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Abstract

We address the long-standing problem of how to learn effective pixel-based image diffusion
models at scale, introducing a remarkably simple greedy method for stable training of large-
scale, high-resolution models without the needs for cascaded super-resolution components.
The key insight stems from careful pre-training of core components, namely, those respon-
sible for text-to-image alignment vs. high resolution rendering. We first demonstrate the
benefits of scaling a Shallow UNet, with no down(up)-sampling enc(dec)oder. Scaling its
deep core layers is shown to improve alignment, object structure, and composition. Building
on this core model, we propose a greedy algorithm that grows the architecture into high res-
olution end-to-end models, while preserving the integrity of the pre-trained representation,
stabilizing training, and reducing the need for large high-resolution datasets. This enables
a single stage model capable of generating high-resolution images without the need of a
super-resolution cascade. Our key results rely on public datasets and show that we are able
to train non-cascaded models up to 8B parameters with no further regularization schemes.
Vermeer, our full pipeline model trained with internal datasets to produce 1024 × 1024
images, without cascades, is preferred by 44.0% vs. 21.4% human evaluators over SDXL.

1 Introduction

Training large-scale Pixel-Space text-to-image Diffusion Models (PSDM ) to generate high-resolution images
has been challenging due to optimization instabilities arising when growing model size and/or target image
resolution, and due to the increasing demand for computational resources and high resolution training
corpora. The predominant alternatives include cascaded models, comprising a sequence of diffusion models
each targeting a progressively higher resolution and trained independently (Ho et al., 2022a; Saharia et al.,
2022a; Nichol et al., 2022), and latent diffusion models (LDMs), where generation is performed in a low-
dimensional latent representation, from which high resolution images are generated via a pre-trained latent
decoder (Rombach et al., 2022).

In the development of cascaded models, it is challenging to identify sources of quality degradation and
distortion resulting from design decisions at specific stages of the model. One well-known issue of cascades
is the distribution shift between training and inference, where inputs to super-resolution or decoder models
during training are obtained by down-sampling or encoding training images, but during inference they
are generated from other models, and hence may deviate from the training distribution. This can cause
amplification of unnatural distortions produced by models early in the cascade. The generation of realistic
small objects such as faces or hands is one such challenge that has been difficult to diagnose in such models.

Beyond image generation per se, diffusion models serve as image priors for myriad downstream tasks, in-
cluding inverse problems (Jalal et al., 2021; Kadkhodaie & Simoncelli, 2021; Kawar et al., 2022; Song et al.,
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Figure 1: Images generated with our model Vermeer. (See Appendix A for the prompts.)

2023; Chung et al., 2023; Graikos et al., 2022; Tang et al., 2023; Jaini et al., 2023; Zhan et al., 2023; Song
et al., 2024), or other generative tasks (Ho et al., 2022b; Levy et al., 2023; Poole et al., 2023; Tan et al.,
2023; Bar-Tal et al., 2024; Chen et al., 2023; Tewari et al., 2023). Cascaded diffusion models are not readily
applicable to such tasks, and as a consequence, many such applications rely solely on the score function from
the base model of a cascade, often at a relatively low resolution. A high resolution end-to-end model would
alleviate these issues, but model development and effective training procedures have been elusive.

Key barriers to training high resolution models include prohibitive resource requirements in both memory
and computation. Existent recipes require large batch sizes during training to avoid instabilities, and as a
consequence, intractably large amounts of memory for high-resolution images. Another issue concerns the
need for high quality, high resolution training data. Existing training methods require large, diverse corpora
of text-to-image pairs at the target resolution, while in practice, such data are not readily available at high
resolution.

This paper introduces a framework for training high resolution, large-scale text-to-image diffusion models
without the use of cascades. To that end we explore the extent to which one can decouple the training
of ’visual concepts’ associated with textual prompts, from the resolution at which one aims to render the
image. Such disentanglement has two goals. It aims at a better understanding of alignment, composition
and image fidelity (especially for well-known hard cases like generating consistent hands, text rendering,
scene composition, etc.) as a function of model scaling (e.g., see Figure 3). Second, and of equal importance,
our framework yields a robust and stable recipe for training large-scale, non-cascaded pixel-based models
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targeting high-resolution generation. A bonus is that our recipe allows us to jointly train a single model
with data comprising multiple resolutions, even if high-resolution text-image pairs are relatively scarce.

The contributions of this paper can be summarized as follows:

• We introduce a novel architecture, Shallow-UViT, which allows one to pretrain the PSDM ’s core
layers on datasets of text-image data (subsection 3.2), eliminating the need to train the entire model
with high resolution images. This also allows us to investigate the emergent properties of PSDM
representation scaling in isolation from layers targeting generation at the final resolution.

• We present a greedy algorithm for training the Shallow-UViT architecture that allows us to success-
fully train a high-resolution text-to-image model with small batch sizes (256 versus the typical 2k
used in end-to-end solutions) (section 3).

• We show that one can significantly improve different image quality metrics by leveraging the repre-
sentation pretrained at low-resolution, while growing model resolution in a greedy fashion. Scaling
the core components of the Shallow-UViT architecture alone leads to significant improvements in
image distribution, quality and text alignment (section 5).

• We demonstrate that these principles work at scale by presenting Vermeer (Figure 1), a model
trained with our greedy algorithm on large-scale corpora, in conjunction with other well-known
methods like asymmetric aspect ratio finetuning, prompt preemption and style tuning (section 6).
Vermeer is shown to surpass previous cascaded and auto-regressive models across different metrics.
In a human evaluation study with 500 challenging prompts and 25 annotators per image, Vermeer
is preferred over SDXL (Podell et al., 2024) by a 2 to 1 margin.

2 Related work

Current high-resolution image generation with diffusion models presents a trade-off between architectural
complexity and efficiency. Cascaded diffusion models (Nichol et al., 2022; Dhariwal & Nichol, 2021; Sa-
haria et al., 2022b; Ramesh et al., 2022; Balaji et al., 2022) were originally introduced to circumvent the
difficulty of training a single stage, end-to-end model. Cascaded models employ a multi-stage architecture
that progressively up-scales lower-resolution images to address the computational challenges of generating
high-resolution images directly. Nevertheless, they entail significant complexity and training overhead, as
the stages of the cascade are trained independently.

