
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT DISCOVERY OF PARETO FRONT FOR MULTI-
OBJECTIVE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-objective reinforcement learning (MORL) excels at handling rapidly chang-
ing preferences in tasks that involve multiple criteria, even for unseen preferences.
However, previous dominating MORL methods typically generate a fixed policy
set or preference-conditioned policy through multiple training iterations exclu-
sively for sampled preference vectors, and cannot ensure the efficient discovery
of the Pareto front. Furthermore, integrating preferences into the input of policy
or value functions presents scalability challenges, in particular as the dimension
of the state and preference space grow, which can complicate the learning process
and hinder the algorithm’s performance on more complex tasks. To address these
issues, we propose a two-stage Pareto front discovery algorithm called Constrained
MORL (C-MORL), which serves as a seamless bridge between constrained policy
optimization and MORL. Concretely, a set of policies are trained in parallel in
the initialization stage, with each optimized towards its individual preference over
the multiple objectives. Then, to fill the remaining vacancies in the Pareto front,
the constrained optimization steps are employed to maximize one objective while
constraining the other objectives to exceed a predefined threshold. Empirically,
compared to recent advancements in MORL methods, our algorithm achieves more
consistent and superior performances in terms of hypervolume, expected utility, and
sparsity on both discrete and continuous control tasks, especially with numerous
objectives (up to nine objectives in our experiments).

1 INTRODUCTION
In many real-world control and planning problems, multiple and sometimes even conflicting ob-
jectives are getting involved. Such situations necessitate striking a better trade-off among these
decision-making goals (Roijers et al., 2013; Hayes et al., 2022). For instance, in industrial control sce-
narios (Salvendy, 2001; Wang et al., 2023), maximizing utility and minimizing energy consumption
are of particular interest as objectives to be optimized. Since different decision makers have heteroge-
neous preferences over these objectives, there may exist multiple Pareto-optimal policies (Roijers
et al., 2014). Classical reinforcement learning (RL) methods typically involve training individual
policies exclusively to align with each preference weight vector over multiple rewards (Nagabandi
et al., 2018; Gupta et al., 2018). Yet it may lead to an enormous computational burden due to the
overly dependence on the model retraining and fine-tuning stages. Moreover, such policies are hard
to directly generalize or transfer to newer tasks (Cobbe et al., 2019; Taiga et al., 2022). Therefore,
the multi-objective reinforcement learning (MORL) paradigm has drawn significant attention by
reformulating these tasks for optimizing towards multiple criterion (Xu et al., 2020; Basaklar et al.,
2022; Zhu et al., 2023). MORL aims to obtain either a single policy readily adapted to different
preferences (Felten et al., 2023b; 2022; Teh et al., 2017) or a set of policies (Zhao & Grover, 2024;
Felten et al., 2024; Röpke et al., 2024; Kim et al., 2024) aligned with their respective preferences.

One prevalent category of MORL approaches is to train a single preference-conditioned policy (Yang
et al., 2019; Basaklar et al., 2022). They utilize a weight vector to quantify preferences for different
objectives and incorporate this weight vector as part of the input to the policy network. However, such
approaches often struggle with scalability, since for high-dimensional environments the weight space
extends exponentially as the number of objectives increases. By comparison, training a restricted
set of policies to align with the set of sampled preference vectors can circumvent the scalability
issue to some extent. Yet it could be scarcely possible to fulfill the demand of covering the entire
Pareto frontier. In addition, although some works focus on boosting sample efficiency (Wiering

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2014; Alegre et al., 2023), they may still rely on learning the environment dynamics with extra
training time, while inaccurate learned dynamics easily affect multiple RL objectives’ performance.
Evolutionary approach and user feedback are also integrated to find the Pareto set approximation (Xu
et al., 2020; Shao et al., 2024), while additional prediction models are needed to guide the learning
process. Although these methods demonstrate promising performance in tasks with simpler dynamics
or a limited number of objectives (typically two to five), they often struggle to scale effectively with
respect to a greater number of objectives or larger state and action spaces.

In summary, existing works mainly suffer from three aspects: (i) low training efficiency; (ii) hard to
cover the complete Pareto front; (iii) inability to maximize utility for any given preference. To address
these challenges, we propose a novel constrained optimization formulation for improved computation
complexity and stronger coverness of the Pareto front. To be specific, we adapt the constrained policy
optimization algorithms (Achiam et al., 2017; Liu et al., 2020), and reformulate the MORL problem
with designed constraints on policy performance over multiple objectives. Our approach of training
the policy set consists of two stages. In the Pareto initialization stage, we train several initial policies
in parallel based on fixed preferences until convergence. In the Pareto extension stage, we first select
diverse policies based on their crowd distance and employ constrained update steps to the initial
policies individually. In each optimization step, we optimize a specific objective while constraining
the expected returns of other objectives. Through this approach, we can extend the Pareto front
in various objective directions. For the third research gap, we introduce Policy assignment, which
ensures that for any given preference, we assign a policy from the Pareto set that maximizes its utility.

Our algorithm achieves favorable time complexity characteristics and derives a high-quality Pareto
front, as indicated by the following observations. Firstly, training several initial policies based
on fixed preferences is efficient. In addition, the adoption of constrained update steps allows for
rapid adjustment of the initial policy, leading to the derivation of new solutions on the Pareto
front. Regarding the second research gap concerning the complete Pareto front, different from
the meta-policy approach that relies on a single initial policy (Chen et al., 2019), our method can
extend multiple policies selected from initial policies based on their crowd distance to enhance
diversity while promoting better performances. Intuitively, a larger crowd distance indicates that
the corresponding policy appears on a sparser area on the Pareto front, therefore, extending such a
policy is more likely to fill the Pareto front. While sharing similarities with our formulation, as one
category of multi-objective optimization (MOO) approach, epsilon-constraint methods solves a MOO
problem by converting it to several single-objective constrained optimization problems (Laumanns
et al., 2006; Van Moffaert & Nowé, 2014). However, the running time of such a method is exponential
in problem size, rendering it impractical for MOO problems with numerous objectives. In contrast,
crowd-distance-based policy selection eases such burden, exhibiting linear complexity, and can
efficiently solve MORL tasks with numerous objectives. Our main contributions are as follows:
• We propose C-MORL, a two-stage policy optimization algorithm that enables rapid and complete

discovery of the Pareto front. By taking a novel constrained optimization perspective for MORL, our
Pareto front extension method can easily handle complex discrete or continuous MORL tasks with
multiple objectives (as demonstrated with up to nine objectives in our experimental evaluations).

• To empirically solve C-MORL without extra computation such as in the epsilon-constraint method,
we propose an efficient interior-point-based approach for finding the solution of a relaxed formula-
tion, which can guarantee the derivation of Pareto-optimal policies under specified conditions.

• To validate the efficacy of C-MORL, we employ an array of MORL benchmarks for both continuous
and discrete state/action spaces across various domains, such as robotics control and sustainable
energy management. C-MORL consistently achieves up to 35% larger hypervolume and 9% higher
expected utility in MORL benchmarks than the state-of-the-art baselines, indicating the discovery
of broader Pareto front given any preferences.

2 RELATED WORK
Prior trials on tackling multi-objective RL fall into training single preference-conditioned policy
or multi-policy. Typical single-preference-conditioned policy approaches adopt a policy that takes
preferences as part of network inputs and utilizes the weighted-sum scalarization of the value functions
(or advantage functions) to optimize the policy (Van Moffaert et al., 2013; Parisi et al., 2016; Yang
et al., 2019; Zhang & Golovin, 2020; Basaklar et al., 2022; Lu et al., 2022; Hung et al., 2022; Zhu
et al., 2023; Lin et al., 2024). In the evaluation stage, agents can execute corresponding solutions
based on users’ desired preferences (Yang et al., 2019; Basaklar et al., 2022). With the shared neural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

networks, gradients from different tasks can interfere negatively, making learning unstable, leading to
imbalanced performance across the entire preference space, and sometimes even less data efficient.

Instead of training a single policy agent, multi-policy approaches train a finite set of policies to
approximate the Pareto front (Abels et al., 2019; Xu et al., 2020; Alegre et al., 2022). In the
evaluation stage, the policy in policy set that maximizes the utility of the user (i.e., the weighted sum
of objectives) is chosen (Friedman & Fontaine, 2018). Rather than evenly sampling from preference
space, (Xu et al., 2020) proposes an efficient evolutionary learning algorithm to find the Pareto
set approximation along with a prediction model for forecasting the expected improvement along
vector-valued objectives. Yet the performance highly depends on prediction model’s accuracy, and
it is challenging to recover the Pareto front due to the long-term local minima issue. This method
also suffers from low training efficiency due to the exponential complexity involved in repeatedly
calculating the quality of the virtual Pareto front during the training process. (Kyriakis & Deshmukh,
2022) designs a policy gradient solver to search for a direction that is simultaneously an ascent
direction for all objectives. (Alegre et al., 2022) firstly trains a set of policies whose successor
features form a ϵ-CCS (convex coverage set), then utilizes the generalized policy improvement (GPI)
algorithm to derive a solution for a new preference. (Alegre et al., 2023) further introduces a novel
Dyna-style MORL method that significantly improves sample efficiency while relying on accurate
learning of dynamics. (Röpke et al., 2024) discovers the Pareto front by bounding the search space
that could contain value vectors corresponding to Pareto optimal policies using an approximate Pareto
oracle, and iteratively removing sections from this space. Our proposed C-MORL distinguishes from
their divide-and-conquer scheme by a novel policy selection procedure along with explicitly solving
a principled constrained optimization.

Our approach bears connections with (Chen et al., 2019) and (Huang et al., 2022), while distinguishing
itself in terms of both the training process and objectives. Compared to the meta-policy approach,
adaptation process is not necessary in the evaluation phase of our method. When presented with an
unseen preference, the policy in the Pareto front with the highest utility is chosen as the surrogate
execution policy. In contrast to (Huang et al., 2022; Kim et al., 2024), we do not aim at solving
a constrained RL problem for training the working policy under specific preference. Rather, we
propose to leverage the constrained optimization steps to fill the complete Pareto front with enhanced
flexibility (Liu et al., 2020; Xu et al., 2021), and design extension and selection algorithms to
explicitly promote diverse policies. Constrained optimization techniques are widely adopted to solve
multi-objective optimization (MOO) problems. Epsilon-constraint methods are a category of MOO
techniques that involve pre-defining a virtual grid in the objective space and solving single-objective
problems for each grid cell, where the optimum of each problem corresponds to a Pareto-optimal
solution (Laumanns et al., 2006). Instead of pre-defining virtual grid, this work proposes crowd
distance based policy selection to address the exponential complexity in the epsilon-constraint
method.

