
Denoising Score-Matching for Uncertainty
Quantification in Inverse Problems

Zaccharie Ramzi∗
CEA (Neurospin and Cosmostat), Inria (Parietal)

Gif-sur-Yvette, France
zaccharie.ramzi@inria.fr

Benjamin Remy, François Lanusse, Jean-Luc Starck
AIM, CEA, CNRS

Université Paris-Saclay
Université Paris Diderot

Sorbonne Paris Cité
{benjamin.remy, francois.lanusse, jean-luc.starck}@cea.fr

Philippe Ciuciu
CEA (Neurospin), Inria (Parietal)

Gif-sur-Yvette, France
philippe.ciuciu@cea.fr

Abstract

Deep neural networks have proven extremely efficient at solving a wide range
of inverse problems, but most often the uncertainty on the solution they provide
is hard to quantify. In this work, we propose a generic Bayesian framework for
solving inverse problems, in which we limit the use of deep neural networks to
learning a prior distribution on the signals to recover. We adopt recent denoising
score matching techniques to learn this prior from data, and subsequently use it as
part of an annealed Hamiltonian Monte-Carlo scheme to sample the full posterior
of image inverse problems. We apply this framework to Magnetic Resonance
Image (MRI) reconstruction and illustrate how this approach not only yields high
quality reconstructions but can also be used to assess the uncertainty on particular
features of a reconstructed image.

1 Introduction

Generative modeling has enjoyed remarkable success in recent years with models such as Generative
Adversarial Networks (GANs) [Goodfellow et al., 2014] reaching extremely high quality results on
complex high resolution images [Karras et al., 2020]. Yet, GANs are still prone to issues including
unstable training and mode collapse, i.e. a lack of diversity in generated images. In addition,
GANs only provide a convenient way to sample from the learned distribution, they do not give
access to the density function itself. Another class of commonly used models, Variational Auto-
Encoders (VAEs) [Kingma and Welling, 2014] have also been able to reach high quality sample
resolutions [Vahdat and Kautz, 2020], but can only provide a bound on the density function of the
model.

In some practical applications of these generative models however, the most desirable aspect is not
necessarily to be able to sample from the model, or directly have access to its density functions,
but have access to gradients of the log density function, i.e. its score. In particular, in this work
we focus on the generic problem of performing Bayesian inference to solve an inverse problem (i.e.
deconvolution, denoising, inpainting, etc), using a learned generative model as a Bayesian prior. Such
problems can typically be solved by gradient-based inference methods such as Variational Inference
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(VI), and Langevin or Hamiltonian Monte-Carlo (HMC), but all these methods have in common that
they only rely on the score of the generative model.

Recent work [Lim et al., 2020, Song and Ermon, 2019] has investigated various approaches to directly
train a deep neural network (coined, a score network) to estimate the score of a density function
instead of the density itself. One of the most promising and scalable approach relies on denoising
score-matching, where the score network is trained using a denoising loss on an augmented dataset
where various amounts of Gaussian noise is added to the data. Not only has this approach already
been demonstrated to reach convincing results in score estimation, but Song and Ermon [2020] for
instance demonstrated that these score networks can be used to sample high resolution natural images
through Langevin dynamics.

In this work, we develop the first application of deep denoising score matching to Magnetic Resonance
Image (MRI) reconstruction and its use for Uncertainty Quantification (UQ) in the context of imaging
inverse problems.

2 Related Works

Score Matching Score Matching was introduced by Hyvärinen [2005]. It was later revisited
in Vincent [2011] and Alain and Bengio [2013] in the context of Deep Learning and Denoising
Auto-Encoders (DAE) in particular. Recently, Song and Ermon [2019] applied these findings to
images showing the potential of this approach combined with sampling techniques. They refined
their work in Song and Ermon [2020] to take it to high dimension and provide some techniques for
hyper-parameter setting.

Plug-and-Play Priors The idea of using a denoising model as a prior for inverse problems solving
was introduced by Venkatakrishnan et al. [2013] who used non-learned denoisers to replace the
proximity operator in the ADMM algorithm [Boyd, 2011]. More recently, Meinhardt et al. [2017]
have made use of learned denoiser networks in Plug-and-Play inverse problems solving. Annealed
HMC sampling can be seen as a fuzzy-version of these approaches with theoretical grounds.

