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ABSTRACT

The most promising approach to achieving nuclear fusion is through tokamaks,
which confine plasma using magnetic fields. Understanding the current plasma
equilibrium state in tokamaks is critical for effective plasma control. Unlike pre-
vious studies, which reconstruct equilibrium from magnetic field information, our
work forecasts future equilibrium based on past equilibrium states. Specifically,
we formulate the plasma equilibrium prediction task as a video prediction task,
a well-explored problem in the machine learning community. This formulation
allows us to capture the spatio-temporal dynamics of plasma states and provides
a foundation for multimodal modeling of data streams from tokamak operations.
Our methodology, incorporating a physics-inspired learning technique for physi-
cally reliable predictions, achieved plausible results in forecasting future plasma
equilibrium up to 200 ms ahead compared to baselines. This approach holds
promise for predicting plasma instabilities and preventing disruptions, marking
a significant step towards developing stable fusion reactors.

1 INTRODUCTION

One way to categorize human history is by examining the main energy sources utilized in each era.
From the discovery of fire to the exploitation of fossil fuels, and more recently, to the adoption
of nuclear energy and solar power, humanity has continually evolved its primary energy sources.
To address climate change and global energy shortages facing humanity, and to enter a new era,
developing new clean energy sources has become an urgent mission. Nuclear fusion technology
emerges as the most promising candidate for next-generation clean energy and has been studied for
decades (Sheffield, 1994; Harms et al., 2000; Freidberg, 2007). It offers the potential for nearly
limitless, clean energy production by replicating the processes that power the sun.

Currently, the most viable approach for achieving nuclear fusion is through tokamak devices such as
the International Thermonuclear Experimental Reactor (ITER), the largest international collabora-
tive scientific project in the world (Rebut, 1995). Tokamaks use powerful electromagnets to confine
high-temperature plasma within a vacuum vessel to induce nuclear fusion reactions. However, nu-
merous scientific and engineering challenges hinder the commercialization of nuclear fusion. In de-
tail, one of the primary obstacles is plasma instability and the resulting plasma disruptions (Schuller,
1995). To predict and prevent these issues, it is essential to understand plasma equilibrium, a state
where the magnetic field’s confining force on plasma particles balances the force of the particles
attempting to diffuse outward. While plasma equilibrium information can be computed by analyz-
ing magnetic field data using an algorithm called equilibrium fitting (EFIT) (Lao et al., 1985), its
application is limited due to the difficulty of performing real-time calculations.

To overcome these challenges, the nuclear fusion community has recently begun to actively intro-
duce machine learning (ML) and data-driven approaches (Seo et al., 2021; Degrave et al., 2022; Lao
et al., 2022; Char et al., 2023; Joung et al., 2023; Seo et al., 2024; Kim et al., 2024). ML techniques
are being applied to tasks such as controlling tokamaks, predicting disruptions, and inferring plasma
equilibrium. Along with the aforementioned studies, this work aims to address challenges in the
nuclear fusion domain using data-driven methods, specifically by forecasting plasma equilibrium in
tokamaks. Unlike the previous study that predicted plasma equilibrium using magnetic field data,
we propose predicting future plasma equilibrium based on past plasma equilibrium data. This ap-
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proach enables us to address the temporal dynamics of plasma, introducing a novel problem setting
in fusion research that goes beyond existing studies focusing on current-state reconstruction.

More precisely, we formulated the problem as a video prediction task by interpreting plasma equilib-
rium data as a sequence of temporal snapshots. We applied widely known video prediction models
to plasma data and introduced methods to incorporate plasma physics knowledge into the model
training process. As a result, our model was able to predict plasma equilibrium up to approximately
200 ms into the future without explicit tokamak control information. This is considered a sufficiently
long-term prediction, as plasma physics typically deals with phenomena occurring on timescales of
a few to tens of milliseconds inside a tokamak.

Our research introduces a novel data-driven approach to nuclear fusion, an under-explored field
within the ML community. By tackling complex spatio-temporal plasma equilibrium data rather
than the scalar features used in previous studies (Wai et al., 2022; Degrave et al., 2022; Wan et al.,
2023; Char et al., 2023), we demonstrate the potential of ML in fusion science. In this manner, our
work can serve as a foundation for developing multimodal models in fusion research, paving the
way for the simultaneous analysis of diverse fusion data types. Our findings, based on data from
Korea Superconducting Tokamak Advanced Research (KSTAR) (Lee et al., 2001), are applicable to
ITER, given the structural similarities between these tokamaks. Finally, current research efforts are
focused on developing a digital twin of KSTAR and conducting virtual fusion experiments (Kwon
et al., 2022). Our study has the potential to significantly advance the ultimate goal of comprehensive
virtual fusion experimentation.

The contributions of our work can be summarized as follows:

• We formulated the plasma equilibrium forecasting problem as a video prediction task, in-
troducing this under-explored problem to both nuclear fusion and ML communities.

• We introduced a physics-based loss function inspired by plasma equilibrium equations and
demonstrated its effectiveness.

