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Abstract001

The conversation list function is widely built002
into most of the popular Large-Language-003
Model-based (LLM-based) chat applications.004
However, it can be hard for the users of these005
applications to find the chat history they want006
in the conversation list. One crucial reason for007
this problem is that sometimes the users tend008
to talk about multiple topics within one conver-009
sation. From this insight, we discussed the ben-010
efits of performing a chat tree construction on011
the chat history and filtering the history accord-012
ing to the tree before sending the user prompt013
with the history to the LLMs. We believe both014
LLM performance and user experience can be015
improved by doing so. A tree-constructing016
framework named CRyCHIc is then developed017
to construct the conversation tree efficiently.018
To test the performance of our framework, we019
also provide a test dataset called WildChatTree.020
Our model reaches 68.4% accuracy and 84.8%021
recall with only around 0.7B parameters on022
this dataset, reaching a performance similar to023
DeepSeek-V3. Our study offers direction for024
the future advancement of efficient chat tree025
construction. We will publicly release our code,026
dataset and models upon acceptance.027

1 Introduction028

The Large-Language-Model-based (LLM-based)029

chat applications are widely used nowadays030

(Achiam et al., 2023). Most of these chat applica-031

tions have a conversation list function to help users032

manage their conversations with LLMs. In the033

ideal situation, the chat content in a conversation034

should focus on one specific question or demand.035

After answering the user’s first prompt, the user036

is expected to put forward follow-up prompts that037

need to be responded to based on the first prompt038

and the first assistant response. However, in the039

actual user-assistant interaction scenario, users do040

not always start new conversations properly when041

discussing new topics with LLMs. This deviation042

from the initial design goal of the conversation 043

function may bring several problems: 1) By de- 044

fault, when new user requests are sent to LLMs, all 045

prior conversation history is included, which also 046

carries the risk of introducing irrelevant informa- 047

tion, leading the model to produce less accurate 048

results (Wu et al., 2024; Yoran et al., 2024; Jiang 049

et al., 2024). 2) Since users tend to discuss multi- 050

ple questions within one conversation, it might be 051

hard for users to find the fragments of chat history 052

they want from the conversation list when needed. 053

Consequently, the functionality of the conversation 054

list fails to achieve its intended purpose. 055

Apart from the issue with the conversation list 056

mentioned earlier, another potential factor that 057

could negatively impact both user experience and 058

the performance of LLMs is the user’s tendency to 059

ask follow-up questions based on their initial query. 060

Though these subquestions concern the same topic 061

and they need the same part of the chat history, an- 062

swering these subquestions might not require the 063

history of other subquestions. This phenomenon 064

indicates the potential tree structure of the chat his- 065

tory, where the user’s first question is the root of the 066

tree, while the subquestions and their derivatives 067

are the leaf nodes or the internal nodes of the tree. 068

If a user prompt is not a subquestion or follow-up 069

question of the first question, it can be recognised 070

as the root of a new conversation. By organising 071

the chat histories as trees, sending the chat histories 072

filtered by their trees could remove the irrelevant 073

information and thus improve LLM’s performance, 074

as shown in Figure 1. Besides, displaying the chat 075

histories as trees could improve the user’s reading 076

experience since they can locate the subquestion 077

they are concerned now more easily. 078

Observing these problems, developing a cer- 079

tain method that can automatically detect topic 080

changes, start new conversations, and construct 081

chat trees may effectively boost user experience, 082

bring positive effects to the LLM performance 083
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Figure 1: An example of using the tree to reconstruct
and filter the chat history to improve LLM performance.
(A) The original LLM input construction method. The
current user prompt will be appended to the end of
all the historical turns to construct the LLM input, no
matter whether the historical turns are relevant to the
user prompt or not. This may cause performance loss of
the LLM due to irrelevant information in these historical
turns. (B) LLM input with the tree-based chat history
reconstruction. First, the chat history is organised as
trees. Then, only the chat history tree branch relevant
to the current user prompt will be sent to the LLM with
the user prompt. This helps the LLM to only focus on
the relevant chat history.

