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Abstract

The conversation list function is widely built
into most of the popular Large-Language-
Model-based (LLM-based) chat applications.
However, it can be hard for the users of these
applications to find the chat history they want
in the conversation list. One crucial reason for
this problem is that sometimes the users tend
to talk about multiple topics within one conver-
sation. From this insight, we discussed the ben-
efits of performing a chat tree construction on
the chat history and filtering the history accord-
ing to the tree before sending the user prompt
with the history to the LLMs. We believe both
LLM performance and user experience can be
improved by doing so. A tree-constructing
framework named CRyCHIc is then developed
to construct the conversation tree efficiently.
To test the performance of our framework, we
also provide a test dataset called WildChatTree.
Our model reaches 68.4% accuracy and 84.8%
recall with only around 0.7B parameters on
this dataset, reaching a performance similar to
DeepSeek-V3. Our study offers direction for
the future advancement of efficient chat tree
construction. We will publicly release our code,
dataset and models upon acceptance.

1 Introduction

The Large-Language-Model-based (LLM-based)
chat applications are widely used nowadays
(Achiam et al., 2023). Most of these chat applica-
tions have a conversation list function to help users
manage their conversations with LLMs. In the
ideal situation, the chat content in a conversation
should focus on one specific question or demand.
After answering the user’s first prompt, the user
is expected to put forward follow-up prompts that
need to be responded to based on the first prompt
and the first assistant response. However, in the
actual user-assistant interaction scenario, users do
not always start new conversations properly when
discussing new topics with LLMs. This deviation

from the initial design goal of the conversation
function may bring several problems: 1) By de-
fault, when new user requests are sent to LLMs, all
prior conversation history is included, which also
carries the risk of introducing irrelevant informa-
tion, leading the model to produce less accurate
results (Wu et al., 2024; Yoran et al., 2024; Jiang
et al., 2024). 2) Since users tend to discuss multi-
ple questions within one conversation, it might be
hard for users to find the fragments of chat history
they want from the conversation list when needed.
Consequently, the functionality of the conversation
list fails to achieve its intended purpose.

Apart from the issue with the conversation list
mentioned earlier, another potential factor that
could negatively impact both user experience and
the performance of LLMs is the user’s tendency to
ask follow-up questions based on their initial query.
Though these subquestions concern the same topic
and they need the same part of the chat history, an-
swering these subquestions might not require the
history of other subquestions. This phenomenon
indicates the potential tree structure of the chat his-
tory, where the user’s first question is the root of the
tree, while the subquestions and their derivatives
are the leaf nodes or the internal nodes of the tree.
If a user prompt is not a subquestion or follow-up
question of the first question, it can be recognised
as the root of a new conversation. By organising
the chat histories as trees, sending the chat histories
filtered by their trees could remove the irrelevant
information and thus improve LLM’s performance,
as shown in Figure 1. Besides, displaying the chat
histories as trees could improve the user’s reading
experience since they can locate the subquestion
they are concerned now more easily.

Observing these problems, developing a cer-
tain method that can automatically detect topic
changes, start new conversations, and construct
chat trees may effectively boost user experience,
bring positive effects to the LLM performance
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Figure 1: An example of using the tree to reconstruct
and filter the chat history to improve LLM performance.
(A) The original LLM input construction method. The
current user prompt will be appended to the end of
all the historical turns to construct the LLM input, no
matter whether the historical turns are relevant to the
user prompt or not. This may cause performance loss of
the LLM due to irrelevant information in these historical
turns. (B) LLM input with the tree-based chat history
reconstruction. First, the chat history is organised as
trees. Then, only the chat history tree branch relevant
to the current user prompt will be sent to the LLM with
the user prompt. This helps the LLM to only focus on
the relevant chat history.

and even contribute to the long-context LLM prac-
tice. A naive method to achieve this goal is to
simply apply an LLM to decide whether a new
user prompt is a follow-up question of a certain
chat turn in the chat history. However, this naive
method can have performance issues. All the chat
turns within a conversation need to be judged one
by one to decide whether the new user prompt is
their follow-up question. The total decision time
can be very long, reaching an order of minutes, es-
pecially considering the response time of the LLM
judges. This performance and the corresponding
high computation cost are unacceptable in the pro-

duction environment. To address the aforemen-
tioned problems, we proposed an efficient chat re-
constructing framework called Chat Reconstructor
using Tree in the Context of Human-Al Interaction
(CRyCHIc). Inspired by Next Sentence Prediction
(Shi and Demberg, 2019) and text embedding mod-
els, we designed and trained the core component
in the CRyCHIc framework, the Follow-up Judge,
using a high-efficiency two-stage architecture. We
also introduced other components, such as the Im-
plicit Follow-up Question Classifier (IFQC), to pre-
process the user prompts after investigating possi-
ble types of user prompts. The overall pipeline of
the CRyCHIc framework is shown in Figure 2.

To compare the performance of popular commer-
cial LLMs with CRyCHlIc, part of the mechanisms
in the CRyCHIc framework are applied to enhance
them. After testing CRyCHIc and these enhanced
commercial LLMs on a human-labelled dataset,
WildChatTree, we observed that this framework
can effectively reduce the computation cost when
reconstructing the chats into tree structures, while
gaining comparable performance against most of
the advanced commercial LLMs tested.

To summarise, our contributions are as follows:

(1) We analysed the failure of the conversation
list function in the chat applications nowadays, and
advocated that the chat history should be organ-
ised or reconstructed as a tree format to improve
user experience and reduce the disruptive effect
of irrelevant information in the chat history on
the LLMs. This chat history reconstruction ap-
proach can also provide inspiration for building
long-context LLMs.