3 PRELIMINARIES

3.1 MORL SETUP

In this work, we adopt the general framework of a multi-objective Markov decision process
(MOMDP), which is represented by the tuple < S,A,P,R1:n,Ω, f, γ >. Similar to standard
MDP, at each timestep t, the agent under current state st ∈ S takes an action at at ∈ A,
and transits into a new state st+1 with probability P(st+1|st,at). One notable characteris-
tic of MOMDP is that for n different objectives, the reward is a n-dimensional vector rt =
[R1(st,at),R2(st,at), . . . ,Rn(st,at)] ∈ Rn. For any policy π, it is associated with a vector
of expected return, given as Gπ = [Gπ

1 , G
π
2 , . . . , G

π
n]

⊤, where the expected return of the ith objective
is given as Gπ

i = Eat+1∼π(·|st) [
∑

t γ
tR (st,at)i] for some predefined time horizon. We assume

such returns are observable.

The goal of MORL is to find a policy so that each objective’s expected return in Gπ can be optimized.
In practice, since training RL typically requires a scalar reward to interact with the training agent, and
co-optimizing multiple objectives is hard to achieve an ideal tradeoff, especially in a situation where
objectives are competing against each other. To that end, denote Ω = {ω ∈ Ω|

∑n
i=1 ωi = 1, ωi ≥ 0}

as the preference vector. We use the preference function fω(r) to map a reward vector r(s,a) to a
scalar utility given ω : fω(r(s,a)) = ω⊤r(s,a). Our goal is then to find a multi-objective policy
π(a|s,ω) such that the expected scalarized return ω⊤Gπ is maximized.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PARETO OPTIMALITY

In MORL, a policy that simultaneously optimizes all objectives does not exist. This holds whenever
either of the two objectives is not fully parallel to each other. Thus, a set of non-dominated solutions
is desired. We say policy π is dominated by policy π′ when there is no objective under which π′ is
worse than π, i.e., Gπ

i ≤ Gπ′

i for ∀i ∈ [1, 2, . . . , n]. A policy π is Pareto-optimal if and only if it is
not dominated by any other policies. The Pareto set is composed of non-dominated solutions, denoted
as ΠP . The corresponding expected return vector Gπ of policy π ∈ ΠP forms Pareto front P . In this
paper, an element in solution set XP refers to a policy along with its corresponding expected return
vector (π,Gπ). However, in many complex real-world control problems, obtaining the optimal Pareto
set is challenging, and it is becoming even more difficult considering the sequential decision-making
nature of RL problems. Thus the goal of MORL is to obtain a Pareto set P to approximate the optimal
Pareto front.

With a finite Pareto set, we can define the Set Max Policy (SMP) (Zahavy et al., 2021) of a given
preference vector:
Definition 3.1. (Set Max Policy). Denote ΠP to be a Pareto set. Then, Set Max Policy (SMP) is the
best policy in the set ΠP for a given preference vector ω: πSMP

ω = maxπ∈ΠP
fω(G

π).

The notion of SMP enables the direct assignment of a surrogate execution policy given an unseen
preference in the evaluation phase. Fig. 1 illustrates the determination of SMP.

To evaluate a Pareto set ΠP , there are three evaluation metrics introduced to compare the quality
of the Pareto front and utility achieved by the underlying algorithm: (i) hypervolume, (ii) expected
utility, and (iii) sparsity (Hayes et al., 2022). The details of these evaluation metrics are provided in
Appendix E.3.
Definition 3.2. (Crowd Distance). Let P be a Pareto front approximation in an n-dimensional
objective space. Also denote G̃i as the ascending sorted list with a length of |P | for the ith objective
values in P . Given the jth solution, and suppose the sort sequence of P (j) in G̃i is k, then the Crowd
Distance of solution P (j) is D(P (j)) =

∑n
i=1

G̃i(k+1)−G̃i(k−1)

G̃i,max−G̃i,min
.

Figure 1: Visualization of metrics. (a)
Hypervolume, reference point, and exam-
ple of crowd distance calculation. As an
example, the crowd distance of πb is cal-
culated based on the expected return of
its neighbors πa and πc, as well as the
extreme solutions on the two objectives.
(b) Given a preference vector, the corre-
sponding expected return is calculated by
selecting the set max policy from Pareto
front solutions.

The crowd distance is a measure of how close an individ-
ual is to its neighbors (Deb et al., 2002).

4 OPTIMIZING CONSTRAINED MORL
In this section, we start from converting the MORL prob-
lem as a constrained MDP (CMDP) while guaranteeing
the local optimality under such formulation. Next, we
present the conditions under which a feasible solution
to the CMDP problem qualifies as a Pareto-optimal so-
lution. Then, to effectively solve the CMDP problem,
we prove that under primal-dual formulation, despite its
non-convexity, the CMDP problem has zero duality gap,
i.e., it can be solved exactly in the dual domain, where it
becomes convex (Paternain et al., 2019).

Constrained RL problems are typically formulated as con-
strained MDPs (CMDP) (Altman, 2021). A CMDP is
defined by the tuple < S,A,P,R1:n,d1:n, γ >. The
reward function of CMDP includes the reward func-
tion Rl(st,at) of the lth objective that is being op-
timized, and the constraint-specific reward functions
{Ri(st,at)}(1:n)\l of other objectives. d := {di}(1:n)\l
represents the corresponding thresholds of constraint-
specific reward functions.

The optimal solution to a CMDP is a policy that maximizes expected return of the objective being
optimized, while ensuring the expected returns of other constraints satisfy their baseline thresholds.
We adapt to the following constrained RL formulation to ensure when we optimize π for Gπ

l , the
returns of other objectives are not seriously hampered:

max
π

Gπ
l s.t. Gπ

i ≥ di i = 1, . . . , n, i ̸= l. (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Assumption 4.1. The value Gπ
i (s), i = 1, ..., n, i ̸= l is bounded for all policies π ∈ ΠP .

Assumption 4.2. Every local minima of Gπ
l is a feasible solution.

Assumption 4.2 justifies the use of gradient-based algorithm for solving CMDP can converge with
general constraints. As long as the threshold d are chosen beforehand such that for initializations,
there are Gπ

i ≥ di, i ̸= l, then starting points for problem Eq. 1 is always feasible.

Note that implementing the Pareto extension aims to expand the Pareto front in various objective
directions, starting from the initialization points of problem Eq. 1. In this regard, the solution derived
from Eq. 1 should contribute to the Pareto front, meaning it must be a Pareto-optimal solution.
Therefore, it is crucial to set proper constraint values di, i = 1, ..., n, i ̸= l. Accordingly, we present
the following proposition that formalizes the criteria for specifying appropriate constraint values:

Proposition 4.3. Let G̃i denote the ascending sorted list for the ith objective values in P , and suppose
the sorted sequence of the initial point Pr in P̃i is k. If di ≥ G̃i(k − 1) for all i = 1, . . . , n, i ̸= l,
then the optimal solution of problem Eq. 1 is a Pareto-optimal solution.

See Proof in Appendix B. Proposition 4.3 provides the condition of which the feasible solution of
problem Eq. 1 is a Pareto optimal solution. Fig. 2 visualizes the constraint value setting criteria. In
the next section, we will further propose a more practical method of specifying constraint values di
for all i = 1, . . . , n, i ̸= l.

Having established the criteria for selecting appropriate constraints, we now turn our attention to the
challenges associated with solving the constrained formulation Eq. 1, which is untractable due to the
nonconvex and multiple-step formulation. To address such issue, constrained CMDP formulation of
MORL problem Eq. 1 can be solved by using the Lagrangian relaxation technique once converted
to an unconstrained problem. Denote Gπ

1:n\l = [Gπ
1 , ..., G

π
n]

⊤, i ̸= l. And define the Lagrangian
L := Gπ

l − λ⊤(d −Gπ
1:n\l), where λi ≥ 0, i = 1, ..., n, i ̸= l is the Lagrange multiplier. The

resulting equivalent problem is the dual problem

D∗ ≜ min
λ

max
π

L(λ, π) (2)

Denote the projection operator as Γλ, Γπ, which projects λ and π to compact and convex sets
respectively. It can be shown that at optimization iteration step r, for our CMDP formulation of the
underlying MORL problem, iteratively working on λr, πr with step size η1, η2 is guaranteed to reach
the local minima of the unconstrained problem Eq. 2 (Borkar, 2009; Tessler et al., 2018):
Proposition 4.4. Under mild conditions and by implementing the update rules as followed for λ and
π: λr+1,i = Γλ[λr,i − η1(r)∇λL(λr,i, πr)]; πr+1 = Γπ[πr − η2(r)∇πL(λr, πr)]; such iterates
(λn, πn) converge to a fixed point of MORL policy almost surely.

See proof in Appendix C. Indeed, (Paternain et al., 2019) shows that there is zero duality gap between
the original CMDP formulation and its dual formulation. Motivated by such property, if we denote
the optimal solution of the original MORL problem Eq. 1 as P ∗, we can alternatively work on finding
the solution of the dual formulation Eq. 2 to derive the optimal MORL policy.

Figure 2: Visualization of criteria for spec-
ifying constraint values. πr denotes initial
point. The expected return Gπa(Gπb) of
solution Pa(Pb) in objective 1(2) is the
(k − 1)th value in list G̃1(G̃2), respec-
tively. Therefore, specifying constraints val-
ues d1 ≥ Gπa and d2 ≥ Gπb is sufficient
for the feasible solution of corresponding
Eq. 1 to be Pareto-optimal solution.

Further, to justify the use of interior point method
adopted by our C-MORL-IPO described in Section
4, the following Theorem helps connect the solution
procedure via the log barrier method with the optimal
solution of the original C-MORL problem:
Theorem 4.5. Suppose that Ri is bounded for all
i = 1, . . . , n and that Slater’s condition holds for
problem Eq. 1. Then, strong duality holds for 1, i.e.,
P ∗ = D∗. Define the logarithmic barrier function for
each constraint ϕ(Gπ

i) =
log(Gπ

i −βGπr
i)

t with t as a
hyperparameter. If the optimal policy for C-MORL is
strictly feasible, the maximum gap between Eq. 1 and
solving it via the interior point method is bounded by
n−1
t .

The above Theorem indicates that we can safely solve
C-MORL problem with tunable parameter t on the log

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

barrier. With such properties, we are ready to show our
design strategies to more efficiently discover the Pareto
front via solving C-MORL involving multiple constraints on the return of heterogeneous preferences.

5 CONSTRAINED MORL-BASED PARETO FRONT EXTENSION
In this section, we introduce our two stage-design for the construction of the Pareto set via the
proposed C-MORL along with the selection scheme for the second extension stage.
5.1 PARETO INITIALIZATION

Figure 3: Procedure of two-stage C-MORL. Pareto initialization: training several initial policies to
derive the initial solution set Xinit. Pareto extension: iteratively implementing policy selection and
Pareto extension with constrained policy optimization toward desired Pareto extension directions in
the objective space. Policy assignment: given preference ω, the surrogate execution policy selected
from the Pareto set based on Eq. 3.1.