and even contribute to the long-context LLM prac-084

tice. A naive method to achieve this goal is to085

simply apply an LLM to decide whether a new086

user prompt is a follow-up question of a certain087

chat turn in the chat history. However, this naive088

method can have performance issues. All the chat089

turns within a conversation need to be judged one090

by one to decide whether the new user prompt is091

their follow-up question. The total decision time092

can be very long, reaching an order of minutes, es-093

pecially considering the response time of the LLM094

judges. This performance and the corresponding095

high computation cost are unacceptable in the pro-096

duction environment. To address the aforemen- 097

tioned problems, we proposed an efficient chat re- 098

constructing framework called Chat Reconstructor 099

using Tree in the Context of Human-AI Interaction 100

(CRyCHIc). Inspired by Next Sentence Prediction 101

(Shi and Demberg, 2019) and text embedding mod- 102

els, we designed and trained the core component 103

in the CRyCHIc framework, the Follow-up Judge, 104

using a high-efficiency two-stage architecture. We 105

also introduced other components, such as the Im- 106

plicit Follow-up Question Classifier (IFQC), to pre- 107

process the user prompts after investigating possi- 108

ble types of user prompts. The overall pipeline of 109

the CRyCHIc framework is shown in Figure 2. 110

To compare the performance of popular commer- 111

cial LLMs with CRyCHIc, part of the mechanisms 112

in the CRyCHIc framework are applied to enhance 113

them. After testing CRyCHIc and these enhanced 114

commercial LLMs on a human-labelled dataset, 115

WildChatTree, we observed that this framework 116

can effectively reduce the computation cost when 117

reconstructing the chats into tree structures, while 118

gaining comparable performance against most of 119

the advanced commercial LLMs tested. 120

To summarise, our contributions are as follows: 121

(1) We analysed the failure of the conversation 122

list function in the chat applications nowadays, and 123

advocated that the chat history should be organ- 124

ised or reconstructed as a tree format to improve 125

user experience and reduce the disruptive effect 126

of irrelevant information in the chat history on 127

the LLMs. This chat history reconstruction ap- 128

proach can also provide inspiration for building 129

long-context LLMs. 130

(2) We proposed the CRyCHIc framework, an 131

efficient framework that can construct chat trees 132

with comparable accuracy and lower computation 133

cost. 134

(3) We designed a novel two-stage architecture 135

for the Follow-up Judge, and analysed the user 136

prompts’ types and inner structures, which may 137

provide a reference for the design of future efficient 138

chat reconstructors. 139

(4) We provided a human-labelled dataset, Wild- 140

ChatTree, containing 100 conversations and 567 141

turns to test the accuracy of chat tree construction. 142

2 Methodology 143

2.1 Task Definition 144

The task we would like to address in this work is 145

reconstructing the chat history between the user 146
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Figure 2: The pipeline of the CRyCHIc framework.

and the AI assistant into trees and filtering the chat147

history using the trees. Formally, the chat history148

H contains multiple conversation turns sorted in149

the creation time manner ti = (pi, ri), where pi150

refers to the user prompt in this turn and ri refers151

to the model response in this turn. The task re-152

quires H to be reconstructed into trees of turns153

T = {Tj , j ∈ N+}. Each tree Tj contains several154

turns and directed edges (tn, tm). The edge be-155

tween tn and tm exists only if the generation of156

rn in tn to respond pn relies on the information157

or instruction from tm. If the edge exists, tm can158

be called the parent of tn. The basic method to159

tackle this task is to traverse ti in H to determine160

whether ti is the parent of the new user prompt pn.161

Aside from the basic definition of the task, several162

additional simplifications are applied in this work.163

If tv relies on the information from its ancestor164

tu, where ancestor means there is a directed path165

from tv to tu, it is not needed to establish an edge166

(tv, tu). Furthermore, in the real scenario, one turn167

can have multiple parents. The CRyCHIc frame-168

work implemented in this work only considers the169

situation where one turn can only have one parent170

node to simplify the task. Correspondingly, the171

data in the WildChatTree test dataset also follows172

the same settings.173

2.2 Framework Overview 174

As shown in Figure 2, the pipeline of the CRyCHIc 175

framework has two stages. From the input of the 176

user prompt to the decision of its insert position in 177

the tree, the first stage (§2.3, §2.4) employs three 178

modules to classify and simplify the user prompt 179

and insert the user prompt into the right position in 180

the tree. After sending the filtered chat history to 181

the LLM to get the model’s response, a few oper- 182

ations will be applied to the response to generate 183

embeddings. The current turn, the reference of 184

its parent and the embedding of the turn will be 185

stored in the database next, preparing for future 186

use (§2.5). Many prompt templates are used to in- 187

struct DeepSeek-V3 (DeepSeek-AI et al., 2025) to 188

generate data for the modules, which are displayed 189

in Appendix A. 190

2.3 User Prompt Preprocessing 191

2.3.1 User Prompt Analysis 192

To improve the efficiency and accuracy of the 193

main component in the CRyCHIc framework, the 194

Follow-up Judge (§2.3.4), we reviewed the user 195

prompts when building the test dataset and pro- 196

posed two modules to categorise and filter the user 197

prompts before sending them to the Follow-up 198

Judge. 199

First, some of the user prompts are simple 200

follow-up questions like "Continue" and "Translate 201

this". There are no explicit topic-related tokens 202

in these prompts to show the topic or keywords 203

they are discussing, seemingly allowing them to be 204

follow-up questions to any turns in the chat history. 205

In reality, however, users typically omit these topic- 206

specific references deliberately, not because their 207

requests can connect to any context, but because 208

the subject they wish to discuss has already been 209

clearly shown in the most recent turn. These user 210

prompts are called implicit follow-up questions. 211

The IFQC (§2.3.2) is developed to pick out these 212

questions. 213

As shown in Figure 2, the sentences in the user 214

prompt can be categorised into three categories, 215

polite expression, information and instruction. The 216

types of sentences within one user prompt can de- 217

termine the type of the user prompt. To be specific, 218

the instructions have the highest priority. If a user 219

prompt contains an instruction, it will be assigned 220

the instruction label. If it does not have instructions 221

but has information, it will be assigned the informa- 222

tion label. Finally, if it only has polite expressions 223
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inside, it will be assigned the polite expression la-224

