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ABSTRACT

As speech generation technology continues to evolve, the risk of misuse through
deepfake audio has become a pressing concern, which underscores the critical
need for robust detection methods. However, many existing speech deepfake
datasets fall short in terms of size, diversity, and linguistic coverage, limiting the
ability of models to generalize effectively to unseen deepfakes. To address these
limitations, we present SpeechFake, a large-scale dataset specifically designed
for speech deepfake detection. With over 3 million deepfakes totaling more than
3,000 hours of audio, SpeechFake was generated using 40 different speech gener-
ation tools, including cutting-edge techniques, and spans 46 languages. This paper
provides a detailed overview of the dataset’s composition and statistics, emphasiz-
ing its scale and diversity. Additionally, we establish baseline results for Speech-
Fake and explore how factors such as generation methods, language diversity, and
speaker variation influence detection performance. We believe SpeechFake will
be a valuable resource for advancing speech deepfake detection research, offering
opportunities to explore new detection strategies and improve model robustness
across diverse and evolving generation techniques. The dataset will be publicly
available soon.

1 INTRODUCTION

In recent years, speech generation technology has rapidly advanced, with models in text-to-speech
(TTS) and voice conversion (VC) systems producing highly natural and high-quality voices (Tan
et al., 2021; Triantafyllopoulos et al., 2023; Ju et al., 2024). These systems are increasingly used in
virtual assistants, content creation, and language learning, making speech synthesis more accessible
and widely adopted. However, as the realism of synthetic voices improves, so does the risk of
misuse, especially through speech deepfakes, where synthetic voices are used to impersonate real
individuals. Such deepfakes have been employed in fraud (Stupp, 2019), identity theft (Korshunov
& Marcel, 2018), and misinformation (Chesney & Citron, 2019), highlighting the significant harm
they can cause. Therefore, the growing quality and availability of speech generation systems make
the need for robust detection methods more urgent than ever.

A key challenge in developing effective deepfake detection methods is the issue of generalization.
Detection models often suffer from substantial performance degradation when confronted with un-
seen deepfakes (Yamagishi et al., 2021; Müller et al., 2022), which underscores the importance of
creating comprehensive datasets to support the development of robust detection systems. However,
current datasets for this task come with several limitations. Many publicly available datasets are
relatively small, and the generation techniques they include are often outdated or limited, making
it challenging for models to detect more advanced deepfake technologies. Moreover, most datasets
primarily focus on English or Chinese, offering limited representation of other languages. This lack
of linguistic diversity makes it difficult for models to generalize effectively to deepfakes in languages
beyond English and Chinese.

To address these limitations, we propose SpeechFake, a large-scale dataset designed to significantly
improve both the scale and diversity of data available for speech deepfake detection. The dataset
contains over 3 million speech deepfakes, amounting to more than 3,000 hours. These deepfakes
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are generated using 30 publicly available speech generation tools and 10 commercial APIs, incor-
porating cutting-edge techniques capable of producing highly realistic synthetic speech. To support
multilingual detection and balance language distribution, SpeechFake is divided into two parts: the
Bilingual Dataset (BD), focused on English and Chinese, and the Multilingual Dataset (MD), which
spans 46 languages, broadening research opportunities in multilingual environments. Furthermore,
unlike most existing datasets that offer only binary labels (real/fake), SpeechFake provides rich
metadata, including generation methods, speaker identity, language, and text transcriptions, which
facilitates deeper research into the factors that influence deepfake detection and enables other poten-
tial use cases.

In addition, we conduct a comprehensive set of experiments to establish a baseline for SpeechFake
and examine key factors influencing deepfake detection performance. First, we evaluate overall
performance across multiple datasets to assess model generalization to both seen and unseen data
(Section 4.2). Next, we analyze cross-generator performance to examine how different speech gen-
eration methods affect detection accuracy (Section 4.3). We also investigate cross-lingual perfor-
mance, exploring how models trained on specific languages perform when exposed to deepfakes in
other languages (Section 4.4). Finally, we assess cross-speaker performance to determine the impact
of speaker variability on detection robustness (Section 4.5). These experiments establish a strong
baseline for SpeechFake and provide valuable insights into the strengths and weaknesses of current
detection systems, highlighting areas for future improvement.

We summarize our contributions as follows:

• We introduce SpeechFake, a large-scale and diverse dataset for speech deepfake detection that
encompasses a wide range of speech generation methods, integrates cutting-edge techniques, and
supports multiple languages.

• We conduct extensive experiments, establishing a baseline for the dataset and analyzing the im-
pact of factors such as generation methods, language diversity, and speaker variation on detection
performance.

• SpeechFake provides a valuable resource for developing robust deepfake detection models,
demonstrating superior performance on existing datasets. It also supports future research in im-
proving model generalization and advancing detection strategies for emerging techniques.

Table 1: Basic statistics of SpeechFake and its comparison with existing speech deepfake datasets.
#utt, #spk, #gen represent number of utterances, speakers and generators, respectively. “-” indicates
that the dataset does not specify the number of speakers or generators included. We have clarified
this in the table caption for the revised version of the paper.

Dataset Year Deepfake Statistics Languages Access#utt #spk #gen
ASVspoof2015 (Wu et al., 2014) 2015 246,500 106 10 English Public
FakeOrReal (Reimao & Tzerpos, 2019) 2019 87,285 33 7 English Public
ASVspoof2019-LA (Nautsch et al., 2021) 2019 130,378 107 19 English Public
WaveFake (Frank & Schönherr, 2021) 2021 117,985 2 6 English, Japanese Public
ASVspoof2021-LA (Yamagishi et al., 2021) 2021 148,148 67 13 English Public
ASVspoof2021-DF (Yamagishi et al., 2021) 2021 572,616 93 100+ English Public
ADD2022 (Yi et al., 2022) 2022 389,419 - - Chinese Public
CFAD (Ma et al., 2024) 2022 231,600 279 12 Chinese Public
In-the-Wild (Müller et al., 2022) 2022 11,816 58 - English Public
ADD2023 (Yi et al., 2024) 2023 273,847 - - Chinese Public
HABLA (Tamayo Flórez et al., 2023) 2023 58,000 162 6 Spanish Public
MLAAD (Müller et al., 2024) 2024 82,000 - 26 23 Languages Public
CD-ADD (Li et al., 2024c) 2024 117,720 - 5 Chinese Public
ASVspoof5 (Wang et al., 2024) 2024 1,211,186 1,922 32 English Restricted
VoiceWukong (Yan et al., 2024) 2024 413,400 - 34 English, Chinese Restricted
DFADD (Du et al., 2024a) 2024 163,500 109 5 English Public
CVoiceFake (Li et al., 2024a) 2024 1,254,893 - 6 5 Languages Public
SpeechFake-BD 2024 2,003,016 541 40 English, Chinese PublicSpeechFake-MD 2024 1,335,492 179 6 46 Languages
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2 RELATED WORK

