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Abstract—Many techniques in machine learning attempt ex-
plicitly or implicitly to infer a low-dimensional manifold structure
of an underlying physical phenomenon from measurements
without an explicit model of the phenomenon or the measurement
apparatus. This paper presents a cautionary tale regarding the
discrepancy between the geometry of measurements and the
geometry of the underlying phenomenon in a benign setting.
The deformation in the metric illustrated in this paper is
mathematically straightforward and unavoidable in the general
case, and it is only one of several similar effects. While this is
not always problematic, we provide an example of an arguably
standard and harmless data processing procedure where this
effect leads to an incorrect answer to a seemingly simple question.
Although we focus on manifold learning, these issues apply
broadly to dimensionality reduction and unsupervised learning.

I. BACKGROUND

The abundance of data in many applications in recent years
allows scientists to sidestep the need for parametric models
and discover the structure of underlying phenomena directly
from some form of intrinsic geometry in the measurements.
Such concepts frequently appear in unsupervised learning,
manifold learning, non-parametric statistics and, more broadly,
machine learning. Often, a scientist may have in mind a
concept of the “natural” geometry or parametrization of the
phenomenon; in other cases, they may implicitly assume
that only one such objective geometry exists even if they
do not know what it is. This paper aims to illustrate the
difference between the structure of observed data and some
notion of natural or unique objective structure. To this end, we
offer a concrete example with an obvious underlying natural
geometry (up to symmetries) and demonstrate the existence of
discrepancies between the data and the natural variables, even
in this benign setting.

In our example, described more formally below, a simplified
instance of a physical phenomenon is represented by a rigid
3D model of a horse on a spinning table. The measurement
device is a fixed camera that takes images of the object.
The orientation angles of the horse are distributed uniformly.
Here, a natural variable is the angle at which the figure is
oriented at the time of the measurement. A simple example
of a scientific question is to find the mode of the distribution,
which is intuitively the most prevalent orientation angle (we
know that the correct answer is that the distribution is uniform

and, therefore, we do not expect to find a clear mode). Since
this is meant to be a simplified, intuitive version of a generic
problem with no obvious underlying model, we consider
generic algorithms and forgo in advance image analysis and
computer vision methods that use of the special properties of
images and the specific rotating motion of the object.

This benign task yields results that we find surprising yet
predictable. The naive analysis discovers clear modes of the
distribution, which are inconsistent with the true uniform
distribution. In Appendix A3, we demonstrate that these modes
are not invariant to the measurement modality.

In our discussion, we explain the reasons for the experi-
ment’s results and refer the reader to existing work on special
cases where the problem can be corrected. However, there is
no method for correcting the problem in the general case. We
conclude by pointing to where care should be taken in defining
the problem and using the output in downstream tasks.

We emphasize that this paper aims to highlight an omission
that we observe in the practical use of manifold-related ma-
chine learning algorithms in applications. The purpose of this
paper is not to advocate against these methods but rather to
suggest that care should be taken in stating and interpreting
their output.

II. THE PROBLEM

The mathematical setting of the experiment is simple: let
X ⊂ Rd and Y ⊂ RD be two manifolds with d � D and
f : X → Y be a diffeomorphism. We refer to X and Y
as the phenomenon manifold and the measurement manifold
respectively and to f as the measurement function. In our
simple experiment, the phenomenon manifold X is the one-
dimensional torus representing the orientation of the horse
with respect to a fixed frame of reference (independent of
the camera), the measurement function f outputs an image
of the horse as captured by the camera, and the measurement
manifold Y is the manifold of images obtained by the camera.
In particular, a sample x ∈ X is the angle of the horse at
a specific point in time, and the corresponding measurement
f(x) ∈ Y is the image of the horse at the same point in time.
In a typical setting, we are given a large set of measurements
{yi}ni=1 ⊂ Y of a set of samples {xi}ni=1 drawn from a
distribution D on X . Here, we take the distribution D of