Deep Uncertainty Quantification in Inverse Problems The idea of using generative models for
inverse problems such as data imputation and denoising was for instance suggested in an early VAE
work [Rezende et al., 2014]. In this approach, a generative network is first trained on high quality
data, and inference is then performed in the latent space of the model typically using VI. The main
advantage comes from the reduced dimensionality of the parameter space. Recent examples of this
approach include [Wu et al., 2018, Böhm et al., 2019], and an application to MRI can for instance be
found in [Edupuganti et al., 2019]. An important aspect of this approach is that it relies on the known
likelihood of observations.

A different approach was proposed in Adler and Öktem [2018] based on a conditional Wasserstein
Generative Adversarial Network (cWGAN). In this formulation, a generative model is trained to
sample high quality images conditioned on degraded observations. At test time, independent samples
from the posterior distribution induced by the GAN are obtaind by simply sampling different latent
space variables. Similar frameworks based on other conditional generative models have alse been
proposed, such as [Denker et al., 2020] using conditional Normalizing Flows, or [Tonolini et al.,
2019] using conditional VAEs. While this conditional generative model approach allows for fast
inference, thanks to ancestral sampling, it is worth noting that none of these models include an explicit
data consistency step, nor do they make use of a test-time likelihood. As a direct consequence, for
instance, these models cannot be used on data with different noise levels as seen during training.

3 Deep Denoising Score Matching for Posterior Inference

Our main objective in this work is to perform probabilistic inference over a Bayesian model typically
represented as

p(x|y) ∝ p(y|x)p(x) (1)
where y are some measurements and the posterior p(x|y) is the distribution of possible solutions x
compatible with observations and p(x) a prior knowledge. The problem-specific likelihood p(y|x)
encodes the forward process of the model and accounts for observational noise, while the prior p(x)
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encapsulates any a priori information we have on the solution of the problem. Our goal for UQ is
to sample solutions x belonging to that posterior. Multiple inference techniques can be leveraged
for sampling from this posterior p(x|y), but for high-dimensional problems modern techniques rely
on gradient-based methods, including Variational Inference [Hoffman et al., 2013] and Langevin
Diffusion, or HMC [Neal, 2011]. All of these techniques have in common that they only require
having access to the score ∇x log p(x) of the target distribution. We illustrate in particular in
Appendix B how Metropolis Hastings-calibrated HMC can be conducted with only knowledge of the
score.
Two terms will enter in the score of the posterior distribution in Equation 1, the score of the likelihood,
and the score of the prior. In many problems, such as in the MRI problem presented later in this work,
the likelihood score can be derived analytically, only the score of the prior remains unknown but can
be learned from data by score matching.

Deep Denoising Score Matching As originally identified by Vincent [2011] and Alain and Bengio
[2013], the score of a given target distribution P can be modeled using a DAE, i.e. by introducing an
auto-encoding function r : Rn ×R 7→ Rn trained to reconstruct under an `2 loss a true x ∼ P given
a noisy version x′ = x+ n with n ∼ N (0, σ2I). An optimal denoiser r? would then be achieved
for:

r?(x′, σ) = x′ + σ2∇x log pσ2(x′) (2)
where pσ2 = p ∗ N (0, σ2). In other words, the optimal denoiser is closely related to the score we
wish to learn and when the noise variance σ2 tends to zero, should exactly match the score of the
target density. In practice to learn this score efficiently, we adopt the residual noise-conditional
denoising score matching technique proposed by Lim et al. [2020], and train a model to minimize the
following Denoising Score Matching loss:

LDSM = E
x∼P

E
u∼N (0,I)

σs∼N (0,s2)

‖ u+ σsrθ(x+ σsu, σs) ‖22 (3)

In this formulation, the network rθ(x, σ) is now directly modeling the score ∇x log pσ2(x) of the
Gaussian-convolved target distribution.

Annealed Hamiltonian-Monte Carlo Sampling Given the noise-conditional neural scores learned
with the procedure described above, it is now possible to use a variety of inference methods to access
the Bayesian posterior. In this work, we adopt an annealed HMC procedure which provides an efficient
way to obtain parallel batches of independent samples from the target posterior despite the high
dimensionality of the problem. This is a sampling procedure closely related to the Annealed Langevin
Diffusion proposed in [Song and Ermon, 2019, 2020], but benefits from the faster Hamiltonian
dynamics and Metropolis-Hastings calibration (see Appendix B).