• We evaluated our proposed model against widely-used baseline methods across various
domains and interpreted the results from the plasma physics perspective.

2 PRELIMINARY

This section provides a brief introduction to the background knowledge necessary to understand
our work. For a deeper understanding of nuclear fusion or how ML can be applied in the field of
fusion, readers may refer to Hutchinson (2002), Ikeda (2007), Freidberg (2007), Wesson & Campbell
(2011), McCracken & Stott (2013), and Spangher et al. (2024).

2.1 NUCLEAR FUSION AND TOKAMAK

Nuclear fusion is a physical process in which two light atomic nuclei combine into a single heavier
nucleus under high temperature and pressure, simultaneously releasing energy. This process results
in plasma, known as the fourth state of matter, where electrons are separated from atomic nuclei
and can move freely. Einstein’s famous equation E = mc2 can be used to calculate the amount of
energy produced during nuclear fusion, showing that even a small amount of fuel can generate an
enormous amount of energy. For example, to produce the same energy as 125 kg of deuterium and
tritium fuel, approximately 2.7 million tons of coal are needed 1.

In fact, nuclear fusion reactions occur in the sun, and its brightness is due to these reactions. While
nuclear fusion in the sun occurs at approximately 15 million Kelvin due to immense gravitational
pressure, achieving fusion on Earth requires temperatures of 100–150 million Kelvin because we
cannot replicate the sun’s gravitational conditions. However, building a vessel or material that can
directly contact plasma at such high temperatures is practically infeasible. Therefore, researchers
have devised a method using magnetic fields to confine the plasma in a vacuum state, preventing
it from contacting the vessel walls. This concept is implemented in devices known as tokamaks,
which are donut-shaped machines. The tokamak consists of various components, namely multiple
electromagnets for confining and controlling plasma, heating systems such as neutral beam injection

1https://www.iter.org/sci/FusionFuels
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(NBI) and electron cyclotron resonance (ECR) heating systems, and multiple types of sensors for
monitoring the tokamak’s operational status.

Representative tokamak devices, including KSTAR (Lee et al., 2001) in South Korea, DIII-
D (Luxon, 2002) in the United States, EAST (the EAST et al., 2009) in China, and JET (Jacquinot
et al., 1999) in Europe, are contributing crucial insights into plasma physics as well as the develop-
ment and operation of ITER (Rebut, 1995). Among these, KSTAR and EAST, which leverage super-
conducting electromagnets, can operate for significantly longer periods compared to other tokamaks
that do not use superconductors. This key difference provides a distinct advantage, enabling long-
term plasma experiments and detailed investigations. Our work utilizes real experimental data from
KSTAR; consequently, our findings have potential applications in the prediction and analysis of
long-duration tokamak operations.

2.2 PLASMA EQUILIBRIUM

The most crucial information for controlling and analyzing plasma inside a tokamak is plasma equi-
librium. Plasma equilibrium refers to the balance between the magnetic forces confining the plasma
and the outward pressure of the plasma itself. The Grad-Shafranov (GS) equation (Grad & Rubin,
1958; Shafranov, 1966), a partial differential equation describing this equilibrium state, illustrates
the spatial distribution of magnetic fields under conditions satisfying plasma equilibrium:

∆∗ψ = −µ0RJϕ = −µ0R
2 dp(ψ)

dψ
− F (ψ)

dF (ψ)

dψ
. (1)

In this equation, ψ = ψ(R,Z) represents the poloidal magnetic flux function dependent on coordi-
nates R and Z, defined within the cylindrical coordinate system of KSTAR. The term µ0 denotes
the permeability of free space, while p(ψ) represents the plasma pressure and F (ψ) is related to
the toroidal magnetic field, both being functions of ψ. ∆∗ψ is a two-dimensional non-linear partial
derivative of ψ, defined as ∆∗ = R ∂

∂R
1
R

∂
∂R + ∂2

∂Z2 .

Based on the R, Z, and Jϕ, which is the toroidal component of the plasma current density, we can
obtain the solution ψ (and ∆∗ψ) of the GS equation. This information serves as an essential key to
understanding the state of the plasma for controlling and analyzing the tokamak. However, it is chal-
lenging to determine the solution of the GS equation, and the EFIT algorithm (Lao et al., 1985) was
developed to effectively find the solution. In brief, EFIT employs an iterative calculation process to
find the solution based on given initial conditions. Therefore, it has limitations in scenarios requiring
real-time application such as tokamak control due to its heavy computational time. Consequently,
the real-time EFIT (rt-EFIT) algorithm (Ferron et al., 1998; Moret et al., 2015; Huang et al., 2017)
has been proposed to reduce computational time by using the solutions at the previous time step as
initial values, but this approach is also limited due to lower accuracy.

