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Abstract—Data that house topological information is manifested
as relationships between multiple variables via a graph formula-
tion. Various methods have been developed for analyzing time series
on the nodes of graphs but research works on graph signals with
volatility are limited. In this article, we propose a graph frame-
work of multivariate Generalized Autoregressive Conditional Het-
eroscedasticity (GARCH) models from the spectral perspective
with the Laplacian matrix. We introduce three graphical GARCH
models: one symmetric Graph GARCH model and two asym-
metric models namely Graph Exponential GARCH and Graph
GJR-GARCH. Assuming that graph signals and their residuals are
graph stationary, this framework can decompose the multivariate
GARCH models into a linear combination of several univariate
GARCH processes in the graph spectral domain. Moreover, it
is possible to reduce the number of parameters with the graph
topology information and further reduce the estimation cost by
utilizing the principal components of the graph signal in the fre-
quency domain. These proposed models are tested on synthetic
data and on two real applications for weather prediction and wind
power forecasting. With the data and GARCH model residuals
being graph stationary, the experiment results demonstrate that
these three graphical models can make multi-step predictions more
accurately than non-graph GARCH models and Graph Vector
Autoregressive Moving Average model.

Index Terms—Graph signal processing, laplacian matrix,
multivariate time series forecasting, ARCH, GARCH, multivariate
GARCH, EGARCH, GJR-GARCH, O-GARCH.

NOMENCLATURE

ARCH Autoregressive Conditional Heteroskedasticity.
ARMA Autoregressive Moving Average.
CCC Constant Correlation Covariance.
EGARCH Exponential Generalized Autoregressive Con-

ditional Heteroskedasticity.
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GARCH Generalized Autoregressive Conditional Het-
eroskedasticity.

GJR-GARCH Glosten-Jagannathan-Runkle GARCH.
GO-GARCH Generalized Orthogonal GARCH.
G-VARMA Graph Vector Autoregressive Moving Average.
O-GARCH Orthogonal GARCH.
VARMA Vector Autoregressive Moving Average.

I. INTRODUCTION

NOWADAYS, Big Data structured as networks are ubiq-
uitous in our daily lives, and they play an important

role in modern society with continually increasing influence.
These data include social network data, power grid data, sensor
network data, etc. Volatility exists in various real networks and
is often the cause of many physical and human/social factors,
for example, fluctuations in energy demands in power grids [1],
and vacillations in wind speed [2]. Recently, researchers have
extended the traditional signal processing methods to the graph
domain, leading to graph signal processing (GSP), which utilizes
algebraic graph theory, spectral graph theory, linear algebra,
and signal processing techniques [3]. The emergence of graph
domain signal processing tools, such as graph shift operators,
graph filters, etc., have appeared along with the introduction of
GSP [4].

In time series analysis, the central topic is to forecast the
future value from current and past observations. Such fore-
casting can provide consultation for economic and business
planning and industrial process control, such as in energy plants.
Well-known multivariate time series models are Vector Autore-
gressive (VAR) processes [5] and Vector Autoregressive Moving
Average (VARMA) processes [5]. Despite their popularity in
various applications, these models have the limitation of having
a constant covariance, which cannot account for time-varying
features, such as volatility. Volatility has been studied exten-
sively in finance by various researchers. It has been observed in
the study of asset return and risk that the inherent randomness
is time-varying, small and large fluctuations tend to cluster
together [6]. In the study of univariate data, Autoregressive
Conditional Heteroscedasticity (ARCH) [6], and generalized
ARCH (GARCH) [7] have been proposed. Subsequently, the ex-
ponential GARCH (EGARCH) model [8], and the GJR-GARCH
model [9] have been introduced to study asymmetric volatility;
for example, the stock market is more sensitive to bad news
rather than good news [10]. There are various multivariate
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GARCH models, such as Vector GARCH [11], matrix expo-
nential GARCH [12], Orthogonal GARCH (O-GARCH) [13],
generalized Orthogonal GARCH (GO-GARCH) [14], Constant
Correlation Covariance (CCC) [15], etc. Among these multi-
variate GARCH models, the Vector GARCH and the matrix
exponential GARCH utilize the vech(·) operator which stacks
the lower triangular portion of the covariance matrix to a vector.
The O-GARCH model, also known as principal component
GARCH [16], assumes the multivariate GARCH processes can
be a linear combination of a set of uncorrelated components
through means of an orthogonal matrix. The GO-GARCH model
is a natural generalization of the O-GARCH model which re-
places the orthogonal matrix with the inverse matrix. The CCC
model assumes a constant correlation relationship exists, which
means that the corresponding entry of the covariance matrix
equals the correlation coefficient times the square root of the
multiply of two relevant univariate GARCH variances, and the
Lagrange Multiplier test has been proposed to check whether
a constant correlation exists or not [17]. A detailed review of
the multivariate GARCH models can be found in [18]. Other
than in finance, GARCH models have also been applied in wind
forecasting [19], wind power prediction [20], weather predic-
tion [21], solar energies [22], traffic [23], ECG prediction [24],
etc.