As shown in Fig. 3, during the Pareto initialization stage, we first train and collect a set of initial
policies. Each policy π corresponds to a pre-known preference vector ω, as we train policy π
using the multi-objective policy gradient algorithm (Xu et al., 2020) to maximize the return under
this particular ω. Specifically, we also extend the value function to a vectorized version with
vectorized target value V̂(s). Then in the policy update iterations, we utilize the vectorized advantage
function Aπ(st,at) to implement policy gradient updates: ∇θJ (θ,ω) =

∑n
i=1 ωi∇θJi(θ) =

E
[∑T

t=0 ω
⊤Aπ(st,at)∇θ log πθ(at|st)

]
.

By sampling diverse preference vectors to guide the training of initial policies, we obtain an initial
solution set Xinit. It is important to note that the preference vector is solely used for guiding the
training of these initial policies, and the resulting solutions are preference-irrelevant, meaning the
initialized policies can be further trained without specifying preference. Any policy in the set Xinit

can also be assigned to and evaluated by any new preference in the policy selection stage. Note that
in the Pareto initialization stage, we also maintain a solution buffer to enhance policy diversity.
5.2 POLICY SELECTION

Direct implementation of the Pareto extension based on policies from Xinit could encounter several
limitations. First, some policies may not lie on the Pareto front, making their extension less effective
for discovering new Pareto-optimal solutions. Furthermore, the distribution of Pareto-optimal policies
along the Pareto front may be uneven. Random selection for extension could result in trajectory
overlap and subsequent inefficiencies, or leaving regions of the Pareto front unexplored. Inspired
by multi-objective optimization algorithms (Deb et al., 2002), we design policy selection schemes
before and during the Pareto extension stage respectively.

The Pareto-optimal policies are selected based on their crowd distance. A larger crowd distance
indicates that the corresponding region on the Pareto front is relatively unexplored, and therefore, it
may hold a greater potential for augmenting the Pareto front during the next iteration of the Pareto
extension. We sort all Pareto-optimal policies according to their crowd distance value and select the
top N policies with the greatest crowding distance to construct Xextension for the subsequent Pareto
extension iteration. C-MORL selects policies after the Pareto initialization stage and every K

K′ steps
during the Pareto extension stage, where K is the total number of Pareto extension step, K

′
is the

number of constrained optimization steps between two iterations of policy selection. The detailed
policy selection procedure is summarized as Algorithm 1 in Appendix A.
5.3 PARETO EXTENSION

In this Pareto extension stage, we achieve the goal of filling the Pareto front from selected solutions
Xextension toward different directions by solving constrained optimization on the selected policies, as
is shown in the Pareto Extension stage in Fig. 3. In each constrained optimization step, we optimize

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

one of the objectives, denoted as l. By performing such optimization on the initial policy for all listed
objectives, we are able to obtain a set of policies that approximate the Pareto front towards various
directions while fully utilizing currently collected initial policies.

In Section 4, we present Proposition 4.3 as a sufficient condition for specifying constraint values
that ensures the feasible solution of Eq. 1 is a Pareto-optimal solution. However, this Proposition
is impractical for several reasons. First, the condition is too strict and may lead to the exclusion of
discovering some potential Pareto-optimal solutions. Second, it necessitates evaluating the expected
return of all policies for non-dominated sorting at each step of the constrained optimization, which is
inefficient. Therefore, we propose an alternative constraint specification method that utilizes only
the expected return of the policy from the most recent step. Specifically, we consider solving the
following problem in which return constraints are controlled by a hyperparameter β ∈ (0, 1):

πr+1,i = arg max
π∈Πθ

{Gπ
l : Gπ

i ≥ βGπr
i , i = 1, . . . , n, i ̸= l}, (3)

where Gπr
i is the expected return of the ith objective in last constrained optimization step, which is

indexed by r for the current iteration. Next, we introduce practical methods to solve Eq. 3.

C-MORL-IPO Constrained Policy Optimization (CPO) is a widely used general-purpose policy
search algorithm for constrained RL (Achiam et al., 2017). While the CPO algorithm ensures
monotonic policy improvement and guarantees constraint satisfaction throughout the training process,
an inner-loop optimization is required when there are multiple constraints. Therefore, CPO is hard to
handle more than two MORL objectives. To overcome this issue, inspired by (Xu et al., 2021; Liu
et al., 2020), we also propose to solve C-MORL via interior point method (IPO), which is a primal
type approach and holds the promise of finding solution closer to original C-MORL as shown in
Theorem 4.5. Given Gπr

i and the the defined log barrier in 4.5, we then convert problem Eq. 1 into
an unconstrained optimization problem:

max
π

Gπ
l +

n∑
i=1

ϕ(Gπ
i) (4)

The detailed procedures of solving Eq.4 are provided in Appendix F. In practice, IPO is more robust
in stochastic environments, and larger t would guide to a solution with higher rewards yet with more
computation costs. Without the requirement of calculating the second-order derivative, C-MORL-IPO
is more computationally efficient than trust-region-based method for CPO updates (Achiam et al.,
2017), which we term as C-MORL-CPO and compare it in Appendix F.

We note that C-MORL can achieve a better approximation of the Pareto front by design, which is
different from previous CMDP approaches (Abdolmaleki et al., 2020; Huang et al., 2022). Such type
of methods typically have an explicit learning- or optimization-based policy improvement stage to
solve for particular preferences. Implementing C-MORL helps directly move away from dominated
solutions in the Pareto front, so that the hypervolume can be directly optimized, while resulting
policies are also more generalizable. The following proposition analyzes the time complexity of
C-MORL, demonstrating its linear time complexity with respect to the number of objectives, making
it suitable for MORL tasks with high-dimensional objective spaces:
Proposition 5.1. (Time complexity.) Given that the number of objectives is n, the number of extension
policies is N , assume the running time of each optimization problem is upper bounded by a constant,
and the number of Pareto extension steps is K, the expected running time of Algorithm 2 is O(nKN).

Compared to PG-MORL (Xu et al., 2020) which needs to solve a knapsack problem with K ×N
candidate points to evaluate and need O(KNn−2) steps to solve it exactly, the proposed C-MORL
excels when there are growing number of objectives or steps.
5.4 PARETO REPRESENTATION VIA POLICY ASSIGNMENT
Policy Assignment During the Pareto extension stage, we store the policies with their corresponding
expected return on the Pareto front. Therefore, after the Pareto extension stage, we derive an
approximated Pareto front with Pareto set policies, as shown in the Policy assignment process in
Fig. 3. With Pareto set policies, given an unseen preference, we can select its SMP πSMP

ω by solving
Eq. 3.1. Such a policy assignment process is efficient and does not require any retraining of the new
policy. Algorithm 2 in Appendix A presents the complete workflow of C-MORL.
6 EXPERIMENTS

In this Section, we validate the design of our proposed algorithm using both popular discrete and
continuous MORL benchmarks from MO-Gymnasium (Felten et al., 2023a) and SustainGym (Yeh

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Pareto front comparison on two-objective MO-MuJoCo benchmarks.

Figure 5: Pareto front comparison on MO-Ant-3d benchmark.

et al., 2024). These benchmarks include five comprehensive domains: (i) Grid World includes Fruit-
Tree, a discrete benchmark with six objectives. (ii) Classic Control includes MO-Lunar-Lander, a
discrete benchmark with four objectives. (iii) Miscellaneous includes Minecart, a discrete benchmark
with four objectives. (iv) Robotics Control includes five MuJoCo tasks with continuous action
space based on MuJoCo simulator (Todorov et al., 2012; Xu et al., 2020). (v) Sustainable Energy
Systems includes two building heating supply tasks. These benchmarks pose significant challenges
for MORL due to complex state (up to 376)/action (up to 23) spaces and large objectives spaces (up
to 9 objectives). More details of experiment settings are listed in Appendix E.

We benchmark our algorithm against five competitive baselines under the metrics of hypervolume
(HV), expected utility (EU), and sparsity metrics (SP). Higher HV and EU, lower SP indicate better
performance. Each of the baselines are trained for 5 × 105 time steps for discrete benchmarks.
Continuous benchmarks with two, three, and nine objectives are trained for 1.5× 106, 2× 106, and
2.5× 106 steps, respectively. The baselines involve: (i)Envelope (Yang et al., 2019).(ii) CAPQL (Lu
et al., 2022). (iii)Q-Pensieve (Hung et al., 2022). (iv) PG-MORL (Xu et al., 2020). (v) GPI-
LS (Alegre et al., 2023). Among these baselines, Envelope is developed for discrete control tasks,
GPI-LS is suitable for both discrete and continuous control. The other baselines are specifically
tailored for continuous control.

Overall Results. To assess the performance of MORL, we begin by comparing the quality of the
Pareto front. It can be observed from Table 1 and Table 2 that the proposed C-MORL achieves the
highest hypervolume in all benchmarks. This indicates that C-MORL successfully discovers a high-
quality Pareto front across various domains, particularly in benchmarks with large state and action
spaces (MO-Humanoid-2d) and a substantial number of objectives (Building-9d). Figures 4 and 5
illustrate the Pareto front for MO-MuJoCo benchmarks with two and three objectives, respectively.
C-MORL exhibits more comprehensive coverage of the Pareto front across all benchmarks, whereas
other baselines fail to encompass the entire front. For instance, in the MO-Ant-2d benchmark, Q-
Pensieve does not cover the upper-left portion of the Pareto front, indicating insufficient exploration of
the Y velocity objective, which results in lower utility for preference pairs prioritizing this objective.

Table 1: Evaluation of HV, EU, and SP for discrete MORL tasks.

Environments Metrics Envelope GPI-LS C-MORL

Minecart
HV(102) 1.99±0.00 6.05±0.37 6.77±0.88

EU(10−1) -2.72±1.01 2.29±0.32 2.12±0.66
SP(10−1) 5.11±2.11 0.10±0.00 0.05±0.02

MO-Lunar-Lander
HV(109) 0.43±0.18 1.06±0.16 1.12±0.03
EU(101) -2.84±4.06 1.81±0.34 2.35±0.18
SP(103) 0.19±0.16 0.13±0.01 1.04±1.24

Fruit-Tree
HV(104) 3.66±0.23 3.57±0.05 3.67±0.14

EU 6.15±0.00 6.15±0.00 6.53±0.03
SP(10−1) 5.46±0.15 5.29±0.21 0.42±0.03

While C-MORL leads the highest hypervolume by a large margin in almost all cases, it does not
always attain the best sparsity in some benchmarks. This occurs because, in certain cases, an
algorithm may identify only a few similar Pareto-optimal solutions, leading to low sparsity. As
illustrated in Table 2, along with Figures 4 (c) and 5, both CAPQL and GPI-LS cover only specific

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Pareto extension stage of MO-Ant-2d benchmark. The blue points are Pareto-optimal
solutions, and the deep-blue points are selected solutions.

portion of the Pareto front, resulting in reduced sparsity. In contrast, C-MORL generates a dense and
comprehensive Pareto front in these benchmarks. C-MORL also demonstrates the highest expected
utility in nine of the ten benchmarks, which indicates that C-MORL can better maximize user utility
given various user preferences. Appendix G.3 further illustrates that as a multi-policy approach,
C-MORL can align corresponding Pareto-optimal solution given any preference. This is in contrast to
single preference-conditioned policies, which may yield dominated solutions for unseen preferences.