The reconstruction of plasma equilibrium through EFIT calculations provides abundant information
for both controlling and understanding plasma behavior. Primarily, the key output ψ is utilized
to determine the last closed flux surface (LCFS). The LCFS, which delineates the boundary of
the confined plasma, is a crucial parameter in tokamak operations. By accurately identifying the
LCFS, researchers can enhance plasma stability, optimize tokamak operational methods, and gain
deeper insights into plasma dynamics. Furthermore, the results from the EFIT calculations can
be combined with various experimental data collected from tokamak diagnostics. This allows for
the derivation of important plasma parameters, including temperature profiles, density distributions,
and magnetic pressure, which are crucial for optimizing plasma stability, confinement efficiency,
and fusion reaction rates.

2.3 DATA-DRIVEN APPROACHES IN FUSION DOMAIN

Due to the computational cost of the EFIT algorithm, data-driven approaches have been recently
proposed as alternatives to predict plasma equilibrium faster and with comparable accuracy to the
EFIT algorithm (Joung et al., 2019; Wai et al., 2022; Lao et al., 2022; Joung et al., 2023; Lu et al.,
2023). GS-DeepNet serves as a notable example (Joung et al., 2023). This model predicts the current
plasma equilibrium in real time with the current magnetic field information given as input. Notably,

3
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GS-DeepNet introduced an unsupervised learning mechanism without requiring ground truth EFIT
data. Our method, in contrast, predicts the current or future equilibrium based on past equilibrium
information without magnetic field data, and can potentially collaborate with the aforementioned
methods by bootstrapping from the equilibria they reconstruct.

Beyond the plasma equilibrium prediction, data-driven techniques are increasingly being applied
to various challenges in the field of nuclear fusion. For example, Seo et al. (2021), Degrave et al.
(2022), and Char et al. (2023) demonstrated the potential of ML in tokamak control; moreover, Seo
et al. (2024) and Kim et al. (2024) showed that ML-based control can help avoid plasma instabilities,
which are a major challenge in tokamak operation. While most studies have utilized a number of
simple and raw features from the tokamak as inputs, our method distinguishes itself by leveraging
spatio-temporal information, such as ψ and ∆∗ψ from the EFIT calculation. This approach allows
us to capture complex plasma dynamics and their evolution over time, providing a framework that
can be extended to support diverse types of data with complex structures generated from tokamaks.
Our study, along with existing research, establishes a foundation for the development of multimodal
models capable of integrating and understanding the enormous volume of data from tokamaks.

3 METHOD

In this section, we define our problem setup and introduce our proposed approach. Our key idea is
to interpret the plasma equilibrium prediction task as a video prediction task in the ML domain. We
present the advantages of this approach, as well as propose a technique inspired by plasma physics.

3.1 FORMULATING PLASMA EQUILIBRIUM PREDICTION AS VIDEO PREDICTION

Video prediction is a task of predicting future frames based on the given past frames. Formally, given
T past frames Xt−T :t−1 = {xi}t−1

t−T at time t, the objective of this task is to obtain T ′ future frames
Yt:t+T ′−1 = {xi}t+T ′−1

t , where xi represents an image of dimensionsC×H×W , withC channels
and spatial resolution of H ×W . The EFIT data from fusion experiments have similar features to
video data, allowing us to approach fusion plasma prediction as a video prediction problem. In
this context, each EFIT frame xi can be considered as a two-dimensional image where channels
correspond to ψ and ∆∗ψ.

This video-based approach offers several advantages over the traditional pixel-level approach, which
treated ψ and ∆∗ψ values at each point as separate data. By simultaneously utilizing ψ and ∆∗ψ
information from multiple points, we can expect more accurate predictions. For instance, this com-
prehensive approach enables the model to identify complex spatial patterns and relationships that
traditional pixel-level methods could not capture. Furthermore, this framework has the potential to
be extended to a multimodal model in the future by employing additional spatio-temporal data col-
lected from tokamaks. Moreover, by processing spatial and temporal information concurrently, this
method offers an opportunity to analyze plasma dynamics from a spatio-temporal perspective. This
is particularly significant because the aforementioned GS equation, which is currently the primary
method for reconstructing plasma equilibrium, describes only spatial changes but not temporal evo-
lution. If the model based on video prediction approach provides us with significant results regarding
plasma’s temporal dynamics, it could lead to novel scientific insights into plasma behavior.

This intersection of physics and ML is promising (Chen et al., 2022), as ML researchers’ expertise
in video prediction can offer fresh perspectives unconstrained by traditional physical knowledge. To
this end, we explore the application of SimVP (Gao et al., 2022), a widely adopted and versatile
video prediction model architecture. SimVP processes input frames by employing spatial down-
sampling, transforming spatio-temporal features through inception modules, and decoding them to
generate predictions at the original resolution. Despite the existence of various video prediction
models, we selected this one for its straightforward and versatile nature in video prediction tasks.
Specifically, SimVP does not make assumptions about the data type, making it an ideal candidate
for the plasma equilibrium prediction task. This flexibility is crucial for our future plans to develop
multimodal models capable of integrating diverse data from tokamak operations.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 GRAD-SHAFRANOV CONSTRAINT LOSS

The ψ and ∆∗ψ data used as input and output in our study are derived from the EFIT algorithm,
which is based on the GS equation (Equation 1 in Section 2.2). Essentially, these data inherently
satisfy the GS equation, implying that any accurate prediction from our model should also follow
this fundamental constraint. To ensure this, we introduce a GS-constraint loss to train the model in
addition to the mean absolute error (MAE) on ψ and ∆∗ψ. The GS-constraint loss helps to maintain
the physical consistency of our predictions within the theoretical foundation of plasma equilibrium.

