution for how-provenance in SPARQL, which

is also based on query rewriting. We used the implementation

provided by the authors of [15], except from the RDF* reification

scheme, which was not supported by the original SPARQLprov

implementation, and we implemented it ourselves. SPARQLprov

and NPCS compute the same provenance polynomials since they

both rely on spm-semirings.

5.1.3 Synthetic Workload. We employed the Watdiv performance

benchmark specifically designed for RDF/SPARQL engines. Wat-

div provides a data generator that can produce synthetic datasets

of varying sizes. Additionally, WatDiv includes 20 select query

templates, each comprising 10 instantiated queries. The query tem-

plates are categorized into four types: linear queries (L), star queries

(S), snowflake-shaped queries (F), and complex queries (C). They

are all monotonic queries. We therefore introduced five additional

non-monotonic query templates (O) as proposed by [15]. These

non-monotonic queries were created by enclosing one of the triple

patterns in the linear queries with an optional clause.

We evaluate NPCS on the 10M-triple and 100M-triple Watdiv

synthetic datasets, that we reified using the RDF* and named graphs

reification schemes. We excluded the standard reification from our

evaluation as it reports the worst performance according to [15].

Moreover, we created a 200M-triple dataset by duplicating every

triple of the 100M-triple dataset and assigning a second provenance

identifier to the duplicates. This dataset aims at simulating a chal-

lenging scenario where triples has been extracted from more than

one source.

5.1.4 Real Workload. We tested NPCS and SPARQLprov on the

WDBench benchmark [1] in order to evaluate our methodology on

real-world data. The benchmark uses data from 15.2 billion triples

encoded using the Wikidata reification scheme in the Wikidata

dump from 2023. The benchmark provides more than 800 queries

consisting of simple BGPs, some of them with optional clauses.

We took a sample of 150 queries consisting of 50 single-triple-

pattern queries, 50 non-monotonic queries (with optional), and

50 monotonic queries with more than on triple pattern. The queries

were randomly chosen.

5.2 Results
5.2.1 Synthetic Workload. Figures 2 and 3 compare the execution

times of the original query with those of the rewritten queries

produced by NPCS and our competitor SPARQLprov on RDF* data

when using GraphDB and Stardog respectively. The runtimes were

measured on the 10M and 100M Watdiv synthetic datasets. We

first notice that in all cases, rewriting the query to compute how-

provenance incurs a performance overhead. Not surprisingly, the

overhead increases with data size, but its behavior also depends on

the query engine. For instance, NPCS’s overhead ranges from 20%

to 30% in GraphDB, and from 25% to 50% in Stardog. Figures 2 and 3

also reveal that, on average, GraphDB is more sensitive to data

scaling than Stardog, even though runtime across query templates

exhibits higher variability in Stardog. Regardless of the data size

and the query engine, templates C3 and F5 are by far the most

challenging, which makes our competitor SPARQLprov timeout on

both GraphDB and Stardog. The complexity of C3 is explained by

its large number of intermediate results, whereas for F5 it is caused

by the large number of solutions.

When we compare the query rewriting strategies, we notice the

NPCS consistently outperforms SPARQLprov in 98 out of our 100

studied cases. Also, NPCS is on average 25 times faster than SPAR-

QLprov. One can explain this performance difference by the fact

that NPCS is a fully native SPARQL solution, whereas SPARQLprov

relies on a post-hoc decoding phase to compute the provenance

polynomials. Like NPCS, SPARQLprov rewrites the query to ex-

tract provenance information. Unlike our approach, SPARQLprov

encodes the structure of the how-provenance annotations in addi-

tional columns in the result set. Those additional columns can be

numerous and encode the structure of the provenance polynomials.

Decoding that information requires to run additional group and

aggregation operations. Hence, the runtime of this decoding phase

is proportional to the number of query solutions times the maximal

depth of the operator trees of the provenance annotations. That

explains why SPARQLprov times out for query template F5, which

is by far the template with the highest number of query solutions

(173.6K solutions on average). NPCS, in contrast, carries out the

grouping operations during query evaluation, which not only lever-

ages the engine optimizations for grouping but also makes it easier

to deploy in real-world settings.