To build our procedure, we consider a Gaussian-convolved version of our target density:

log pσ2(x|y) = log pσ2(y|x) + log pσ2(x) + cst (4)

where σ2 plays the role of the inverse temperature found in classical annealing. The likelihood
can be obtained analytically, and in the case of a Gaussian likelihood takes the following form:
log pσ2(y|x) = −‖x−f(x)‖22

2(σ2
n+σ2) + cst, where σ2

n is the noise variance in the measurements. As for the
prior term, the noise-conditional score network introduced above already models the score of log pσ2 .
This distribution is gradually annealed to low temperatures and the chain progressively moves towards
a point in the target distribution.

4 Application to Bayesian Inverse Problems

The MRI Problem Magnetic Resonance Imaging (MRI) is a non-invasive modality used to probe
soft tissues. Compressed sensing, introduced for MRI by Lustig et al. [2007] is used to reduce its
significant acquisition time, and recently, deep learning approaches(see for example [Schlemper et al.,
2018, Hammernik et al., 2018, Pezzotti et al., 2020]) have been shown to perform extremely well
on the reconstruction problem. The idealized reconstruction problem is usually formalized in the
following way, for the single coil setting, with uniform acquisition:

y =MΩFx+ n (5)
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Figure 1: Bayesian posterior sampling for MRI reconstruction. The top leftmost image is the ground truth
image. The top second to the left image is the zero-filled retrospectively under-sampled image F Ty. The top
third to the left image is the reconstruction of the under-sampled image by the UPDNet. All the other images
are denoised samples from the estimated posterior distribution obtained by a tempered HMC. The zero-filling
achieves a PSNR of 25.55 dB, each sample 27.63 dB on average, the mean of the samples 30.04 dB and the
neural network 32.15 dB. A zoom of the region in the red square is provided in appendix A.4. An animation of
posterior samples is available online Û.

where y is the acquired Fourier coefficients, also called the k-space data, MΩ is a mask, F is the
classical 2D Fourier transform, x is the real anatomical image, and n ∼ N (0, σ2

n) is measurement
noise (we set σn = 0.1 in our experiments). The data we consider is the single coil data with the
Proton-Density (PD) contrast from the fastMRI dataset introduced in [Zbontar et al., 2018]. For
comparison with deep learning approaches, we use the state-of-the-art Primal-Dual net enhanced
with a U-net for image correction (UPDNet) from [Ramzi et al., 2020]. The under-sampling was done
retrospectively using an acceleration factor of 4 and a random mask as described for knee images
in [Zbontar et al., 2018].

Results We use a simple residual U-net inspired by Ronneberger et al. [2015] with ResNet building
blocks from [He et al., 2016] as our score network. In order to promote the regularity of the learned
scores, we regularize the spectral norm of each convolutional layer, and we find that setting the spectral
norm to ' 2 yields the best results. More details about the network architecture and training can be
found in appendix A. We then sample from the posterior following our annealed HMC procedure
down to relatively low temperatures, and apply one final denoising step on the last sample from the
chain, following the Expected Denoised Sample (EDS) scheme detailed in [Jolicoeur-Martineau et al.,
2020]. Figure 1 compares samples from the MRI posterior to the ground truth (top left), zero-filled
image (top second left), and UPDNet reconstruction (top center). We see that although individual
samples carry slightly less details than the neural network reconstruction, confidence in any particular
part of the image can be gauged by looking for variability or stability across multiple independent
posterior samples. We highlight in particular the red region, where posterior samples show significant
variability, indicating that this part of the image is poorly constrained by data. In contrast, a direct
neural network reconstruction (top center) does not match the ground truth in that region, and does
not provide an estimate of uncertainty which may lead a physician to misinterpret the image.

5 Conclusions and Discussions

We have presented in this work the first (to the best of our knowledge) instance of a framework
for Bayesian inverse problems based on Deep Denoising Score Matching and applied to MRI
reconstruction and Uncertainty Quantification. We illustrated the merits of this approach on an MRI
example where the ability to sample from the full posterior highlights what features present in a
reconstruction are not actually constrained by data.
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We also showed that the Deep Denoising Score Matching approach can effortlessly be used for
dimensions as high as 320× 320× 2. It is therefore much more scalable than GAN- or VAE-based
models. We note however that finding an optimal HMC annealing schedule and temperature-adaptive
step-size proved difficult. In general we did not manage to lower the temperature below a certain
level, prompting us to resort to a denoising step on the last samples from our HMC chains. This is a
direction for further research.
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A MRI experiments