In detail, we apply ∆∗ operator, defined as ∆∗ = R ∂
∂R

1
R

∂
∂R + ∂2

∂Z2 , to the model output ψpred

to calculate ∆∗ψest. Subsequently, we compare it with the model output ∆∗ψpred to compute the
MAE, which serves as our GS-constraint loss as follows:

LGS = E ∥∆∗ψest −∆∗ψpred∥1 = E ∥D∆∗(ψpred)−∆∗ψpred∥1 . (2)

Here, D∆∗(ψpred) represents the application of the ∆∗ operator to ψpred using finite difference ap-
proximations. Since ψ and ∆∗ψ are defined on a fixed grid over R and Z, and since the coordinates
R and Z are fixed in our data representation, we cannot use automatic differentiation to compute
spatial derivatives in this case. Alternatively, following Ren et al. (2022), we approximated the ∆∗

operator by employing a finite difference method, shifting ψ horizontally and vertically. Although
this approximation technique is numerically less accurate than actual differentiation, it presents the
most feasible solution for our problem. The approximation error (reported in Table 1 using † sym-
bol) in the GS-constraint loss term could lead to inaccurate predictions. Therefore, we scaled the
GS-constraint loss by a coefficient less than one and added it to the pixel MAE loss in order to
mitigate numerical errors: LTotal = LMAE + αLGS , where α = 0.01.

Meanwhile, one might propose using the leftmost and rightmost terms of Equation 1 for constrain-
ing the model predictions. This approach could allow for the natural calculation of derivative values
through automatic differentiation. However, this approach faces practical limitations due to the am-
biguity in the GS equation, which does not provide information about the exact forms of p(ψ) and
F (ψ). Specifically, although we understand the physical meaning of p and F , we cannot precisely
determine their functional forms or characteristics as functions of ψ. In practice, the spatial distribu-
tion of current (FF ′ term) in the GS equation is typically approximated using low-order functions,
such as first to third-order polynomials. Consequently, we opted for the previously described loss
based on finite differences in a conservative manner. This conservative choice was made to ensure
both numerical stability during training and physical fidelity of the model, as the alternative method
could potentially lead to ambiguous physical interpretations and unstable training results. While
this limitation could be addressed if additional conditions or data for p and F were available, such
considerations remain a topic for future research 2.

4 EXPERIMENTS

This section presents the experiments and results that demonstrate the effectiveness of our approach.
It begins by introducing the dataset used for our experiments, along with the model training details.
We then introduce the evaluation metrics, which are adaptations of commonly used metrics in ML
problems, tailored for the plasma equilibrium prediction context. Finally, we conduct a comprehen-
sive analysis through both quantitative and qualitative assessments of the experimental results.

4.1 KSTAR DATASET

We evaluated our method using experimental data from KSTAR. Our dataset comprises 789 KSTAR
discharges collected from the 2017 and 2018 campaigns, split into training and test sets with an 8:2
ratio. A single data instance includes offline EFIT calculation results, plasma current (Ip) informa-
tion, and heating information (NBI and ECR). The EFIT data, which are the primary data used in
our study, consist of a two-channel video (ψ and ∆∗ψ) for each shot, calculated at 50 ms intervals.

2In our problem setup, p(ψ) and F (ψ) can be implemented by stacking 1× 1 convolutional layers.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Visualization of example KSTAR EFIT data used in this work. The left plot shows ψ and
∆∗ψ. The horizontal and vertical axes represent the R and Z coordinates of KSTAR, respectively,
measured in meters. The original ψ and ∆∗ψ data are displayed as heatmaps, while the researchers
usually present them as contour lines. The LCFS, highlighted in lime, indicates the current con-
finement state and configuration of the plasma. The right plot illustrates plasma current information
along with heating information. The plasma current, shown in red on the left y-axis, represents the
overall operational status of the shot. Heating information is displayed on the right y-axis, with a
blue line for NBI and a green line for ECR. The gray-shaded region represents the time interval for
which the EFIT data are depicted in the upper plots.

Figure 1 illustrates the EFIT data from KSTAR discharge shot #18948 at 2.60 seconds. Each frame
consists of a two-channel heatmap representing ψ and ∆∗ψ, which satisfy the GS equation. The
original EFIT data was calculated at a 65× 65 resolution, which is specifically calibrated resolution
for KSTAR operations, but we cropped one pixel from the right and bottom, resulting in a 64 × 64
resolution for convenience. In addition, we applied min-max normalization to ψ and ∆∗ψ based on
their statistics. The preprocessed EFIT data are visualized using contour lines, as shown in Figure 1.
The most important feature for fusion researchers is the LCFS, drawn in a lime-colored line, which
represents the plasma boundary. The LCFS is one of the most essential elements in plasma control
and analysis, requiring precise estimation. To determine the LCFS, we generated 80 contour lines
and selected the outermost closed line as the LCFS.