Simple Diffusion (Hoogeboom et al., 2023b) sought to simplify the process by targeting the high resolution
generation with a single stage model, introducing a novel UViT architecture and several useful modifications
to training methods that improve stability. While this approach is shown to be effective, stability issues
remain when targeting large-scale models, and high resolution images, due in part to their dependence on
large batch sizes. In this work we adopt a similar UViT architecture, and some of their techniques for scaling,
extending the model to much higher resolutions through greedy training. Through scaling the core backbone
of the model, and with our greedy training procedure, we find with can scale to much high resolution models
(2× to 8× higher than Simple Diffusion), with excellent alignment, and much smaller batches when training
high resolution layers of the model.

Another line of work proposed Matryoshka Diffusion Models (MDM) (Gu et al., 2023) that denoises multiple
resolutions using a proposed Nested UNet architecture. They progressively train the network to preserve
the representation at higher resolutions. We show in this work an alternate and simpler approach where
denoising multiple resolutions is not required, but instead it is crucial to preserve the representation by
freezing the pretrained weights as we grow the architecture up to its final design.

On another front, latent diffusion models (LDMs) (Rombach et al., 2022; Jabri et al., 2022; Betker et al.,
2023) reduce computational costs by operating within a compressed latent representation. However, LDMs
still require separate super-resolution or latent decoder networks to produce final high-resolution images.
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The model we introduce also resembles progressive GAN training (Karras et al., 2018) in which layers of
increasing resolution are added at each stage. Our work can be thought of as an extension of progressive
growing for diffusion models, where we evaluate different growing configurations, and come up with a two-step
recipe that arrives at a good trade-off of training efficiency, robustness, and generation quality. Specifically,
while all layers remain trainable in progressive GANs, and a sequence of growing operations is performed
before reaching the final architecture, we pretrain a core representation that remains frozen when training
all grown layers at once up to the target resolution. We find that this is crucial to preserve the quality of
the representation learned at lower resolutions.

3 Method

Our goal is to create a straightforward, stable methodology for training large scale pixel-space diffusion
models that operate as a single stage model, i.e., non-cascaded, at inference time. To this end, we first
revisit the UNet architecture, aiming to decouple layers that have a major impact on text-to-image alignment
(core components) from those responsible for rendering at the target image resolution (encoder-decoder
or super-resolution components). Next, we focus on pre-training the core components pretraining and on
representation scaling (subsection 3.2). Finally, we present a greedy algorithm to grow the initial architecture
core by adding encoder-decoder layers while protecting core layers’ representation. This yields a single-stage
model at inference time (subsection 3.3).

3.1 Text-to-image core components

UNet is the architecture of choice for diffusion models. Two architecture families are common. In one, con-
volutional networks comprise a stack of convolutional blocks alternated with pooling or downsampling layers
in the encoder, and upsampling layers in the decoder. More recently, the UViT family emerged (Hoogeboom
et al., 2023a), in which convolutional blocks are used at the higher layers of the encoder and decoder but
augmented with transformer layers at the bottom of the UNet. In both architectural families, text con-
ditioning is accomplished via cross-attention layers, also at the bottom, low-resolution layers of the UNet.
In doing so, these layers are responsible for conditioning the models’ deepest representation on the textual
and/or multi-modal inputs. At these low-resolution layers, the text conditioning signal is able to influence
the global image composition while the computational cost of attention is kept relatively low.

Our search for a methodology that allows stable training of large models starts by identifying and isolating
core layers responsible for text-to-image alignment. Our main conjecture is that it is possible to reduce
the instability typically observed during training large-scale PSDMs by warming up layers responsible for
text-to-image alignment in isolation from layers responsible for target resolution encoding/decoding.

Specifically, we define the core components as those that directly interface with text conditioning signals and
those that are crucial in the diffusion process. They can be described as:

• Text encoding layers combine one or more textual, character, and/or multimodal pretrained repre-
sentations (such as those from Raffel et al. (2020b); Xue et al. (2022a); Liu et al. (2023); Radford
et al. (2021a)), and project them into the embedding space of the UNet. Typically composed of
MLP on top of pooling layers.

• Core representation layers comprise hidden layers in the main backbone interfacing with cross-
attention layers. They include the bottom layers of the UNet architecture whose features are directly
combined with the embedded text by the cross attention operation and layers between them.

• Time encoding layers map the diffusion time step into the model’s embedding space. Typically
designed as a sinusoidal positional encoder, followed by a shallow MLP. Despite not participating
directly in the cross-attention operation, it is a core component of the diffusion process.

We isolate these core components of a PSDM text-to-image model in order to study their effect on the final
model’s properties. Next, we propose an architecture that enables the pretraining of these layers, and also
supports the study of the properties emerging from scaling them.
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Figure 2: Shallow-UViT architecture: The input image grid is quickly reduced at the entry convolution,
while a single residual block with no subsampling layers is used as a shallow encoder and decoder. The
layers within the core components (in light green) are reused in the final end-to-end architecture, increasing
its training stability, while remaining layers are discarded.

To assist the pretraining of the core components and, at the same time investigate the emerging properties
from their scaling, we isolate the core components training and scaling from other confounding factors in
the specification of the UNet’s encoder-decoder layers. To that end, we simplify the UNet’s conventional
hierarchical structure, which operates on multiple resolutions, and define the Shallow-UViT (SU), a simplified
architecture comprising a shallow encoder and decoder operating on a fixed spatial grid (Figure 2). Its
encoder and decoder have a single residual block each, containing two layers of 3 × 3 convolutions with
swish activations Ramachandran et al. (2017), and no upsampling or downsampling layers. As a result, they
share the same spatial grid as the core representation layers at the bottom. The first convolutional layer
at the entry of the architecture projects the input image into the fixed size grid used by its core layers. A
corresponding upsampling head at the model’s output reverses this operation. These input/output layers
facilitate quickly projecting input images with larger resolution into the core representation with fixed and
lower resolution.

As a second simplification, we restrict our investigation to the core components from the UViT model family
owing to the uniform structure of its core representation layers. In contrast, the corresponding layers of
convolutional UNets present a broader spectrum of design and hyperparameter choices, owing to their non-
uniform yet hierarchical structure, rendering their analysis more complex.

An alternative to the proposed use of the Shallow-UViT architecture, might be to train the core components
directly as an augmented ViT, as previously explored in latent diffusion models (Peebles & Xie, 2023). Our
attempt to explore this approach proved not to be straightforward. A crucial difference between PSDM and
LDM becomes highly relevant here. In the case of LDM, the transformer operates on latent tokens, and the
diffusion model captures the latent token distribution. Our task, on the other hand, is to pretrain a rich
representation directly from the raw pixels, for subsequent reuse as deep features within a higher-resolution
pixel-space model. We conjecture that in such approaches the initial layers that are closer to the raw data
do not transfer as well when reused within the final model.