Regarding time complexity, as stated in Section 4, C-MORL is linear time complexity with respect
to the number of objectives, and is therefore generalizable to benchmarks with more than three
objectives. We also note from Table 2 that for the Building-9d benchmark with nine objectives, the
training times for PG-MORL and GPI-LS are excessively long, exceeding the time limitation we
set. This finding aligns with the time complexity analysis of PG-MORL discussed in Section 4.
Additionally, in both Pareto initialization and extension stage, the policies can be trained in parallel,
which further reduces the total running time. Given that the expected running time is O(nKN), the
Pareto extension steps K and number of selected policies N can be adjusted to balance performance
with running time.

Pareto extension analysis. In Fig. 6, we showcase how the Pareto front is filled using a set of
selected policies with our Pareto extension approach. During the initialization stage of the Pareto
set, we uniformly sample preference pairs from the preference space. Training a single policy with a
fixed preference vector facilitates convergence to a Pareto-optimal solution. Additionally, we present
an ablation study on the number of selected extension policies in Appendix G.1.

Building on this foundation, the subsequent Pareto set extension stage further populates the Pareto
front. As shown in Fig. 6, gaps remain on the Pareto front following the initialization stage. Our
effective policy selection algorithm targets Pareto-optimal solutions in these gap regions, which
exhibit higher crowding distances, thereby selecting them for the ensuing extension stage. During the
Pareto extension phase, as the number of extension steps K increases, C-MORL employs constrained
policy optimization to adjust the selected policies toward various objective directions, effectively
filling the gaps in the Pareto front.
Next, to better understand the influence of hyperparameters and key components of C-MORL, we
perform an in-depth analysis and conduct ablation studies focusing on these aspects.

Table 3: Parameter study of C-MORL for Policy Initial-
ization on MO-Hopper-2d benchmark.

HV(105) EU(102) SP(102)
M=3 (1.5M steps) 1.38±0.12 2.53±0.13 0.58± 0.43
M=6 (1.5M steps) 1.39±0.04 2.55±0.04 0.16±0.11
M=11 (1.5M steps) 1.32±0.03 2.47±0.03 0.44±0.33
M=6 (3M steps) 1.45±0.05 2.63±0.05 0.22±0.10

Parameter study of C-MORL for
Pareto Initialization. As mentioned in
Section 5.1, during Pareto initialization
stage, C-MORL aims to derive a few
Pareto optimal solutions by training a set
of initial policies. To study the impact of
the number of initial policies M , we con-
duct experiments while keeping the total
number of training steps fixed at 1.5 ×
106 steps (including 1×106 steps for initialization stage) to ensure a fair comparison. Specifically, we
uniformly sample M = 3, 6, 11 preference vectors, as shown in Table 3. For example, with a sampling
interval of 0.2, the preference vectors are ω = [0, 1], [0.2, 0.8], [0.4, 0.6], [0.6, 0.4], [0.8, 0.2], [1, 0].
Intuitively, increasing M can enhance diversity among Pareto-optimal solutions, which benefits the
subsequent extension phase. However, since the number of total time steps is fixed, increasing M
reduces the training steps allocated to each initial policy. The trade-off is evident as the performance
for M = 11 is worse than for M = 6, indicating that the increasing of M does not always guarantee
better performance. To further investigate, we increase the number of training steps to 3× 106 (with
2× 106 steps allocated to initialization stage) while keeping M = 6. The results demonstrate that

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of HV, EU, and SP for continuous MORL tasks. T/O indicates that the training
time exceeded the maximum limit of 100 hours.

Environments Metrics CAPQL Q-Pensieve PG-MORL GPI-LS C-MORL

MO-Hopper-2d
HV(105) 1.15±0.08 1.26±0.01 1.20±0.09 1.19±0.10 1.39±0.01
EU(102) 2.28±0.07 2.28±0.01 2.34±0.10 2.33±0.10 2.56±0.02
SP(102) 0.46±0.10 1.61±1.31 5.13±5.81 0.49±0.37 0.33±0.28

MO-Hopper-3d
HV(107) 1.65±0.45 1.66±1.20 1.59±0.45 1.70±0.29 2.29±0.01
EU(102) 1.53±0.28 1.26±0.79 1.47±0.25 1.62±0.10 1.80±0.01
SP(102) 2.31±3.16 1.77±0.88 0.76±0.91 0.74±1.22 0.28±0.09

MO-Ant-2d
HV(105) 1.11±0.69 2.55±0.54 0.35±0.08 3.10±0.25 3.13±0.20
EU(102) 2.16±0.94 3.14±0.49 0.81±0.23 4.28±0.19 4.29±0.19
SP(103) 0.18±0.07 3.63±2.71 2.20±3.48 3.61±2.13 1.67±0.85

MO-Ant-3d
HV(107) 1.22±0.33 3.82±0.43 0.94±0.12 0.55±0.81 4.09±0.13
EU(102) 1.30±0.29 2.18±0.41 1.07±0.07 2.41±0.20 2.57±0.06
SP(103) 0.17±0.09 0.83±0.07 0.02±0.01 1.96±0.79 0.03±0.01

MO-Humanoid-2d
HV(105) 3.30±0.05 0.90±0.62 2.62±0.32 1.98±0.02 3.43±0.06
EU(102) 4.75±0.04 1.89±0.45 4.06±0.32 3.67±0.02 4.78±0.05
SP(104) 0±0.00 1.08±1.39 0.13±0.17 0±0.00 0.18±0.27

Building-3d
HV(1012) 0.33±0.18 1.00±0.02 0.83±0.02 0.26±0.04 1.15±0.00
EU(104) 0.75±0.09 0.96±0.00 0.93±0.01 0.74±0.01 1.02±0.00
SP(104) 1.83±0.75 9.23±7.77 0.37±0.22 0.67±0.90 0.69±0.62

Building-9d
HV(1031) 4.29±0.73 7.28±0.57 T/O T/O 7.93±0.07
EU(103) 3.31±0.06 3.46±0.03 T/O T/O 3.5±0.00
SP(103) 4.34±3.72 1.04±0.38 T/O T/O 2.79±0.40

proportionally increasing the total training steps and the number of initial policies leads to improved
performance, highlighting the importance of balancing training resources with policy diversity.

Parameter Study for Return Constraint Hyperparameter β. In Section 5.3 and Section 4, we
develop criteria and practical methods for specifying constraint values for problem Eq. 1. We conduct
parameter study for return constraint hyperparameter β in Eq. 3 to examine how constraint values
influence the generation of Pareto-optimal solutions. Table 4 presents the results of C-MORL with
various β on the MO-Ant-2d benchmark. When β = 0.9, C-MORL presents the best performance on
all metrics. Intuitively, a higher β ensures that when optimizing a specific objective, the expected
returns on other objectives do not decrease significantly, thereby facilitating adaptation to new
Pareto-optimal solutions. Table 4: Evaluation of HV, EU, and SP for

MO-Ant-2d benchmark with different β.

β HV(105) EU(102) SP(103)
0.5 3.05±0.26 4.24±0.25 2.54± 2.41
0.7 3.07±0.26 4.23±0.24 2.06±1.51
0.9 3.08±0.25 4.27±0.22 1.71±0.21

Ablation Study on Policy Selection. To evaluate the
effectiveness of the crowding distance-based policy se-
lection method, we compare the Pareto extension using
this approach with random selection. Table 5 presents
the comparison results, where Random and Crowd refer
to random policy selection and crowd distance based
policy selection. Each method is tested across three runs with the same seeds to ensure consistent
Pareto initialization and uses the same hyperparameters for the Pareto extension. The experimental
results show that C-MORL with crowd distance based policy selection outperforms the random
selection across all metrics, highlighting the effectiveness of the proposed policy selection method.
Intuitively, adjusting the policies in sparse areas facilitates better filling of the gaps in the Pareto front.

7 CONCLUSIONS AND DISCUSSIONS
Table 5: Evaluation of HV, EU, and SP for MO-Ant-3d
benchmark with different policy selection methods.

Selection method HV(107) EU(102) SP
Random 3.91±0.31 2.51±0.13 8.69±5.02
Crowd 4.10±0.14 2.57±0.05 8.34±2.84

This paper introduces a novel formulation
and efficient solution procedure for multi-
objective reinforcement learning problems.
It leverages a two-stage approach to con-
struct the Pareto front efficiently. By em-
ploying a precise selection of sparse regions on the Pareto front that require further exploration and
the utilization of a customized extension method, C-MORL not only achieves superior performance
in terms of training efficiency but also excels in terms of both Pareto front quality and user utility
compared to state-of-the-art baselines on both discrete and continuous benchmarks. In future work,
we plan to develop a more effective extension method so as to more efficiently discover the unexplored
Pareto front, especially for continuous environments. We are also interested in designing transfer
schemes of learned MORL policies, as well as coordination of agents for mastering real-world MORL
tasks with agent-specific reward signals.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional
view on multi-objective policy optimization. In International conference on machine learning, pp.
11–22. PMLR, 2020.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights
in multi-objective deep reinforcement learning. In International conference on machine learning,
pp. 11–20. PMLR, 2019.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Lucas N Alegre, Ana LC Bazzan, Diederik M Roijers, Ann Nowé, and Bruno C da Silva. Sample-
efficient multi-objective learning via generalized policy improvement prioritization. arXiv preprint
arXiv:2301.07784, 2023.

Lucas Nunes Alegre, Ana Bazzan, and Bruno C Da Silva. Optimistic linear support and successor
features as a basis for optimal policy transfer. In International Conference on Machine Learning,
pp. 394–413. PMLR, 2022.

Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. Pd-morl: Preference-driven multi-objective
reinforcement learning algorithm. arXiv preprint arXiv:2208.07914, 2022.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer,
2009.

Xi Chen, Ali Ghadirzadeh, Mårten Björkman, and Patric Jensfelt. Meta-learning for multi-objective
reinforcement learning. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 977–983. IEEE, 2019.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In International conference on machine learning, pp. 1282–1289. PMLR,
2019.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiob-
jective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197,
2002.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

Florian Felten, Grégoire Danoy, El-Ghazali Talbi, and Pascal Bouvry. Metaheuristics-based ex-
ploration strategies for multi-objective reinforcement learning. In ICAART (2), pp. 662–673,
2022.

Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali Talbi, Grégoire Danoy,
and Bruno Castro da Silva. A toolkit for reliable benchmarking and research in multi-objective
reinforcement learning. In Proceedings of the 37th Conference on Neural Information Processing
Systems (NeurIPS 2023), 2023a.

Florian Felten, Daniel Gareev, El-Ghazali Talbi, and Grégoire Danoy. Hyperparameter optimization
for multi-objective reinforcement learning. arXiv preprint arXiv:2310.16487, 2023b.

Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. Multi-objective reinforcement learning based
on decomposition: A taxonomy and framework. Journal of Artificial Intelligence Research, 79:
679–723, 2024.

Eli Friedman and Fred Fontaine. Generalizing across multi-objective reward functions in deep
reinforcement learning. arXiv preprint arXiv:1809.06364, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information
processing systems, 31, 2018.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al.
A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and
Multi-Agent Systems, 36(1):26, 2022.

Sandy Huang, Abbas Abdolmaleki, Giulia Vezzani, Philemon Brakel, Daniel J Mankowitz, Michael
Neunert, Steven Bohez, Yuval Tassa, Nicolas Heess, Martin Riedmiller, et al. A constrained
multi-objective reinforcement learning framework. In Conference on Robot Learning, pp. 883–893.
PMLR, 2022.

Wei Hung, Bo-Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-pensieve: Boosting sample efficiency
of multi-objective rl through memory sharing of q-snapshots. arXiv preprint arXiv:2212.03117,
2022.

Dohyeong Kim, Mineui Hong, Jeongho Park, and Songhwai Oh. Scale-invariant gradient aggregation
for constrained multi-objective reinforcement learning. arXiv preprint arXiv:2403.00282, 2024.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Panagiotis Kyriakis and Jyotirmoy Deshmukh. Pareto policy adaptation. In International Conference
on Learning Representations, volume 2022, 2022.

Marco Laumanns, Lothar Thiele, and Eckart Zitzler. An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Operational
Research, 169(3):932–942, 2006.

Qian Lin, Chao Yu, Zongkai Liu, and Zifan Wu. Policy-regularized offline multi-objective reinforce-
ment learning. arXiv preprint arXiv:2401.02244, 2024.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 4940–4947, 2020.

Haoye Lu, Daniel Herman, and Yaoliang Yu. Multi-objective reinforcement learning: Convex-
ity, stationarity and pareto optimality. In The Eleventh International Conference on Learning
Representations, 2022.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347, 2018.

Simone Parisi, Matteo Pirotta, and Marcello Restelli. Multi-objective reinforcement learning through
continuous pareto manifold approximation. Journal of Artificial Intelligence Research, 57:187–227,
2016.

Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained
reinforcement learning has zero duality gap. Advances in Neural Information Processing Systems,
32, 2019.

R Tyrrell Rockafellar. Convex Analysis, volume 18. Princeton University Press, 1997.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Diederik M Roijers, Shimon Whiteson, and Frans A Oliehoek. Linear support for multi-objective
coordination graphs. In AAMAS’14: PROCEEDINGS OF THE 2014 INTERNATIONAL CON-
FERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, volume 2, pp. 1297–1304.
IFAAMAS/ACM, 2014.

12

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Willem Röpke, Mathieu Reymond, Patrick Mannion, Diederik M Roijers, Ann Nowé, and Rox-
ana Rădulescu. Divide and conquer: Provably unveiling the pareto front with multi-objective
reinforcement learning. arXiv preprint arXiv:2402.07182, 2024.

Gavriel Salvendy. Handbook of industrial engineering: technology and operations management.
John Wiley & Sons, 2001.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Han Shao, Lee Cohen, Avrim Blum, Yishay Mansour, Aadirupa Saha, and Matthew Walter. Eliciting
user preferences for personalized multi-objective decision making through comparative feedback.
Advances in Neural Information Processing Systems, 36, 2024.

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.
Investigating multi-task pretraining and generalization in reinforcement learning. In The Eleventh
International Conference on Learning Representations, 2022.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforcement
learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic programming
and reinforcement learning (ADPRL), pp. 191–199. IEEE, 2013.

Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, and Russ Tedrake. Fleet policy learning
via weight merging and an application to robotic tool-use. arXiv preprint arXiv:2310.01362, 2023.

Marco A Wiering, Maikel Withagen, and Mădălina M Drugan. Model-based multi-objective reinforce-
ment learning. In 2014 IEEE symposium on adaptive dynamic programming and reinforcement
learning (ADPRL), pp. 1–6. IEEE, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational conference on machine learning, pp. 10607–10616. PMLR, 2020.

Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
learning with convergence guarantee. In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christopher Yeh, Victor Li, Rajeev Datta, Julio Arroyo, Nicolas Christianson, Chi Zhang, Yize Chen,
Mohammad Mehdi Hosseini, Azarang Golmohammadi, Yuanyuan Shi, et al. Sustaingym: Rein-
forcement learning environments for sustainable energy systems. Advances in Neural Information
Processing Systems, 36, 2024.

Tom Zahavy, Andre Barreto, Daniel J Mankowitz, Shaobo Hou, Brendan O’Donoghue, Iurii Kemaev,
and Satinder Singh. Discovering a set of policies for the worst case reward. arXiv preprint
arXiv:2102.04323, 2021.

Richard Zhang and Daniel Golovin. Random hypervolume scalarizations for provable multi-objective
black box optimization. In International Conference on Machine Learning, pp. 11096–11105.
PMLR, 2020.

Siyan Zhao and Aditya Grover. Decision stacks: Flexible reinforcement learning via modular
generative models. Advances in Neural Information Processing Systems, 36, 2024.

Ruida Zhou, Tao Liu, Dileep Kalathil, PR Kumar, and Chao Tian. Anchor-changing regularized
natural policy gradient for multi-objective reinforcement learning. Advances in Neural Information
Processing Systems, 35:13584–13596, 2022.

Baiting Zhu, Meihua Dang, and Aditya Grover. Scaling pareto-efficient decision making via offline
multi-objective rl. arXiv preprint arXiv:2305.00567, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A POLICY SELECTION AND C-MORL ALGORITHM

This section provides details of policy selection and C-MORL algorithms.

In our C-MORL implementation, during the policy initialization stage, we employ parallel training of
M policies for pre-known preference vector ω. We maintain a policy buffer, meaning that in addition
to the final policy obtained in the Pareto initialization stage, intermediate policies are also saved in
the buffer. As a result, the number of candidate policies in the policy selection stage is usually larger
than M , incorporating the policies stored in the solution buffer.

We conduct policy selection in both after the Pareto initialization stage and during the Pareto extension
stage. Specifically, the number of extension policies N , the number of Pareto extension steps K and
the number of constrained optimization steps K

′
are predefined. During the Pareto extension stage,

C-MORL selects Pareto optimal solutions based on their crowd distance every K
K′ steps to make sure

that the sparse areas on Pareto-front have a higher potential to be explored.

Furthermore, in the policy selection process, the extreme policies on the Pareto front (for each
objective, the extreme solution on the Pareto front refers to the solution that achieves the maximum
value for that particular objective) are selected by default. The other Pareto-optimal solutions are
selected based on their crowd distance. The policy selection process continues until a predetermined
number of N policies are selected or until all Pareto-optimal policies have been selected. This
procedure is detailed in the following Algorithm 1.

Algorithm 1 Policy Selection

Require: Number of extension polices N , solution set X .
1: Initialize extension solution set Xextension = {}, number of selected policies Nselected = 0.
2: Solution set X ← filter Pareto-optimal solutions in solution set X .
3: Sort solutions in solution set X by crowd distance in descending order.
4: while Nselected < N and Nselected ̸= |X | do
5: Add the N th

selected solution in solution set X into extension solution set Xextension.
6: Nselected = Nselected + 1
7: end while

Ensure: extension solution set Xextension.

In Algorithm 2, we describe the whole procedure of our proposed C-MORL algorithm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2 C-MORL

Require: Number of initial polices M , Number of extension polices N ,
initial policy task set I = {(ωinit, πinit)}Minit=1, solution set X = {},
initial solution set Xinit = {}, number of objectives n, number of Pareto extension step K,
number of constrained update steps K

′
, preference set Ω, number of evaluation preferences E.

1: \\Pareto Initialization.
2: for (ωinit, πinit) ∈ I do
3: Solution (πinit,G

πinit)← solve task (ωinit, πinit).
4: Store solution (πinit,G

πinit) in solution set Xinit

5: end for
6: \\Policy Selection. (Algorithm 1)
7: Xextension ← PolicySelection(N,Xinit)
8: \\Pareto Extension.
9: for iter = 1, . . . ,K/K

′
do

10: \\Constrained Policy Optimization.
11: for (π,Gπ) ∈ Xextension do
12: for i = 1, . . . , n do
13: Initialize πi,0 = π.
14: for r = 1, . . . ,K

′
do

15: πi,r+1 ←solve optimization problem in Eq. 3.
16: Store solution (πi,r+1,G

πi,r+1) in X .
17: end for
18: end for
19: end for
20: \\Policy Selection. (Algorithm 1)
21: Xextension ← PolicySelection(N,X)
22: end for
23: \\Policy Assignment.
24: Sample E preferences from Ω.
25: for ω ∈ Ω do
26: Solve and find SMP policy via πSMP

ω = maxπ∈ΠP
fω(G

π).
27: Derive solution (πSMP

ω ,GπSMP
ω) for ω.

28: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B PROOF OF PROPOSITION 4.3

Proof. We prove by contradiction. Suppose that the feasible solution P
′
= (π′,Gπ′

) of problem Eq.
1 is not a Pareto-optimal solution. By the definition of Pareto-optimal solution, there exists a solution
P̂ = (π̂,Gπ̂) in P dominates P ′, i.e., Gπ′

i ≤ Gπ̂
i for ∀i ∈ [1, 2, . . . , n]. Assume Pr = (πr,Gr) is

the initial point of solving problem Eq. 1. Therefore, Gπ̂
l ≥ Gπ′

l ≥ Gπr

l . Because both Pr and P̂ and
Pareto-optimal solutions, they do not dominate each other. Therefore, given that Gπ̂

l ≥ Gπr

l , there
exists j ∈ [1, 2, . . . , n], j ̸= l that Gπr

j ≥ Gπ̂
j .

Now consider the values of dj and Gπ̂
j . Note that dj ≥ G̃j(k − 1). If Gπr

j ≥ Gπ̂
j > dj , then

Gπr
j ≥ Gπ̂

j > G̃j(k − 1), which is conflicting with the condition that G̃j(k − 1) is the (k − 1)th

objective value in G̃j . If Gπ̂
j ≤ dj , it conflicts with the assumtion that P̂ dominates P ′. Therefore, P̂

does not exist, and P
′

is a Pareto-optimal solution.