(2) We proposed the CRyCHIc framework, an
efficient framework that can construct chat trees
with comparable accuracy and lower computation
cost.

(3) We designed a novel two-stage architecture
for the Follow-up Judge, and analysed the user
prompts’ types and inner structures, which may
provide a reference for the design of future efficient
chat reconstructors.

(4) We provided a human-labelled dataset, Wild-
ChatTree, containing 100 conversations and 567
turns to test the accuracy of chat tree construction.

2 Methodology
2.1 Task Definition

The task we would like to address in this work is
reconstructing the chat history between the user
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Figure 2: The pipeline of the CRyCHIc framework.

and the Al assistant into trees and filtering the chat
history using the trees. Formally, the chat history
H contains multiple conversation turns sorted in
the creation time manner t; = (p;,r;), where p;
refers to the user prompt in this turn and r; refers
to the model response in this turn. The task re-
quires H to be reconstructed into trees of turns
T ={T},j € N*}. Each tree T} contains several
turns and directed edges (t,,t,,). The edge be-
tween t,, and t,,, exists only if the generation of
ry, in t,, to respond p,, relies on the information
or instruction from t,,. If the edge exists, t,, can
be called the parent of t,,. The basic method to
tackle this task is to traverse t; in H to determine
whether t; is the parent of the new user prompt p,,.
Aside from the basic definition of the task, several
additional simplifications are applied in this work.
If t, relies on the information from its ancestor
t,, where ancestor means there is a directed path
from t, to t,, it is not needed to establish an edge
(ty, ty,). Furthermore, in the real scenario, one turn
can have multiple parents. The CRyCHIc frame-
work implemented in this work only considers the
situation where one turn can only have one parent
node to simplify the task. Correspondingly, the
data in the WildChatTree test dataset also follows
the same settings.

2.2 Framework Overview

As shown in Figure 2, the pipeline of the CRyCHIc
framework has two stages. From the input of the
user prompt to the decision of its insert position in
the tree, the first stage (§2.3, §2.4) employs three
modules to classify and simplify the user prompt
and insert the user prompt into the right position in
the tree. After sending the filtered chat history to
the LLM to get the model’s response, a few oper-
ations will be applied to the response to generate
embeddings. The current turn, the reference of
its parent and the embedding of the turn will be
stored in the database next, preparing for future
use (§2.5). Many prompt templates are used to in-
struct DeepSeek-V3 (DeepSeek-Al et al., 2025) to
generate data for the modules, which are displayed
in Appendix A.

2.3 User Prompt Preprocessing

2.3.1 User Prompt Analysis

To improve the efficiency and accuracy of the
main component in the CRyCHIc framework, the
Follow-up Judge (§2.3.4), we reviewed the user
prompts when building the test dataset and pro-
posed two modules to categorise and filter the user
prompts before sending them to the Follow-up
Judge.

First, some of the user prompts are simple
follow-up questions like "Continue" and "Translate
this". There are no explicit topic-related tokens
in these prompts to show the topic or keywords
they are discussing, seemingly allowing them to be
follow-up questions to any turns in the chat history.
In reality, however, users typically omit these topic-
specific references deliberately, not because their
requests can connect to any context, but because
the subject they wish to discuss has already been
clearly shown in the most recent turn. These user
prompts are called implicit follow-up questions.
The IFQC (§2.3.2) is developed to pick out these
questions.

As shown in Figure 2, the sentences in the user
prompt can be categorised into three categories,
polite expression, information and instruction. The
types of sentences within one user prompt can de-
termine the type of the user prompt. To be specific,
the instructions have the highest priority. If a user
prompt contains an instruction, it will be assigned
the instruction label. If it does not have instructions
but has information, it will be assigned the informa-
tion label. Finally, if it only has polite expressions



inside, it will be assigned the polite expression la-
bel. In the Prompt Simplifier (§2.3.3), only the
prompts assigned with the instruction label will be
sent to the Follow-up Judge, while the other two
types of prompts will be assigned a position in the
tree directly.

2.3.2 Implicit Follow-up Question Classifier

As mentioned above, the IFQC focus on classify-
ing the user prompts into two categories, Explicit
Follow-up Questions (EFQs) and Implicit Follow-
up Questions (IFQs).

Module Architecture We believed that the IFQs
are short sentences since long sentences will need
topic-related words to build. Thus, we used a rel-
atively small model, RoBERTa-base (Liu et al.,
2019), as the base model, with a Multi-Layer Per-
ceptron (MLP) as the classification head and 64
tokens as the max input length, to build the IFQC.
In detail, we extract the last hidden state of the first
token from RoBERTa’s output as the embedding
of the input sentence. An MLP classification head
with 3 hidden layers is then responsible for classi-
fying the embedding. Regarding the classification
task of this module, the cross-entropy loss function
is employed to fine-tune it.

Training Data Generation To train this model,
we synthesised data using DeepSeek-V3. Three
prompt templates are used to instruct the model
to generate the data. They are positive prompts,
aiming to generate the IFQs, negative prompts for
EFQs and negative prompts for starting new topics.
Finally, around 4.5k examples are used to train this
module.

2.3.3 Prompt Simplifier

The Simplification Functionality Besides the
aforementioned labelling function, Prompt Simpli-
fier is also responsible for simplifying the EFQs
filtered by the IFQC, for the Follow-up Judge. This
function is also designed based on the idea of re-
moving the irrelevant information. Given a sim-
plified user prompt, the Follow-up Judge can fo-
cus more on the instruction sentences in the user
prompt to improve the performance of the whole
framework. The implementation of this functional-
ity is simple. For those user prompts which have
instruction sentences, all the instruction sentences
and one information sentence (if it exists) will re-
main to construct the simplified user prompt.