Speech Generation Speech generation, or speech synthesis, can be broadly divided into two
main tasks: Text-to-Speech (TTS) and Voice Conversion (VC). TTS systems synthesize human-like,
natural-sounding voices from written text. Neural network-based TTS has evolved from CNN/RNN-
based models (Oord, 2016; Wang et al., 2017; Shen et al., 2018) to Transformer-based architec-
tures (Li et al., 2019; Ren et al., 2021a), progressing from autoregressive generative models to more
advanced frameworks like VAE, GAN, flow, and diffusion models (Prenger et al., 2019; Kong et al.,
2020; Kim et al., 2021; Liu et al., 2022). Additionally, TTS has transitioned from using cascaded
acoustic models and vocoders (Oord, 2016; Shen et al., 2018; Kong et al., 2020) to fully end-to-
end architectures (Ren et al., 2021a; Kim et al., 2021). With the success of large language models
(LLMs), recent TTS systems also incorporate LLMs for text-to-token generation (Betker, 2023; Du
et al., 2024b; Guo et al., 2024).

While traditional TTS systems were limited to generating speech in a specific voice, newer ap-
proaches have enabled multi-speaker generation by incorporating speaker embeddings (Kim et al.,
2021; Betker, 2023). Additionally, research has advanced to few-shot and zero-shot TTS, often re-
ferred to as voice clone, which allows the generation of speech from text using a voice not seen
during training, based on just a small sample of the target voice (Arik et al., 2018; Casanova et al.,
2022; Wang et al., 2023; Qin et al., 2023).

In contrast, voice conversion modifies an existing speech sample to match a target speaker’s voice
while preserving the original content. Unlike TTS, which generates speech from text, VC al-
ters speaker characteristics in audio. Both, however, often share similar neural architectures, like
sequence-to-sequence models with attention. VC has evolved from traditional parallel data and sta-
tistical methods (Godoy et al., 2011) to more flexible non-parallel approaches, improving conversion
quality and adaptability (Kaneko & Kameoka, 2018; Li et al., 2021).

Meanwhile, neural vocoders play a critical role in many speech generation systems, directly gener-
ating speech from acoustic features like mel-spectrograms (Kong et al., 2020; gil Lee et al., 2023).
Recent research shows that vocoded speech plays a significant role in detecting deepfakes (Frank &
Schönherr, 2021; Wang & Yamagishi, 2023; 2024). Therefore, we also include vocoded speech as a
part of our dataset.

As shown in Figure 1, we classify speech generation methods into three categories based on the
input modality at the inference stage: TTS, VC (Voice Clone or Voice Conversion), and NV (Neural
Vocoder). In this classification, TTS refers to systems that generate speech from text (with optional
speaker IDs to specify voices). VC focuses on generating speech with a desired speaker identity,
whether the content comes from text or another speech sample. Finally, NV generates speech from
acoustic features without altering the original speaker’s identity.

Figure 1: Classification of speech generation methods based on input modality during inference. (a)
TTS: Generate speech from text input. (b)(c) VC: generate speech from text or speech based on
target voice. (d) NV: Generate speech from acoustic feature.

Speech Deepfake Datasets One of the most widely adopted benchmark datasets for speech deep-
fake detection comes from the ASVspoof challenge (Wu et al., 2014; Nautsch et al., 2021; Yamagishi
et al., 2021; Wang et al., 2024). Earlier editions (Wu et al., 2014; Nautsch et al., 2021) primarily
focused on spoofing attacks targeting automatic speaker verification (ASV) systems, while more re-
cent editions have expanded to include a wider variety of speech deepfakes that are not constrained
by speaker identity (Yamagishi et al., 2021; Wang et al., 2024). Similarly, the Audio Deepfake
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Figure 2: Overview of the SpeechFake dataset. The dataset is divided into two parts: the Bilingual
Dataset and the Multilingual Dataset. The Bilingual Dataset is further categorized into three genera-
tion methods: TTS, VC, and NV. Methods highlighted in blue represent the latest speech generation
methods.

Detection challenge (ADD) has released two editions of datasets with restricted access (Yi et al.,
2022; 2024), covering a range of tasks such as deepfake detection, manipulation region localization,
and deepfake algorithm recognition. Other notable datasets include FoR (Reimao & Tzerpos, 2019),
which collects fake speech from open-source and commercial tools (e.g., Microsoft Azure TTS), and
WaveFake (Frank & Schönherr, 2021), which uses neural vocoders to generate synthetic speech. The
In-the-Wild dataset (Müller et al., 2022) gathers celebrity synthetic speech samples from the Inter-
net, offering a more naturalistic setting for deepfake detection. For languages beyond English and
Chinese, datasets such as HABLA (Tamayo Flórez et al., 2023), MLADD (Müller et al., 2024),
and CVoiceFake (Li et al., 2024a) offer valuable resources. HABLA focuses on Spanish, MLADD
includes 23 languages, and CVoiceFake spans 5 languages. More recent datasets have focused on
latest speech synthesis methods. CD-ADD (Li et al., 2024c) targets zero-shot TTS systems, while
DFADD (Du et al., 2024a) emphasizes diffusion-based TTS. The dataset most similar to ours is
VoiceWukong (Yan et al., 2024), which contains 6,800 English and 3,800 Chinese deepfake samples
generated using 34 different synthesis methods, along with 38 variants such as noise injection and
volume control for more robust evaluation.