In the past few years, time series forecasting techniques were
extended to the processing of graph-structured processes, and
have gained remarkable success. In the GSP field of study,
a causal graph VAR model was proposed with the directed
adjacency matrix in [25]. GSP adaptive algorithms for the signals
on graphs that are based on the least mean squares (LMS) were
introduced in [26], [27], [28]. The adaptive least mean pth power
algorithms and the GSP Sign algorithm have further extended
the GSP LMS algorithm onto estimating graph signals under
impulsive noise [29], [30], [31]. A different time series model
which considers the latent variable adopts the graph with low
rank plus sparse decomposition was introduced [32]. A graph
formulation of the VARMA (G-VARMA) model and graph
polynomial-time series models were proposed based on the
graph Laplacian matrix [33]. A network formulation of the VAR
model [34] and a network multivariate GARCH model [35] were
proposed based on the topology information of the adjacency
matrix. Lastly, as neural network methods become popular,
various researchers have combined graph and neural networks
together and proposed the graph neural networks [36].

The existing graph-based time series forecasting models do
not account for time-varying variance, nor do they consider the
volatility through the neighborhood connection via the structure
of the graph and will assign the same impact factor for each
neighbor. However, for a given node, it may receive different
amounts of influence from different node neighbors. In GSP, the
graph Laplacian matrix denotes the diffusion process on graph
nodes in the spatial domain [37], [38], and the eigendecomposi-
tion of the graph Laplacian gives another perspective on analyz-
ing this diffusion in the graph spectral domain. Therefore, it is
advantageous to explore the multivariate GARCH formulation
from a graph perspective to utilize the intrinsic information of the
graph topology. In this article, we propose a graph framework of

multivariate GARCH through the graph Laplacian matrix. The
contributions of our article are listed as the following:

1. We first propose a graph framework of multivariate
GARCH which we characterize with a graph Laplacian
matrix. Then, we introduce three variants of multivari-
ate graphical GARCH models: the Graph GARCH (G-
GARCH) model is for the symmetric case, the Graph Ex-
ponential GARCH (G-EGARCH) model, and the Graph
GJR-GARCH (G-GJR-GARCH) model are for the asym-
metric case. The three proposed models utilize the spec-
tral tools of GSP that enable us to analyze multivariate
GARCH from a graph perspective. We prove that these
graphical GARCH models can be decomposed into a set
of univariate GARCH in the graph spectral domain in the
expectation sense if the graph signals and their residuals
are graph stationary, and the number of estimated parame-
ters will become O(N ) rather than O(N2) with a Laplacian
matrix eigendecomposition cost.

2. We applied the three proposed graphical GARCH mod-
els to weather prediction and wind power forecasting.
With the graph signals and their residuals nearly graph
stationary, the proposed graphical GARCH models can
achieve more accurate multi-step prediction than tradi-
tional GARCH models and the G-VARMA model.