Module Architecture First, the user prompt is
segmented into sentences using the en_core_web_md
from spaCy (Honnibal et al., 2020). A [SEP] to-
ken will then be concatenated to the end of these
segmented sentences, and then all of them will
be concatenated together. This operation can be
expressed as:

p = 51®[SEP]|®se®[SEP|®...0s,B[SEP],
where P = {s;,i=1,2,..n} (1)

In this formula, p’ represents the processed user
prompt, P represents the set of sentences seg-
mented from the original user prompt, and & repre-
sents the concatenation operation. Subsequently, p’
will be input into the fine-tuned base model of the
Prompt Simplifier, gte-base-en-v1.5 (Zhang et al.,
2024), to get the last hidden states of every [SEP]
token as the embeddings of each sentence. This
concatenation operation can utilise the contextual
information to provide help for the classification
of every sentence. A similar MLP classification
head as the one in Prompt Simplifier will classify
every sentence using its embedding and assign it
one of the three labels. The filtering mechanism
mentioned before will then be applied to the set of
sentences to build the filtered user prompt, and the
user prompt will also be labelled accordingly.

Training Data Preparation We sampled 20k
real English user prompts from the WildChat
dataset (Zhao et al., 2024), a corpus of 1 million
user-ChatGPT conversations, and labelled the sen-
tences in them using DeepSeek-V3 similarly. We
asked the LLM to score their certainty of the la-
belling result from 0-5, and only accept the results
that have a score of 4 or 5. Finally, around 15k
user prompts remained as the training data.

2.3.4 Follow-up Judge

Module Architecture Initially, we decided to
employ the follow-up prediction approach, similar
to the one used in the Next Sentence Prediction
(NSP) task (Devlin et al., 2019; Sun et al., 2022).
This approach requires using the model to traverse
and process historical turns to check whether it is
the parent of the current user prompt or not, result-
ing in high computational and time consumption.
The details of this approach are discussed in §4.2.

To tackle the aforementioned problem, the
Follow-up Judge employs two sub-modules, the
embedding part and the classifier part. As the core
component in the CRyCHIc framework aiming to



process domain-specific data, the embedding part
is fine-tuned based on a larger base model, gte-
large-en-v1.5 (Zhang et al., 2024). The classifier
part is an MLP classifier with 5 hidden layers.

This module is allocated at two positions, after
the Prompt Simplifier and in the LLM response
postprocessing stage. When receiving the user
prompt from Prompt Simplifier, the whole module
will be applied to it, while only the embedding
part will be allocated to generate embeddings for
the model response, which will be introduced in
§2.5. By employing this two-part architecture, the
embeddings of the historical turns can be retrieved
from the database, eliminating the need for recalcu-
lation and largely reducing the time consumption.
Only the user prompt needs to be embedded when
receiving it. Compared to the NSP-based approach
mentioned above, although there is around 3% ac-
curacy loss (94.8% — 91.8%) on the test split of
this module when training it, we obtained great
efficiency improvement.

In detail, the embedding part will be applied to
the user prompt to get its embedding e”. Then, n
embeddings of the most recent turns in the chat
history Erecent = {€l,i < n € Nt} will be re-
trieved from the embedding database. From the
most recent history turn embedding to the least re-
cent history turn embedding, each e? will interact
with e” to generate the classifier part input, which
is defined as follows:

€interact = e? @ e’ S (e? - ep)v (2)

where e? and e? preserves the prompt and history
turn information, while e? — e indicates the order
of sequence between the two embeddings.

Consequently, the classifier part will assign a
score for every historical turn, representing the
probability of being the parent of the current user
prompt. As mentioned in §2.1, only one parent will
be assigned to each turn. Thus, only the historical
turn with scores above the threshold and higher
than other turns will be selected as the father of
the user prompt. If no historical turn has a score
higher than the threshold, the user prompt will be
a root for a new conversation tree.

Training Data Preparation To train the Follow-
up Judge with domain-specific data, we synthesise
the data from several datasets. First, we sampled
pairs of historical turns and user prompts from the
WildChat dataset and filtered the data by employ-
ing DeepSeek-V3 as a judge to get 63k pairs. To

help this module to familiar with different enti-
ties, we generate around 80k pairs based on the
Wikipedia page categories. To train this module
on the math and coding domain, we also transform
the question-answer pairs in the APPS and MATH
datasets (Hendrycks et al., 2021a; Hendrycks et al.,
2021b) into chat histories. DeepSeek-V3 is then re-
quired to synthesise the user prompts based on the
transformed histories. The APPS dataset provided
around 9k pairs, and the MATH dataset provided
around 14k pairs. In total, around 165k samples
are used to train and test this module.

2.4 Deciding the Insert Position in the Tree

The user prompt preprocessing stage has divided
the user prompts into the following categories:

1. Implicit Follow-up Questions;

2. Polite Expressions like "Hello", "Thanks";

3. Information provided for the former instruc-

tions in the chat history;
4. Explicit Follow-up Instructions with Parents;
5. Explicit Follow-up Instructions without Par-
ents;

Before discussing how to decide the insert position
in the chat history tree based on these categories,
the highest priority is that no matter what category
the user prompts belong to, if there is no turn in
the chat history, they will become the root of a new
tree. As to the user prompts in categories 1 and
3, they will be directly regarded as the children
of the most recent turn in the chat history. For
the user prompts in categories 2 and 4, they will
become the root of a new tree. For the user prompt
in category 3, the insert position is discussed in
§2.3.4. After inserting the current user prompt
into the correct place, all the ancestors (if they
exist) will be retrieved to construct the filtered chat
history and sent to the LLM with the user prompt.