Although existing datasets have significantly contributed to speech deepfake detection research,
many are still limited in scale, linguistic diversity, or the inclusion of advanced generation methods.
These limitations hinder the ability to train models that generalize well to modern, multilingual
deepfakes. To address these gaps, SpeechFake offers a large-scale, multilingual dataset with cutting-
edge generation techniques and rich metadata, enabling more robust and generalizable detection
research.

3 DATASET COLLECTION AND STATISTICS

3.1 DATA COLLECTION

The data collection consists of two parts: real speech, sourced from existing datasets, and fake
speech, generated using open-source speech generation methods or commercial APIs. Since most
speech generation methods primarily support English or Chinese, we split our dataset into two parts
to balance the samples for each language: the Bilingual Dataset, which includes English and Chi-
nese, and the Multilingual Dataset, which covers data from 46 languages. The basic composition of
our dataset is illustrated in Figure 2.

Bilingual Dataset (BD) The bilingual dataset include English and Chinese speech data. The real
data is sampled from four datasets, LibriTTS (Zen et al., 2019) and VCTK (Veaux et al., 2013)
for English, AISHELL1 (Bu et al., 2017) and AISHELL3 (Shi et al., 2020) for Chinese. The fake
speech data is generated using 30 open-source speech generation methods and 10 commercial APIs,
as illustrated in Figure 2 and detailed in Table 7 in the Appendix. The open-source models span
a variety of architectures, including GAN-based models (Kumar et al., 2019; Kong et al., 2020),
Diffusion models (Liu et al., 2022; Huang et al., 2022b), Sequence-to-Sequence models (Oord,
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2016; Ren et al., 2021a), and Flow or VAE models (Prenger et al., 2019; Kim et al., 2021). Besides,
we include a collection of latest speech generation methods (highlighted in blue in Figure 2), all of
which were released in the past year and represent the cutting-edge in speech synthesis technology.

Multilingual Dataset (MD) The Multilingual Dataset (MD) spans 46 languages in total, including
9 primary languages: English (en), Chinese (zh), Spanish (es), French (fr), Hindi (hi), Japanese
(ja), Korean (ko), Persian (fa), and Italian (it), along with 37 additional languages. To create a
multilingual setting, we sample real speech data from the CommonVoice dataset (Ardila et al., 2019).
The fake data is generated using 6 multilingual speech generation tools, as shown in Figure 2, with
EdgeTTS1 supporting the widest range of languages, while the other methods cover a subset of
them.

Before the generation process, we prepare the corresponding text or audio input required by each
generator. This input is sampled from the real dataset we collected, including text transcriptions for
TTS systems and audio samples for VC and NV systems. The input data is preprocessed as follows:

• Text Preprocessing: Text inputs for TTS systems are cleaned by removing special characters,
punctuation, and extra spaces. For each language, we ensure that the text maintains an appropriate
word or character count (e.g., 5–30 words for English) and is selected to cover a diverse range
of phonemes comprehensively. The text is then tokenized and formatted according to the specific
requirements of each TTS model, with adjustments for sentence length or phonetic transcription
where needed.

• Audio Preprocessing: Audio samples for VC and NV systems are resampled to match the gener-
ator’s required sampling rate and converted to the appropriate formats, such as mel-spectrograms
for neural vocoders or raw waveforms for voice conversion models. Silence at the beginning and
end of audio clips is trimmed to avoid introducing artifacts during generation.

During the generation process,

• For TTS systems: The prepared text is used to generate speech for each method. If the method
supports multiple voices, the text is evenly split among the available voices. An exception is
TTS Tortoise, for which additional data is generated to support the cross-speaker experiment.

• For VC systems: Reference voices are sampled from the real datasets, while the content comes
from the selected text or the corresponding speech recordings. The text is generally split equally
among the reference voices. For methods supporting style transfer (e.g., CosyVoice, OpenVoice),
we include additional data to reflect the transformed styles.

• For NV systems: The generated speech is based on the original input audio selected from the real
datasets.

Once the speech is generated, it undergoes the following post-processing steps:

• Quality Filtering: We apply voice activity detection (VAD) to filter out speech segments with
less than 0.5 seconds of active speech. Additionally, generated speech with noticeable distortions,
excessive noise, or unnatural artifacts is discarded.

• Format Standardization: The remaining audio clips are standardized to a 16kHz sampling rate,
converted to mono, and saved in WAV format to ensure consistency across all samples in the
dataset.

3.2 DATASET STATISTICS

Basic Statistics We present the basic statistics of SpeechFake and other speech deepfake datasets
in Table 1. SpeechFake contains over 3 million speech deepfakes, totaling more than 3,000 hours.
The dataset partitioning for experiments is outlined in Table 2. To address the imbalance between
the substantial amount of fake data and the comparatively limited real data, and to optimize training
efficiency, we utilized approximately half of the fake data for the train, dev, and test sets (split 6:1:3),
reserving the remaining portion for future experiments.

1https://github.com/rany2/edge-tts.git
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Table 2: Partition of SpeechFake dataset. Real and fake data are divided into train, dev, test, and
optional hidden sets.

Set Real Data Fake Data
train dev test total train dev test hidden total

BD 75,708 12,618 37,854 126,180 633,354 105,544 315,222 898,896 1,953,016
BD-UT - - 37,854 37,854 - - 50,000 - 50,000
BD-EN 38,400 6,400 19,200 64,000 389,866 64,970 193,461 480,585 1,128,882
BD-CN 37,308 6,218 18,654 62,180 243,488 40,575 121,760 418,311 824,134
BD-TTS 75,708 12,618 37,854 126,180 280,622 46,764 138,834 547,887 1,014,107
BD-VC 75,708 12,618 37,854 126,180 192,210 32,031 96,115 214,849 535,205
BD-NV 75,708 12,618 37,854 126,180 160,522 26,749 80,273 136,160 403,704

MD 60,000 10,000 152,757 222,757 208,126 34,690 726,136 366,540 1,335,492

The Bilingual Dataset (BD) includes train, dev, and test sets generated using 30 open-source speech
generation methods. To assess model generalization to unseen methods, we also created a separate
unseen test set (BD-UT) using 10 commercial APIs. The BD is further divided into two language
partitions, BD-EN for English and BD-CN for Chinese, as well as three generator-based subsets:
BD-TTS, BD-VC, and BD-NV, representing text-to-speech (TTS), voice conversion (VC), and neu-
ral vocoder (NV) types, respectively.