In addition to the EFIT data, we employed plasma current and heating information for each shot.
Although plasma current information was not used in training, it was utilized in the analysis process
because it provides insight into the overall operational status of the shot. The heating informa-
tion contains both NBI and ECR data. For analysis purposes, we used the raw heating data, but
downsampled it to match the EFIT sampling rate during training. This plasma current and heating
information shows the operational status of the tokamak for each shot. For instance, examining the
right plot in Figure 1, which illustrates discharge # 18948, we can observe the overall operational
phases: a ramp-up stage until around 2 seconds, followed by a flat-top, and a ramp-down starting
near 13 seconds. Furthermore, this experiment did not utilize ECR heating, but employed three
NBI devices for plasma heating. Preprocessing of the NBI and ECR data was minimal due to their
less significant numerical deviations. We only replaced negative values in the NBI and ECR with
zeros, and there was no further normalization. When using the heating information in training, we
replicated the scalar values of heating information to match the shape of ψ and ∆∗ψ. Then, these
replicated values were concatenated with ψ and ∆∗ψ to form a four-channel input data.

4.2 BASELINE AND EVALUATION METRIC

Evaluation metric The basic evaluation was conducted using the pixel-level MAE, a common
metric in video prediction tasks. In our work, we computed MAE for specific regions of interest
in the ψ and ∆∗ψ, rather than considering the entire region. The first area is the central region.
This area was prioritized because the prediction accuracy in the outer regions, where plasma does
not exist, is relatively less important. Second, we assessed the divertor region. The divertor is a
crucial component of the tokamak, responsible for extracting high-temperature exhaust and residues
from the plasma. Accurate prediction of plasma boundary in the divertor is essential for sustaining
long-period operations and preventing damage to the tokamak. In detail, the plasma boundary al-
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lows us to predict and evaluate the accuracy of key features such as the X-point (the intersection of
magnetic flux surfaces) and the divertor strike points where plasma and residues make contact with
the divertor. However, predicting these features accurately requires centimeter to millimeter-scale
precision (Eldon et al., 2020), which presents a challenge for the spatial resolution of our current
EFIT data. In this context, we extended our evaluation to assess the accuracy of the LCFS deter-
mined from the predicted ψ. As a potential alternative evaluation metric, we experimented with
intersection over union (IoU) and mean IoU (mIoU) to compare the similarity between the ground
truth and predicted LCFS shapes. The detailed analysis of these metrics and their limitations are
discussed in Section B.

Baseline Since our proposed method differs from existing research in both approach and results,
it is challenging in making direct and fair comparisons. To address this, we selected several base-
line methods that are widely adopted across different domains. First, we employed a time-lagged
baseline, widely recognized as a simple yet robust benchmark in time series forecasting problems.
This baseline outputs ground truth values from our EFIT dataset, delayed by a single time step.
In detail, we applied a 50 ms time lag, which represents a significantly long period in the context
of plasma dynamics. For example, plasma dynamics is typically analyzed with a time resolution
of less than 10 ms, and tokamak control systems require a response time on the order of a few
ms. We also presented a constant prediction baseline that assumes that the most recently observed
plasma state persists unchanged. Next, we conducted experiments using ConvLSTM (Shi et al.,
2015), PredRNN (Wang et al., 2017), and PredRNN-v2 (Wang et al., 2023), which are fundamen-
tal video prediction models. Finally, we compared our results with dynamic mode decomposition
(DMD) (Schmid, 2010), a widely-used linear model for predicting spatio-temporal dynamics, and
Chronos (Ansari et al., 2024), a general-purpose pretrained time series forecasting model.

4.3 TRAINING AND IMPLEMENTATION DETAILS

In our experiments, we used the implementation of model architectures from the OpenSTL li-
brary (Tan et al., 2022; 2023), while developing training and evaluation code from scratch to fit
our problem setup. For hyperparameters, SimVP was configured with NS = 4 and NT = 8 layers,
with hidden dimensions of dS = 64 and dT = 256, respectively. The ConvLSTM model consisted
of four layers, each with a hidden dimension of 96. PredRNN and PredRNN-v2 were also config-
ured with four layers, but each utilized a hidden dimension of 128. To simplify our experiments, we
set the input and output frame lengths to be equal, in other words, T = T ′. These sequences contain
one, four, or eight frames, representing time spans of 50 ms, 200 ms, and 400 ms, respectively.

The models shared the following training hyperparameters: We utilized the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a learning rate of 10−4, weight decay of 0.05, and gradient
clipping of 1. The dataset was sampled every four timesteps, and the batch size was set to 128.
The number of training epochs was 1, 500, and we applied an exponential moving average update
with β = 0.9999. To ensure statistical robustness, all experiments were repeated with three random
seeds, and we reported the average values. Each experiment was conducted on a single NVIDIA
H100 GPU and completed within 48 hours.