bel. In the Prompt Simplifier (§2.3.3), only the225

prompts assigned with the instruction label will be226

sent to the Follow-up Judge, while the other two227

types of prompts will be assigned a position in the228

tree directly.229

2.3.2 Implicit Follow-up Question Classifier230

As mentioned above, the IFQC focus on classify-231

ing the user prompts into two categories, Explicit232

Follow-up Questions (EFQs) and Implicit Follow-233

up Questions (IFQs).234

Module Architecture We believed that the IFQs235

are short sentences since long sentences will need236

topic-related words to build. Thus, we used a rel-237

atively small model, RoBERTa-base (Liu et al.,238

2019), as the base model, with a Multi-Layer Per-239

ceptron (MLP) as the classification head and 64240

tokens as the max input length, to build the IFQC.241

In detail, we extract the last hidden state of the first242

token from RoBERTa’s output as the embedding243

of the input sentence. An MLP classification head244

with 3 hidden layers is then responsible for classi-245

fying the embedding. Regarding the classification246

task of this module, the cross-entropy loss function247

is employed to fine-tune it.248

Training Data Generation To train this model,249

we synthesised data using DeepSeek-V3. Three250

prompt templates are used to instruct the model251

to generate the data. They are positive prompts,252

aiming to generate the IFQs, negative prompts for253

EFQs and negative prompts for starting new topics.254

Finally, around 4.5k examples are used to train this255

module.256

2.3.3 Prompt Simplifier257

The Simplification Functionality Besides the258

aforementioned labelling function, Prompt Simpli-259

fier is also responsible for simplifying the EFQs260

filtered by the IFQC, for the Follow-up Judge. This261

function is also designed based on the idea of re-262

moving the irrelevant information. Given a sim-263

plified user prompt, the Follow-up Judge can fo-264

cus more on the instruction sentences in the user265

prompt to improve the performance of the whole266

framework. The implementation of this functional-267

ity is simple. For those user prompts which have268

instruction sentences, all the instruction sentences269

and one information sentence (if it exists) will re-270

main to construct the simplified user prompt.271

Module Architecture First, the user prompt is 272

segmented into sentences using the en_core_web_md 273

from spaCy (Honnibal et al., 2020). A [SEP] to- 274

ken will then be concatenated to the end of these 275

segmented sentences, and then all of them will 276

be concatenated together. This operation can be 277

expressed as: 278

p′ = s1⊕[SEP ]⊕s2⊕[SEP ]⊕...⊕sn⊕[SEP ], 279

where P = {si, i = 1, 2, ...n} (1) 280

In this formula, p′ represents the processed user 281

prompt, P represents the set of sentences seg- 282

mented from the original user prompt, and ⊕ repre- 283

sents the concatenation operation. Subsequently, p′ 284

will be input into the fine-tuned base model of the 285

Prompt Simplifier, gte-base-en-v1.5 (Zhang et al., 286

2024), to get the last hidden states of every [SEP] 287

token as the embeddings of each sentence. This 288

concatenation operation can utilise the contextual 289

information to provide help for the classification 290

of every sentence. A similar MLP classification 291

head as the one in Prompt Simplifier will classify 292

every sentence using its embedding and assign it 293

one of the three labels. The filtering mechanism 294

mentioned before will then be applied to the set of 295

sentences to build the filtered user prompt, and the 296

user prompt will also be labelled accordingly. 297

Training Data Preparation We sampled 20k 298

real English user prompts from the WildChat 299

dataset (Zhao et al., 2024), a corpus of 1 million 300

user-ChatGPT conversations, and labelled the sen- 301

tences in them using DeepSeek-V3 similarly. We 302

asked the LLM to score their certainty of the la- 303

belling result from 0-5, and only accept the results 304

that have a score of 4 or 5. Finally, around 15k 305

user prompts remained as the training data. 306

2.3.4 Follow-up Judge 307

Module Architecture Initially, we decided to 308

employ the follow-up prediction approach, similar 309

to the one used in the Next Sentence Prediction 310

(NSP) task (Devlin et al., 2019; Sun et al., 2022). 311

This approach requires using the model to traverse 312

and process historical turns to check whether it is 313

the parent of the current user prompt or not, result- 314

ing in high computational and time consumption. 315

The details of this approach are discussed in §4.2. 316

To tackle the aforementioned problem, the 317

Follow-up Judge employs two sub-modules, the 318

embedding part and the classifier part. As the core 319

component in the CRyCHIc framework aiming to 320
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process domain-specific data, the embedding part321