The Multilingual Dataset (MD) uses the same generation methods across its train, dev, and test sets
but differs in language coverage. The train and dev sets include only English and Chinese data. The
test set is divided into 10 subsets: 9 subsets for each of the primary languages and 1 combined subset
for the remaining 37 languages. For the latter, around 5,000 clips were selected per language, with
the remaining clips hidden for future research.

Detailed Statistics We also analyzed the distribution of various attributes within the dataset. Fig-
ure 3 illustrates the distribution of the different generation methods used in creating SpeechFake.
TTS methods account for the majority, while VC and NV methods represent a smaller portion. On
average, each method generates around 60,000 utterances, though some methods produce more to
account for a wider range of voices.

Figure 3: Distribution of generation methods in SpeechFake. The red line represents the average
number of utterances across all generation methods.

For the gender distribution of voices, we ensure a balance between female and male speakers. For
the languages in the Multilingual Dataset, the 9 major languages account for half of the dataset, with
English and Chinese being the most prominent, while the remaining 37 languages make up the other
half. As for the audio duration, most clips fall between 2.0 and 20.0 seconds, with some shorter
clips (0-2 seconds) and longer ones (>20 seconds), adding variability in length.
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Figure 4: Distribution of speaker gender, language, and duration in SpeechFake. Speaker and du-
ration statistics are based on all data, while language distribution is specific to the Multilingual
Dataset.

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETTINGS

To evaluate deepfake detection performance, we use two state-of-the-art models: AASIST (Jung
et al., 2022) and W2V+AASIST (Tak et al., 2022). AASIST employs a heterogeneous stacking
graph attention network with a novel attention mechanism to capture spoofing artifacts across both
temporal and spectral domains. W2V+AASIST integrates Wav2Vec2.0 XLSR (Babu et al., 2021) as
a frontend feature extractor with AASIST serving as the backend classifier. The training details for
each model are provided in Table 9 in the Appendix. For evaluation, we use the Equal Error Rate
(EER) as the metric, following previous work (Yamagishi et al., 2021; Du et al., 2024a).

4.2 OVERALL PERFORMANCE

We first establish baseline results to demonstrate the overall performance on the Bilingual Dataset
(BD). For training, we include the ASVspoof2019-LA training set (ASV19), which is a widely used
benchmark in speech deepfake detection research, alongside three partitions of the BD training set
(BD, BD-EN, BD-CN). The evaluation is conducted on multiple test sets: the BD testing sets (BD,
BD-EN, BD-CN), and some additional commonly used testing sets in the field: ASVspoof2019-
LA eval set (ASV19), In-the-Wild (ITW), and FakeOrReal (FOR). For the FakeOrReal test set, we
constructed the test subset by randomly selecting 10,000 utterances due to the relatively small size
of the original dataset. Additional results on other test datasets are presented in Table 10 in the
appendix.

Table 3: Performance evaluation (EER%) of different models trained on ASVspoof2019 (ASV19)
or Bilingual Dataset (BD) across multiple test sets, including both subsets of SpeechFake and other
publicly available benchmarks.

Training Dataset Model Testing Dataset (SpeechFake) Testing Dataset (Others)
BD BD-EN BD-CN ASV19 ITW FOR

ASV19

AASIST

39.36 41.05 39.07 1.88 45.27 36.08
BD 3.48 3.98 2.68 23.62 7.53 23.35

BD-EN 9.02 6.17 12.00 30.65 6.96 28.99
BD-CN 16.58 24.59 5.43 16.56 8.54 25.48
ASV19

W2V+AASIST

23.78 20.15 24.93 0.89 10.07 6.18
BD 3.54 3.55 2.83 2.91 2.01 6.00

BD-EN 8.65 4.58 10.44 5.28 2.62 8.33
BD-CN 8.99 11.40 4.51 0.99 3.34 4.88

From Table 3, we observe that when models are trained on ASV19, they perform well on its own
evaluation set but experience significant performance degradation on other test sets, particularly on
BD, where most of the generation methods are unseen during training. In contrast, training on BD
leads to significant accuracy improvements. While training on the English (BD-EN) or Chinese (BD-
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CN) subsets yields good performance on their respective test sets, it results in poorer performance
on the complementary sets. This may be attributed to the differences in the generation methods or
languages included in each partition. Using the full BD training set delivers the best overall results,
enhancing accuracy across all BD test subsets compared to training on a single language subset.

When testing on other external datasets, models trained on SpeechFake also demonstrate strong
performance. While the EER results on the ASV19 test set do not surpass those of models trained
specifically on the ASV19 training set (likely due to the relatively similar distribution between the
ASV19 train and test sets), the performance on the ITW and FOR test sets significantly exceeds that
of the ASV19-trained models. This indicates that the diversity of the SpeechFake dataset enhances
detection accuracy, not only on our own test sets but also on other unseen datasets.

4.3 CROSS-GENERATOR PERFORMANCE

To evaluate the impact of generators on detection performance, we conduct cross-evaluations using
three categories of generators: TTS, VC, and NV. The results are presented in Table 4.

Table 4: Cross-evaluation performance (EER%) of different generator types as training sets across
various testing sets.