Predictions with DMD were generated autoregressively from the last observation after fitting it with
T past frames. Since DMD inherently operates on 1D vectors, we tested two approaches: (1) flat-
tening the 2D EFIT data into 1D vectors and (2) performing predictions on a per-pixel basis. For
the flattening approach, we considered both joint prediction of ψ and ∆∗ψ (i.e., predicting a vector
of dimension 64× 64× 2 = 8, 192) and separate prediction (i.e., predicting two vectors, each of di-
mension 64×64 = 4, 096). All DMD experiments were conducted using the PyDMD library (Demo
et al., 2018). As for the Chronos model, we employed Chronos-t5-base, which has a com-
parable number of parameters to SimVP, and assessed its zero-shot accuracy without finetuning.
To enhance reliability, the final predictions of the Chronos model were obtained by averaging the
outcomes of 15 repeated samplings for each data point.

4.4 RESULTS AND ANALYSIS

We evaluated the efficacy of the GS-constraint loss and conducted a comprehensive analysis of the
prediction accuracy under various scenarios, varying both the types of input data and the prediction
length. Table 1 summarizes our experimental results. Among the baselines presented in the first and
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Table 1: Qualitative evaluation of plasma equilibrium prediction.

Method
ψ MAE (↓) ∆∗ψ MAE (↓) GS

const. (↓)Center Divertor Center Divertor

Baseline (50 ms delay) 0.00165 0.00161 0.01493 0.00742 0.04679†

Baseline (Constant) 0.00676 0.00687 0.02946 0.01533 0.04679†

DMD (200 ms) 0.93483 0.89436 14.4225 9.37053 5.09277
DMD (200 ms) ψ only 0.98264 1.26488 - - -
DMD (200 ms) pixel-level 0.01053 0.01028 0.03441 0.01965 0.03163
Chronos-base (200 ms) 0.01758 0.01756 0.06306 0.04728 47.0440

ConvLSTM (200 ms) 0.00385 0.00463 0.04160 0.02701 0.34480
PredRNN (200 ms) 0.00287 0.00355 0.05799 0.03089 1.54382
PredRNNv2 (200 ms) 0.00603 0.00720 0.06159 0.03474 2.01905

SimVP (400 ms) 0.00175 0.00178 0.02434 0.01365 0.38020
SimVP (400 ms) + LGS 0.00165 0.00172 0.02396 0.01347 0.21892
SimVP (200 ms) 0.00128 0.00124 0.01825 0.00996 0.36242
SimVP (200 ms) + LGS 0.00123 0.00125 0.02035 0.01108 0.21476
SimVP (200 ms) ψ only 0.00122 0.00119 - - -
SimVP (50 ms) 0.00116 0.00109 0.01850 0.01007 0.47197
SimVP (50 ms) + LGS 0.00106 0.00103 0.01945 0.01050 0.22314

SimVP (200 ms) + LGS + Heat. 0.00181 0.00194 0.03291 0.01823 0.23188
SimVP (200 ms) + LGS + Rev. 0.00132 0.00136 0.02289 0.01229 0.22324
SimVP (50 ms) + LGS + Heat. 0.00172 0.00176 0.02330 0.01296 0.22133

second groups of the table, the time-lagged baseline demonstrated the lowest MAEs. This result
is primarily due to the averaged metrics being reported across all timesteps. Notably, as illustrated
in Figure 4 in Section A, the 50 ms ahead prediction accuracy of the pixel-level DMD model is
comparable to that of SimVP. Further details can be found in A.

GS-constraint loss The third group in Table 1 demonstrates the changes in MAE when the GS-
constraint loss was introduced. The models using the GS-constraint loss generally showed lower
MAEs on ψ and the predicted ψ and ∆∗ψ more closely satisfied the GS equation. However, we
observed performance degradation in ∆∗ψ prediction in the case of the 50 ms and 200 ms models.
This trade-off is acceptable considering that ψ prediction is relatively more important than ∆∗ψ
prediction in the nuclear fusion domain. We also conducted experiments predicting only ψ, which
resulted in improved prediction accuracy. Nevertheless, it should be noted that while the accuracy of
ψ predictions may increase, this does not necessarily guarantee their physical validity; thus, further
investigation is required to determine whether using only ψ is practically acceptable.

Input configuration and Prediction length Prior to our experiments, we hypothesized that in-
corporating heating information, which partially represents control signals of the tokamak, would
enhance the prediction accuracy of the models. However, contrary to our expectations, Table 1 and
Figure 2 (a) demonstrate that the inclusion of heating data did not bring improvement, or led to
a decrease in accuracy in some cases. These unexpected results suggest that developing a multi-
modal model capable of integrating multiple data types from a tokamak requires more than simply
adding extra input channels. It indicates a need for architectural improvements in the model design
to properly leverage these additional data sources.