Despite NPCS’s clear runtime advantage, SPARQLprov can ex-

hibit comparable or better performance on very selective queries.

This is demonstrated by the runtimes for queries O1, O2, and O5.

In cases such as query template O5, and query template O2 on

GraphDB, NPCS’s strategy of evaluating grouping operations in

the source engine, does not pay off. This is so because the queries

and their constituent triple patterns are very selective.

We now shift our attention to the runtime results on the 200M

dataset. The results for our studied rewriting methods are depicted

in Figure 4 on GraphDB. We observe similar trends as in the 100M

scenario, except that SPARQLprov also times out on query templates

C2 and F4. We omit the results for Stardog as they exhibit similar

behavior as in the 100M dataset.

Finally we evaluate NPCS on a different reification scheme,

namely the popular named graphs strategy. The results are de-

picted in Figure 5 for the 10M and 100M datasets on GraphDB. We

observe the same trends as for the RDF* reification, that is, NPCS

outperforms SPARQLprov consistently in 48 out of 50 studied cases.

This shows that our approach is insensitive to the data reification

scheme, which makes it applicable to any standard RDF/SPARQL

engine. Similar results are observed for Stardog.

5.2.2 Real Workload. We now evaluate NPCS on real-world data,

namely on the WDBench based on Wikidata. The results for

GraphDB and Stardog are shown in Figures 6 and 7 respectively.

Each dot in the plot represents the execution of a query, either

the original query or a rewritten query by NPCS or by SPARQL-

prov. Queries are plotted on the x-axis by increasing number of

solutions, whereas the y-axis represents the execution time. We

verify the same trend for both engines, namely that SPARQLprov’s

query rewriting induces a much larger overhead than NPCS. While

the overhead increases with the number of query results for both
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Figure 2: Query execution times on the Watdiv 10M and 100M datasets reified with RDF* on GraphDB

Figure 3: Query execution times on the Watdiv 10M and 100M datasets reified with RDF* on Stardog

Figure 4: Query execution times on the Watdiv 200M dataset
reified with RDF* on GraphDB

methods, it is more pronounced for SPARQLprov. This makes SPAR-

QLprov time out when the number of results is above 700K. We

also observe that for queries with a few thousand results executed

on Stardog, NPCS’s overhead can be minimal.

6 CONCLUSIONS
In this paper we have proposed NPCS, a novel query rewriting

method to compute how-provenance annotations for SPARQL

query results. To the best of our knowledge, NPCS is the first 100%

SPARQL-based solution for how-provenance. Our approach can

be easily applied on standard and already deployed RDF/SPARQL

engines, without the need for customized extensions or post-

processing steps. Our experimental evaluation on synthetic and

real data shows that NPCS’s native SPARQL rewriting outperforms

the state of the art in how-provenance for SPARQL queries. The

performance gains provided by our method allows us to compute

provenance annotations for millions of query results on knowledge

graphs with billions of triples. This makes our approach attractive

for ETL processes that manage large volumes of data—a common

scenario for multi-source KG construction.

As future work we intend to work on lazy approaches for how-

provenance computation, that is, approaches where provenance is

7
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Figure 5: Query execution times on the Watdiv 10M and 100M datasets reified as named graphs on GraphDB.

Figure 6: Number of results vs. query execution time for the WDBench queries run on Wikidata (stored in GraphDB using the
Wikidata reification scheme)

Figure 7: Number of results vs. query execution time for the WDBench queries run on Wikidata (stored in Stardog using the
Wikidata reification scheme)

computed for a user-specified set of solutions. This avoids the exe-

cution of expensive queries for results that are not of interest of the

user. We have also envisioned to tackle the problem of computing

how-provenance annotations for non-reified data.

SUPPLEMENTARY MATERIAL STATEMENT
The source code of NPCS, the scripts to recreate the full experimen-

tal setup, required libraries, queries, and results can be found on

GitHub.
3

3
URL: https://github.com/factcheckerr/NPCS
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