Training Dataset Model Testing Dataset
BD-TTS BD-VC BD-NV BD BD-UT

BD-TTS
AASIST

0.44 16.85 25.66 14.26 0.53
BD-VC 18.71 2.18 35.31 20.90 14.34
BD-NV 23.44 41.63 9.53 26.30 26.87
BD-TTS

W2V+AASIST
1.01 9.78 14.34 8.08 0.20

BD-VC 5.81 3.82 18.26 8.81 9.35
BD-NV 9.34 17.38 7.77 11.33 23.79

For each training set, the best detection performance is consistently observed on its corresponding
testing set (e.g., model trained on TTS data performs best on the TTS test set), but performance
degrades significantly when tested on other generator types. This highlights the challenge of gener-
alizing across unseen generation methods. In terms of overall performance, models trained on TTS
data consistently yield the best results on the full BD test set, followed by VC, with NV-trained mod-
els performing the worst. This can be attributed to the variety of deepfakes in the TTS subset, which
includes cutting-edge techniques that produce highly realistic synthetic speech. On the other hand,
NV-based systems likely underperform because the methods used are often outdated and generate
lower-quality deepfakes, making it harder for models trained on NV data to detect more advanced
techniques. When testing on the unseen commercial TTS API test set (BD-UT), the performance
trends remain consistent: TTS-trained models outperform VC and NV. When testing on the un-
seen commercial TTS API set (BD-UT), TTS-trained models consistently outperform those trained
on VC and NV. This highlights that exposure to modern TTS data improves the model’s ability to
detect high-quality, natural-sounding deepfakes.

In summary, unseen generation methods present a significant challenge for generalization in deep-
fake detection. Although training on similar generation types can somewhat improve detection
performance, substantial differences between generation methods still result in considerable perfor-
mance degradation.

4.4 CROSS-LINGUAL PERFORMANCE

In Section 4.2, the English and Chinese subsets produce distinct results on their respective test sets.
This difference can be attributed to variations in both the generation methods and the languages.
To further explore the impact of language on deepfake detection, we conducted experiments using
the multilingual dataset, where all generation methods are seen during training, but some languages
remain unseen.

From Table 5, we observe that both models perform well on the English (en) and Chinese (zh)
test sets, with minimal error rates, as expected since these are the seen languages in the training
set. For unseen languages, AASIST shows some degradation (e.g., EER = 9.57% for Hindi and
4.90% for French), revealing that language content does influence detection performance, even when

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Performance evaluation (EER%) on test sets across different languages. The models were
trained on English and Chinese.

Model Testing Dataset
en zh es fr hi ja ko fa it others

AASIST 0.20 0.55 1.76 4.90 9.57 1.30 0.28 2.26 1.30 2.91
W2V+AASIST 0.04 0.19 0.02 0.36 0.61 0.18 0.00 0.14 0.02 0.15

the generation methods are seen during training. On the other hand, W2V+AASIST demonstrates
consistently strong performance across all test sets, including the unseen languages. This can likely
be attributed to the multilingual pretraining of the Wav2Vec 2.0 XLSR model (Babu et al., 2021),
which helps it generalize more effectively to new languages and mitigate the impact of unseen
language content.

These results suggest that language content does impact detection performance, even when the gen-
eration methods have been seen during training. However, when the model has prior exposure to the
language, such as through multilingual pretraining, this impact can be further mitigated.

4.5 CROSS-SPEAKER PERFORMANCE

Some TTS systems are limited to generating specific voices, making it possible for us to detect
deepfakes by merely recognizing the speaker’s voice rather than learning the distinct audio charac-
teristics that differentiate real and fake speech. This raises the question: can a model learn to detect
deepfakes based on their inherent characteristics, or does it simply overfit to the speaker identity?

To explore this, we created a small dataset selected from the Bilingual Dataset (BD). To minimize
the influence of different generation methods, we exclusively used TorToiSe (Betker, 2023), a TTS
system that supports multi-speaker speech generation. The training dataset is a subset of the BD
train set, consisting of 100 real speakers and 10 fake speakers, with a total of 34,305 utterances. As
detailed in Table 6, we designed five different test trials, varying the combinations of seen and unseen
speakers to assess the model’s ability to generalize across speakers. For evaluation, we trained an
AASIST model for 50 epochs on this training set.

Table 6: Statistics and EER(%) results of cross-speaker testing trials. #utt, #spk represent number
of utterances and speakers, respectively. The numbers in parentheses represent the distribution of
speakers (seen, unseen) in the training set.

No. Test Setting Real Fake EER(%)#utt #spk #utt #spk
1 Seen Real & Fake Speakers 6,599 100 (100, 0) 13,871 10 (10, 0) 0.06 ± 0.01

2 Unseen Real & Fake Speakers 5,557 100 (0, 100) 12,377 10 (0, 10) 0.43 ± 0.15

3 Unseen Real & Seen Fake Speakers 5,557 100 (0, 100) 13,871 10 (10, 0) 0.01 ± 0.01

4 Seen Real & Unseen Fake Speakers 6,599 100 (100, 0) 12,377 10 (0, 10) 0.64 ± 0.06

5 Mixed Seen / Unseen Speakers 6,071 100 (50, 50) 13,677 10 (5, 5) 0.49 ± 0.05

Overall, the EERs across all five test settings are minimal, indicating that the model can detect
deepfake-specific features rather than relying solely on speaker identity. Comparing Settings 1 and
2, where the distinction is whether speakers are seen or unseen during training, we observe only
a slight increase in EER when speakers are unseen (0.06% to 0.43%). In Setting 3, where real
speakers are unseen and fake speakers are seen, the model achieves almost perfect detection (0.01%),
likely due to more fake data per speaker, though some speaker memorization may be occurring.
In contrast, Setting 4, with seen real speakers and unseen fake speakers, results in a higher EER
(0.64%), suggesting that the model struggles more with unseen fake speakers, possibly relying on
learned fake speaker characteristics. Setting 5, with a mix of seen and unseen speakers, yields an
EER of 0.49%, indicating better generalization than Setting 4, but still some performance drop with
unseen fake speakers.