Fig. 1: The phenomenon manifold X is a one-dimensional
torus corresponding to the in-plane orientation angle of a
rigid object rotating around the z-axis, and the measurement
manifold Y is the manifold of images of the object as captured
by a camera at a fixed location.

the orientation angles of the horse to be uniform, which
would be unknown in an actual experiment. We only have
access to the measurements {yi}ni=1 (the images of the horse),
which we assume to be noise-free for simplicity, and we are
interested in uncovering the low-dimensional organization of
the samples of angles {xi}ni=1, for example, their empirical
distribution on X . The setting of this numerical experiment
is illustrated in Figure 1. For simplicity and concreteness,
we apply common techniques to answer a simple question:
what is the most dominant physical state? We know that the
ground truth answer is, in this case, that there is no dominant
state; the data are generated with uniform distribution over the
orientation angles of the horse.

We follow a common practice of assuming a low-
dimensional structure and apply a manifold learning algorithm.
This produces the map ρ : Y → Z , which yields a low-
dimensional embedding of the measurements ρ(yi) ∈ Z
for i = 1, . . . , n and Z ⊂ Rs with d ≤ s � D. In
our experimental setting, the low-dimensional assumption is
clearly true: the orientation angles of the horse lie on the
one-dimensional torus manifold, while the measurements are
clearly high-dimensional (the number of pixels of each image).
For simplicity, in our numerical experiment, we use the
diffusion maps algorithm, whose theoretical properties are well
understood [1, 2], and we retain only the first two diffusion
coordinates, a standard practice in this simple case. The output
we expect to see is an embedding of the one-dimensional torus
in R2: a circle.

It is common in applications to apply a machine learning
or manifold learning algorithm to the measurements {yi}ni=1,
and consider the low-dimensional embeddings {ρ(yi)}ni=1 to
be a proxy for the geometry of the actual samples {xi}ni=1; the
potential effects of the measurement function f are omitted.
The aim of this manuscript is to demonstrate that even in
the most benign setting, the measurements distort the physical
problem in a way that can impact a seemingly straightforward
analysis.

Many algorithms for manifold learning and visualization
have been developed over the years and have been found useful
in applications. Often, these algorithms start with the pair-wise
distances ‖yi − yj‖ (in some norm), for i, j = 1, . . . , n, as a
measure of (inverse) similarity, but diverge in their precise
formulation of the problem. One of the notable departures
from this approach is the use of the latent space estimated
in the training of deep neural networks as the manifold
embedding, with the variational autoencoder (VAE) [3] being
one of a number of popular approaches.

The diffusion maps algorithm produces coordinates that are
related to the geometry of the data through a diffusion operator
on the data manifold. While there are technical nuances in the
metric defined by diffusion maps (and other algorithms) and
in retaining only two dimensions, this example is particularly
benign, symmetric, and without boundary effects. Therefore,
one expects the leading eigenvectors of the discretized dif-
fusion operator to preserve the local geometry of the data
(up to scaling). For a formal description of the diffusion
maps algorithm and its properties, see [1, 2]. One of the
appealing properties of the diffusion maps algorithm is that
it is (asymptotically) invariant to the local density of the data
and captures only its local geometry. This property and the
algorithm’s explicit relationship to the geometry of the data
made it a good choice for our experiments.

Indeed, a diffusion map of the points on X preserves the ge-
ometry and the uniform distribution (shown in Appendix A1).
However, our measurement function is not necessarily an
isometry (even up to scaling), and therefore, it distorts the
geometry and the local pair-wise distances.