2.5 Model Response Postprocessing

After acquiring the LLM-generated response based
on the filtered chat history and user prompt, the
embedding component of the Follow-up Judge pro-
cesses both the user prompt and LLM response to
generate embeddings for the current turn. The em-
bedding generation process follows these steps: (1)
Truncate the user prompt and the LLM response
to fit within the max input length (512 tokens);
(3) Concatenate the truncated user prompt with the
truncated LLM response and append a [CLS] token
to the end of this combined text; (4) Process this



sequence through the embedding component of the
Follow-up Judge; and (5) Extract the last hidden
state of the appended [CLS] token. The generated
embedding will then be stored in the embedding
database with the LLM response.

3 Experiments

In this section, we assess the CRyCHIc frame-
work by exploring three key questions: (1) Can
CRyCHIc have comparable performance with the
leading commercial LLMs on the chat tree con-
struction task? (2) How do individual sub-modules
contribute to CRyCHIc’s performance improve-
ment? (3) Can CRyCHlIc help to improve LLMs’
performance on downstream tasks?

3.1 Performance on Chat Tree Construction
Task

3.1.1 Dataset

To answer the first question, we developed a dataset
called WildChatTree, containing 100 real human-
LLM conversations and 567 turns. As its name
indicates, WildChatTree is built on 100 English
human-LLM conversations sampled and manually
selected from the WildChat dataset (Zhao et al.,
2024). Each original sample from WildChat is
reviewed carefully by graduate-level human an-
notators. The main modification made on these
samples is that every turn is assigned a parent turn
if it needs to be generated based on the informa-
tion from its parent. By asking the chat tree con-
structing models to assign parents turn by turn, we
can calculate the accuracy, precision, recall and F1
score of these models.

3.1.2 Baseline

Model Size Analysis Considering the require-
ment on time efficiency of the chat tree construc-
tion task in the context of human-Al interaction,
the size of the CRyCHIc framework needs to be
analysed as follows before selecting the baseline
models.

* [FQC: 126M parameters, using RoBERTa-
base as the base model.

* Prompt Simplifier: 138M parameters, using
gte-base-en-v1.5 as the base model.

* Follow-up Judge: 438M parameters, using
gte-large-en-v1.5 as the base model of the
embedding part.

To summarise, there are around 702M parameters
in the CRyCHIc framework in total.

Baseline Model Selection To compare the per-
formance of the CRyCHIc framework with the
leading commercial LLMs, we chose several rep-
resentative models. We chose DeepSeek-V3
(DeepSeek-Al et al., 2025) since most of our train-
ing data is synthesised by this model. We also
chose GPT-4.1 (OpenAl, 2025), the newest flag-
ship model from OpenAl. To compare the perfor-
mance of CRyCHIc with smaller models, we chose
GPT40-mini (Hurst et al., 2024) and Qwen3-Turbo
(Yang et al., 2025) since their computational re-
quirements are relatively lower, though still higher
than our model’s. We observed Qwen3-Turbo level
models have difficulty in instruction following, in-
dicating that models smaller than these models
cannot perform the task well. Therefore, we do not
test models that have a similar size to the CRyCHIc
framework. We also tested the situation if no chat
tree reconstruction is applied to the chat history,
which means that for every two turns, the former
turn will become the parent of the latter turn.

Enhancement on Baseline Models To adapt
these models to the chat tree construction task with
higher efficiency, we asked them to label the user
prompts with "polite expression"”, "information" or
"instruction" before finding the parent turn of the
user prompts. So the experiment results of these
models in Table 1, whose name has a * mark, are
generated with the aforementioned enhancement.
The detailed method to apply the enhancement is

demonstrated in the Appendix C.

3.1.3 Experiment Settings

For the CRyCHIc framework, several hyperparam-
eters need to be determined for prediction. The
historical turns retrieval number in the Follow-up
Judge is 20, and the threshold for it is 0.4. The
training of the modules in the CRyCHIc framework
used PyTorch, and the training hyperparameters are
reported in the Appendix B. For the baseline mod-
els, we use a historical context window of 10 turns.
The threshold for determining follow-up situations
is set at 4 on a 0-5 scale. When the LLM assigns
a belief score of 4 or higher to its prediction, the
current user prompt is classified as a child of the
historical turn. Due to the resource limitation, only
a single run with the temperature set to 1 is per-
formed in this work.

3.1.4 Results

As shown in Table 1, the enhanced GPT-4.1 shows
the best performance among all for metrics except



for recall, reaching 77.1% accuracy and 76.4%
F1 score, while it is the most expensive and
computationally-intensive model among the tested
models. The enhanced DeepSeek-V3 delivered the
second-best performance in accuracy and precision,
achieving 69.7% accuracy and 67.7% precision.
Meanwhile, CRyCHIc showed the highest recall,
which is 84.8%, and the second-best performance
in F1 score, which is 66.2%. As to the smaller
models, such as GPT40-mini and Qwen3-Turbo,
they showed unacceptable performance in recall,
one is 40.3% and the other is 35.0%. We also
observed that the non-reconstructing strategy can
only provide the lowest accuracy but the third-best
performance in recall. To summarise, CRyCHIc
can provide performance similar to the enhanced
DeepSeek-V3, while largely reducing the computa-
tion consumption. We also tested the performance
of the original DeepSeek-V3. The result indicates
that the labelling strategy brought great perfor-
mance improvement to these commercial LLMs,
especially in recall.