To conclude, the experiment demonstrates that the model can learn deepfake-specific features, but
speaker identity does impact detection accuracy, particularly when encountering entirely unseen fake
speakers.
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5 LIMITATIONS AND FUTURE WORK

While SpeechFake provides a large and diverse dataset for speech deepfake detection, several limi-
tations persist. Although the dataset includes 40 different speech generation tools, it does not cover
all current or emerging techniques, as the field of speech generation evolves rapidly. Moreover, the
variety of generation methods in the multilingual dataset is limited due to the scarcity of multilingual
speech generation systems. Additionally, while SpeechFake offers a broad range of speaker voices
and audio samples, the diversity in speaker identities and recording environments may still fall short
of fully capturing real-world scenarios. For future work, we hope to potentially expand the dataset
with more generation methods as they emerge, further enhancing its relevance and applicability for
deepfake detection research.

6 CONCLUSION

In conclusion, SpeechFake addresses critical gaps in existing datasets for speech deepfake detec-
tion by providing a large-scale, diverse collection of over 3 million deepfakes generated using 40
different speech generation tools, spanning 46 languages. Through extensive experiments, we es-
tablished baseline results and explored key factors such as generation methods, language diversity,
and speaker variation, which significantly impact detection performance. Our findings emphasize
the challenges of generalizing across unseen deepfakes while demonstrating the potential of Speech-
Fake to drive future advancements in model robustness and generalization. We believe SpeechFake
will be a valuable resource for the development of more sophisticated detection systems, helping to
mitigate the risks associated with the growing threat of deepfake misuse.
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A APPENDIX

In this appendix, we present additional information and analyses that complement the main paper.
Section A.1 provides further details about the SpeechFake dataset. Section A.2 offers visualiza-
tions of deepfake audio samples, highlighting variations across generation methods, languages, and
speakers. Finally, Section A.3 outlines the experimental settings and presents additional experimen-
tal results and analyses.

Table 7: The list of generation methods.
No. Method Generator Link
1 MelGAN (Kumar et al., 2019) NV https://github.com/kan-bayashi/ParallelWaveGAN
2 WaveGlow (Prenger et al., 2019) NV https://github.com/NVIDIA/waveglow
3 Parallel WaveGAN (Yamamoto et al., 2020) NV https://github.com/kan-bayashi/ParallelWaveGAN
4 HiFi-GAN (Kong et al., 2020) NV https://github.com/kan-bayashi/ParallelWaveGAN
5 Fullband-MelGAN (Yang et al., 2021) NV https://github.com/kan-bayashi/ParallelWaveGAN
6 StyleMelGAN (Mustafa et al., 2021) NV https://github.com/kan-bayashi/ParallelWaveGAN
7 FastDiff (Huang et al., 2022a) NV https://github.com/Rongjiehuang/FastDiff
8 BigVGAN (gil Lee et al., 2023) NV https://github.com/NVIDIA/BigVGAN
9 WaveNet (Van Den Oord et al., 2016) TTS https://github.com/r9y9/wavenet_vocoder

10 Tactotron2 (Shen et al., 2018) TTS https://github.com/NVIDIA/tacotron2
11 Glow-TTS (Kim et al., 2020) TTS https://github.com/jaywalnut310/glow-tts
12 Grad-TTS (Popov et al., 2021) TTS https://github.com/huawei-noah/Speech-Backbones
13 FastSpeech2 (Ren et al., 2021a) TTS https://github.com/ming024/FastSpeech2
14 PortaSpeech (Ren et al., 2021b) TTS https://github.com/keonlee9420/PortaSpeech
15 VITS (Kim et al., 2021) TTS https://github.com/jaywalnut310/vits/tree/main
16 StarGAN-VC (Li et al., 2021) VC https://github.com/yl4579/StarGANv2-VC
17 DiffGAN-TTS (Liu et al., 2022) TTS https://github.com/keonlee9420/DiffGAN-TTS
18 ProDiff-TTS (Huang et al., 2022b) TTS https://github.com/Rongjiehuang/ProDiff
19 EdgeTTS TTS https://github.com/rany2/edge-tts.git
20 TorToiSe (Betker, 2023) TTS https://github.com/neonbjb/tortoise-tts
21 StyleTTS2 (Li et al., 2024b) TTS https://github.com/yl4579/StyleTTS2
22 OpenVoice (Qin et al., 2023) VC https://github.com/myshell-ai/OpenVoice
23 GPTSoVITS VC https://github.com/RVC-Boss/GPT-SoVITS
24 Fish Speech TTS/VC https://github.com/fishaudio/fish-speech
25 MeloTTS TTS https://github.com/myshell-ai/MeloTTS
26 ChatTTS TTS https://github.com/2noise/ChatTTS
27 CosyVoice (Du et al., 2024b) TTS/VC https://github.com/FunAudioLLM/CosyVoice
28 Parler-TTS (Lyth & King, 2024) TTS https://github.com/huggingface/parler-tts
29 FireRedTTS (Guo et al., 2024) TTS https://github.com/FireRedTeam/FireRedTTS
30 Seed-VC VC https://github.com/Plachtaa/seed-vc
31 Volcengine API TTS https://www.volcengine.com
32 Baidu API TTS https://cloud.baidu.com
33 AliYun API TTS https://www.aliyun.com
34 Xfyun API TTS https://www.xfyun.cn
35 Moyin API TTS https://www.moyin.com
36 Microsoft API TTS https://azure.microsoft.com
37 Google API TTS https://cloud.google.com
38 Amazon API TTS https://docs.aws.amazon.com/polly
39 OpenAI API TTS https://platform.openai.com
40 GPT4o API TTS https://platform.openai.com

A.1 DATASET DETAILS

Generation Methods Table 7 provides a comprehensive list of the 40 speech generation tools
used to create the SpeechFake dataset. These tools cover a broad range of techniques, including
TTS, VC, and NV systems. Some methods, such as Fish Speech and CosyVoice, can be used for
multiple generation tasks (e.g., TTS and VC), demonstrating the versatility of these systems.

License For the 30 open-source tools, we carefully reviewed their licenses to ensure compliance
with the construction and release of a publicly available dataset. Most of the data generated using
these tools is released under CC BY-NC 4.0, with certain portions, such as data from SeedVC,
licensed under GPL-3.0 to comply with its requirements. The remaining 10 generation tools are
commercial APIs, for which we obtained paid access, ensuring compliance with non-commercial
research usage policies.