is fine-tuned based on a larger base model, gte-322

large-en-v1.5 (Zhang et al., 2024). The classifier323

part is an MLP classifier with 5 hidden layers.324

This module is allocated at two positions, after325

the Prompt Simplifier and in the LLM response326

postprocessing stage. When receiving the user327

prompt from Prompt Simplifier, the whole module328

will be applied to it, while only the embedding329

part will be allocated to generate embeddings for330

the model response, which will be introduced in331

§2.5. By employing this two-part architecture, the332

embeddings of the historical turns can be retrieved333

from the database, eliminating the need for recalcu-334

lation and largely reducing the time consumption.335

Only the user prompt needs to be embedded when336

receiving it. Compared to the NSP-based approach337

mentioned above, although there is around 3% ac-338

curacy loss (94.8% → 91.8%) on the test split of339

this module when training it, we obtained great340

efficiency improvement.341

In detail, the embedding part will be applied to342

the user prompt to get its embedding ep. Then, n343

embeddings of the most recent turns in the chat344

history Erecent = {ehi , i ≤ n ∈ N+} will be re-345

trieved from the embedding database. From the346

most recent history turn embedding to the least re-347

cent history turn embedding, each ehi will interact348

with ep to generate the classifier part input, which349

is defined as follows:350

einteract = ehi ⊕ ep ⊕ (ehi − ep), (2)351

where ehi and ep preserves the prompt and history352

turn information, while ehi − ep indicates the order353

of sequence between the two embeddings.354

Consequently, the classifier part will assign a355

score for every historical turn, representing the356

probability of being the parent of the current user357

prompt. As mentioned in §2.1, only one parent will358

be assigned to each turn. Thus, only the historical359

turn with scores above the threshold and higher360

than other turns will be selected as the father of361

the user prompt. If no historical turn has a score362

higher than the threshold, the user prompt will be363

a root for a new conversation tree.364

Training Data Preparation To train the Follow-365

up Judge with domain-specific data, we synthesise366

the data from several datasets. First, we sampled367

pairs of historical turns and user prompts from the368

WildChat dataset and filtered the data by employ-369

ing DeepSeek-V3 as a judge to get 63k pairs. To370

help this module to familiar with different enti- 371

ties, we generate around 80k pairs based on the 372

Wikipedia page categories. To train this module 373

on the math and coding domain, we also transform 374

the question-answer pairs in the APPS and MATH 375

datasets (Hendrycks et al., 2021a; Hendrycks et al., 376

2021b) into chat histories. DeepSeek-V3 is then re- 377

quired to synthesise the user prompts based on the 378

transformed histories. The APPS dataset provided 379

around 9k pairs, and the MATH dataset provided 380

around 14k pairs. In total, around 165k samples 381

are used to train and test this module. 382

2.4 Deciding the Insert Position in the Tree 383

The user prompt preprocessing stage has divided 384

the user prompts into the following categories: 385

1. Implicit Follow-up Questions; 386

2. Polite Expressions like "Hello", "Thanks"; 387

3. Information provided for the former instruc- 388

tions in the chat history; 389

4. Explicit Follow-up Instructions with Parents; 390

5. Explicit Follow-up Instructions without Par- 391

ents; 392

Before discussing how to decide the insert position 393

in the chat history tree based on these categories, 394

the highest priority is that no matter what category 395

the user prompts belong to, if there is no turn in 396

the chat history, they will become the root of a new 397

tree. As to the user prompts in categories 1 and 398

3, they will be directly regarded as the children 399

of the most recent turn in the chat history. For 400

the user prompts in categories 2 and 4, they will 401

become the root of a new tree. For the user prompt 402

in category 3, the insert position is discussed in 403

§2.3.4. After inserting the current user prompt 404

into the correct place, all the ancestors (if they 405

exist) will be retrieved to construct the filtered chat 406

history and sent to the LLM with the user prompt. 407

2.5 Model Response Postprocessing 408

After acquiring the LLM-generated response based 409

on the filtered chat history and user prompt, the 410

embedding component of the Follow-up Judge pro- 411

cesses both the user prompt and LLM response to 412

generate embeddings for the current turn. The em- 413

bedding generation process follows these steps: (1) 414

Truncate the user prompt and the LLM response 415

to fit within the max input length (512 tokens); 416

(3) Concatenate the truncated user prompt with the 417

truncated LLM response and append a [CLS] token 418

to the end of this combined text; (4) Process this 419

5



sequence through the embedding component of the420

Follow-up Judge; and (5) Extract the last hidden421

state of the appended [CLS] token. The generated422

embedding will then be stored in the embedding423

database with the LLM response.424

3 Experiments425

In this section, we assess the CRyCHIc frame-426

work by exploring three key questions: (1) Can427

CRyCHIc have comparable performance with the428

leading commercial LLMs on the chat tree con-429

struction task? (2) How do individual sub-modules430

contribute to CRyCHIc’s performance improve-431

ment? (3) Can CRyCHIc help to improve LLMs’432

performance on downstream tasks?433

3.1 Performance on Chat Tree Construction434

Task435

3.1.1 Dataset436

To answer the first question, we developed a dataset437

called WildChatTree, containing 100 real human-438

LLM conversations and 567 turns. As its name439

indicates, WildChatTree is built on 100 English440

human-LLM conversations sampled and manually441

selected from the WildChat dataset (Zhao et al.,442

2024). Each original sample from WildChat is443

reviewed carefully by graduate-level human an-444

notators. The main modification made on these445

samples is that every turn is assigned a parent turn446

if it needs to be generated based on the informa-447

tion from its parent. By asking the chat tree con-448

structing models to assign parents turn by turn, we449

can calculate the accuracy, precision, recall and F1450

score of these models.451

3.1.2 Baseline452

Model Size Analysis Considering the require-453

ment on time efficiency of the chat tree construc-454

tion task in the context of human-AI interaction,455

the size of the CRyCHIc framework needs to be456

analysed as follows before selecting the baseline457

models.458

• IFQC: 126M parameters, using RoBERTa-459

base as the base model.460

• Prompt Simplifier: 138M parameters, using461

gte-base-en-v1.5 as the base model.462

• Follow-up Judge: 438M parameters, using463

gte-large-en-v1.5 as the base model of the464

embedding part.465

To summarise, there are around 702M parameters466

in the CRyCHIc framework in total.467

Baseline Model Selection To compare the per- 468

formance of the CRyCHIc framework with the 469

leading commercial LLMs, we chose several rep- 470

resentative models. We chose DeepSeek-V3 471

(DeepSeek-AI et al., 2025) since most of our train- 472

ing data is synthesised by this model. We also 473

chose GPT-4.1 (OpenAI, 2025), the newest flag- 474

ship model from OpenAI. To compare the perfor- 475

mance of CRyCHIc with smaller models, we chose 476

GPT4o-mini (Hurst et al., 2024) and Qwen3-Turbo 477

(Yang et al., 2025) since their computational re- 478

quirements are relatively lower, though still higher 479

than our model’s. We observed Qwen3-Turbo level 480

models have difficulty in instruction following, in- 481

dicating that models smaller than these models 482

cannot perform the task well. Therefore, we do not 483

test models that have a similar size to the CRyCHIc 484

framework. We also tested the situation if no chat 485

tree reconstruction is applied to the chat history, 486

which means that for every two turns, the former 487

turn will become the parent of the latter turn. 488

Enhancement on Baseline Models To adapt 489

these models to the chat tree construction task with 490

higher efficiency, we asked them to label the user 491

prompts with "polite expression", "information" or 492

"instruction" before finding the parent turn of the 493

user prompts. So the experiment results of these 494

models in Table 1, whose name has a * mark, are 495

generated with the aforementioned enhancement. 496

The detailed method to apply the enhancement is 497

demonstrated in the Appendix C. 498

3.1.3 Experiment Settings 499

For the CRyCHIc framework, several hyperparam- 500

eters need to be determined for prediction. The 501

historical turns retrieval number in the Follow-up 502

Judge is 20, and the threshold for it is 0.4. The 503

training of the modules in the CRyCHIc framework 504

used PyTorch, and the training hyperparameters are 505

reported in the Appendix B. For the baseline mod- 506

els, we use a historical context window of 10 turns. 507

The threshold for determining follow-up situations 508

is set at 4 on a 0-5 scale. When the LLM assigns 509

a belief score of 4 or higher to its prediction, the 510

current user prompt is classified as a child of the 511

historical turn. Due to the resource limitation, only 512

a single run with the temperature set to 1 is per- 513

formed in this work. 514

3.1.4 Results 515

As shown in Table 1, the enhanced GPT-4.1 shows 516

the best performance among all for metrics except 517
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for recall, reaching 77.1% accuracy and 76.4%518