Instead, our Shallow-UViT includes proxy additional layers that help with closing the gap between core
components feature pretraining and their later use. That is, the auxiliary, yet shallow, input (output) and
encoding (decoding) layers help adding expressiveness to the transformations between the input (output)
and the models’ hidden representation. Across the variations explored, the input convolution expands the
number input channels up to 256 (we observed no improvement with more channels).

Beyond ablations on scaling (see section 5), we also found that certain variations for the Shallow-UViT
composition tend to degrade performance in comparison to our best architecture. In particular, these include
the removal of the shallow encoder/decoder blocks; the use of smaller/larger filters (4 × 4, 5 × 5, .., 9 × 9)
and strides (from 1 up to 8) at the entry convolution; and the use of a single output head with a subpixel
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convolution upsampling by a factor of 4. We also experimented with convolutional core representation layers,
but like Dosovitskiy et al. (2021), we find they under-perform their transformed-based counterparts.

3.3 Greedy growing

Here we describe a greedy approach to learn PSDM s for high-resolution images. Our process consists of two
distinct stages, where we first pretrain the core representation layers at a low resolution using a Shallow-
UViT architecture. Then, in the second phase, we replace the encoder/decoder layers with a more expressive
set of UNet layers and train at the target resolution. This two-stage process is in contrast to progressive
growing, which seeks to add one layer at a time. With this approach, we aim to mitigate the well-known
instabilities observed during training of large models (Saharia et al., 2022b; Hoogeboom et al., 2023b), while
making the best use of the available training corpora.

The greedy growing algorithm can be described as follows.

Phase 1 In this phase, the core components of the chosen architecture are identified (see subsection 3.1),
and a Shallow-UViT model is build on top of them. The Shallow-UViT is trained on the entire training
collection of text-image pairs, as it is not limited to high resolution training images.

Phase 2 The second phase greedily grows the Shallow-UViT’s encoder/decoder (namely, throwing away
the lower-resolution blocks and adding higher-resolution blocks) to obtain the final model. More specifically,
this phase adds encoder and decoder layers at different resolutions, while preserving the core representation
layers at the spatial resolution used during the first phase. In other words, the core components continue
operating on a 16 × 16 grid. The added layers are randomly initialized, while the core components are
initialized with the weights obtained on the first phase. The remaining components of the Shallow-UViT
model are discarded.

Next, the grown model is trained. As it is a common practice for the generation of high fidelity images, at
this point we filter the training data to remove text-image pairs with either image dimension is lower than
the final model’s target resolution. The text encoding layers and the core representation layers are kept
frozen, to preserve the richness of the pretrained representation. The time encoding layers, on the other
hand, are further tuned, jointly with the new encoder and decoder layers introduced in the second phase,
which allows it to adapt to changes in the diffusion noise schedule. We adjusted the diffusion logSNR shift
for high resolution images as suggested by Hoogeboom et al. (2023b), by a factor of 2 log(64/d). An optional
third defrosting phase, may be applied in which all layers are jointly tuned, and seeks to benefit from the
full capacity of the end-to-end architecture, but in practice we find that the first two phases are sufficient to
obtain a good PSDM .

We empirically investigate the behaviour of the proposed algorithm in models of increasing size in subsec-
tion 5.2. We investigate the effects of splitting the training of the two tasks in phase one and phase two (i.e.,
for text-alignment and high-resolution generation), and we compare with models jointly trained from scratch,
end-to-end. During these ablations, we constrain the greedy growing phase to use considerably smaller batch
sizes than previous work, with no further regularization to demonstrate the optimization stability.

4 Experimental settings

Shallow-UViT: The proposed Shallow-UViT provides a proxy architecture for pre-training the core com-
ponents of a larger PSDM. The ablation studies below us a specific instantiation of the model, but we expect
Shallow-UViT to be flexible enough to be used with other component parts. In particular we adopt a combi-
nation of two pretrained text encoders for text conditioning: T5-XXL (Raffel et al., 2020a) with 128 sequence
length and CLIP (VIT-H14) (Radford et al., 2021b) with 77 sequence length. Given a text prompt, we first
tokenize and encode the text using the two encoders independently, and then concatenate the embeddings,
yielding a final embedding with sequence length of 205. They are projected into model’s hidden size by the
text encoding layers. We keep the Shallow-UViT design fixed, except for changing the capacity by increasing
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its width (hidden size) and depth (number of transformer’s blocks), as detailed in Table 1. That produces a
set of models varying from 672M up to 7.7B trainable parameters, mostly dedicated to the core components.

model transf. blocks hidden size MLP channels heads params1

Shallow-UViT Small 6 1536 6144 12 672M
Shallow-UViT Large 8 2048 8182 16 1.3B
Shallow-UViT Huge 12 3072 12288 24 3.5B
Shallow-UViT XHuge 16 4096 16384 32 7.7B

Table 1: Shallow-UViT variants explored. Transformer layers operating at a 16 × 16 grid. The components
within the shallow encoder and decoder block operate at same spatial resolution and hidden size.

End-to-end model channels per layer residual blocks *params

UViT Small 256-384-768-1536 1-1-1-1 707M
UViT Large 256-512-1024-2048 1-1-1-1 1.4B
UViT Huge 384-768-1536-3072 1-1-1-1 3.6B
UViT XHuge 512-1024-2048-4096 1-1-1-1 7.9B

Table 2: Composition of the encoder-decoder layers grown on top of corresponding Shallow-UViT variants.
core components identical to the corresponding shallow variant.

We stress that we do not claim that these specific core components are optimal. For instance, it is widely
recognized that larger pretrained text encoders and longer token sequence lengths increase image quality
(Saharia et al., 2022b; Balaji et al., 2022; Podell et al., 2024). Investigating the optimal design of each core
component is beyond the scope of this work. Instead, the variations of the Shallow-UViT were intentionally
designed to explore the performance benefits gained by increasing core components’s capacity independent
of the remaining model components.

Greedy growing: In the experiments that follow we consider several different model sizes. Table 1 specifies
the Shallow-UViT variants, while Table 2 specifies encoder/decoder parameterizations.

To ablate our hypothesis that greedy growing helps the model learn strong representations with larger, diverse
corpora, we also train the full model on a high resolution subset of data used to train the Shallow-UViT; i.e.,
we simply removed all samples with resolution lower than the target model resolution. To that end, beyond
greedy growing, we explore the three training baselines: 1) We create a baseline with all layers trained from
scratch on this subset; 2) As an alternative to the frozen phase in the greedy growing, we fine-tune the core
components on this smaller high resolution subset jointly with the grown components (randomly initialized);
and 3) A third baseline adds the optional phase of unfreezing the core components after warming up the
random weights for 500k steps. Models are trained for 2M steps in total.