Metadata SpeechFake provides detailed metadata for each generated speech sample, including:

• Basic Labels: Identifying real or fake speech.
• Generation Method: Specifying the tool used to create the speech.
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• Speaker Information: Providing identity labels for the real speaker or the generated voice.
• Language ID: Indicating the language of the audio sample.
• Text Transcriptions: Providing the corresponding text for the generated speech.

Additional Use Cases While SpeechFake is primarily designed for traditional speech deepfake
detection, the detailed metadata it provides opens up various opportunities for other research areas.
Below, we outline some additional use cases for the dataset:

• Deepfake Detection with Privacy Preservation: SpeechFake can support research into detecting
deepfakes while maintaining privacy protections for both speaker identities and sensitive con-
tent. Techniques such as federated learning, differential privacy, or privacy-preserving machine
learning can be explored to allow models to detect deepfakes without exposing or compromising
personal data. This opens up possibilities for safer deployment of detection models in real-world
applications where privacy is a concern.

• Automatic Speech Recognition (ASR): The synthetic speech in SpeechFake provides a valuable
opportunity to assess how ASR systems handle artificially generated audio. Researchers can ex-
plore whether incorporating deepfake speech can enhance ASR performance by training models
to be more robust against synthetic variations, thereby improving accuracy and adaptability in
handling diverse, challenging speech inputs.

• Security and Adversarial Audio Attacks: Synthetic speech from SpeechFake can be utilized
in adversarial attacks aimed at ASR systems or voice-activated applications. The dataset offers a
resource for developing and testing countermeasures against adversarial audio manipulations, en-
abling researchers to fortify voice-driven systems against security threats, ensuring their reliability
and resilience in real-world scenarios.

Table 8: Metadata comparison across various speech deepfake datasets. The “-” symbol in Language
column indicates datasets that do not support multi-language data.

Dataset Label Generator Speaker Language Text
ASVspoof2015 (Wu et al., 2014) ✓ ✓ ✓ - ✗
FakeOrReal (Reimao & Tzerpos, 2019) ✓ ✗ ✗ - ✗
ASVspoof2019-LA (Nautsch et al., 2021) ✓ ✓ ✓ - ✗
WaveFake (Frank & Schönherr, 2021) ✓ ✓ ✓ ✓ ✗
ASVspoof2021-LA (Yamagishi et al., 2021) ✓ ✗ ✗ - ✗
ASVspoof2021-DF (Yamagishi et al., 2021) ✓ ✗ ✗ - ✗
ADD2022 (Yi et al., 2022) ✓ ✗ ✗ - ✗
CFAD (Ma et al., 2024) ✓ ✓ ✗ - ✗
In-the-Wild (Müller et al., 2022) ✓ - ✓ - ✗
ADD2023 (Yi et al., 2024) ✓ ✗ ✗ - ✗
HABLA (Tamayo Flórez et al., 2023) ✓ ✓ ✓ - ✗
MLAAD (Müller et al., 2024) ✓ ✓ ✓ ✓ ✓
CD-ADD (Li et al., 2024c) ✓ ✓ ✗ - ✗
VoiceWukong (Yan et al., 2024) ✓ ✓ ✗ ✓ ✗
DFADD (Du et al., 2024a) ✓ ✓ ✗ - ✗
CVoiceFake (Li et al., 2024a) ✓ ✓ ✗ ✓ ✓
SpeechFake ✓ ✓ ✓ ✓ ✓

A.2 AUDIO SAMPLES

In this section, we provide visualizations of the waveform and mel-spectrogram for the generated
speech, highlighting the significant variations across different generation methods, languages, and
speakers.

Generator Figure 5 compares real audio with eight speech deepfakes generated by cutting-edge
speech generation methods. Despite the same speech content, the generated audio exhibits differ-
ences in speed, rhythm, accent, and background noise. For example, variations in speed and rhythm
can be observed through the density and spacing of peaks in the waveform, while background noise
introduces irregular, low-amplitude fluctuations. Additionally, the mel-spectrograms for each audio
sample display variations in energy distribution (intensity across frequency bands, visible as bright-
ness), frequency patterns (harmonic structures and their arrangement), and clarity (sharpness of
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features, with blurriness indicating potential distortions), indicating how different generation tech-
niques shape the acoustic properties of the speech. These differences underscore the challenges
in detecting deepfakes, as the synthetic speech can vary significantly depending on the generation
method used.

Language Figure 6 presents generated audio samples for nine different languages, all created
using the same generation method (EdgeTTS). While the language content varies—affecting fac-
tors such as speech speed, rhythm, and intonation—the mel-spectrograms display consistent global
patterns. For example, the overall energy distribution across frequency bands and the structural ar-
rangement of harmonics remain similar, reflecting the uniform processing applied by the EdgeTTS
model. However, linguistic differences, such as unique intonation patterns and phoneme timing,
introduce subtle variations in the finer details of the spectrograms. These observations highlight
the influence of language-specific traits on acoustic features, while also demonstrating the model’s
consistent generation approach across languages.

Speaker Figure 7 illustrates the generated audio for nine different voices, produced by a single
generation method (TorToiSe) using the same text input. The choice of speaker introduces variations
in the acoustic properties of the speech, reflected in features such as pitch, timbre, and pacing. In
the mel-spectrograms, pitch is represented by the spacing between harmonic bands, timbre by the
energy distribution across frequency bands, and pacing by the density of temporal transitions. These
variations highlight the model’s ability to modify voice-specific traits while keeping the content
identical, showing how speaker identity influences the acoustic properties of the generated speech.

Figure 5: Visualization of waveform and mel-spectrograms for a single text input across different
generation methods.

A.3 EXPERIMENT DETAILS

Experimental Settings Table 9 outlines the training configurations for the two state-of-the-art
models used in our experiments. The basic settings are consistent with the training setup proposed
by Tak et al. (2022). Unlike previous research on deepfake detection, we opted not to apply data
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Figure 6: Visualization of waveform and mel-spectrograms for speech deepfakes in different lan-
guages, generated by EdgeTTS.

augmentation in order to isolate the fundamental effects of the audio data and avoid potential biases
introduced by augmentation methods, which may not generalize well across all datasets. Given the
imbalance between deepfake and real samples, we employed weighted cross-entropy loss to ensure
balanced training. Both models were trained for 50 epochs on 8 A100 GPUs.