Among the four metrics, the recall should be
especially focused on. Though one of the goals of
performing chat tree construction is to remove the
irrelevant information, it is more crucial to preserve
the necessary information to secure the basic per-
formance. Recall can measure the model’s ability
to preserve the necessary information well. We can
observe that CRyCHIc largely outperforms the en-
hanced DeepSeek-V3 in recall (+23.0%), demon-
strating its ability to retain necessary information.

Model Accuracy Precision Recall F1 Score
GPT-4.1* 0.771 0.695 0.847 0.764
DeepSeek-V3* 0.697 0.677 0.618 0.646
GPT40-mini* 0.586 0.521 0.403 0.454
Qwen3-Turbo* 0.578 0.585 0.350 0.438
DeepSeek-V3 0.661 0.672 0.476 0.558
Non-Reconstructuring 0.446 0.503 0.797 0.617
CRyCHIc 0.684 0.566 0.848 0.679

Table 1: Comparison of the performance between pop-
ular commercial LLMs and CRyCHIc on the WildChat-
Tree dataset. Model names with * representing these
models are enhanced by the labelling strategy similar
to the one used in CRyCHIc. The results in bold repre-
sent the best performance, while the underlined results
indicate the second-best performance.

3.2 Ablation Study

In this section, we tried to remove the modules in
the CRyCHIc pipeline that do not harm the basic

operation of CRyCHIc to prove the necessity of
these modules.

The experiment result shown in Table 2 demon-
strates that both the IFQC and the Prompt Simpli-
fier have a positive contribution on all four met-
rics for the WildChatTree dataset. Between the
two modules, IFQC contributes more to the perfor-
mance of the CRyCHIc model, especially to the
precision (+10.3%).

Model Accuracy Precision Recall F1 Score
CRyCHIc 0.684 0.566 0.848 0.679
w/o PS 0.635 0.481 0.714 0.575
w/o IFQC 0.616 0.463 0.714 0.562

Table 2: Comparison of the performance between the
full CRyCHlIc pipeline and the pipeline that disabled
IFQC or Prompt Simplifier (PS).

3.3 Influence on Downstream Tasks

To test the influence of reconstructing the conversa-
tions into trees on the downstream tasks, we modi-
fied the MultiChallenge benchmark (Sirdeshmukh
et al., 2025) to MixMC, as shown in Figure 3. In
detail, for every two data points in MultiChallenge,
the conversation histories inside them are mixed
randomly, while the turns in each conversation
keep the original relative position. This procedure
generates two new data points, which only changed
the conversation histories in the original datapoints,
while the other keys, like the final user prompt and
pass criteria, stay the same. To perform the test,
we chose two models, CRyCHIc and GPT-4.1, to
reconstruct the conversations in MixMC before
sending the datapoints into the evaluation pipeline
provided by MultiChallenge. We observed the fol-
lowing conclusions in the experiment result shown
in Table 3.

* When processing with the two irrelevant top-
ics within one conversation in the MixMC
benchmark, the response model suffers per-
formance loss on all 4 challenges.

¢ The current chat reconstruction models, even
the best model, GPT-4.1, cannot reconstruct
the trees well, causing an accuracy drop on
three of the challenges. The possible reasons
are: (1) Sometimes the final user prompt will
be recognised as a totally new question with
no relationship with any turn in the chat his-
tory; (2) The models will assign the most re-
cent turn the parent of the user prompt clas-
sified as information, which can be a good



Benchmark Chat Rec. Model Response Model Overall Score Inference Mem. Self-coherence Inst. Retention Reliable Ver. Editing
MixMC CRyCHIc GPT-40 0.168 0.062 0.180 0.130 0.300
MixMC GPT-4.1 GPT-40 0.188 0.097 0.220 0.159 0.275
MixMC - GPT-40 0.193 0.097 0.220 0.203 0.250
MultiChallenge GPT-40 0.227 0.159 0.220 0.261 0.268

Table 3: The influence of chat tree reconstruction using CRyCHIc and GPT-4.1 on the MixMC benchmark. The
four challenges in the MultiChallenge benchmark are Inference Memory, Self-coherence, Instruction Intention, and

Reliable Versioned Editing.

strategy processing conversations in the real
scenario, but can result in errors when dealing
with randomly mixed conversations.

* Both chat reconstruction models can improve
the performance of the response model on
reliable versioned editing.

4 Related Work

4.1 Benchmarks for Multi-turn LLMs

Assessing the ability of LLMs in the context of
multi-turn conversation is gathering more concerns
nowadays. Compared to the former single-turn
benchmarks like AlpacaEval (Dubois et al., 2025),
MT-Bench (Zheng et al., 2023) and MT-Bench++
(Sun et al., 2023) have expanded evaluations to
include multi-turn scenarios across multiple sub-
ject areas. Meanwhile. These datasets cannot fulfil
the significant need for more detailed and nuanced
evaluation methods for multi-turn interactions be-
tween humans and Al systems. Thus, MT-Bench-
101 (Bai et al., 2024) and MultiChallenge (Sirdesh-
mukh et al., 2025) have been developed to perform
fine-grained LLM evaluation. However, they do
not notice the multi-topic nature of the conversa-
tions conducted in LLM chat applications. Many
users tend to talk about several different topics

Mixed Mixed
Data Point 1 Data Point 2
Chat History Chat History
Data Point 1 Data Point 2
Turn 1 I Turn 1 |
Chat History Chat History
Turn 1 | Turn 1 |
| Turn 1 I I Turn 1 |

| Turn 2 | I Turn 2 |

Turn 2 | Turn 3 |

| Turn 3 I I Turn 3 |

Turn 3 I Turn 2 |

Final User
Prompt

Final User
Prompt

I Turn 2 I | Turn 2 |

Turn 3 | Turn 3 |

| Other Keys

I Other Keys

Final User
Prompt

Final User
Prompt

| Other Keys

| Other Keys

Figure 3: A demonstration of mixing original data
points in the MultiChallenge benchmark to create the
MixMC benchmark.

within one conversation context, highlighting the
need for a more realistic multi-turn conversation
benchmark.