3. Last but not least, this framework allows us to use the
principal components to further reduce the estimation cost,
which provides a balance selection between the forecast-
ing performance and estimation cost. In the experiments,
the framework can use only half the graph frequency
components to obtain comparable performance with other
time series models in multi-step prediction.

The article is organized as follows: Section II introduces the
background information. Section III presents the multivariate
GARCH for network modeling. Section IV presents the syn-
thetic data results and the real-world data results. Section V
draws conclusions and provides discussions.

II. PRELIMINARIES

A. Graph Signal Processing

For a weighted and undirected graph G = (V,E,W ), V is
the vertex (node) set with N vertices, E is the edge set, and W
is the adjacency matrix. If vertices i and j are connected to each
other, then Eij belongs to the set E; the corresponding edge
weight in the adjacency matrix is Wij . Graph signal is a set of
values on vertices that gives us a mapping from the vertex set to
real numbers x : V → RN . For instance, xt ∈ RN is a graph
signal at time t, which is defined on the underlying graph with
N vertices.

The underlying graph topology and edge weights are assumed
to be time-invariant throughout this article. Although graphs in
real networks might be time-varying, invariant graphs can give
a good indication of the average behavior of the networks [39].
Among various choices, one possible way to generate the graph
topologies is the k-nearest-neighbor (k-NN) algorithm [40] with
Gaussian kernel weights, which is implemented by the GSP
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toolbox [41]:

wij = exp(−dij/davg), (1)

where dij implicates the distance between node i and j, and davg
denotes the average distance. Other weights can be used as well
such as statistical correlations between variables.

The Laplacian matrix is defined as L = D −W , where D
is a diagonal matrix defined as Dii =

∑N
j=1 Wij . Take L as the

graph shift operator, since L is positive definite, the eigenvector
decomposition of L is

L = UΛUT , (2)

where U = [μ0,μ1, . . .,μN−1] is a unitary matrix that consists
of N orthonormal eigenvectors, and Λ is a diagonal matrix of N
eigenvalues on the diagonals. Graph Fourier transform (GFT)
can transform the graph signals xt from the spatial domain to
the graph frequency (spectral) domain and is defined as

x̂t = UTxt, (3)

where x̂t denotes the value on graph frequency domain at
time t. In GSP, the eigenvalues are sorted in increasing order
0 = λ0 ≤ λ2 ≤ . . . ≤ λN−1, where low eigenvalues correspond
to low graph frequencies, and vice versa [4]. The inverse GFT
transforms x̂t from the frequency domain back to the spatial
domain and is defined as

xt = Ux̂t. (4)

A graph filter h is a function of L and can be seen as a linear
operator applied to the graph frequency domain [42], which has
an eigenvector decomposition form

h(L)x := Uh(Λ)UTx. (5)

Graph stationarity is an extension of the notion of stationarity
to graphs, and we will use the graph wide-sense stationarity in
this article. This requires the first and second moments of the
graph signal to be preserved over the graph dimension, which
means that the covariance matrix of x should be diagonalizable
with respect to the GFT [43]:

E
[
xxT

]
= UΛxU

T . (6)

In addition, the sufficient condition for (6) is the graph frequency
components of graph signals are uncorrelated [43].

B. VARMA and G-VARMA

The VARMA model is the vector form of the ARMA model,
which can be expressed as

yt =

P∑
i=1

Aiyt−i +

Q∑
j=0

Bjξt−j , (7)

where yt denotes N × 1 random variable, Ai and Bj are N by
N matrices, B0 is an identity matrix, and ξt denotes the N × 1
vector white noise at time t with constant covariance. P is the
AR order, and Q is the MA order. Note that the vectors and
matrices are expressed in bold.

The G-VARMA model requires the graph signals to be graph
stationary and is defined with the underlying Laplacian matrix
L [33] as

yt =

P∑
i=1

Ai(L)yt−i +

Q∑
j=0

Bj(L)ξt−j , (8)

where yt is the time domain graph signals and ξt is the random
component. In (8) the parameters Ai(L) and Bj(L) are the AR
and MA parameters in the form of graph filters defined in the
form of (5).