F1 score, while it is the most expensive and519

computationally-intensive model among the tested520

models. The enhanced DeepSeek-V3 delivered the521

second-best performance in accuracy and precision,522

achieving 69.7% accuracy and 67.7% precision.523

Meanwhile, CRyCHIc showed the highest recall,524

which is 84.8%, and the second-best performance525

in F1 score, which is 66.2%. As to the smaller526

models, such as GPT4o-mini and Qwen3-Turbo,527

they showed unacceptable performance in recall,528

one is 40.3% and the other is 35.0%. We also529

observed that the non-reconstructing strategy can530

only provide the lowest accuracy but the third-best531

performance in recall. To summarise, CRyCHIc532

can provide performance similar to the enhanced533

DeepSeek-V3, while largely reducing the computa-534

tion consumption. We also tested the performance535

of the original DeepSeek-V3. The result indicates536

that the labelling strategy brought great perfor-537

mance improvement to these commercial LLMs,538

especially in recall.539

Among the four metrics, the recall should be540

especially focused on. Though one of the goals of541

performing chat tree construction is to remove the542

irrelevant information, it is more crucial to preserve543

the necessary information to secure the basic per-544

formance. Recall can measure the model’s ability545

to preserve the necessary information well. We can546

observe that CRyCHIc largely outperforms the en-547

hanced DeepSeek-V3 in recall (+23.0%), demon-548

strating its ability to retain necessary information.549

Model Accuracy Precision Recall F1 Score
GPT-4.1* 0.771 0.695 0.847 0.764
DeepSeek-V3* 0.697 0.677 0.618 0.646
GPT4o-mini* 0.586 0.521 0.403 0.454
Qwen3-Turbo* 0.578 0.585 0.350 0.438
DeepSeek-V3 0.661 0.672 0.476 0.558
Non-Reconstructuring 0.446 0.503 0.797 0.617
CRyCHIc 0.684 0.566 0.848 0.679

Table 1: Comparison of the performance between pop-
ular commercial LLMs and CRyCHIc on the WildChat-
Tree dataset. Model names with * representing these
models are enhanced by the labelling strategy similar
to the one used in CRyCHIc. The results in bold repre-
sent the best performance, while the underlined results
indicate the second-best performance.

550

3.2 Ablation Study551

In this section, we tried to remove the modules in552

the CRyCHIc pipeline that do not harm the basic553

operation of CRyCHIc to prove the necessity of 554

these modules. 555

The experiment result shown in Table 2 demon- 556

strates that both the IFQC and the Prompt Simpli- 557

fier have a positive contribution on all four met- 558

rics for the WildChatTree dataset. Between the 559

two modules, IFQC contributes more to the perfor- 560

mance of the CRyCHIc model, especially to the 561

precision (+10.3%). 562

Model Accuracy Precision Recall F1 Score
CRyCHIc 0.684 0.566 0.848 0.679
w/o PS 0.635 0.481 0.714 0.575
w/o IFQC 0.616 0.463 0.714 0.562

Table 2: Comparison of the performance between the
full CRyCHIc pipeline and the pipeline that disabled
IFQC or Prompt Simplifier (PS).

3.3 Influence on Downstream Tasks 563

To test the influence of reconstructing the conversa- 564

tions into trees on the downstream tasks, we modi- 565

fied the MultiChallenge benchmark (Sirdeshmukh 566

et al., 2025) to MixMC, as shown in Figure 3. In 567

detail, for every two data points in MultiChallenge, 568

the conversation histories inside them are mixed 569

randomly, while the turns in each conversation 570

keep the original relative position. This procedure 571

generates two new data points, which only changed 572

the conversation histories in the original datapoints, 573

while the other keys, like the final user prompt and 574

pass criteria, stay the same. To perform the test, 575

we chose two models, CRyCHIc and GPT-4.1, to 576

reconstruct the conversations in MixMC before 577

sending the datapoints into the evaluation pipeline 578

provided by MultiChallenge. We observed the fol- 579

lowing conclusions in the experiment result shown 580

in Table 3. 581

• When processing with the two irrelevant top- 582

ics within one conversation in the MixMC 583

benchmark, the response model suffers per- 584

formance loss on all 4 challenges. 585

• The current chat reconstruction models, even 586

the best model, GPT-4.1, cannot reconstruct 587

the trees well, causing an accuracy drop on 588

three of the challenges. The possible reasons 589

are: (1) Sometimes the final user prompt will 590

be recognised as a totally new question with 591

no relationship with any turn in the chat his- 592

tory; (2) The models will assign the most re- 593

cent turn the parent of the user prompt clas- 594

sified as information, which can be a good 595
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Benchmark Chat Rec. Model Response Model Overall Score Inference Mem. Self-coherence Inst. Retention Reliable Ver. Editing
MixMC CRyCHIc GPT-4o 0.168 0.062 0.180 0.130 0.300
MixMC GPT-4.1 GPT-4o 0.188 0.097 0.220 0.159 0.275
MixMC - GPT-4o 0.193 0.097 0.220 0.203 0.250
MultiChallenge - GPT-4o 0.227 0.159 0.220 0.261 0.268

Table 3: The influence of chat tree reconstruction using CRyCHIc and GPT-4.1 on the MixMC benchmark. The
four challenges in the MultiChallenge benchmark are Inference Memory, Self-coherence, Instruction Intention, and
Reliable Versioned Editing.

strategy processing conversations in the real596

scenario, but can result in errors when dealing597

with randomly mixed conversations.598

• Both chat reconstruction models can improve599

the performance of the response model on600

reliable versioned editing.601

4 Related Work602

4.1 Benchmarks for Multi-turn LLMs603

Assessing the ability of LLMs in the context of604

multi-turn conversation is gathering more concerns605

nowadays. Compared to the former single-turn606

benchmarks like AlpacaEval (Dubois et al., 2025),607

MT-Bench (Zheng et al., 2023) and MT-Bench++608

(Sun et al., 2023) have expanded evaluations to609

include multi-turn scenarios across multiple sub-610

ject areas. Meanwhile. These datasets cannot fulfil611

the significant need for more detailed and nuanced612

evaluation methods for multi-turn interactions be-613

tween humans and AI systems. Thus, MT-Bench-614

101 (Bai et al., 2024) and MultiChallenge (Sirdesh-615

mukh et al., 2025) have been developed to perform616

fine-grained LLM evaluation. However, they do617

not notice the multi-topic nature of the conversa-618

tions conducted in LLM chat applications. Many619

users tend to talk about several different topics620

Figure 3: A demonstration of mixing original data
points in the MultiChallenge benchmark to create the
MixMC benchmark.