4.2 Next Sentence Prediction

The initial inspiration for the design of Follow-
up Judge comes from the approach BERT used
to tackle the Next Sentence Prediction (NSP) task
(Devlin et al., 2019). To be specific, to solve the
NSP task, the input of the language model should
be constructed using the following equation (Sun
et al., 2022):

Ximput = [CLS|x\" [SEPx? [EOS],  (3)
where xgl) represents the sentence 1 and x§2) rep-
resents the sentence 2. The final hidden state
of the [CLS] token will be extracted, and s =
Wem (tanh(Whcs)+b)) will be applied to gen-

erate a prediction.
(1)

In the chat tree construction task, x;

(2)

)

represents

the historical turn and x;:~’ represents the current

user prompt.

5 Conclusion

This study proposes a promising task called chat
tree (re)construction in the context of human-Al in-
teraction. We believe that by performing this task
to filter the chat history before sending the new
user prompt to the LLM can effectively improve
the performance of LLMs and reduce the computa-
tion consumption. Organising chat history as trees
can also boost user experience. To reach the goal of
constructing the chat tree efficiently, we designed
and implemented the CRyCHIc framework, achiev-
ing comparable performance to DeepSeek-V3 with
a much smaller model size. We also provided the
WildChatTree dataset for testing the performance
of models on the aforementioned task. We believe
that our work paves the way for future explorations
into the chat tree construction task.
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The existing artefacts used in this research and their
licenses are listed below:

» PyTorch. License: Customised Apache 2.0
* SpaCy. License: MIT

» FAISS. License: MIT

* WildChat. License: ODC-BY

* MultiChallenge. License: Not specified

* MATH. License: MIT

* APPS. License: MIT

* Wikipedia Dumps. License: Creative Com-
mons Attribution-Share-Alike 4.0

* GPT-4.1. License: Not specified

* DeepSeek-V3. License: MIT

* GPT40-mini. License: Not specified
* Qwen3-Turbo. License: Apache 2.0
* RoBERTa-base. License: MIT

* gte-base-en-v1.5 and gte-large-en-v1.5. Li-
cense: Apache 2.0

Though some artefacts do not specify a license,
all of them can be used for research purposes.

Upon acceptance, the dataset, models and code
of this paper will be released under the MIT li-
cense.

Declaration on AI Writing Assistance

In the writing process of this paper, Al is only used
to give suggestions on word choices in this article,
making it more formal.

Limitations

The experiment result in Table 1 demonstrates that
the CRyCHIc framework can only reach 68.4%
accuracy and 84.8% recall, which indicates that
the CRyCHIc framework cannot be used in the
production environment now. The experiment
result on the MixMC benchmark also confirms
this viewpoint. Possible reasons for this result in-
clude (1) the low quality of the synthesised data
by DeepSeek-V3, (2) the model size limitation

and context window limitation on the Follow-up
Judge, and (3) ignorance of the history before the
turn when predicting the follow-up relationship
between the turn and the current user prompt. Be-
sides, due to the resource limitation, the CRyCHIc
framework is only trained on the English data. Fu-
ture work could train the modules in CRyCHIc to
adapt the framework to other languages and have a
longer context window.

Although we have tested the influence of apply-
ing CRyCHIc and enhanced GPT-4.1 to reconstruct
the conversation history in the MixMC benchmark,
the MixMC is not built on real user-LLM chats,
making the test results unreliable. A downstream
benchmark that is generated from real human-Al
interaction data is expected to be developed in the
future.

Potential Risks

Performing chat tree construction to filter the
chat history may deviate from the user’s original
thought when conducting conversations with Al
assistants. Furthermore, the models used to per-
form chat tree construction may have potential bias,
causing overemphasis on certain dialogue content.
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A Details of Training Data Generation

A.1 TIFQC Training Data Generation

As mentioned in §2.3.2, a set of prompts with sev-
eral pre-determined variables is used to generate
the training data for the IFQC. The prompt tem-
plates are shown below:

Prompt Template for Generating Positive

Data

Generate 20 sentences. Follow the follow-
ing instructions to generate the response.

- The sentences should be follow-up
questions. It should contain a {END-
ING_MARK}.

- The sentences should mimic the human
user prompts when talking with an Al assis-
tant.

- The sentences should not contain any
nouns referring to a specific concept, like
“airplane’ and ’gradients’.

- The sentences should not contain any verbs
that are likely to appear in a certain domain.
- The sentences can contain pronouns and
verbs.

- The length of the sentences should be in
{LENGTH} words.

- All the generated sentences should be writ-
ten in a list in a JSON format like “’sen-
tences’: [s1, s2 ...].

- Do not repeat any sentence. Only give me
json result.

Prompt Template for Generating Negative

Data Which Still Contains Follow-up Ques-
tions

Generate 20 sentences. Follow the instruc-
tions below to generate the response. - The
sentences should be follow-up questions,
like asking for modification on the former
explanation.

- The sentences should contain a {END-
ING_MARK}.

- The sentences should mimic the human
user prompts when talking with an Al assis-
tant.

- The sentences should contain nouns refer-
ring to a specific concept relating to * {DO-
MAINY}’.