The greedy growing algorithm aims to make training large-scale PSDMs at high resolutions more stable. In
the case of Simple Diffusion (Hoogeboom et al., 2023b), large batch sizes and regularizers like dropout and
multi-scale losses enable end-to-end training from scratch. To stress test the stability and convergence of our
greedy growing algorithm, we restrict the batch size to 256 instead of the standard 2k, and we use no other
explicit form of regularization. Under that restriction, our largest model (UVit-XHuge) presented numerical
instabilities when trained from scratch or fine-tuned, as multiple numerical issues occurred during training.
Thus, the results of this large model are presented only for the frozen, and freeze-unfreeze methods. This
behaviour confirms observations in previous work and their need for large batch sizes.

Dataset: Rigorous evaluation of generative image models is challenging when models are trained on pro-
prietary datasets. To avoid this issue, we first demonstrate our key findings through extensive empirical
evaluations on a publicly available dataset, namely, Conceptual 12M (or CC12M) (Changpinyo et al., 2021).

1Number of trainable parameters after ignoring text encoders.
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To evaluate the hypothesis that the greedy algorithm allows one to make good use of available corpora,
we trained Shallow-UViT on the entire CC12M training set, while corresponding end-to-end models were
trained with CC12M’s subset of 8.7M images whose dimensions are equal or larger than 512 pixels. Those
end-to-end models were therefore trained on 27.5% less data than the corresponding Shallow-UViT model.
We do not explore more aggressive reduction of the corpora as the CC12M dataset is already a relatively
small dataset for the models tested, and the variations tested already show overfitting characteristics under
this setting, as discussed below. Thus, in what follows, the Shallow-UViT models were trained on 64 × 64
images, by resizing the smallest dimension of the images to 64 and random cropping along the remaining
dimension as needed. The end-to-end models are trained at a target resolution of 512 × 512 as CC12M does
not contain images at resolutions above 1024 pixels.

Full pipeline model: With those findings in place, we then explore the generation of larger images and
train on a much larger curated datasets in order to show that the approach scales to state-of-the-art models
(section 6). The resulting model, named Vermeer, is used to generate 1024 × 1024 images, well beyond
the scale for which quantitative metrics are readily available. As such, with Vermeer we rely on human
evaluation, in comparison to other recent models, like SDXL.

Sampling: Unless mentioned, the images and metrics were produced using 256 steps of a DDPM sampler
(Ho et al., 2020) with classifier-free guidance (Ho & Salimans, 2021). We tune the guidance hyper-parameter
by a FD-Dino/Clip (VIT-L14) trade-off as described in subsection 5.3.

4.1 Metrics

The evaluation of generative models poses considerable difficulties and constitutes an active research area
(Kirstain et al., 2024; Xu et al., 2024; Hessel et al., 2021; Serra et al., 2023; Kim et al., 2024; Lee et al.,
2023). In light of its inherent complexity, we utilize a multi-faceted evaluation strategy that combines image
distribution metrics, text-alignment metrics and semantic question and answering metrics to validate our
intermediary results, but the overall performance of our final model evaluation, Vermeer, is delegated to
human evaluators (subsection 6.2). The following criteria are considered:

Image distribution metrics: We evaluate models on three key metrics, namely, the Fréchet Inception
Distance (FID) (Heusel et al., 2017), the Fréchet Distance on Dino-v2 feature space (FD-Dino) (Stein et al.,
2023; Oquab et al., 2023) and the Clip Maximum Mean Discrepancy (CMMD) distance (Jayasumana et al.,
2023). FID is widely used to assess generative image models and select model hyper-parameters, but our
findings corroborate its known limitations: it fails to reflect model improvements through training, it does
not capture readily apparent distortions in individual images, and it does not correlate well with human
perception (Stein et al., 2023; Otani et al., 2023; Jayasumana et al., 2023). Thus, in our study, we do not
select training or sampling hyper-parameters solely on the basis of FID but, as described in Appendix 5.3,
we review the trade-offs between the observed set of metrics.

We also note that metrics derived from image features vary considerably with image resolution. In what
follows we compute metrics using the same resolution as the reference papers. The exception is for CMMD
on Shallow-UViT outputs; the original metric taken at 336 × 336 pixels is dominated by up-sampling effects,
obscuring differences between models. Thus, we replaced the original V iT − L14 operating at 336 × 336 by
its version at 224 × 224 pixels.

Multimodal metrics: We adopt CLIP Score as a metric for text-image alignment, as it is widely used,
and it complements image distribution metrics above, reflecting the consistency of the generated image with
the given prompt. Unlike the original formulation based on ViT-B with path size 32 (Hessel et al., 2021) and
previous papers in the area Saharia et al. (2022a); Hoogeboom et al. (2023b), we adopt the ViT-L (patch
14) embedding due to its improved representation. This choice results in lower absolute values of our CLIP
Scores compared to previous results, however we noticed that these scores better correlate with the presence
of absence of observed distortions.
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Figure 3: Qualitative comparison of models with core components of increasing size – Shallow-
UViTs trained at 64 × 64 pixels using CC12M dataset only. Prompts: ‘A sloth running a marathon, sur-
prisingly outrunning all competitors.’, ‘A hand spread out on a wall. DSLR photograph.’, ‘Close-up portrait
of a ballerina in mid-performance, with high motion and dramatic lighting.’, ‘Word art of "happy birthday",
with a smiling panda wearing a party hat, surrounded by gift boxes and a birthday cake.’, ‘Four dogs on the
street.’

Semantic QG/A frameworks: One can also automatically generate question-answer pairs with a lan-
guage model, and then compute image faithfulness by checking whether existing VQA models can answer
the questions from the generated image (Hu et al., 2023; Cho et al., 2024). They were intended to address
the shortcomings of existing metrics. Despite their effectiveness in evaluating color and material aspects,
they often struggle in assessing counting, spatial relationships, and compositions with multiple objects. Such
evaluation measures are naturally dependent on the quality of the underlying question generation (QG)
and answering (QA) models. Here we adopt DSG (image-text alignment metric) and its set of 1k prompts
(Cho et al., 2024). The DSG-1k test-prompts cover different challenges (e.g., counting correctly, correct
color/shape/text rendering, etc.), semantic categories, and writing styles. A description of the QG, QA
used, with qualitative and detailed results, are included in Appendix B.