within one conversation context, highlighting the 621

need for a more realistic multi-turn conversation 622

benchmark. 623

4.2 Next Sentence Prediction 624

The initial inspiration for the design of Follow- 625

up Judge comes from the approach BERT used 626

to tackle the Next Sentence Prediction (NSP) task 627

(Devlin et al., 2019). To be specific, to solve the 628

NSP task, the input of the language model should 629

be constructed using the following equation (Sun 630

et al., 2022): 631

xinput = [CLS]x(1)
i [SEP]x(2)

i .[EOS], (3) 632

where x
(1)
i represents the sentence 1 and x

(2)
i rep- 633

resents the sentence 2. The final hidden state 634

of the [CLS] token will be extracted, and s = 635

Wsem(tanh(Wh[CLS]+b)) will be applied to gen- 636

erate a prediction. 637

In the chat tree construction task, x(1)
i represents 638

the historical turn and x
(2)
i represents the current 639

user prompt. 640

5 Conclusion 641

This study proposes a promising task called chat 642

tree (re)construction in the context of human-AI in- 643

teraction. We believe that by performing this task 644

to filter the chat history before sending the new 645

user prompt to the LLM can effectively improve 646

the performance of LLMs and reduce the computa- 647

tion consumption. Organising chat history as trees 648

can also boost user experience. To reach the goal of 649

constructing the chat tree efficiently, we designed 650

and implemented the CRyCHIc framework, achiev- 651

ing comparable performance to DeepSeek-V3 with 652

a much smaller model size. We also provided the 653

WildChatTree dataset for testing the performance 654

of models on the aforementioned task. We believe 655

that our work paves the way for future explorations 656

into the chat tree construction task. 657
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Declaration on Usage of Existing Artefacts659

The existing artefacts used in this research and their660

licenses are listed below:661

• PyTorch. License: Customised Apache 2.0662

• SpaCy. License: MIT663

• FAISS. License: MIT664

• WildChat. License: ODC-BY665

• MultiChallenge. License: Not specified666

• MATH. License: MIT667

• APPS. License: MIT668

• Wikipedia Dumps. License: Creative Com-669

mons Attribution-Share-Alike 4.0670

• GPT-4.1. License: Not specified671

• DeepSeek-V3. License: MIT672

• GPT4o-mini. License: Not specified673

• Qwen3-Turbo. License: Apache 2.0674

• RoBERTa-base. License: MIT675

• gte-base-en-v1.5 and gte-large-en-v1.5. Li-676

cense: Apache 2.0677

Though some artefacts do not specify a license,678

all of them can be used for research purposes.679

Upon acceptance, the dataset, models and code680

of this paper will be released under the MIT li-681

cense.682

Declaration on AI Writing Assistance683

In the writing process of this paper, AI is only used684

to give suggestions on word choices in this article,685

making it more formal.686

Limitations687

The experiment result in Table 1 demonstrates that688

the CRyCHIc framework can only reach 68.4%689

accuracy and 84.8% recall, which indicates that690

the CRyCHIc framework cannot be used in the691

production environment now. The experiment692

result on the MixMC benchmark also confirms693

this viewpoint. Possible reasons for this result in-694

clude (1) the low quality of the synthesised data695

by DeepSeek-V3, (2) the model size limitation696

and context window limitation on the Follow-up 697

Judge, and (3) ignorance of the history before the 698

turn when predicting the follow-up relationship 699

between the turn and the current user prompt. Be- 700

sides, due to the resource limitation, the CRyCHIc 701

framework is only trained on the English data. Fu- 702

ture work could train the modules in CRyCHIc to 703

adapt the framework to other languages and have a 704

longer context window. 705

Although we have tested the influence of apply- 706

ing CRyCHIc and enhanced GPT-4.1 to reconstruct 707

the conversation history in the MixMC benchmark, 708

the MixMC is not built on real user-LLM chats, 709

making the test results unreliable. A downstream 710

benchmark that is generated from real human-AI 711

interaction data is expected to be developed in the 712

future. 713

Potential Risks 714

Performing chat tree construction to filter the 715

chat history may deviate from the user’s original 716

thought when conducting conversations with AI 717

assistants. Furthermore, the models used to per- 718

form chat tree construction may have potential bias, 719

causing overemphasis on certain dialogue content. 720
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A Details of Training Data Generation859

A.1 IFQC Training Data Generation860

As mentioned in §2.3.2, a set of prompts with sev-861

eral pre-determined variables is used to generate862

the training data for the IFQC. The prompt tem-863

plates are shown below:864

Prompt Template for Generating Positive
Data

Generate 20 sentences. Follow the follow-
ing instructions to generate the response.
- The sentences should be follow-up
questions. It should contain a {END-
ING_MARK}.
- The sentences should mimic the human
user prompts when talking with an AI assis-
tant.
- The sentences should not contain any
nouns referring to a specific concept, like
’airplane’ and ’gradients’.
- The sentences should not contain any verbs
that are likely to appear in a certain domain.
- The sentences can contain pronouns and
verbs.
- The length of the sentences should be in
{LENGTH} words.
- All the generated sentences should be writ-
ten in a list in a JSON format like ‘’sen-
tences’: [s1, s2 ...].‘
- Do not repeat any sentence. Only give me
json result.