The low-dimensional embedding obtained by applying the
diffusion maps algorithm to a dataset {yi}ni=1 of size n =
1000 and ambient dimension D = 108000 (180 × 200 size
images with 3 color channels) in our experimental setting1 is
shown in Figure 2. Both panels show a scatter plot using the
first two embedding coordinates given by the diffusion maps
algorithm. The points in panel (a) are colored according to
the true angle xi for i = 1, . . . , n. Visually, it appears that
the algorithm reveals the correct topology and it organizes the
images correctly by their angle. It is compelling to say that the
embedding is a good approximation of the angles (up to shift).
However, taking a closer look at the distribution of the points

1The code and dataset to reproduce the numerical experiments described
in this paper can be downloaded from https://github.com/bogdantoader/
ManifoldLearningInPlatosCave.
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Fig. 2: Low-dimensional embedding of the images of the
spinning horse. The coloring is given by the true orientation
angle of the horse in panel (a) and the local density of points
(r = 0.05) in panel (b).

in panel (b), we see that that their local density2 has not been
preserved on the embedding manifold Z: while the distribution
D of the points {xi}ni=1 on X is uniform (by construction!),
the distribution of the embedded points {ρ(yi)}ni=1 on Z is not
uniform. Moreover, the distribution of the embedded points has
two clear modes, with no indication that they are an artifact
of the analysis.

An additional experiment showing how the distribution of
the embedded points varies when the viewing angle is changed
is described in Appendix A3, and the specific implementation
of the diffusion maps algorithm that we used in our experi-
ments is presented in Appendix B.

III. DISCUSSION

In the previous section, we empirically showed how the dis-
tribution of the points on the embedding manifold Z does not
reflect the true distribution of the points on the phenomenon
manifold X : the distribution on Z has two distinct modes,
while the distribution on X is uniform. To see that this is a
metric-related issue, it is worth examining the modes of the
distribution on Z .

In Figure 3, we show measurements at a high and a low-
density point on Z . It is revealed that the high-density regions
correspond to images where the three-dimensional object is
perpendicular (or nearly perpendicular) to the viewing direc-
tion of the camera, while the low-density regions correspond
to the object facing toward or away from the camera. This
is because, according to our chosen metric on Y (i.e., the
Euclidean norm on the space of vectorized images), a small
difference ∆x between two angles in X is not transformed
to the same distance in different regions of X : two images
of the object facing the camera that differ by ∆x have a

2We define the local density at a point zi on the embedded manifold Z as
the number of points zj in the ball centered at zi with radius r, for a given
r > 0, normalized so that the densities sum up to one, and using the metric
on Z . Since in these experiments, we used the diffusion maps algorithm with
a two-dimensional latent space, the diffusion metric on Z corresponds to the
Euclidean metric on R2.

Fig. 3: The low-dimensional embedding with example images
corresponding to samples from the estimated distribution. The
image to the left of the embedding plot is chosen to be at a
low local density in the embedding, and the image to the right
is chosen to be at the maximum density point.

larger Euclidean distance than two images of the object facing
sideways that are separated by the same angle. The metric
based on the measurements alone does not account for the
distortion introduced by the measurement function f on the
true metric on X , namely the wrap-around distance on [0, 2π).

The discrepancy between the metric on the phenomenon
manifold, which is the metric we want to recover, and the ar-
guably arbitrary metric produced by the measurement modality
can be corrected in some special cases. For example, when
bursts of measurements around each point on X are available,
one can use the Jacobian of the measurement function to define
metrics that are invariant to the measurement modality (see, for
example, [4–8]). Such metrics might still not be the “desired”
metrics we want to conceptualize, but they are “Platonic” in
the sense that they are defined on the phenomenon manifold X
and are invariant to the arbitrary measurement function. Other
works such as [9–12] correct the metric distortion introduced
by the embedding ρ from the measurement manifold Y to
the embedded manifold Z; these works do not correct the
discrepancy between the measurements and the metric on the
phenomenon manifold.

We emphasize that the problem illustrated here is not
due to a failure of the diffusion maps or other algorithms;
the algorithm performs as expected and characterizes the
measurement manifold very well. However, the metric of this
measured manifold is incompatible with the natural metric of
in-plane rotation angles. As a result, we identify modes of
the distribution in the measurement space, but these do not
correspond to modes of the underlying distribution of angles.