C. Univariate GARCH

A GARCH model is essentially an ARMA model with the
variance being non-stationary and behaving as an ARMA model
as well. The ARMA(P,Q) part can be written as

yt =

P∑
i=1

αiyt−i +

Q∑
j=0

βjξt−j , (9)

where yt is a random variable at time t, αi is the AR parameter,
βj is the MA parameter, and ξt is the white noise with zero mean
and time-varying variance σ2

t .
The GARCH(p, q) part describes the time-varying variance

of ξt:

σ2
t = α0 +

q∑
i=1

αiξ
2
t−i +

p∑
j=1

βjσ
2
t−j . (10)

We will next briefly cover two asymmetric GARCH models,
which are commonly used in the stock market. The first asym-
metric GARCH model is the EGARCH model [8]. The variance
of the EGARCH is

lnσ2
t = α0 +

q∑
i=1

αiξt−i +

q∑
i=1

γif(ξt−i) +

p∑
j=1

βj lnσ
2
t−j ,

(11)
where

f(ξt) = (|ξt| − E(|ξt|)). (12)

The asymmetry of the EGARCH model in (11) comes from the
usage of the ln(·) function and f(ξt). Compared to the square in
(10), the ln(·) function allows negative values as output, which
removes the non-negative restrictions of the residuals. Also, the
expectation of f(ξt) is zero while f(ξt) is different for positive ξt
and negative ξt, which could be used to describe the asymmetric
effect.

The second asymmetric GARCH model with a specific para-
metric expression is the GJR-GARCH model [9]. The variance
expression of the GJR-GARCH model is

σ2
t = α0 +

q∑
i=1

αiξ
2
t−i +

q∑
i=1

γig(ξ
2
t−i) +

p∑
j=1

βjσ
2
t−j , (13)

where

g(ξ2t ) =

{
ξ2t if ξt < 0
0 otherwise

.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on October 01,2024 at 14:38:23 UTC from IEEE Xplore.  Restrictions apply. 



560 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 9, 2023

One remark on the parameter function g(ξ2t ) is that its value is
non-zero only for the negative components.

D. Multivariate GARCH

A multivariate GARCH model is essentially a VARMA model
with the time-varying covariance behaving as a VARMA model
as well. The VARMA(P,Q) can be written as

yt =

P∑
i=1

Aiyt−i +

Q∑
j=0

Bjξt−j . (14)

Although this looks similar to the VARMA model, the main
difference is that the covariance of white noiseξt is time-varying.
The component ξt in (14) has the expression

ξt = H
1/2
t zt, (15)

whereHt denotes the covariance of ξt, and zt is the vector form
of independent and identically distributed (i.i.d.) white noise.
Note that H1/2

t is an N by N positive definite matrix.
The covariance of the O-GARCH model is described as

Ht = ZV tZ, (16)

where the associate matrix Z is a N by N orthogonal matrix,
and V t is a diagonal matrix.

III. NETWORK PROCESS MODELING

The VARMA part of the graph multivariate GARCH frame-
work is the same as (8), and the time-varying covariance is

V ar[ξt|ξu, u < t] = Ht = E
[
ξtξ

T
t |ξu, u < t

]
. (17)

Utilize GFT, then

Ht = UĤtU
T , (18)

where Ĥt denotes the covariance in the frequency domain.
From a linear combination perspective, this framework in (18)

seems mathematically equivalent to the O-GARCH model in
(16). However, the major difference is that we could utilize the
graph topology a priori to reduce the estimation cost while the
O-GARCH model needs to estimate the unconditional covari-
ance matrix in advance, and endow these uncorrelated compo-
nents with the meaning of graph frequency, which answers the
question of why the associate matrix Z in the O-GARCH model
should be orthogonal and avoid the weak correlation estimation
problem through graphical settings [14].