- The length of the sentences should be in

{LENGTH} words.

- All the generated sentences should be writ-
ten in a list in a JSON format like “’sen-
tences’: [s1, s2...].¢

- Do not repeat any sentence. Only give me
json result.

Prompt Template for Generating Negative

Data Which Starts a New Topic

Generate 20 sentences. Follow the follow-
ing instructions to generate the response.

- The sentences should contain a {END-
ING_MARK]}.

- The sentences should mimic the human
user prompts when talking with an Al assis-
tant.

- The sentences should contain nouns refer-
ring to a specific concept relating to ’ {DO-
MAINY}’.

- The length of the sentences should be in
{LENGTH} words.

- All the generated sentences should be writ-
ten in a list in a JSON format like “’sen-
tences’: [s1, s2 ...].°

- Do not repeat any sentence. Only give me
json result."

The ‘ENDING_MARK" is chosen from values
["question mark", "period"] and the ‘LENGTH® is
chosen from values ["3-5", "5-10", "10-20"]. For
the prompt template aiming at generating nega-
tive data, the extra variable ‘DOMAIN" is chosen
from a set of domains like "Geometry" given by
DeepSeek-V3.

A.2 Prompt Simplifier Training Data
Generation

Before labelling the sentences in the user prompts
using DeepSeek-V3, ‘en_core_web_md*‘ model
from spaCy (Honnibal et al., 2020) is used to seg-
ment the user prompts. The prompt for labelling
the sentences (Zhao et al., 2024) is shown below:

Prompt for Labelling Sentences from User

Prompts

Analyze the given set of user sentences
from a human-AlI conversation and classify
each sentence as one of the following

types:

11



- Polite Expression: Greetings, thanks,
or courteous phrases that don’t contain
specific requests or information

- Instruction: Sentences that direct the Al to
perform a task, answer questions, or follow
specific guidelines

- Information: Sentences that provide facts,
context, or data to the Al

For each sentence, determine its pri-
mary function in the context provided in
the list.

Return the analysis in JSON format with
the following structure:

json{{

"results": [

i

"sentence": "Original sentence here",
"type": "One of: Polite Expression,
Instruction, or Information",

"score": "0-5 score of confidence of your
classification"

H

]

H

Consider the context of the conversation
when making your classification.

Examples:

Polite Expression:

- "Thank you for your help with this
problem."

- "Nice to meet you."

Instruction:

- "Please analyze this data and create a
visualization."

- "Write a summary of the main points in
this article."

- "Help me debug this code."

- "What is representation learning?"

Information:

"I’m working on a machine learning project
for image recognition."

"The file contains sales data from January
to December 2024."

"My computer is running Windows 11 with
16GB of RAM."

"10xp(xg+xr) dx (where p, q and r are

12

positive constants)"
"I have experience with Python but I'm
new to JavaScript."

The given set of user sentences:
{SENTENCE_LIST}

A.3 Follow-up Judge Training Data
Generation

As mentioned in §2.3.4, the generation of training
data for the Follow-up Judge is based on multiple
data sources.

A.3.1 WildChat Data Processing

Before sampling data from the WildChat dataset,
the original WildChat dataset is filtered by a series
of operations to make sure only English conversa-
tions with over 2 turns remain for the following
process. After sampling, a prompt will be applied
to instruct DeepSeek-V3 to filter the sampled data,
which is shown below:

Prompt for Labelling WildChat Data

Analyze the new prompt and determine
whether it is a follow-up question to
the provided chat history. Score the
relationship on a scale of 0-5, where 0
means completely unrelated and 5 means a
direct follow-up that information from the
chat history is needed to answer the prompt.

Provide your analysis in JSON for-
mat with two fields:

1. "explanation": Your brief explanation on
your score

2. "score": Your numerical score (0-5)

Chat History:
{CHAT_HISTORY }

New Prompt:
{USER_PROMPT}

Example response:

{{

"explanation": "Your explanation”,
"score": 3

1




A.3.2 Wikipedia Data Processing

To select 40k representative Wikipedia cate-
gories from 2450k categories in the Wikimedia
database English dump on May 01, 2022 (Wiki-
media Foundation, 2022), the original categories
are first embedded by a text embedding model
stella_en_400M_v5 (Zhang et al., 2025). Then,
these embeddings are clustered by KMeans imple-
mented by FAISS (Douze et al., 2025), using 100 it-
erations, and the categories whose embeddings are
closest to the cluster centres are chosen to represent
the clusters. Next, the selected 40k categories are
regarded as the seed in the prompt, which will in-
struct DeepSeek-V3 to synthesise domain-specific
pairs between chat history and new user prompt.
The prompts are shown below:

Prompt for Generating Positive Pairs about

Given Category

**FTagk:**

Generate a chat history and a follow-
up prompt based on the theme "{CATE-
GORY}". The chat history should include
a user message and an assistant response
(limited to **200 words**), and the follow-
up prompt cannot be answered without the
context provided by the history.
**Format: **

“‘json

{{

"history": {{

"user": "User’s message here",

"assistant": "Assistant’s response here (max
200 words)"

s

"prompt": "Follow-up prompt that cannot
be answered without the history"

1

1313

**Example:**
(3 ‘j S()n

{}

1313

Prompt for Generating Negative Pairs about

Given Category (Same Theme)

**FTagk:**
Generate a chat history and a follow-
up prompt based on the theme "{CATE-

GORY}". The chat history should include
a user message and an assistant response
(limited to **200 words**), and the prompt
should start a new topic that has the same
theme as the history and can be answered
without the context provided by the history.
**Format: **

“‘json

{{

"history": {{

"user": "User’s message here",

"assistant": "Assistant’s response here (max
200 words)"

1

"prompt": "Prompt start a new topic can be
answered without the history."