We note that the problem discussed here is not unique to the
diffusion maps algorithm or the setup we chose; in fact, other
algorithms are not as well-understood as diffusion maps, and
applications are rarely as simple as our illustrative example.
Many modern algorithms add layers of complexity to the
problem. For instance, deep learning approaches that generate
latent variables, such as VAEs, are often combined with
more standard manifold learning algorithms to obtain low-



dimensional data representations. In [13, 14], the distortions
introduced by popular algorithms like t-SNE and UMAP are
analyzed in the context of single-cell genomics, although the
focus is on the discrepancy between the high dimension of the
measurement space and the very low dimension (2 or 3) of the
embedding space, rather than on the choice of metric. While
such algorithms provide valuable new insights into datasets,
practitioners should be aware that the results they generate,
even when they perform as intended, may have a subtle
relation to the “Platonic” physical reality. These outputs should
arguably mainly be used for visualization and confirmed by
other means. Indeed some of the original work on popular
non-linear dimensionality reduction algorithms defines them
as tools for visualization [15, 16].

IV. CONCLUSIONS

This paper illustrates one of the discrepancies between the
measured manifold and a perceived natural parametrization
of the underlying phenomenon. In addition, Appendix A3
demonstrates how this discrepancy depends on the measure-
ment modality and how the measured manifold is not invariant
to measurements. The discrepancy presented here is by no
means the only type of discrepancy; we defer the discussion
of additional effects to future work. While the existence of
this discrepancy is a natural consequence of various mathe-
matical formulations of manifold learning problems (with the
exception of special cases where the metric can be corrected),
it is occasionally omitted, which may lead to incorrect and
inconsistent answers to seemingly simple scientific questions.
In the absence of a general solution to the problem, we suggest
the following points to consider when using these methods.

• A good rule of thumb is that manifold learning and
dimensionality reduction can provide (when they “work”)
an embedding, but they may not provide the embedding
(that we might have in mind). In fact, without a good
definition of the desired embedding, the embedding is
not unique.

• Sometimes, the effects can be controlled if there is
knowledge of the structure of the measurement function
(e.g., Lipschitz constant). However, nuances in definitions
of the output of algorithms, the increased complexity of
algorithms, and the practice of layering algorithms on
top of each other may make it much more difficult to
control such effects. In some special cases, additional
measurements may allow one to reverse the effect [4–8].

• In many (but not all) applications, the inferred manifold
may reveal enough about the topology of the problem,
or the distortion in the metric might be sufficiently small
to be a sufficiently good proxy for the geometry. What
is “sufficiently good” may depend on the downstream
task. For example, the low-dimensional manifold may be
a starting point for an analysis by an expert, regression or
careful clustering, suspected outliers detection, and even
for identification of clear modes. It may not be as helpful
for aligning data collected using different modalities (or
even different algorithms applied to the same data) with

different distortions (see Appendix A3), or for certain
analyses of free energy associated with the distribution.
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APPENDIX

A. Additional experiments

This appendix shows several plots and numerical exper-
iments that further illustrate the discrepancy between the
phenomenon manifold and the measurement manifold.

1) Manifold learning on the phenomenon manifold: We
have shown in the main text of the paper how applying a
manifold learning algorithm to the points on Y leads to modes
in the data, while we know that the samples are uniformly
distributed on the phenomenon manifold X (the orientation
angles of the horse). In this section, we present the same
manifold learning algorithm applied directly to the points in
X (which are not available to us as measurements in our
original problem setup) as a benchmark for comparison to
the results in the main text, where we apply the algorithm to
the measurements. In Figure 4, we ran the diffusion maps
algorithm to the set of angles that generated the images,
where we represented each angle by a complex number with
the magnitude of one and the given angle, and we used the
Euclidean distance between them as the distance on X . As
expected, the embedded points have constant local density
(i.e., they are uniformly distributed).
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Fig. 4: The embedding resulting from applying diffusion maps
to the angles directly, represented as complex numbers of
magnitude one. The coloring is given by the true angle in
panel (a) and the local density with r = 0.05 in panel (b).