Alternatively, we can hypothesize that the current heating information may be insufficient for ac-
curate forecasting of ψ and ∆∗ψ. In fact, heating in a tokamak is not limited to external devices
such as ECR and NBI. There is also Ohmic heating, where the plasma is heated by its own electrical
resistance. If Ohmic heating contributes more significantly to the future plasma equilibrium than the
ECR and NBI, this could explain the current performance degradation when including heating data.

Subsequently, we examined the impact of prediction length on the models. In typical time series
forecasting tasks, shorter prediction lengths generally yield lower error rates. As evidenced in Fig-
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(a) (b)

Figure 2: MAEs of ψ predictions across various model and input configurations. These two plots
show MAE values for ψ predictions in the center region at different future time points. (a) All
models, except the one using heating information, more accurately predict ψ up to 200 ms into the
future compared to the 50 ms lagged baseline. (b) Models with input and output lengths of 200 ms
and 400 ms exhibit higher prediction accuracy at 50 ms compared to the model with 50 ms input
and output lengths.

ure 2 (b), our results align with this trend, showing that models predicting 200 ms into the future
achieve lower MAEs compared to those predicting 400 ms. Interestingly, we observed that the model
predicting only 50 ms ahead demonstrated higher errors than the other two models, contradicting
our initial intuition.

This unexpected finding raises the possibility that plasma states from the more distant past (beyond
50 ms) might have a potential influence on future plasma equilibrium, and this hypothesis requires
further rigorous investigation to confirm. If substantiated through future study, this observation
might offer a new perspective on plasma dynamics from a temporal viewpoint. Such a perspective
could potentially complement the spatial description provided by the GS equation, which illustrates
plasma equilibrium in space. However, it is crucial to emphasize that these are preliminary interpre-
tations. Extensive experimental and theoretical investigations would be necessary to validate these
hypotheses for understanding plasma dynamics.

In addition, we recognize that our current problem setting may not always require long-term equilib-
rium predictions. In fact, for many practical applications, short-term predictions are often sufficient
and more relevant. To enhance prediction accuracy for the nearest future (50 ms ahead), we ex-
perimented with a counterintuitive technique of reversing the input sequence. The rationale behind
this approach stems from the architecture of SimVP, where convolutional layers update the temporal
information of input features. The features of the earliest input frame contribute most significantly
to calculating the features of the nearest future frame in the output. By reversing the input sequence,
we enable the most recent historical information to be utilized in computing the nearest future infor-
mation. Figure 2 (a) shows that the model with reversed input performs best at 50 ms, validating the
effectiveness of this heuristic idea. This technique could potentially be further refined by applying
loss only to the nearest future frames.

Qualitative analysis Lastly, we analyzed the actual prediction results by visualizing the model
outputs. Figure 3 shows the prediction results for discharge shot #20279 from 9.35 s to 9.50 s. This
corresponds to the ramp-down phase of the experiment. The ramp-down phase involves reducing en-
ergy after maintaining plasma in a stable confinement state (i.e., the flat-top phase). In other words,
it is the process of terminating the fusion reaction and experiment. We focused our analysis on this
phase because, during ramp-down, confinement gradually weakens, leading to plasma instabilities
and an increased risk of disruptions, requiring careful control.

The results show that the predicted plasma boundary closely matches the ground truth. However,
prediction accuracy decreases near the X-point region, suggesting that further refinement is nec-
essary to achieve the level of precision required for plasma shaping and divertor control. Despite
this limitation, it is noteworthy that we achieved this level of prediction using only past equilib-
rium states. This suggests that by enhancing forecasting accuracy through integrating these data and
architectural improvements, the model could be practically used in various scenarios.

9
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Figure 3: Visualization of model predictions at Shot #20279. The model uses ψ and ∆∗ψ values
from 9.15 s to 9.30 s as input to predict the corresponding values from 9.35 s to 9.50 s. The top plot
illustrates the overall operational status of the shot, with input and output intervals shaded in gray
and separated by a black vertical line. In the bottom row, the leftmost plot displays the last frame of
the input ψ, while the subsequent plots show the predicted results in chronological order. In each ψ
plot, the ground truth LCFS is depicted by a lime-colored line, and the LCFS determined from the
model output is shown as a red dotted line.

5 DISCUSSION AND CONCLUSION

In this paper, we introduced a novel problem of forecasting future plasma equilibrium in tokamaks
based on past states. We formulated this as a video prediction problem and conducted experiments
across various methods and scenarios. Our results showed that the models can predict the poloidal
magnetic flux (ψ) up to 200 ms into the future more accurately than the baselines. In addition, we
found that introducing a loss function based on the GS equation improved the predictions of ψ and
resulted in physically reliable forecasting. However, we observed an unexpected accuracy degrada-
tion when integrating partial tokamak control signals, i.e., NBI and ECR heating data, suggesting the
need for further investigation to effectively leverage additional data from the tokamak. We conclude
by discussing the potential applications of our results in the fusion domain and future directions.