Table 9: Training Details of AASIST and W2V+AASIST Models
Training Parameter AASIST W2V+AASIST
Input Audio Chunk or pad to 4s Chunk or pad to 4s
Data augmentation None None
Optimizer Adam Adam
Learning Rate 1e-4 1e-6
Weight Decay 1e-4 1e-4
Batch Size 1024 512
Total Epochs 50 50
Loss Function Weighted Cross Entropy (0.9 for real, 0.1 for fake)

Table 10: Performance evaluation (EER%) of different models trained on ASVspoof2019 (ASV19)
or Bilingual Dataset (BD) across multiple test sets.

Training Dataset Model Testing Dataset
ASV19 FOR WF ASV21LA ASV21DF CFAD ITW MLAAD CD-ADD ASV24

ASV19

AASIST

1.88 36.08 21.17 7.30 19.32 43.95 45.27 15.34 49.53 41.89
BD 23.62 23.35 4.30 32.56 21.68 34.32 7.53 22.97 22.52 35.02

BD-EN 30.65 28.99 8.54 49.75 34.29 43.39 6.96 27.16 23.24 40.82
BD-CN 16.56 25.48 5.88 21.19 23.20 32.34 8.54 30.15 39.75 34.39
ASV19

W2V+AASIST

0.89 6.18 3.48 6.57 2.98 20.53 10.07 18.26 8.55 1.41
BD 2.91 6.00 0.58 7.27 2.85 12.39 2.01 12.86 2.42 0.71

BD-EN 5.28 8.33 0.96 11.91 2.97 21.42 2.62 16.75 3.54 0.71
BD-CN 0.99 4.88 0.64 3.92 5.87 11.72 3.34 10.17 7.16 1.17

Performance on Other Datasets We extend the evaluation from Table 3 to include 10 addi-
tional datasets beyond our primary test set. These datasets are ASVspoof2019 (ASV19), FakeOr-
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Figure 7: Visualization of waveform and mel-spectrograms for a single text input across different
generated voices, generated by TorToiSe.

Real (FOR), WaveFake (WF), ASVspoof2021-LA (ASV21LA), ASVspoof2021-DF (ASV21DF),
CFAD, In-The-Wild (ITW), MLAAD, CD-ADD, and ASVspoof5 (ASV24). For ASV21LA,
ASV21DF, CFAD, and CD-ADD, evaluations are conducted on their original test sets. For ASV24,
the development set is used as labels for the evaluation set are unavailable. For MLAAD and WF,
which don’t have predefined train/test splits, we randomly select 15,000 clips for evaluation.

For most of these test sets, models trained on SpeechFake consistently outperform those trained on
ASV19. This demonstrates the effectiveness of SpeechFake in capturing diverse and challenging
spoofing scenarios. However, some exceptions are observed with the ASVspoof datasets from 2019
and 2021, as these datasets share a more similar distribution with the ASV19 training data, giving
models trained on ASV19 an advantage in these specific cases.

An additional observation is that models trained on the full BD dataset do not always achieve the best
performance compared to those trained on its subsets, BD-EN and BD-CN. This may be attributed to
the distinct generation methods used in BD-EN and BD-CN, which introduce either similar attributes
or significant differences relative to the test sets. Such variations in distribution can result in models
trained on BD-EN or BD-CN achieving better alignment with certain test sets, while the broader BD
dataset, encompassing more diverse data, may dilute this alignment in some cases.

Score Distribution We provide visualizations of the score distributions for various training and
testing configurations from our experiments in Section 4.2 and Section 4.3.

Figure 8 shows the score distribution for models trained on the full BD dataset as well as its English
(BD-EN) and Chinese (BD-CN) subsets. For the model trained on the full BD set, the scores for
real and fake samples are clearly separable, corresponding to the low EER across these test sets.
However, when models are trained on either BD-EN or BD-CN, we observe some overlap in the
score distributions when tested on the complementary language set. This fusion occurs primarily due
to the model’s difficulty in generalizing across different languages, particularly when distinguishing
fake samples in an unfamiliar linguistic context.
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Figure 9 presents the score distribution for models trained on the BD TTS, NV, and VC subsets.
Each model performs best on its corresponding test set (diagonal), but shows degraded performance
on the other two sets containing unseen deepfakes. Unlike in the previous figure, the overlap in
score distributions here primarily reflects the difficulty in distinguishing real samples from fake ones
generated by unseen techniques. This suggests that models trained on specific generation methods
(TTS, NV, or VC) may struggle to generalize to different types of deepfake generation techniques,
highlighting the challenge of cross-generator generalization.

Figure 8: Score distribution for real and fake samples when training on BD, BD-EN, and BD-CN,
tested on their respective test sets using the W2V+AASIST model. The EER values correspond to
those in Table 3, with the indicated threshold representing the EER threshold.

Cross-model Evaluation To complement the cross-generator performance evaluation in Sec-
tion 4.3, where tests were conducted across different generator types, and to assess the impact of
data from the latest generation methods, we perform additional evaluations using models trained on
individual methods. As shown in Figure 10, the EER remains minimal when testing on the corre-
sponding test sets for each method, but there is a significant degradation in performance when tested
on other methods’ test sets. In certain cases, some models demonstrate relatively good results on
specific test sets (e.g., the FireRedTTS-trained model on the ChatTTS test set), but these results are
inconsistent across all test sets. This further emphasizes the challenge of generalization to unseen
deepfakes, highlighting the need for more robust detection models capable of adapting to a wider
range of generation methods.
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Figure 9: Score distribution for real and fake samples when training on BD-TTS, BD-VC, and BD-
NV, tested on their respective test sets using the W2V+AASIST model. The EER values correspond
to those in Table 4, with the indicated threshold representing the EER threshold.

Figure 10: Cross-evaluation performance (EER%) of different generation models as training sets
across their testing sets.
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