2) Local density of the measured data points: The central
claim of this paper is that applying manifold learning to
measured data without careful attention to the metric on Y can
lead to wrong conclusions about certain questions. The point
where metric distortions due to the measurement function are
introduced in the processing pipeline is when computing pair-
wise distances between the points on Y . As a further check that
this is indeed the case, in Figure 5 we show the local density
of the images themselves (the points on Y): the coordinates of
each image are its embedding coordinates (the same as in the
main text), and the coloring is given by the local density of the
images in panel (a) and the local density of the embeddings
in panel (b). The radius r of the ball used to approximate the
local density in (a) was chosen so that the maximum value of
the local density is approximately the same as the maximum
value of the local density in (b). Figure 5 shows that the same
modes seen in the embedding are also present in the measured
data. The specific value may not be numerically identical due
to subtleties in the definition of the embedding and the nature
of the approximation. However, the same kind of effect is
clearly visible.
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Fig. 5: Local density of the points on Y in (a) and on Z in
(b). The coordinates of the points are given by the embedding
in Z in both plots. The radius for computing the local density
on Y , r = 9, was chosen so that the maximum value of the
density matches the maximum value of the density on Z .

3) Two modalities and non-uniqueness: To further illustrate
the problem raised in this article, we now consider a slightly
modified setup to demonstrate the non-uniqueness of the
parametrization. Instead of one camera, we take photographs
of the spinning rigid object using two different cameras placed
at two distinct locations. We denote the two measurement
functions by f1 and f2 and the two datasets by {y1i }ni=1 ⊂ Y1

and {y2i }ni=1 ⊂ Y2. The images y1i and y2i at index i taken by
the two cameras respectively correspond to the same ground
truth point xi. This setup is illustrated in Figure 6. The ambient
dimension is D = 108000, the number of images taken by
each camera is n = 1000, and the measurements are taken
at equal time intervals, so the distribution of the data on the
phenomenon manifold X is uniform.

We apply the diffusion maps algorithm separately to each



Fig. 6: Setup of the numerical experiment with two measured
datasets. Using two cameras at different locations, we collect
two distinct sets of images on the measurement manifolds Y1

and Y2, respectively.

dataset, corresponding to samples from the two measure-
ment manifolds Y1 and Y2. The resulting two-dimensional
embeddings are shown in Figure 7: the left column shows
the embedding {ρ1(y1i )}ni=1 obtained from the measurements
{y1i }ni=1 ⊂ Y1 and the right column shows the embedding
{ρ2(y2i )}ni=1 obtained from {y2i }ni=1 ⊂ Y2. In each panel, we
show a scatter plot using the first two embedding coordinates
given by the diffusion maps algorithm. We denote by Z1

and Z2 the resulting low-dimensional manifolds. Similarly
to the one-camera experiment described in the main text,
the one-dimensional torus topology of the orientation angles
of the object is correctly identified (panels (a) and (b)).
However, panels (c) and (d) show that the metric is distorted.
In particular, the distributions of the images in both datasets
are incorrectly shown to have two modes (we know that
the true distribution is uniform). Moreover, the modes are
not compatible: the mode observed in one camera does not
correspond to the same true angles as those observed in the
other camera. This can be seen in Figure 8, where images from
high and low-density regions on Z1 correspond to seemingly
arbitrary points on Z2, whose high and low-density regions
correspond to different orientations on X . This is, of course,
not surprising, given that each camera takes the photographs
from different directions and considering the symmetries in
this problem.