C PROOF OF PROPOSITION 4.4

In this Section, we provide a brief proof for the convergence of iterates majorly inspired by (Tessler
et al., 2018). For detailed proof, we refer to Chapter 6 of (Borkar, 2009).

Proof. At iteration r, the update steps for λi and π are as follows:

λr+1,i =Γλ[λr,i − η1(r)∇λL(λr,i, πr)]; (5a)
πr+1 =Γπ[πr − η2(r)∇πL(λr, πr)]. (5b)

Using the log-likelihood trick (Williams, 1992) for the policy update, we have the gradient step

∇λi
L(λ, π) =− (di − Eπθ

s∼µ[G
π
i]); (6a)

∇πL(λ, π) =∇πEπθ
s∼µ[log π(s, a; θ)[R(s)− λ⊤ ·Gπ

1:n\l]]. (6b)

In the above, η1, η2 are step-sizes which ensure that the policy update is performed on a faster
timescale than that of the penalty coefficient λi. We also make the following assumption:

∞∑
k=0

η1(k) =

∞∑
k=0

η2(k) =∞,

∞∑
k=0

(
η1(k)

2 + η2(k)
2
)
<∞ and

η1(k)

η2(k)
→ 0 (7)

Then for the update of policy π, for any given λi with the slowest timescale, we can show the
following ODE governs the updates:

π̇t = Γπ(∇πL(λ, πt)); (8)

Similarly, for the update of λi, denote π(λt) as the limiting point of the π-recursion corresponding to
λt, we have the following ODE

λ̇i,t = Γλi(∇λiL(λt, π(λt))). (9)

Then following the characterization made by (Tessler et al., 2018) on the internally chain transitive
invariant sets of the ODE Eq. 9, we can conclude the convergence for the two-timescale stochastic
approximation processes.

D PROOF OF THEOREM 4.5

We reuse the notations for the primal problem Eq. 1 and its dual problem Eq. 2. For the nonconvex
primal formulation of MORL, solving its dual problem can only provide an upper bound on P ∗.
Thus it is of interest to evaluate how close the policy obtained by solving the dual is compared to P ∗.
Further, as we resort to interior point method to empirically solve the unconstrained problem, the
second part of Proposition 4.5 characterizes the distance between the solution from Eq. 4 and P ∗.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. To show the first part of the Theorem, it majorly relies on the well-established Fenchel-Moreau
theorem and the concavity of the perturbed function defined as the following P (ξ):

Denote the duality gap as△ = D∗ − P ∗. To show△ = 0, we first define the perturbation function
of problem equation 1:

P (ξ) ≜max
π

Gπ
l

s.t. Gπ
i ≥ di + ξi, i = 1, . . . , n, i ̸= l.

(10)

Then, the conditions under which problem Eq. 1 has zero duality gap are as follows:

Lemma D.1. (Fenchel-Moreau). If (i) Slater’s condition holds for (PI) and (ii) its perturbation
function P (ξ) is concave, then strong duality holds for (PI).

In D.1, Slater’s condition requires that there exists a feasible policy π such that all inequality
constraints are strictly satisfied for problem (1), i.e.,

Gπ
i > di, ∀i = 1, . . . , n, i ̸= l.

. See proof of D.1 in the Corollary. 30.2.2 of (Rockafellar, 1997). For the proof of concavity of
the perturbed C-MORL formulation P (ξ), it suffices to show for every ξ1, ξ2 ∈ Rn, and for any
µ ∈ (0, 1), the following equation holds:

P
[
µξ1 + (1− µ)ξ2

]
≥ µP (ξ1) + (1− µ)P (ξ2). (11)

We refer the detailed proof of Eq. 11 in the Proposition 1 of (Paternain et al., 2019).

To show the second part, we make use of the optimality conditions of the dual problem. As the
Lagrangian function of Eq. 1 is L(λ, π) = Gπ

l − λ⊤(d − Gπ
1:n\l), and denote G̃π

i = di − Gπ
i .

Without loss of generality, we follow the standard minimization problem formulation in optimization,
and we can write out the dual function as

D(λi) = min
π
−Gπ

l +

n∑
i=1,i̸=l

λiG̃
π
i (12)

When the problem is strictly feasible, there exists an optimal π∗ such that for each objective other
than the objective l, we have Gi > di. Then the first-order optimality condition holds:

−∇Gπ∗

l +

n∑
i=1,i̸=l

1

−t× (G̃π
i)
∇G̃π

i = 0. (13)

We then set λ∗
i = 1

−t×(G̃π
i)

and plug it back into Eq. 13, we can obtain

−∇Gπ∗

l +

n∑
i=1,i̸=l

λ∗
i∇G̃π

i = 0.

This shows that under the optimal policy π∗ and dual variables λ∗
i , i ̸= l, we find the optimal value

for the dual function as

L(λ, π∗) = Gπ∗

l −
n∑

i=1,i̸=l

λ∗
i G̃

π
i = Gπ∗

l −
n− 1

t
. (14)

Using the first-part result that the C-MORL formulation has zero duality gap, P ∗ = D(λ∗), we thus
have

P ∗ −Gπ∗

l ≤
n− 1

t
. (15)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E EXPERIMENT SETUP DETAILS

E.1 BENCHMARK

To evaluate the performance of our method and baselines. we collect benchmarks from MO-
Gymnasium Felten et al. (2023a) and SustainGym Yeh et al. (2024). MO-Gymnasium is an open
source Python library that includes more than 20 environments from diverse domains. SustainGym
provides standardized benchmarks for sustainable energy systems, encompassing electric vehicles,
data centers, electrical markets, power plants, and building energy systems. Among these environ-
ments, the building thermal control tasks involve large commercial buildings with multiple zones,
aiming to regulate temperature while minimizing energy costs, making them suitable for developing
multi-objective control tasks. Additionally, we incorporate the objective of demand response (re-
ducing peak demand) and extend its multi-objective version. The details of all benchmarks are as
follows:

Minecart: A discrete MORL benchmark with a cart that collects two different and must return them
to the base while minimizing fuel consumption. The states of the cart include its x and y position, the
current speed, the sin and cos orientations, and the percentage of its occupied capacity by each ore.
The agent is allowed to choose between six actions: {mine, left, right, accelerate, brake, do nothing}.
Let ⊮ denote Dirac delta function. The reward of three objectives is defined as:

R1 = quantity of ore 1 collected if s is inside the base, else 0;

R2 = quantity of ore 2 collected if s is inside the base, else 0;

R3 = −0.005− 0.025⊮{a = accelerate } − 0.05⊮{a = mine }.

MO-Lunar-Lander: A discrete MORL benchmark with a classic rocket trajectory optimization
problem. The state is an eight-dimensional vector that includes the x, y coordinates of the lander, its
linear velocities in x and y, its angle, its angular velocity, and two booleans that represent whether
each leg is in contact with the ground or not. The action is a six-dimensional vector: {do nothing, fire
left orientation engine, fire main engine, fire right engine}. The reward of three objectives is defined
as:

R1 = +100 if landed successfully, − 100 if crashed, else 0;

R2 = shaping reward ;

R3 = fuel cost of the main engine ;

R4 = fuel cost of the side engines.

Fruit-Tree: A discrete MORL benchmark with a full binary tree of depth d with randomly assigned
vectorial reward r ∈ R6 on the leaf nodes Yang et al. (2019). These rewards are related to six
objectives, showing the amounts of six different nutrition facts of the fruits on the tree:{Protein,
Carbs, Fats, Vitamins, Minerals, Water}. The goal of the MORL agent is to find a path on the tree
from the root to a leaf node that maximizes utility for a given preference. The reward of six objectives
is defined as:

Ri = value of nutrient i in s, for i = 1 . . . 6.

MO-Hopper-2d: The observation and action space are defined as:

S ⊆ R11,A ⊆ R3.

This control task has two conflicting objectives: forward speed and jumping height.

The first objective is forward speed:
R1 = vx + C.

The second objective is jumping height:

R2 = 10(h− hinit) + C.

where C = −0.001
∑

i a
2
i is composed of extra bonus and energy efficiency, vx is the speed toward

x direction, h is the current height, hinit is the initial height, ai is the action of each actuator.

MO-Hopper-3d: The observation and action space are defined as:

S ⊆ R11,A ⊆ R3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

This control task has three conflicting objectives: forward speed, jumping height, and energy effi-
ciency.

The first objective is forward speed:
R1 = vx.

The second objective is jumping height:

R2 = 10(h− hinit).

The third objective is energy efficiency:

R3 = −
∑
i

a2i .

where vx is the speed toward x direction, h is the current height, hinit is the initial height, ai is the
action of each actuator.

MO-Ant-2d: The observation and action space are defined as:

S ⊆ R27,A ⊆ R8.

This control task has two conflicting objectives: x-axis velocity and y-axis velocity.

The first objective is x-axis velocity:
R1 = vx.

The second objective is y-axis velocity:
R2 = vy.

where vx is x-axis speed, vy is y-axis speed, ai is the action of each actuator.

MO-Ant-3d: The observation and action space are defined as:

S ⊆ R27,A ⊆ R8.

This control task has three conflicting objectives: x-axis speed, y-axis speed, and control cost.

The first objective is x-axis velocity:
R1 = vx.

The second objective is y-axis velocity:
R2 = vy.

The third objective is control cost:
R3 = −2

∑
i

a2i .

where vx is x-axis speed, vy is y-axis speed, ai is the action of each actuator.

MO-Humanoid-2d: The observation and action space are defined as:

S ⊆ R376,A ⊆ R17.

This control task has two conflicting objectives: forward speed and control cost. MO-Humanoid was
chosen because it has one of the most complex state space among all Mujoco environments, with 348
states.

The first objective is forward speed:
R1 = vx.

The second objective is control cost:

R2 = −10
∑
i

a2i .

where vx is the speed in x direction, ai is the action of each actuator.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Building-3d: A building thermal control environment that controls the temperature of a commercial
building with 23 zones. The states contain the temperature of multiple zones, the heat acquisition
from occupant’s activities, the heat gain from the solar irradiance, the ground temperature, the outdoor
environment temperature, and the current electricity price. The actions set the controlled heating
supply of the zones. The conflicting objectives are minimizing energy cost, reducing the temperature
difference between zonal temperatures and user-set points, and managing the ramping rate of power
consumption:

R1 = M − 0.05 ∗
∑
i

|Ti[t]− Ti,user[t]|;

R2 = M − 0.05 ∗
∑
i

c[t]|Pi[t]|;

R3 = M − |(
∑
i

|Pi[t]| −
∑
i

|Pi[t− 1]|)|.

where M = 23 is the number of zones; Ti and Ti,user are indoor temperature and user setting point
of zone i, respectively; c is electricity price; Pi is heating supply power of zone i; t is the index of
environment time step.