5 Experiments

5.1 Pretraining and scaling the core components

We next use Shallow-UViT as a proxy architecture to investigate the effect of scaling PSDM’s core compo-
nents. We train Shallow-UViT variants on 64 × 64 images from the CC12M dataset for 2k steps. Image
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models@64×64 FID30k ↓ FD-Dino30k ↓ CMMD30k ↓ CLIPscore ↑

Shallow-UViT Base 16.97 356.25 0.197 0.234
Shallow-UViT Large 14.80 236.24 0.156 0.240
Shallow-UViT Huge 8.81 133.51 0.139 0.244
Shallow-UViT XHuge 8.41 116.83 0.136 0.246

Table 3: Shallow-UViT variants with core components of increasing size trained on CC12M at resolution
64 × 64: Image distribution metrics evaluated on 30k samples from MSCOCO captions dataset. Scaling
induces performace improvements on image distribution (FID, FD-Dino, CMMD) and text-image alignment
(CLIPscore) metrics simultaneously.

DSG - VqVa Question Types
Entities Relations Attributes Global DSG(↑)

#questions: 3378 1485 1722 649

Shallow-UViT Small 54.38 33.32 43.70 39.98 48.08
Shallow-UViT Large 59.93 39.36 48.75 43.68 52.54
Shallow-UViT Huge 69.18 48.52 54.36 43.30 60.25
Shallow-UViT XHuge 70.66 51.61 57.38 44.14 61.91

Table 4: Shallow-UVIT evaluated on 1k samples from DSG-1k dataset. Scaling core components improves
performance across all semantic categories. Fine-grained results in Appendix B

distribution metrics and Clip-Score are obtained using 30k prompts from the MSCOCO-captions validation
set (Chen et al., 2015), while the semantic metrics are extracted on the 1k prompts from DSG-1k (Cho
et al., 2024). A summary of the impact of scaling the Shallow-UViT model is given in Tables 3 and 4, while
fine grained results on semantic categories are reported in Appendix B. All performance measures indicate
significant improvements due to model scaling. A smaller numerical gain is observed in the comparison of
the larger two models, but the difference is reflected in qualitative comparisons of the models below.

Figure 3, presents a qualitative comparison of the results the Shallow-UViT variants on challenging prompts.
They illustrate the impact of scaling on objects structure, composition and alignment (e.g., with numbers of
objects depicted). Despite of the small training dataset, the larger models show significant improvement in
generating intricate shapes like hands, body parts and text.

We observed further quantitative improvements across the metrics when training our larger models for longer
(Shallow-UViT-Huge and Shallow-UViT-XHuge), but longer training also exhibits overfitting to the CC12
training samples. Figure 4 illustrates images generated using the Shallow-UViT XHuge model with increasing
numbers of training steps. As training progresses, the model diverges from the original prompt to produce
images that are closer to training samples from the CC12M dataset, and/or representing parts of the prompt
only. This hidden phenomena was not associated with changes in the adopted metrics. We conjecture that
this effect is largely aggravated by the small size of the training dataset.

Considering the complexity associated with evaluating improvements in representation and the limitations of
automatic performance measures, we also ablate the effect of scaling the core components under a semantic
task that is evaluated by human annotators. In this experiment we consider a simple counting task, defined
here as the task of generating images of up to 5 objects based on a subset of text prompts from the numerical
split of the Gecko benchmark (Wiles et al., 2024). We explore this task as a proxy for gauging both prompt
consistency and the model’s understanding of objects composition and shapes. It allows less subjective
interpretation and noise in human judgments of the model’s performance than other image qualities that
are influenced by individual preferences. The task of counting under an open set would ultimately imply the
ability to keep track of objects. Thus, this ablation emulates a much simpler version of the problem. Figure 5
shows the accuracy improvement associated with scaling observed over 59 prompts. Random condition uses
a random number between 1-5. The detailed description of this experiment is presented on Appendix C.
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Reference step 250k step 500k step 750k step 1M step 1.25M step 1.5M step 1.75M step 2M

Figure 4: Overfitting and memorization of Shallow-UViT XHuge trained on CC12M. Prompts: (top) A group
of construction workers in the style of ‘The Night Watch’ by Rembrandt.; (middle) A dynamic rendition of
a racing cyclist leading their team through a mountain pass, rendered in the style of ‘Napoleon Crossing the
Alps’ by Jacques-Louis David.; (bottom) A group of friends enjoying a summer day at a riverside restaurant
in the style of ‘A Sunday Afternoon on the Island of La Grande Jatte’ by Georges Seurat.
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Figure 5: Measuring the impact of scaling on the counting task. Using 59 systematic prompts describing 1-5
objects. Five human annotators reviewed each image (95% bootstrapped confidence intervals are shown).
Models with larger core components are observed to perform better on counting. Sample prompt: 3 apples.

Given the shallow encoder-decoder structure of the Shallow-UViT architecture, we conjecture that the per-
formance improvements observed here, on multiple metrics, are a direct consequence of scaling the core
components. This hypothesis is further investigated via the reuse of their representation in the next section.

5.2 Experiments on Greedy growing

We next explore greedy growing of Shallow-UViT models to high resolution, non-cascaded models. We
compare training models from scratch on the subset of the CC12M dataset filtered by the target resolution
(512 pixels) with alternatives for reusing of the core components pretrained on the full dataset. They validate
our main intuitions behind the greedy growing algorithm, i.e., that the introduction of new, untrained layers,
as well as shifts in the distribution of the training data are known causes of the catastrophic forgetting
phenomena Vasconcelos et al. (2022); Kuo et al. (2023); Yu et al. (2023) possibly damaging the pre-trained
representation.

Tables 5 and 6 summarize performance as a function of model scale for greedy growing, along with various
ablations of the training procedure. Our greedy growing recipe with frozen core components’s and its optional
defrosting phase lead to the best results across the metrics. The optional defrosting phase is required for
improving the performance of the smallest model ablated (UViT-Base). Its frozen counterpart showed signs
of underfitting during training, as it has a small number of trainable parameters (217M) in the added
layers. Under this low-capacity scenario, the defrosting phase offers a balance between protecting the core
components representation and the use of the model’s full capacity, as it reduces the degradation of the
pretrained representation by warming up the growth layers. Other than this special case, the defrosting
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phase did not appear to benefit larger models. These quantitative results agree with our hypothesis that the
final model benefits from protecting the pretrained representation in our greedy growing algorithm.

Figure 6 qualitatively compares generations obtained by finetuning and freezing the core components. Ad-
ditional qualitative comparisons are shown in Appendix D. They illustrate the the benefits of protecting the
core components from the noise introduced when back-propagating through the randomly initialized growth
layers. We observe that the low-resolution images produced by the use of the same representation under
their original Shallow-UViT models produce objects whose shapes and parts are correctly defined.