H

313

**Example:**
3 6j SOn

{

1313

Prompt for Generating Negative Pairs about

Given Category (Different Themes)

**FTagk:**

Generate a chat history based on the theme
"{CATEGORY_1}". The chat history
should include a user message and an assis-
tant response (limited to **200 words**).
Then generate a prompt based on another
theme "{CATEGORY_2}" which starts a
new topic and has no relevance with the his-

tory.
**Format: **
“‘json

{{

"history": {{

"user": "User’s message here",

"assistant": "Assistant’s response here (max
200 words)"

1

"prompt": "Prompt start a new topic can be
answered without the history."

}H

13313

**Example:**
13 ‘j S()n

{}

313

13




In the 80k generated pairs, there are 40k positive
pairs and 40k negative pairs. The 40k negative
pairs are also divided into two equal portions. The
pairs in the first portion have chat history and user
prompt with the same theme, and the pairs in the
second portion have chat history and user prompt
with different themes.

A.3.3 MATH and APPS Data Processing

To instruct DeepSeek-V3 to generate the following
user prompts based on the chat history transformed
from the MATH and APPS datasets (Hendrycks
et al., 2021a; Hendrycks et al., 2021b), the follow-
ing prompts are used:

Prompt for Generating Positive Pair

Generate a follow-up prompt based on the
chat history below. The prompt can only
be answered based on the chat history. For
example, the prompt can be a question
asking for an explanation of the solution in
the chat history.

Chat History:
{HISTORY }

Format of your response:
(3 Cj Son

{{

"prompt": "Your follow-up prompt"

Prompt for Generating Negative Pair

Generate a follow-up prompt based on the
chat history below. The prompt should not
have any relevance with the chat history
and can concentrate on any domain.

Chat History:
{}

Format of your response:
(13 ‘j Son

{{

"prompt": "Your follow-up prompt"

b
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B Details of Training Settings

B.1 Hyperparameters

The hyperparameters for training the IFQC are
listed below:

* num_epochs: 5,

* learning_rate: 3e-5

e batch_size: 32,

e hidden_sizes: [768, 512, 256],
* dropout_rate: 0.2

The main hyperparameters for training the Prompt
Simplifier are listed below. The batch size is the
accumulated batch size since DeepSpeed (Rasley
et al., 2020) is employed to accelerate the training.

* num_epochs: 20,

* learning_rate: Se-5,

* batch_size (accumulated): 64,
e hidden_sizes: [768, 512, 256]

The main hyperparameters for training the
Follow-up Judge are listed below. The batch size
is the accumulated batch size since DeepSpeed is
employed to accelerate the training.

* num_epochs: 20,

* learning_rate: le-5,

* batch_size (accumulated): 512,

e hidden_sizes: [1024, 512, 256, 64, 16]

B.2 Hardware and Time Usage

The training of IFQC is done on a single NVIDIA
GeForce RTX 4070 Ti 12GB graphics card, using
2 minutes. The training of the Prompt Classifier
is done on 2 NVIDIA V100 32GB graphics cards,
using around 2 hours. The training of the Follow-
up Judge is also done on 2 NVIDIA V100 32GB
graphics cards, using around 3 hours.

C Details of Enhancement on Baseline
Models

To enhance the baseline models with a labelling
ability similar to the Prompt Simplifier, the follow-
ing prompt is used to instruct the models to assign
labels:



Prompt for Labelling

Analyze the given user prompt from a
human-Al conversation and classify the
prompt as one of the following types:

"I have experience with Python but I'm
new to JavaScript."

The given user prompt:
{USER_PROMPT}

- Polite Expression: Greetings, thanks,
or courteous phrases that don’t contain
specific requests or information

- Instruction: Sentences that direct the Al to
perform a task, answer questions, or follow

If the user prompt is labelled as an instruction,
the prompt displayed below will be used for in-
structing the LLM to predict whether the current
user prompt is a follow-up question of the given

specific guidelines
- Information: Sentences that provide facts,
context, or data to the Al

Return the analysis in JSON format
with the following structure:

“json{{

"result":

{{

"sentence": "Original sentence here, if too
long, truncate to 20 words. Regard the
whole given user prompt as one sentence”,

"type": "One of: Polite Expression,
Instruction, or Information"

}

} }é“

Examples:

Polite Expression:

- "Thank you for your help with this
problem."

- "Nice to meet you."

Instruction:

- "Please analyze this data and create a
visualization."

- "Write a summary of the main points in
this article."

- "Help me debug this code."

- "What is representation learning?"

Information:

"I’m working on a machine learning project
for image recognition."

"The file contains sales data from January
to December 2024."

"My computer is running Windows 11 with
16GB of RAM."

"10xp(xq+xr) dx (where p, q and r are
positive constants)"

turn:

Prompt for Judging Whether the User

Prompt is the Follow-up Question of the
Given Historical Turn or Not

Analyze the new prompt and determine
whether it is a follow-up question to
the provided chat history. Score the
relationship on a scale of 0-5, where 0
means completely unrelated and 5 means a
direct follow-up that information from the
chat history is needed to answer the prompt.

Provide your analysis in JSON for-
mat with two fields:

1. "explanation”: Your brief explanation on
your score

2. "score": Your numerical score (0-5)
The json response must have surrounding
like “‘json.

Chat History:
{HISTORY}

New Prompt:
{USER_PROMPT}

Example response:

“son{{

"explanation": "Your explanation",
"score": 3
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