Building-9d: A modified version of Building-3d:. Instead of calculating the reward based on all
zones collectively, this version evaluates the reward for each of the three floors of the commercial
building separately. Consequently, this results in a total of 3× 3 = 9 objectives.

Table 6: Environment details of continuous control benchmarks

Environments Continuous (Y/N) Number of Objectives State Space Action Space
Minecart N 3 S ⊆ R7 A ⊆ R6

MO-Lunar-Lander N 4 S ⊆ R8 A ⊆ R4

Fruit-Tree N 6 S ⊆ R2 A ⊆ R2

MO-Hopper-2d Y 2 S ⊆ R11 A ⊆ R3

MO-Hopper-3d Y 3 S ⊆ R11 A ⊆ R3

MO-Ant-2d Y 2 S ⊆ R105 A ⊆ R8

MO-Ant-3d Y 3 S ⊆ R105 A ⊆ R8

MO-Humanoid-2d Y 2 S ⊆ R348 A ⊆ R17

Building-3d Y 3 S ⊆ R29 A ⊆ R23

Building-9d Y 9 S ⊆ R29 A ⊆ R23

E.2 TRAINING DETAILS

We run all the experiments on a cloud server including CPU Intel Xeon Processor and GPU Tesla T4.
In the Pareto initialization stage, we use PPO algorithm implemented by Kostrikov (2018). The PPO
parameters are reported in Table 7 and Table 8. For constrained optimization, we adopt C-MORL-IPO
method. The hyperparameters of C-MORL-IPO include:

• Number of initial policy M : the number of initial policies. This parameter is also related
to the Pareto initialization stage.

• Number of extension policy N : the number of policies selected in the Pareto extension
stage. This parameter is also related to the Pareto extension stage.

• log barrier coef t: the tunable parameter on the log barrier.
• constraint relax coef β: the constraint relaxing coefficient β in Eq. 3.
• extension steps K: the number of Pareto extension steps in the Pareto extension stage.
• time step: the total time step contains initialization steps and extension steps.

To be specific, time step = timesteps per actorbatch × (M + N × n), where
timesteps per actorbatch is a PPO parameter.

The parameters we used are provided in Table 9 and Table 10.

In policy initialization stage, the preference vectors for training initial policies are uniformly sampled
from the preference space Ω. For example, in the case of MO-Ant-2d, we set the sampling interval to

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.2, with the minimum and maximum values for each dimension being 0 and 1, respectively. This
results in the following preference vectors: [0, 1], [0.2, 0.8], [0.4, 0.6], [0.6, 0.4], [0.8, 0.2], and [1, 0],
for a total of 6 preference vectors.

Table 7: PPO Hyperparameters for discrete baselines.

parameter name MinecartMO-Lunar-LanderFruit-Tree
steps per actor batch 512 512 512
LR(×10−4) 3 3 3
LR decay ratio 1 1 1
gamma 0.995 0.995 0.995
gae lambda 0.95 0.95 0.95
num mini batch 32 32 32
ppo epoch 10 10 10
entropy coef 0 0 0
value loss coef 0.5 0.5 0.5
max grad norm 0.5 0.5 0.5
clip param 0.2 0.2 0.2

Table 8: PPO Hyperparameters for continuous baselines.

parameter name MO-Hopper-2dMO-Hopper-3dMO-Ant-2dMO-Ant-3dMO-Humanoid-2dBuilding-3dBuilding-9d
steps per actor batch 512 512 512 512 512 512 512
LR(×10−4) 3 3 3 3 3 3 3
LR decay ratio 1 1 1 1 1 1 1
gamma 0.995 0.995 0.995 0.995 0.995 0.995 0.995
gae lambda 0.95 0.95 0.95 0.95 0.95 0.95 0.95
num mini batch 32 32 32 32 32 32 32
ppo epoch 10 10 10 10 10 10 10
entropy coef 0 0 0 0 0 0 0
value loss coef 0.5 0.5 0.5 0.5 0.5 0.5 0.5
max grad norm 0.5 0.5 0.5 0.5 0.5 0.5 0.5
clip param 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 9: C-MORL-IPO Hyperparameters for discrete baselines.

parameter name MinecartMO-Lunar-LanderFruit-Tree
M 6 4 21
N 6 6 6
log barrier coef 20 20 20
constraint relax coef 0.90 0.90 0.90
Pareto extension step 60 50 30
time step (×105) 5 5 5

E.3 EVALUATION

We evaluate the quality of Pareto front with the following metrics:
Definition E.1. (Hypervolume). Let P be a Pareto front approximation in an n-dimensional objective
space and G0 be the reference point. Then the hypervolume metricH(P) is calculated asH(P) =∫
Rm ⊮H(P)(z)dz, where H(P) = {z ∈ Z|∃1 ≤ j ≤ |P | : G0 ⪯ z ⪯ P (j)}. P (j) is the jth

solution in P , ⪯ is the relation operator of objective dominance, and ⊮H(P) is a Dirac delta function
that equals 1 if z ∈ H(P) and 0 otherwise. A higher hypervolume is better.
Definition E.2. (Expected Utility). Let P be a Pareto front approximation in an n-dimensional
objective space and Π be the policy set. The Expected Utility metric is U(P) : U(P) =

Eω∼Ω

[
ω⊤GπSMP

ω

]
. A higher expected utility is better.

Definition E.3. (Sparsity). Let P be a Pareto front approximation in an n-dimensional objective
space. Then the Sparsity metric S(P) is

S(P) =
1

|P | − 1

n∑
i=1

|P |−1∑
k=1

(
G̃i(k)− G̃i(k + 1)

)2

, (16)

where G̃i is the sorted list for the ith objective values in P , and G̃i(k) is the kth value in this sorted
list. Lower sparsity is better.

For metrics evaluation, we evenly generate an evaluation preference set in a systematic manner
with specified intervals ∆ = 0.01, ∆ = 0.1, and ∆ = 0.5 for benchmarks with two objectives,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: C-MORL-IPO Hyperparameters for continuous baselines.

parameter name MO-Hopper-2dMO-Hopper-3dMO-Ant-2dMO-Ant-3dMO-Humanoid-2dBuilding-3dBuilding-9d
M 6 6 6 6 6 6 9
N 5 6 5 6 5 6 6
log barrier coef 20 20 20 20 20 20 20
constraint relax coef 0.90 0.90 0.90 0.90 0.90 0.90 0.90
Pareto extension step 60 100 60 100 60 100 100
time step (×106) 1.5 2.0 1.5 2.0 1.5 2.0 2.5

three or four objectives, and six or nine objectives, respectively. For example, for benchmarks with
two objectives, we sample preference vectors covering a range of preferences from ω = [0, 1] to
ω = [1, 0] with a specified interval ∆ = 0.01, totally 1, 01 preference pairs. For C-MORL and other
multi-policy baselines, the calculation of metrics is the same. For single preference-conditioned
policy methods, the calculation of metrics is slightly different . Specifically, since in a multi-policy
setting, the policies in the Pareto set are preference-irrelevant, we directly use all solutions in the
Pareto front to compute hypervolume and sparsity. For single preference-conditioned policy methods,
we first evaluate the solutions using all the preferences in the evaluation preference set. Then, the
non-dominated solutions that form the Pareto front are used to compute hypervolume and sparsity.
Expected utility is evaluated for multi-policy baselines based on the evaluation preference set, and
the execution results on all preferences from the evaluation preference set are utilized for single
preference-conditioned policy methods.

F PROCEDURE OF SOLVING C-MORL-CPO AND C-MORL-IPO

F.1 C-MORL-CPO

C-MORL-CPO Rather than applying sampling-based approaches (Duan et al., 2016) for find-
ing policy updates in the relaxed formulation, empirically we can follow the adapted trust region
method (Schulman et al., 2015) for CPO updates (Achiam et al., 2017):

πr+1,i = arg max
π∈Πθ

{Gπ
l : Gπ

i ≥ βGπr
i , i = 1, . . . , n, i ̸= l;D(π, πr) ≤ δ}. (17)

The trust region set is defined as {πθ ∈ Πθ : D̄KL(π||πr) ≤ δ}, where D̄KL denotes the estimated
mean of KL-divergence given state s, and serves as a surrogate function of the original distance
function. Such trust region optimization updates hold guarantees of monotonic performance improve-
ment and constraint satisfaction. It is noteworthy that the original CPO algorithm requires a feasible
initialization, which by itself can be very difficult, especially with multiple, general constraints
involving policy returns (Zhou et al., 2022). While in our formulation for solving MORL, we can
almost guarantee the initial policy is always feasible for the solving process of extended policy with
properly selected β along with a well-initialized policy set.

However, solving this problem requires evaluation of the constraint functions to determine whether
a proposed point π is feasible. Therefore, follow (Achiam et al., 2017), we replace the objectives
functions with surrogate functions, which are easy to estimate from samples collected on πr. To be
specific, we solve the following optimization problem to approximately solve Eq. 17:

πr+1 = arg max
π∈Πθ

Es∼dπr ,a∼π[A
πr (s, a)]

s.t. Gπr
i −

1

1− γ
Es∼dπr ,a∼π[A

πr
i (s, a)] ≥ βGπr

i i = 1, . . . , n, i ̸= l

D̄KL(π||πr) ≤ δ.

(18)

However, Eq. 18 is impractical to be solved directly especially when the policy is parameterized
as a neural network with high-dimensional parameter spaces. We follow (Achiam et al., 2017) to
implement an approximation to the update Eq. 18 that can be computed efficiently:

θr+1 = argmax
θ

g⊤(θ − θr)

s.t. ci + bTi (θ − θr) ≤ 0 i = 1, . . . , n, i ̸= l

1

2
(θ − θr)

TH(θ − θr) ≤ δ.

(19)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where g is the gradient of the lth objective that is chosen to be optimized, bi denotes the gradient of
the ith objective served as constraint, H is the Hessian of the KL-divergence, and ci

.
= βGπr

i −Gπ
i .

The dual problem of Eq. 19 can be expressed as:

max
λ≥0
ν≻0

−1
2λ

(
gTH−1g − 2rν + νTSν

)
+ νT c− λδ

2
, (20)

where B
.
= [b1, . . . , bn], c

.
= [c1, . . . , cn]

T , r .
= gTH−1B, and S

.
= BTH−1B. We derive λ∗, ν∗

by solving the dual, then the solution to the primal Eq. equation 19 is

θ∗ = θr +
1

λ∗H
−1(g −Bν∗). (21)

In our implementation, we adopt C-MORL-CPO to solve MORL tasks with two objectives, i.e.,
constrained optimization problem that only involves single constraint. Therefore, we can directly
compute the dual variables λ∗ and ν∗ with the analytical solution as follows Achiam et al. (2017):

ν∗ =

(
λ∗c− r

s

)
+

,

λ∗ = argmax
λ≥0

{
fa(λ)

.
= 1

2λ

(
r2

s − q
)
+ λ

2

(
n2

s − δ
)
− rr

s if λc− r > 0

fb(λ)
.
= − 1

2

(
q
λ + λδ

)
otherwise,

(22)

with q = gTH−1g, r = gTH−1b, and s = bTH−1b. If the constrains in Eq.18 are not satisfied,
the constrained optimization towards the corresponding objective direction in the current Pareto
extension iteration will be terminated.