The high-resolution images generated from early steps (20k) of finetuning the core components under the
UVit architecture present objects with correct shapes superimposed with the diffusion noise. Soon after that
(around 50k-100k steps) the quality of object shapes and structure decays as the training backpropagates
the noise introduced by the growth layers through the pretrained representation.

Under the greedy growing regime and same number of training steps (20k steps) the frozen model is able
to produce objects with correct shapes and parts, and maintain their composition as training progresses.
Another direct side effect of maintaining the core components representation is the fast reduction of the
diffusion noise early in training.

model tr. params steps FID30k ↓ FD-Dino30k ↓ CMMD30k ↓ CLIPscore ↑

UViT-Base scratch 707M 2M 27.90 624.34 1.355 0.241
finetuning 2M 23.67 554.99 1.450 0.241
frozen core 217M 2M 24.68 563.35 1.614 0.235
freeze-unfreeze 217M/707M 2M 21.13 503.16 1.196 0.247

UViT-Large scratch 1.4B 2M 21.73 498.82 1.156 0.247
finetuning 2M 21.89 414.42 1.160 0.253
frozen core 351M 2M 17.68 195.80 0.752 0.264
freeze-unfreeze 351M/1.4B 2M 18.37 362.58 0.952 0.256

UViT-Huge scratch 3.6B 2M 18.58 382.17 1.053 0.256
finetuning 2M 17.52 302.28 0.988 0.264
frozen core 723M 2M 15.21 156.24 0.663 0.268
freeze-unfreeze 723M/3.6B 2M 16.17 231.94 0.683 0.262

UViT-XHuge freeze 1.2B 2M 15.32 152.12 0.571 0.269
freeze-unfreeze 1.2B/7.9B 2M 16.58 222.38 0.620 0.267

Table 5: End2end variants trained on CC12M dataset at 512 × 512 pixels and batch size 256: image distri-
bution metrics (FID, FD-Dino and CMMD). Smaller models benefit from finetuning all their parameters.
Larger models have more capacity in the encoder-decoder layers, and benefit from freezing the pretrained
representations, under such a small batch size regime.

DSG - VqVa Question Types
model steps Entities Relations Attributes Global DSG
UVIT-Base scratch 2M 73.16 53.91 62.31 55.55 64.83

finetuning 2M 70.23 49.90 58.89 53.24 62.75
frozen 2M 69.57 49.36 58.22 53.39 61.16

freeze-unfreeze 2M 73.40 53.54 62.83 56.86 66.13
UVIT-Large scratch 2M 73.31 52.02 62.95 58.01 66.02

finetuning 2M 75.01 54.11 65.82 57.86 67.39
frozen 2M 78.97 61.55 67.19 61.40 72.13

freeze-unfreeze 2M 74.67 55.45 64.08 58.78 67.79
UViT-Huge scratch 2M 74.33 55.02 62.98 58.63 66.90

finetuning 2M 77.29 56.40 67.13 62.56 69.67
frozen 2M 82.59 64.65 70.35 61.86 75.15

freeze-unfreeze 2M 79.04 58.11 65.97 60.86 71.50
UViT-XHuge frozen 2M 83.70 66.77 70.01 62.94 75.70

freeze-unfreeze 2M 81.14 60.44 69.40 60.25 73.53

Table 6: E2e variants at 512 × 512 pixels trained on CC12M dataset. Metrics evaluated on 1k samples from
DSG-1k dataset. DSG results are aggregated across semantic categories. Fine-grained results in Appendix
B.
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20k steps 50k steps 100k steps 20k steps 50k steps 100k steps

Figure 6: On catastrophic forgetting during early steps of finetuning: the pretrained representation quickly
deteriorates due to noise introduced by the random weights from newly added layers. (from left to right)
64 × 64 image produced by the pretrained Shallow-Unet-Huge; followed by 512 × 512 images (in green)
produced at early steps of finetuning (ft.) the core representation in an E2e model; and (in blue) freezing
the core layers. Differences better observed zooming in. Prompts: ‘A loving mother kangaroo carrying her
joey in her pouch.’.; ‘A close-up portrait of a butterfly, revealing the intricate patterns and textures on its
wings in exquisite detail’.; ‘A playful wolf pup chasing its own tail’.; ‘A graceful hummingbird hovering near
a bright pink flower’.; ‘A dark and gothic illustration of a raven perched on a skull’.; ‘A determined sea turtle
swimming against the ocean current’.

5.3 Guidance tuning

Diffusion model hyper-parameters affect both training and sampling quality. It is a common practice to tune
the sampler guidance weights using FID-CLIPscore trade-off curves (Saharia et al., 2022a; Hoogeboom et al.,
2023b; Podell et al., 2024). In doing so one aims to strike a balance between images quality (by minimizing
FID) and alignment with the text prompt (maximizing the CLIPscore score). That said, it is well known
that FID does not correlate particularly well with human perception (Stein et al., 2023; Otani et al., 2023;
Jayasumana et al., 2023), and large guidance weights are known to increase CLIP-Score but tend to produce
over-sharpened, high-contrast images and unrealistic objects (Ho & Salimans, 2021; Saharia et al., 2022b).
Due to such limitations, despite widespread use of FID-CLIPscore scores for performance comparisons, in
practice they are adopted as loose measure of performance, and guidance weights are typically set through
qualitative inspection.

13



Published in Transactions on Machine Learning Research (10/2024)

Figure 7: On the FID-CLIP tradeoff and the use of SOTA feature spaces for image and text-alignment
distributions. (left) In the process of optimizing guidance, there are clear tradeoffs between different metrics
(Fréchet distance and Maximum Mean Discrepancy) taken under different feature spaces (Inception, Dino,
and Clip) used to represent the image distributions. (right) qualitative illustrations: sample images taken
with increasing guidance values from left-to-right and top-to-bottom. A sample taken under the guidance
value that minimizes FID is highlighted with a red bounding box, whereas those using guidance optimum
values for minimizing FD-Dino and CMMD are distinguished with green and yellow highlights, respectively.
In cyan: the saturation/cartoonish effect of increasing CLIP score further in detriment of the other metrics.
Differences better observed zooming in. Prompt (from MSCOCO captions): ‘Two huskies hanging out of the
car windows.’