Outlook In recent years, the nuclear fusion community has shown increasing interest in develop-
ing digital twins of tokamaks (Kwon et al., 2022; Iglesias et al., 2017). Beyond simple 3D models,
these digital twins serve as tools for virtual fusion experiments that integrate various experimental
data and simulation results. This approach offers two significant advantages: it reduces the time and
energy costs required for each discharge, and it can minimize the risk of damage in the tokamak
that may occur during experiments. A notable example is the Virtual KSTAR (Kwon et al., 2022),
a digital twin of KSTAR. The techniques developed in this project are expected to be applied in the
future development of digital twins for ITER and K-DEMO (Cho et al., 2022).

Typically, fusion experiments are conducted based on detailed control scenarios, and virtual exper-
iments follow a similar approach; The system should be capable of generating simulated plasma
discharge results based on input scenarios describing the operational plan. To achieve this, a multi-
modal model is required to efficiently utilize not only current EFIT data but also various data from
the tokamak, including heating information and magnetic field data (i.e., control information). In
this context, our proposed method for predicting plasma equilibrium can be extended to serve as
a foundation for fusion multimodal models. We believe that our results can potentially contribute
to predicting plasma instabilities, preventing disruptions, and gaining novel insights into plasma
dynamics, thereby taking a significant step towards realizing data-driven stable fusion reactors.
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A ADDITIONAL QUANTITATIVE RESULTS

Figure 4: MAEs of ψ predictions across various methods. This plot presents MAE values for ψ
predictions in the center region at different future time points. All methods, except SimVP, had
lower accuracy than the 50 ms lagged baseline. At 50 ms ahead, DMD with pixel-level predictions
performed comparably to SimVP. The results of Chronos and PredRNNv2, which showed relatively
larger errors compared to other models, were omitted.

Figure 5: MAEs of ψ predictions in the center region at different future time points. This plot shows
the models (Chronos and PredRNNv2) and y-axis values omitted in Figure 4. The MAE values of
the DMD model, which reach up to 3.59, are excluded due to their excessively high magnitude.
Unlike other methods, the pixel-level DMD model exhibits a rapid increase in error at 100 ms.

Table 1 illustrates that the models including DMD, Chronos, ConvLSTM, PredRNN, and Pre-
dRNNv2 demonstrated higher errors compared to the time-lagged baseline. However, Figure 4
demonstrates that these models did not fail entirely in predictions across all timesteps. For predic-
tions 50 ms ahead, all methods except PredRNNv2 and Chronos achieved accuracy comparable to
the baseline. Notably, DMD with pixel-level predictions performed similarly to SimVP.

Beyond 100 ms, the prediction errors of the DMD models increased sharply, exhibiting the steepest
rise among the comparative models. This may be attributed to numerical instability during the fitting
process of the DMD models, particularly when simultaneously predicting ψ and ∆∗ψ. Evidence
includes warning messages from the PyDMD library and the observation that the MAE at 200 ms
reaches 3.59, which is approximately 1,700 times larger than the error at 50 ms.

Interestingly, even the pixel-level DMD model, which involves far fewer variables, exhibits a sig-
nificant increase in error as depicted in Figure 5. This suggests that additional factors contribute to
the observed performance drop. One possible explanation is that accurately predicting the temporal
dynamics of plasma requires accounting for spatial information. Furthermore, the non-linear nature
of plasma dynamics may limit the ability of linear models such as DMD to predict long-term be-
havior beyond 100 ms. However, these hypotheses cannot be conclusively verified with the current
experimental results, highlighting the need for further investigation.
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B DETAILS AND LIMITATIONS OF IOU-BASED LCFS EVALUATION
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Figure 6: IoU measurements of the LCFS obtained from two consecutive frames in Shot #19993,
varying the number of contour lines. The left y-axis represents the IoU, while the right y-axis shows
the computation time for both the LCFS and IoU.

The nuclear fusion community has typically measured accuracy by comparing parametric informa-
tion extractable from the LCFS, such as poloidal angle (Wan et al., 2023). However, these methods
are limited to examining only partial aspects of the LCFS shape. This limitation highlights the need
for quantitative evaluation metrics that can measure the similarity of the overall LCFS shape.

To address this issue, we experimented with the IoU metric, which is familiar to ML researchers, as a
potential method to compare the similarity between the ground truth LCFS and the predicted LCFS.
The process begins by drawingN contour lines using Matplotlib (Hunter, 2007). These lines are
stored as lists of (R,Z) coordinates, allowing for the identification of closed surfaces by comparing
the start and end coordinates of each contour line. The outermost closed surface is selected as the
LCFS and converted into a Polygon object of Shapely library to calculate the IoU. We calculated
the IoU for each timestep and then reported the mIoU across the entire test data.

While this method of estimating the LCFS and IoU is straightforward, it has limitations that hinder
its use as a primary evaluation metric. As illustrated in Figure 6, the IoU calculation is sensitive to
the number of contour lines used. Based on this result, we concluded that IoU should be used only
as a supplementary evaluation metric to MAE.
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