A. Graph GARCH Model

The time-varying covariance of the G-GARCH model is
computed through

Ht = W (L) +

q∑
i=1

Ci(L)ξt−iξ
T
t−i +

p∑
j=1

Dj(L)Ht−j ,

(19)
where Ht is the covariance of ξt. The complete G-GARCH
model is a combination of (8) and (19). Note that we use
(P,Q, p, q) to denote the four parameters for the GARCH model

and Graph GARCH model, where P denotes the AR parameter,
Q is the MA parameter, p is the order parameter of the AR part
of the GARCH part, and q is the order parameter of the MA part
of the GARCH part.

Theorem 1: The G-GARCH model can be decomposed into
N uncorrelated GARCH processes in the graph frequency do-
main in the expectation sense if ξt are graph stationary.

Proof: Let us first look at the G-GARCH model in (8) and
(19). After applying the GFT to the G-GARCH model, based
on [33], the VARMA part would be in the following form:

ŷt =
P∑
i=1

ΛP,i(L)ŷt−i +

Q∑
j=0

ΛQ,j(L)ξ̂t−j , (20)

where ΛP,i(L) and ΛQ,j(L) are diagonal matrices. This means
that (20) is essentially decomposing a VARMA graph signal into
N univariate ARMA processes, and the residuals would be

ξ̂t = UT ξt, (21)

and

V ar
[
ξ̂t|ξ̂u, u < t

]
= Ĥt = E

[
ξ̂tξ̂

T

t |ξ̂u, u < t
]
. (22)

Multiply UT on the left and U on the right of the covariance
Ht of the G-GARCH model in (19):

Ĥt = UTUΛWUTU +

q∑
i=1

UTUΛC,iU
T ξt−iξ

T
t−iU

+

p∑
j=1

UTUΛD,jU
THt−jU . (23)

Canceling the terms with UUT = I , we will have the following
expression:

Ĥt = ΛW +

q∑
i=1

ΛC,iξ̂t−iξ̂
T

t−i +

p∑
j=1

ΛD,jĤt−j . (24)

Use (22) and take the expectation of (24), then for the left-hand
side of the equation, we have

E

[
Ĥt

]
= E

[
E

[
ξ̂tξ̂

T

t |ξ̂u, u < t
]]

= E

[
ξ̂tξ̂

T

t

]
. (25)

For the right-hand side of the equation, we get

ΛW +

q∑
i=1

ΛC,iE

[
ξ̂t−iξ̂

T

t−i

]
+

p∑
j=1

ΛD,jE

[
Ĥt−j

]
=ΛW

+

q∑
i=1

ΛC,iE

[
ξ̂t−iξ̂

T

t−i

]
+

p∑
j=1

ΛD,j

× E

[
E[ξ̂t−j ξ̂

T

t−j |ξ̂u, u < (t− j)]
]

=ΛW +

q∑
i=1

ΛC,iE

[
ξ̂t−iξ̂

T

t−i

]
+

p∑
j=1

ΛD,jE

[
ξ̂t−j ξ̂

T

t−j

]
.

(26)
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By the graph stationarity condition, we have

E[Ĥt] = E

[
ξ̂tξ̂

T

t

]
= E

[
UT ξtξ

T
t U

]
= Λξt

. (27)

Now, combine (25) and (26), we get

E[Ĥt] = ΛW +

q∑
i=1

ΛC,iE

[
ξ̂t−iξ̂

T

t−i

]

+

p∑
j=1

ΛD,jE

[
ξ̂t−j ξ̂

T

t−j

]
. (28)

Since both sides of (28) are diagonal, we can decompose the
G-GARCH model into N uncorrelated GARCH processes in
the graph frequency domain in the expectation sense. �

B. Asymmetric Graph GARCH Models

The Graph Exponential GARCH (G-EGARCH) model can
be obtained by combining the G-GARCH model in (19) and the
EGARCH model in (29). The covariance of the G-EGARCH
model is shown in the following equation:

lnHt = W (L) +

q∑
i=1

Ci(L)Udiag(UT ξt−i)U
T

+

q∑
i=1

Ei(L)Udiag(f(UT ξt−i))U
T

+

p∑
j=1

Dj(L) lnHt−j , (29)

where

f(UT ξt−j) = (|UT ξt−j | − E(|UT ξt−j |)). (30)

Comparing the G-EGARCH model in (29) with the symmetric
G-GARCH model, the asymmetry comes from the ln(·) function
and f(UT ξt−j), both are the same with the EGARCH model in
(11).