Here we explore alternative metrics for hyper-parameters tuning, aiming to better reflect their deployment
use, and ultimately human perception. These include recent measures with alternative feature spaces that
exhibit better robustness in classification tasks, and align somewhat better with human judgements of image
quality and alignment. More specifically, we investigate the use of FD-Dino and CMMD as alternatives
to FID in the calibration of the guidance hyper-parameter. Figure 7 plots the response curve of different
metrics as a function of guidance weight. They were measured using our UVIT-XHuge frozen model taken
over 30k samples from the MSCOCO-caption validation set. It illustrates that the three image distribution
metrics are minimized by very different guidance values. Similar curves are observed on the other models
and training modalities, in which the best guidance value for minimizing FID, FD-Dino and CMMD are in
increasing order. Figure 8 further illustrates samples obtained at the optimal values for each metric, and
also when using the maximum guidance tested (16) for increasing CLIPscore even further.

A qualitative analysis shows that by minimizing FID, one favors the generation of natural colors and textures,
but under closer inspection, it fails to produce realistic object shapes and parts. We conjecture that this
matches prior observations on the existence of texture vs shape bias by image classifiers (Geirhos et al.,
2019). Guidance values minimizing Dino-v2 features, on the other hand, appear to produce natural color
distributions and objects with natural shapes and composition. We adopt the value at this minimum as our
new lower bound. Increasing guidance from that value tends to increase color-contrast and sharpening.

Images produced with guidance weights minimizing CMMD tend to produce images with initial signs of
saturated colors and over-sharpening. Given its use of Clip features for image distribution comparison, this
agrees with previous observations on CLIPscore. But unlike CLIPscore curves, CMMD curves present an
inflection point within the range investigated. We use this inflection point to define a closed range for our
search of reasonable guidance weights. That is, the range of guidance weights between FD-Dino and CMMD
minimums was observed to strike a balance between producing correct shapes and aesthetically pleasing
images characterized by enhanced color contrast and sharp edges.

All results presented in this section have their image generated using guidance weights within the FD-
Dino/CMMD trade-off range. The specific value selected was taken at the intersection of the optimal ranges
of models under the same comparison. Following this approach, our Shallow-UViT results were obtained
with guidance weights fixed at 1.75, and their corresponding UViT models with guidance 4.0.
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Figure 8: On the use of different metric spaces for calibrating guidance. First three rows: guidance values
taken for minimizing respectively FID, FD-Dino and CMMD. The use of robust features is correlated with
better shape and composition of images. Last row illustrates the side-effects of further increasing guidance
and CLIP-score. Prompts from MSCOCO caption dataset: ‘A bathroom with a sink and shower curtain with
a map print.’; ‘A person holds a flip phone displaying the screen.’; ‘A motorcycle is parked on a dirt road in
a forest.’; ‘A stainless shiny serrated knife sits in front of a sliced loaf.’; ‘A restroom hanging off the side of
a building over a mountain.’

6 A full diffusion pipeline: Vermeer

Vermeer is an 8B parameter model grown from 256 to 1024 pixel resolution. The UViT architecture is similar
to our UViT-Huge model (Table 2), except that its bottom layers operate at a grid of 32x32 and with 32
transformer blocks in total. We found that allocating transformer blocks at 32x scale improves details (like
small faces). For Vermeer’s text encoding, in addition to T5-XXL (Raffel et al., 2020a) and Clip (Radford
et al., 2021b) embeddings previously mentioned, we also include a ByT5 (Xue et al., 2022b) encoder with
256 sequence length, resulting in a final embedding with sequence length of 461.

The baseline version (Vermeer raw model) is trained with 2k batch size at 256 resolution for 2M iterations,
and grown to 1k resolution and finetuned for an additional 1M steps. As illustrated in Figure 1, it supports
3 aspect ratios, i.e., 1024×1024, 768×1376, and 1376×768 thought aspect ratio bucketing (Anlatan, 2022).
Once the raw model is trained, we apply the following extra steps to improve the aesthetics of the generated
images:

• Style finetuning. We train an image classifier based on images that conform to aesthetic and compo-
sitional attributes like those described in (Dai et al., 2023), and use it to select 3k images from our
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training data as a fine-tuning set. We then fine-tune for 8K steps with a mixture of the original data
and the aesthetic subset. We condition the model on the aesthetic subset by adding a token to the
text prompt. We found that finetuning the pixel model with a mixture of pretraining and finetuning
data is needed to avoid catastrophic forgetting and to avoid the introduction of additional artifacts.

• Distillation. The vanilla Vermeer model adopts 256-step sampling process, making it computation-
ally expensive for real-world use. We employed the multistep consistency model (MCM) (Heek
et al., 2024) to distill style-tuned Vermeer to 16 steps, achieving a substantial 16x speedup while
maintaining high visual quality.

6.1 Vermeer results

We ablated four steps of Vermeer’s development: (i) its raw model resulting from training on a large dataset;
(ii) the result of applying prompt engineering at inference to the same model, adding words to improve
aesthetic image quality, but with no further training; (iii) the final model, after style finetuning on a curated
subset of 3k aesthetically pleasing images; and finally, (iv) its distilled, fast inference variation. Table 7
reports key performance metrics for all four variants, along with Stable Diffusion XL v1.0 (SDXL) (Podell
et al., 2024). One can see that the raw model minimizes image distribution metrics that use state of the
art feature space, i.e., FD-Dino and CMMD, while CLIP-score suggests a minor drop compared to SDXL.
These metrics also highlight a significant shift away from the distribution of MSCOCO-captions (Chen et al.,
2015), after augmenting the prompts (+prompt engineering) that is further increased when combined with
the finetuning of the model for aesthetics pleasing image(+style finetuning).

The MSCOCO-captions dataset comprises reference image-caption pairs covering a diverse set of object
categories and scenes. Thus, it offers an interesting distribution for measuring image quality and text
alignment due to the complexity and diversity of the compositions. At the same time, its use for visual
quality preference assessment is spurious as its images were not curated with human aesthetics preferences.
On the contrary, many of the images have relatively poor aesthetic appeal. Thus, aiming to improve image
aesthetics and composition, during Vermeer’s prompt engineering and style tuning phases we intentionally

model FID30k ↓ FD-Dino30k ↓ CMMD30k ↓ CLIPscore ↑

SDXLv1.0 13.19 185.57 0.898 0.279
Vermeer raw model 16.26 185.25 0.631 0.270

+prompt engineering 17.33 216.01 0.867 0.269
+style tuning 24.51 336.25 1.167 0.262

distilled 25.97 347.19 0.885 0.261

Table 7: Image distribution metrics evaluated on 30k samples of MS-COCO. The raw Vermeer model
minimizes distribution metrics that adopt feature spaces from SOTA models (FD-Dino uses Dino-v2 while
CMMD adopts Clip features), while tuning it to produce aesthetically pleasing images intentionally diverges
from MSCOCO distribution.