In this paper, we showed how attempts to solve a simple

problem, such as identifying the dominant state of a system,
can lead to incorrect answers when applying manifold learning
to the measured data. While the experiment presented in the
main text of the article shows that the answer we obtain can
be incorrect in a non-obvious way, the two-camera experiment
presented in this appendix demonstrates that different measure-
ment modalities can produce different answers, with no way
to compare the quality of the two answers objectively. More
generally, this shows that the estimated measurement manifold
is not unique and not invariant to the measurement modality.

This experiment corresponds to several relatively common
real-life settings. One example is when multiple different
algorithms are applied to the same data, perhaps with different
processing pipelines. The processing pipelines are analogous
to our different cameras and may not produce the same result.

Another real-life setting is when attempting to align mea-
surements of an underlying phenomenon, acquired using two
distinct modalities, calibrated differently and possibly taken
on different days. This is the case, for example, when the data
is collected in two separate batches, potentially in different
laboratories. In this case, even if the two datasets are assumed
to have the same distribution, batch effects are present due
to potentially different experimental settings. Our experiments
show that a rigid transformation cannot align embeddings
obtained from such datasets.

−1 0 1

−1

0

1

0

1

2

3

4

5

6
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(b) Right camera, true angle
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Fig. 7: Embeddings obtained using images from the left
camera (left column) and the right camera (right column). The
coloring is given by the true angle in the top row and the local
density of points (r = 0.05) in the bottom row.



Fig. 8: The embeddings with example images from the esti-
mated distributions. The images in the top row correspond to
a point in a high-density region of the left camera embedding,
and the images in the bottom row correspond to a point in
a low-density region of the left camera embedding. In each
row of images, we show the top view of the object displaying
the true orientation angle (left), the object as seen by the left
camera (middle), and the object as seen by the right camera
(right).

4) Top view measurements: In the previous experiment, we
showed that different measurement functions lead to embed-
dings where the metric is distorted in different ways without
knowing which one is more accurate. To further strengthen
this argument, we show an example where the measurement
function distorts the distances but preserves the local geometry.
The images of the rotating horse are captured from the top, and
the resulting embedding and density are shown in Figure 9.
In practice, there is no way of knowing, only from the data,
that we are in a case where the local geometry on X is
preserved. This experiment and the one in Appendix A3
reinforce that the embedding we obtain depends heavily on
how the measurements are taken and that the solution we
expect to see is not objectively better than other possible
solutions, given the data.
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Fig. 9: Low-dimensional embedding of the images of the
spinning horse viewed from the top. The coloring is given
by the true orientation angle of the horse in panel (a) and the
local density of points (r = 0.05) in panel (b).

B. Diffusion maps

For completeness, we present the diffusion maps algorithm
used throughout the article, as described in [1] and adapted
in [17]. The phenomena discussed in this paper are not specific
to diffusion maps. Broadly interpreted, these issues appear in
many machine learning and manifold learning problems in one
form or another, except for special cases where they can be
corrected or “defined away.”

Input: Samples {yi}ni=1 ⊂ Y , a metric d(yi, yj) on Y ,
kernel width σ.

Output: Low-dimensional embedding coordinates
{zi}ni=1 ⊂ Rs and diffusion distances d̃(zi, zj).

1) Compute the similarity matrix W :

Wij = exp

(
−d(yi, yj)

2

σ

)
,∀i, j = 1, . . . , n.

2) Compute the diagonal normalization matrix

Qii = (

n∑
j=1

Wij)
−1.

3) Normalize the kernel K̃ = QWQ.
4) Compute the second diagonal normalization matrix

Q̃ii = (

n∑
j=1

K̃ij)
−1/2.

5) Normalize the kernel K = Q̃K̃Q̃.
6) Compute the n eigenvectors u0, u1, . . . , un−1 and eigen-

values λ0, λ1, . . . , λn−1 of K.
7) The s-dimensional embedding of each point yi is

zi =

(
λ1
u1(i)

u0(i)
, λ2

u2(i)

u0(i)
, . . . , λs

us(i)

u0(i)

)T

.

8) The diffusion distance is d̃(zi, zj) = ‖zi − zj‖2.