F.2 C-MORL-IPO

Recall in Section 5.3, we augment the objective function of the objective that is being optimized
with logarithmic barrier functions for other constrained objectives. Note that the logarithmic barrier
functions can be integrated with any other policy optimization methods, in this paper, we follow (Liu
et al., 2020) to integrate it with PPO (Schulman et al., 2017) for training our policies. Therefore, the
surrogate objective becomes:

max LCLIP (θ) +

n∑
i=1

ϕ(Gπ
i) (23)

where ϕ(Gπ
i) =

log(Gπ
i −βGπr

i)

t and t is a hyperparameter; LCLIP (θ) is the clipped surrogate objective
of PPO. As t approaches∞, the approximation becomes closer to the indicator function.

G ADDITIONAL RESULTS

G.1 PARAMETER STUDY FOR NUMBER OF EXTENSION POLICIES
Table 11: Ablation study of C-MORL for the number of extension policies on MO-Ant-3d benchmark.

N=6 N=12 N=18
HV(107) 4.03±0.17 4.21±0.22 4.20±0.27
EU(102) 2.59±0.08 2.65±0.08 2.63±0.11
SP(10) 2.91±0.90 2.00±0.27 1.53±0.23

It is more difficult to derive Pareto-optimal policies to cover the entire Pareto front for the continuous
MORL tasks with more than two objectives. In this subsection we look into different settings for
C-MORL and associated impacts to the algorithm performances. Table 11 presents the results of
the ablation study for the number of extension policies on the MO-Ant-3d benchmark, which is
one of the continuous MORL tasks with numerous objectives. We can observe that when N = 12,
C-MORL can derive a Pareto front with much higher hypervolume and lower sparsity than that of
N = 6. When N = 18, the result is similar, indicating that 12 policies are sufficient to be extended
to fill the Pareto front for this task. Fig. 7 further illustrates the Pareto extension process with varying
values of the number of extension policies (N = 6, 12, 18) on the MO-Ant-3d benchmark. It can

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

be observed that as the number of policies selected to be extended increases, the hypervolume also
increases. Notably, Fig. 7 highlights that when N = 18, there is a more comprehensive exploration
of the objectives of Y velocity. This observation suggests a more thorough exploration of sparser
areas on the Pareto front.

Figure 7: Ablation study of C-MORL for the number of extension policies on MO-Hopper-v3
benchmark. Number of extension policies on MO-Ant-3d benchmark N = 6, 12, 18 and number of
Pareto extension step K = 0, 30, 60, respectively.

G.2 ABLATION STUDY ON BUFFER SIZE.

In order to better understand how Buffer size can influence the performance of C-MORL, we provide
the comparison of the best baseline and C-MORL with various buffer sizes, as shown in Table 12
and Table 13. These studies show that even with reduced buffer sizes, C-MORL maintains highly
competitive performance. Compared to PG-MORL, our C-MORL achieves superior results while
requiring significantly fewer policies. Another notable observation is that, in some benchmarks, the
results remain consistent regardless of the buffer size. This consistency indicates that the number of
Pareto optimal policies in these cases does not exceed the buffer size.
Table 12: Evaluation of HV, EU, and SP in discrete MORL tasks under varying buffer sizes, alongside
a comparison with the best-performing baseline.

Environments Metrics Best Baseline B=20 B=50 B=100 B=200

Minecart
HV(102) 6.05±0.37(GPI-LS) 6.22±0.70 6.57±0.92 6.63±0.89 6.77±0.88

EU(10−1) 2.29±0.32(GPI-LS) 1.88±0.59 2.05±0.67 2.09±0.65 2.12±0.66
SP(10−1) 0.10±0.00(GPI-LS) 0.64±0.17 0.19±0.02 0.09±0.03 0.05±0.02

MO-Lunar-Lander
HV(109) 1.06±0.16(GPI-LS) 1.01±0.07 1.08±0.04 1.12±0.03 1.12±0.03
EU(101) 1.81±0.34(GPI-LS) 1.84±0.31 2.21±0.23 2.35±0.18 2.35±0.18
SP(103) 0.13±0.01(GPI-LS) 1.14±2.14 1.65±1.83 1.04±1.24 1.04±1.24

Fruit-Tree
HV(104) 3.66±0.23(Envelope) 2.34±0.29 2.86±0.19 3.17±0.20 3.67±0.14

EU 6.15±0.00(Envelope/GPI-LS) 6.14±0.13 6.38±0.10 6.46±0.08 6.53±0.03
SP 0.53±0.02(GPI-LS) 2.62±0.49 1.65±1.83 0.81±0.12 0.04±0.00

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 13: Evaluation of HV, EU, and SP in continuous MORL tasks under varying buffer sizes,
alongside a comparison with the best-performing baseline.

Environments Metrics Best Baseline B=20 B=50 B=100 B=200

MO-Hopper-2d
HV(105) 1.26±0.01(Q-Pensieve) 1.39±0.01 1.39±0.01 1.39±0.01 -
EU(102) 2.34±0.10(PG-MORL) 2.55±0.01 2.56±0.02 2.56±0.02 -
SP(102) 0.46±0.10(CAPQL) 2.68±1.66 0.57±0.29 0.33±0.28 -

MO-Hopper-3d
HV(107) 1.70±0.29(GPI-LS) 2.03±0.15 2.20±0.04 2.26±0.02 2.29±0.01
EU(102) 1.62±0.10(GPI-LS) 1.72±0.08 1.78±0.02 1.80±0.01 1.80±0.01
SP(102) 0.74±1.22(GPI-LS) 7.61±2.24 2.74±1.91 0.86±0.27 0.28±0.09

MO-Ant-2d
HV(105) 3.10±0.25(GPI-LS) 3.08±0.21 3.13±0.20 3.13±0.20 -
EU(102) 4.28±0.19(GPI-LS) 4.27±0.19 4.29±0.19 4.29±0.19 -
SP(103) 0.18±0.07(CAPQL) 3.66±1.29 1.67±0.85 1.67±0.85 -

MO-Ant-3d
HV(107) 3.82±0.43(Q-Pensieve) 3.52±0.16 3.83±0.17 4.00±0.12 4.09±0.13
EU(102) 2.41±0.20(GPI-LS) 2.48±0.09 2.55±0.08 2.57±0.07 2.57±0.06
SP(103) 0.02±0.01(PG-MORL) 1.56±0.67 0.30±0.19 0.08±0.05 0.03±0.01

MO-Humanoid-2d
HV(105) 3.30±0.05(CAPQL) 3.43±0.06 3.43±0.06 3.43±0.06 -
EU(102) 4.75±0.04(CAPQL) 4.78±0.05 4.78±0.05 4.78±0.05 -
SP(104) 0±0.00(CAPQL/GPI-LS) 0.18±0.27 0.18±0.27 0.18±0.27 -

Building-3d
HV(1012) 1.00±0.02(Q-Pensieve) 1.14±0.00 1.14±0.00 1.15±0.00 1.15±0.00
EU(104) 0.96±0.00(Q-Pensieve) 1.02±0.00 1.02±0.00 1.02±0.00 1.02±0.00
SP(104) 0.37±0.22(PG-MORL) 1.04±0.16 1.98±0.38 0.69±0.62 0.69±0.62

Building-9d
HV(1031) 7.28±0.57(Q-Pensieve) 7.64±0.17 7.93±0.07 7.93±0.07 7.93±0.07
EU(103) 3.46±0.03(Q-Pensieve) 3.50±0.00 3.52±0.00 3.52±0.00 3.52±0.00
SP(104) 0.10±0.04(Q-Pensieve) 1.16±0.19 0.28±0.03 0.28±0.04 0.28±0.04

G.3 EXPECTED UTILITY RESULTS

Figure 8: Evaluation results of sampled preferences on MO-Ant-3d benchmark. (a) Q-Pensieve
evaluation. Returns of evaluated preference pairs with interval 0.1 are marked with orange points,
while Pareto-optimal solutions are marked with blue points. (b) C-MORL evaluation. Pareto-optimal
solutions are marked with blue points.
C-MORL outperforms other methods in terms of expected utility across nine out of ten benchmarks,
which can be attributed to two significant advantages. The first advantage is related to the inherent
characteristics of the multi-policy approach. As illustrated in Fig. 8, single preference-conditioned
policy approach does not guarantee that each preference sampled to be evaluated corresponds to
a solution on the Pareto front. The Pareto front exclusively encompasses solutions that are Pareto
optimal, while the majority of preferences do not lead to such optimal solutions. This limitation
arises from the inherent difficulty of achieving Pareto optimal for every preference in this kind
of approach. In contrast, the multi-policy approach yields a Pareto solution set that exclusively
comprises a Pareto-optimal solution set that is irrelevant of specific preferences. Consequently, when
presented with an unseen preference, one can simply select the solution with the utility (i.e. the SMP
in Eq. 3.1) from this pre-existing set.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H DISCUSSION AND LIMITATIONS OF C-MORL

With the novel design of Pareto initialization, policy selection, and Pareto extension, the proposed
method gives a novel and systematic approach on exploring the Pareto front and optimizing the
policies. Despite the capability of our approach to effectively populate the Pareto front, we observe
that in some benchmarks, the current constrained policy optimization method fails to adequately
extend the policies toward certain objective directions. Consequently, there still exist unexplored
areas on the Pareto front. To address this issue, we plan to develop a more effective extension method.
Additionally, since our implementation is based on PPO, its training efficiency is outstanding, but its
sample efficiency is relatively low. In the future, we plan to develop more sample-efficient methods
for MORL.

27

	Introduction
	Related Work
	Preliminaries
	MORL Setup
	Pareto Optimality

	Optimizing Constrained MORL
	Constrained MORL-Based Pareto Front Extension
	Pareto Initialization
	Policy Selection
	Pareto Extension
	Pareto Representation via Policy Assignment

	Experiments
	Conclusions and Discussions
	Policy Selection and C-MORL Algorithm
	Proof of Proposition 4.3
	Proof of Proposition 4.4
	Proof of Theorem 4.5
	Experiment Setup Details
	Benchmark
	Training Details
	Evaluation

	Procedure of Solving C-MORL-CPO and C-MORL-IPO
	C-MORL-CPO
	C-MORL-IPO

	Additional Results
	Parameter Study for Number of extension policies
	Ablation Study on Buffer Size.
	Expected Utility results

	Discussion and Limitations of C-MORL