865

Prompt Template for Generating Negative
Data Which Still Contains Follow-up Ques-
tions

Generate 20 sentences. Follow the instruc-
tions below to generate the response. - The
sentences should be follow-up questions,
like asking for modification on the former
explanation.
- The sentences should contain a {END-
ING_MARK}.
- The sentences should mimic the human
user prompts when talking with an AI assis-
tant.
- The sentences should contain nouns refer-
ring to a specific concept relating to ’{DO-
MAIN}’.
- The length of the sentences should be in

866

{LENGTH} words.
- All the generated sentences should be writ-
ten in a list in a JSON format like ‘’sen-
tences’: [s1, s2 ...].‘
- Do not repeat any sentence. Only give me
json result.

867

Prompt Template for Generating Negative
Data Which Starts a New Topic

Generate 20 sentences. Follow the follow-
ing instructions to generate the response.
- The sentences should contain a {END-
ING_MARK}.
- The sentences should mimic the human
user prompts when talking with an AI assis-
tant.
- The sentences should contain nouns refer-
ring to a specific concept relating to ’{DO-
MAIN}’.
- The length of the sentences should be in
{LENGTH} words.
- All the generated sentences should be writ-
ten in a list in a JSON format like ‘’sen-
tences’: [s1, s2 ...].‘
- Do not repeat any sentence. Only give me
json result."

868

The ‘ENDING_MARK‘ is chosen from values 869

["question mark", "period"] and the ‘LENGTH‘ is 870

chosen from values ["3-5", "5-10", "10-20"]. For 871

the prompt template aiming at generating nega- 872

tive data, the extra variable ‘DOMAIN‘ is chosen 873

from a set of domains like "Geometry" given by 874

DeepSeek-V3. 875

A.2 Prompt Simplifier Training Data 876

Generation 877

Before labelling the sentences in the user prompts 878

using DeepSeek-V3, ‘en_core_web_md‘ model 879

from spaCy (Honnibal et al., 2020) is used to seg- 880

ment the user prompts. The prompt for labelling 881

the sentences (Zhao et al., 2024) is shown below: 882

Prompt for Labelling Sentences from User
Prompts

Analyze the given set of user sentences
from a human-AI conversation and classify
each sentence as one of the following
types:

883
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- Polite Expression: Greetings, thanks,
or courteous phrases that don’t contain
specific requests or information
- Instruction: Sentences that direct the AI to
perform a task, answer questions, or follow
specific guidelines
- Information: Sentences that provide facts,
context, or data to the AI.

For each sentence, determine its pri-
mary function in the context provided in
the list.
Return the analysis in JSON format with
the following structure:
json{{
"results": [
{{
"sentence": "Original sentence here",
"type": "One of: Polite Expression,
Instruction, or Information",
"score": "0-5 score of confidence of your
classification"
}}
]
}}
Consider the context of the conversation
when making your classification.

Examples:
Polite Expression:
- "Thank you for your help with this
problem."
- "Nice to meet you."

Instruction:
- "Please analyze this data and create a
visualization."
- "Write a summary of the main points in
this article."
- "Help me debug this code."
- "What is representation learning?"

Information:
"I’m working on a machine learning project
for image recognition."
"The file contains sales data from January
to December 2024."
"My computer is running Windows 11 with
16GB of RAM."
"10xp(xq+xr) dx (where p, q and r are

884

positive constants)"
"I have experience with Python but I’m
new to JavaScript."

The given set of user sentences:
{SENTENCE_LIST}

885

A.3 Follow-up Judge Training Data 886

Generation 887

As mentioned in §2.3.4, the generation of training 888

data for the Follow-up Judge is based on multiple 889

data sources. 890

A.3.1 WildChat Data Processing 891

Before sampling data from the WildChat dataset, 892

the original WildChat dataset is filtered by a series 893

of operations to make sure only English conversa- 894

tions with over 2 turns remain for the following 895

process. After sampling, a prompt will be applied 896

to instruct DeepSeek-V3 to filter the sampled data, 897

which is shown below: 898

Prompt for Labelling WildChat Data

Analyze the new prompt and determine
whether it is a follow-up question to
the provided chat history. Score the
relationship on a scale of 0-5, where 0
means completely unrelated and 5 means a
direct follow-up that information from the
chat history is needed to answer the prompt.

Provide your analysis in JSON for-
mat with two fields:
1. "explanation": Your brief explanation on
your score
2. "score": Your numerical score (0-5)

Chat History:
{CHAT_HISTORY}

New Prompt:
{USER_PROMPT}

Example response:
{{
"explanation": "Your explanation",
"score": 3
}}

899
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A.3.2 Wikipedia Data Processing900

To select 40k representative Wikipedia cate-901

gories from 2450k categories in the Wikimedia902

database English dump on May 01, 2022 (Wiki-903

media Foundation, 2022), the original categories904

are first embedded by a text embedding model905

stella_en_400M_v5 (Zhang et al., 2025). Then,906

these embeddings are clustered by KMeans imple-907

mented by FAISS (Douze et al., 2025), using 100 it-908

erations, and the categories whose embeddings are909

closest to the cluster centres are chosen to represent910

the clusters. Next, the selected 40k categories are911

regarded as the seed in the prompt, which will in-912

struct DeepSeek-V3 to synthesise domain-specific913

pairs between chat history and new user prompt.914

The prompts are shown below:915

Prompt for Generating Positive Pairs about
Given Category

**Task:**
Generate a chat history and a follow-
up prompt based on the theme "{CATE-
GORY}". The chat history should include
a user message and an assistant response
(limited to **200 words**), and the follow-
up prompt cannot be answered without the
context provided by the history.
**Format:**
“‘json
{{
"history": {{
"user": "User’s message here",
"assistant": "Assistant’s response here (max
200 words)"
}},
"prompt": "Follow-up prompt that cannot
be answered without the history"
}}
“‘
**Example:**
“‘json
{}
“‘

916

Prompt for Generating Negative Pairs about
Given Category (Same Theme)