DSG↑

model Entities Relations Attributes Global DSG
SD2.1 75.44 53.06 69.66 68.49 71.23
Muse 77.65 60.64 75.61 67.18 73.09
Imagen Cascade 79.94 62.73 75.73 69.34 75.93
SDXLv1.0 88.04 73.00 78.48 75.19 81.47
Vermeer raw model 86.92 76.36 76.48 68.49 80.77

+promp eng 87.94 74.92 76.31 67.41 80.99
+style tunning 88.04 74.21 77.38 69.57 81.16

+distillation. 84.71 69.23 72.68 65.49 76.88

Table 8: Vermeer. Broad and fine-grained results
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Figure 9: Human evaluation results: Likert plot across 495 prompts, two tasks with 13 users each.
Vermeer aesthetic is preferred during 61.4% of all comparisons, while its image-text consistency is marginally
preferred. Aggregating the 1k annotations, Veermer is preferred during 44.0% of all comparisons, against
21.0% from SDXL. Prompt engineering and style tuning aligned with human preference for visual aesthetics.
Side by side qualitative comparisons in Figure 12 and Figure 13.

move the distribution of images generated by Vermeer away from MSCOCO-caption distribution. To validate
this we rely on human evaluation (in the next section).

The effect of the changes on the raw model with the CLIP-score and on semantic metrics on the other hand
is minimal, aligned with our observation that the consistency of the model is not much affected by these
two procedures. Semantic VqVa results are presented on Table 8. The references to Imagen (Saharia et al.,
2022b) and Muse (Chang et al., 2023) models in this table are versions trained on internal data sources
thus of similar resources and training pipelines than Vermeer. It shows that Vermeer presents competitive
performance with SDXL, and surpassing the other models, including auto-regressive and cascade models.

Finally, we also develop a distilled version of our model, in order to offer an alternative version with faster
inference time that similar to the other models presented in this paper operates as a single, non-cascade
end-to-end model at inference time. Figure 1 illustrates Vermeer outputs and additional qualitative results
including a comparison of samples from the full and distilled versions is presented in Appendix F.

6.2 Human evaluation

Assessing the performance of text-to-image models, ideally, depends on human evaluation, as this complex
cognitive process necessitates a profound understanding of text and image relationships. Prior research has
demonstrated that many recent works rely exclusively on automated metrics, such as the Fréchet Inception
Distance (FID). However, it has been observed that the current automated measures are not fully consistent
with human perception in assessing the quality of text-to-image samples (Otani et al., 2023). Thus, to
objectively access the quality of images generated by Vermeer, we conduct a side-by-side human evaluation
comparing our model with SDXL (Podell et al., 2024).

Setup. In this human evaluation, we ask annotators to evaluate generated images by Vermeer and SDXL
based on the same prompt. For this, we collected 495 prompts 2 covering a range of skills: 160 are from
TIFA v1.0 targeting measuring the faithfulness of a generated image to its text input covering 12 categories
(object, attributes, counting, etc.)(Hu et al., 2023); 200 are sampled from the 1600 Parti Prompts (Yu et al.,
2022), selecting for both complexity and diversity of challenges; and 150 others are created fresh for, or are
sourced from, more recent prompting strategies targeting challenging cases.

We create two tasks in which we instruct annotators to consider either image quality (aesthetics) or fit to the
prompt (consistency), and indicate their preferences using 3-point Liker scale: Vermeer is preferred, Unsure,
and SDXL is preferred (the model names are anonymized). The neural response includes cases that both
images are equally good and bad. In the annotation UI, the annotators are shown a prompt along with
two images that are randomly shuffled. We collected 13 human ratings per prompt for both aesthetics and
consistency (26 ratings per image).

2We first sampled 510 prompts, and 495 of them were usable after filtering incomplete samples.
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Results. Prompt engineering and style tuning are confirmed to have a positive effect on human aesthetics
preference (Figure 9, left), and small impact on text consistency (Figure 9, middle). They confirm our
conjecture that the decrease on Vermeer’s performance based on metrics grounded on the appearance of
MSCOCO-caption dataset induced by these two steps are in alignment with the ultimate goal of human
preference (Table 7).

Figure 9 (right) plots the Likert scale for our final model in each task (aesthetics or consistency) as well
as the aggregated responses (shown in in the bottom bar). Overall, annotators prefer Vermeer 44% of the
time, while they select SDXL 21.4% of the time, with relatively fewer Neutral responses (34.7%). Vermeer
is clearly preferred for its aesthetics, with a win rate of 61.4%, while the gap in consistency between the
two models is small, with a difference in the win rate of just 1.7%. Krippendorff’s α for aesthetics and
consistency are 0.27 and 0.41, respectively, indicating moderate agreement among annotators.

7 Conclusion

We propose a novel recipe for training non-cascaded large scale pixel-space text-to-image diffusion models. It
benefits from splitting their training in two phases representing different tasks: learning image-text condition
alignment and learning to generate images at high-resolution.

We identified the model core components as those responsible for the first task and propose a proxy architec-
ture (Shallow-UViT) to supports its pretraining. The second task is learned with a greedy growing algorithm
that stacks encoder-decoder layers of the final architecture on top of the pretrained core components. When
learning the second task, our training recipe preserves the core components representation from the noise
introduced by the grown layers and their random initialized weights.

Existing non-cascaded models training recipes struggle with scale, if not supported with large batch size
and further regularization like dropout and multi-scale loss. Our approach is able to train models up to 8B
parameters with small batch size (256) and no further regularization, by pretraining the core components
and preserving it during the second training phase targeting high-resolution generation.

Compared with training from scratch and finetuning, the greedy growing procedure is more stable, and
improves performance on a set of different metrics. Qualitative analysis shows that while keeping the core
components representation stable it helps to preserve objects shape and overall structure, improving the
definition of body parts. Our method allows use of data at different resolutions; the first phase benefits from
the larger corpora with minimal requirements on image resolution, while the second phase learn to produce
sharp images from the set filtered by the target resolution while reusing the representation learned from the
larger set. We also explore models with increasing size, and show the benefits from scaling under different
aspects and metrics.

In practice, the non-cascaded solution removes the out-of-distribution shift existent between training and
deploying super-resolution phases. Based on that, we present Vermeer, an 8B parameter Pixel based Text-to-
Image Diffusion Model that produces high-resolution high-quality images using a single non-cascaded model.
By training it on a larger dataset, and incorporating a final style tuning phase, Vermeer is able to surpass
SDXL v1.0 in human preference study.
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