A.1 Network architecture

The network is a 3-scale U-net with residual blocks composed of 3 convolutions followed by a batch
normalisation. Each batch normalisation is followed by a ReLU non-linearity except the last one.
A projection is used for the input of residual blocks whose number of input channels is not the
same as that of output channels. Each scale uses 2 residual blocks for the downsampling path and
2 residual blocks for the upsampling path. Downsampling is performed via average pooling and
upsampling is performed via up-convolution (as designed in [Ronneberger et al., 2015]), in order
to avoid checkerboard artefacts. We use the following sequence of number of channels: [32, 64,
128]. In order to deal with MRI images, that are complex in nature, we concatenate the real and
imaginary part of the image at the input of the network, forming effectively a 2-channel 320× 320
image. For input noise level conditioning, we concatenate a noise standard deviation map to the
input and in the lower scale of the network. Following the recommendation of Song and Ermon
[2020], we also divide the output of the network by the absolute value of the noise power. Finally, we
use Spectral Norm regularisation from [Yoshida and Miyato, 2017] in order to make sure the score
does not take inconsistent values in low-density regions. The Spectral Norm regularisation indeed
forces the spectral norm (maximum eigenvalue) of each layer to a certain value which in turn lowers
the Lipschitz constant of the network, preventing it to blow in unseen regions. The influence of the
Spectral Norm has been studied in the case of Plug-and-Play approaches by Ryu et al. [2019].

A.2 Network training

We use the Adam optimizer for network training, with a learning rate of 10−4. We add a white
Gaussian noise of variance σ2

s to the images scaled by a factor of 106. σs is drawn on-the-fly from a
Gaussian distribution of variance s = 50. This means that at training time, the standard deviation of
the noise can be negative, following the recommendation of Lim et al. [2020] to go from extrapolation
to interpolation.

A.3 HMC procedure

The HMC procedure starts from a zero-filled reconstruction of the image with added white Gaussian
noise of variance σinit = 100. For the reduction of noise standard deviation at reduction step, we use
a factor γ = 0.995, following the recommendation of Song and Ermon [2020]. We take a step size α

dependent of the sampling temperature at step i, α = ε
(
σi
σ0

)1.5

with ε = 10.
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Figure 2: Zoom of Bayesian posterior sampling for MRI reconstruction. The ordering is the same as
in Figure 1.

A.4 Zoom on Reconstruction

The zoom on this part of the reconstruction shown in Figure 2, illustrates a failure of the Neural net-
work reconstruction. It indeed produces a sharp artifact that might hinder the examiner’s conclusions.
The bayesian sampling allows us to see that this region is not necessarily very sharp.

B Score-Based Hamiltonian Monte Carlo

We used HMC for sampling from the posterior distribution. The sampling procedure follows the
leapfrog integrator presented bellow:

mt+α
2

= mt +
α

2
∇x log p(xt|y)

xt+α = xt + αM−1mt+α
2

mt+α = mt+α
2
+
α

2
∇x log p(xt+α|y)

(6)

where α is the step size, m the momentum and M is a preconditioning matrix taking into account
the space metric, but in our case the identity matrix. The gradient of the log posterior is computed as
∇x log p(xt|y) = ∇x log p(y|xt) +∇x log p(xt), using the inverse Bayes theorem in equation 1.

It is worth noting that the discretized HMC with final step size ε is not guaranteed to converge to the
desired target distribution. This is the motivation for the Metropolis-Hastings algorithm [Metropolis
et al., 1953, Hastings, 1970], which corrects for the discretization errors with a correction step.
Concretely, a new step is proposed using Equation 6, but it is accepted with probability of the form
min{1, p(x∗)q(xn|x∗)/p(xn)q(x∗|xn)} where xn is the last accepted point in the chain, x∗ is the
proposed update, p is the target density, and q is the proposal corresponding to taking a step of
Equation 6. In the context of a score-only approach, we do not have access to p and therefore cannot
compute directly this acceptance probability. We can nonetheless estimate from the scores themselves
by using a path integral:

log p(x∗)− log p(xn) =

∫ 1

0

∇x log p(t ∗ (x∗ − xn) + xn) · (x∗ − xn)dt (7)

This integral can be evaluated numerically to arbitrary precision (at the cost of additional score
evaluations), but we find excellent agreement with the theoretical value on toy model densities like
the two-moons distribution with a simple 4 points Simpson integration rule.
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This illustrates that for gradient-based MCMC samplers, which also includes Metropolis Adjusted
Langevin Algorithm, these algorithms can fully be implemented with only knowledge of the score.
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