**Task:**
Generate a chat history and a follow-
up prompt based on the theme "{CATE-

917

GORY}". The chat history should include
a user message and an assistant response
(limited to **200 words**), and the prompt
should start a new topic that has the same
theme as the history and can be answered
without the context provided by the history.
**Format:**
“‘json
{{
"history": {{
"user": "User’s message here",
"assistant": "Assistant’s response here (max
200 words)"
}},
"prompt": "Prompt start a new topic can be
answered without the history."
}}
“‘
**Example:**
“‘json
{}
“‘

918

Prompt for Generating Negative Pairs about
Given Category (Different Themes)

**Task:**
Generate a chat history based on the theme
"{CATEGORY_1}". The chat history
should include a user message and an assis-
tant response (limited to **200 words**).
Then generate a prompt based on another
theme "{CATEGORY_2}" which starts a
new topic and has no relevance with the his-
tory.
**Format:**
“‘json
{{
"history": {{
"user": "User’s message here",
"assistant": "Assistant’s response here (max
200 words)"
}},
"prompt": "Prompt start a new topic can be
answered without the history."
}}
“‘
**Example:**
“‘json
{}
“‘

919
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In the 80k generated pairs, there are 40k positive920

pairs and 40k negative pairs. The 40k negative921

pairs are also divided into two equal portions. The922

pairs in the first portion have chat history and user923

prompt with the same theme, and the pairs in the924

second portion have chat history and user prompt925

with different themes.926

A.3.3 MATH and APPS Data Processing927

To instruct DeepSeek-V3 to generate the following928

user prompts based on the chat history transformed929

from the MATH and APPS datasets (Hendrycks930

et al., 2021a; Hendrycks et al., 2021b), the follow-931

ing prompts are used:932

Prompt for Generating Positive Pair

Generate a follow-up prompt based on the
chat history below. The prompt can only
be answered based on the chat history. For
example, the prompt can be a question
asking for an explanation of the solution in
the chat history.

Chat History:
{HISTORY}

Format of your response:
“‘json
{{
"prompt": "Your follow-up prompt"
}}
“‘

933

Prompt for Generating Negative Pair

Generate a follow-up prompt based on the
chat history below. The prompt should not
have any relevance with the chat history
and can concentrate on any domain.

Chat History:
{}

Format of your response:
“‘json
{{
"prompt": "Your follow-up prompt"
}} “‘

934

B Details of Training Settings 935

B.1 Hyperparameters 936

The hyperparameters for training the IFQC are 937

listed below: 938

• num_epochs: 5, 939

• learning_rate: 3e-5 940

• batch_size: 32, 941

• hidden_sizes: [768, 512, 256], 942

• dropout_rate: 0.2 943

The main hyperparameters for training the Prompt 944

Simplifier are listed below. The batch size is the 945

accumulated batch size since DeepSpeed (Rasley 946

et al., 2020) is employed to accelerate the training. 947

• num_epochs: 20, 948

• learning_rate: 5e-5, 949

• batch_size (accumulated): 64, 950

• hidden_sizes: [768, 512, 256] 951

The main hyperparameters for training the 952

Follow-up Judge are listed below. The batch size 953

is the accumulated batch size since DeepSpeed is 954

employed to accelerate the training. 955

• num_epochs: 20, 956

• learning_rate: 1e-5, 957

• batch_size (accumulated): 512, 958

• hidden_sizes: [1024, 512, 256, 64, 16] 959

B.2 Hardware and Time Usage 960

The training of IFQC is done on a single NVIDIA 961

GeForce RTX 4070 Ti 12GB graphics card, using 962

2 minutes. The training of the Prompt Classifier 963

is done on 2 NVIDIA V100 32GB graphics cards, 964

using around 2 hours. The training of the Follow- 965

up Judge is also done on 2 NVIDIA V100 32GB 966

graphics cards, using around 3 hours. 967

C Details of Enhancement on Baseline 968

Models 969

To enhance the baseline models with a labelling 970

ability similar to the Prompt Simplifier, the follow- 971

ing prompt is used to instruct the models to assign 972

labels: 973
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Prompt for Labelling

Analyze the given user prompt from a
human-AI conversation and classify the
prompt as one of the following types:

- Polite Expression: Greetings, thanks,
or courteous phrases that don’t contain
specific requests or information
- Instruction: Sentences that direct the AI to
perform a task, answer questions, or follow
specific guidelines
- Information: Sentences that provide facts,
context, or data to the AI

Return the analysis in JSON format
with the following structure:
“‘json{{
"result":
{{
"sentence": "Original sentence here, if too
long, truncate to 20 words. Regard the
whole given user prompt as one sentence",
"type": "One of: Polite Expression,
Instruction, or Information"
}}
}}“‘

Examples:
Polite Expression:
- "Thank you for your help with this
problem."
- "Nice to meet you."

Instruction:
- "Please analyze this data and create a
visualization."
- "Write a summary of the main points in
this article."
- "Help me debug this code."
- "What is representation learning?"

Information:
"I’m working on a machine learning project
for image recognition."
"The file contains sales data from January
to December 2024."
"My computer is running Windows 11 with
16GB of RAM."
"10xp(xq+xr) dx (where p, q and r are
positive constants)"

974

"I have experience with Python but I’m
new to JavaScript."

The given user prompt:
{USER_PROMPT}

975

If the user prompt is labelled as an instruction, 976

the prompt displayed below will be used for in- 977

structing the LLM to predict whether the current 978

user prompt is a follow-up question of the given 979

turn: 980

Prompt for Judging Whether the User
Prompt is the Follow-up Question of the
Given Historical Turn or Not

Analyze the new prompt and determine
whether it is a follow-up question to
the provided chat history. Score the
relationship on a scale of 0-5, where 0
means completely unrelated and 5 means a
direct follow-up that information from the
chat history is needed to answer the prompt.

Provide your analysis in JSON for-
mat with two fields:
1. "explanation": Your brief explanation on
your score
2. "score": Your numerical score (0-5)
The json response must have surrounding
like “‘json.

Chat History:
{HISTORY}

New Prompt:
{USER_PROMPT}

Example response:
“‘json{{
"explanation": "Your explanation",
"score": 3
}}“‘

981
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