Theorem 2: The G-EGARCH model can be divided into N
uncorrelated EGARCH processes in the graph frequency domain
in the expectation sense if ξt are graph stationary.

Proof: From linear algebra [12], the exponent of a symmetric
matrix A will also be symmetric:

eA =
∞∑
i=0

Ai

i!
. (31)

Combining with the GFT,

UT eAU =

∞∑
i=0

UTAiU

i!
=

∞∑
i=0

(UTAU)i

i!
= eU

TAU .

(32)
The matrix operation ln(·) is the inverse of the matrix exponen-
tial operation; this relation holds for the matrix ln(·) operation
if the matrix is symmetric. By (29) and (32),

UT lnHtU = ln Ĥt. (33)

Now, combine (33) with (32),

ln Ĥt = ΛW +

q∑
i=1

ΛC,idiag(ξ̂t−i)

+

q∑
i=1

ΛE,idiag
(
f
(
ξ̂t−i

))
+

p∑
j=1

ΛD,j ln Ĥt−j . (34)

Taking the expectation on both sides, then both sides of the
following equation are diagonal by (31) and (27), the resulting
expression will be the same as in Theorem 1,

E

[
ln Ĥt

]
= ΛW +

q∑
i=1

ΛC,iE

[
diag

(
ξ̂t−i

)]

+

q∑
i=1

ΛE,iE

[
diag

(
f
(
ξ̂t−i

))]

+

p∑
j=1

ΛD,j lnE
[
Ĥt−j

]
. (35)

�
Similar to the GJR-GARCH model, we can derive the G-GJR-

GARCH by introducing a parametric expression to represent the
asymmetry. The covariance of the G-GJR-GARCH model has
the following formulation:

Ht = W (L) +

q∑
i=1

Ci(L)ξt−iξ
T
t−i

+

q∑
i=1

Fi(L)Udiag(g(UT ξt−iUξTt−i))U
T

+

p∑
j=1

Dj(L)Ht−j . (36)

In (36), the term F i(L) is a graph filter, and the term

g(UT ξt−iUξTt−i) = g(ξ̂t−iξ̂
T

t−i) has the expression

g(ξ̂t−iξ̂
T

t−i) =

⎧⎪⎪⎨⎪⎪⎩
ξ̂t−i,mξ̂Tt−i,n if ξ̂t−i,m < 0

and ξ̂t−i,n < 0,

0 otherwise

where ξ̂t−i,m and ξ̂Tt−i,n denote the mth and the nth residuals

among ξ̂t−i. Also, the asymmetric effect is present in the G-

GJR-GARCH model because of g(ξ̂t−iξ̂
T

t−i) is more sensitive
to the negative components than the positive components.

Theorem 3: The G-GJR-GARCH model can be divided into
N uncorrelated univariate GJR-GARCH processes in the graph
frequency domain in the expectation sense if ξt is graph station-
ary.

Proof: Same as Theorem 1, if we multiplyU and its transpose
on both side of (36), then use (18) and (36) will result in

Ĥt = ΛW +

q∑
i=1

ΛC,iξ̂t−iξ̂
T

t−i
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+

q∑
i=1

ΛF ,idiag
(
g
(
ξ̂t−iξ̂

T

t−i

))

+

p∑
j=1

ΛD,jĤt−j . (37)

By taking the expectation, then both sides of the following
equation are diagonal by (36) and (27), the same result holds
as in Theorem 1,

E

[
Ĥt

]
= ΛW +

q∑
i=1

ΛC,iE

[
ξ̂t−iξ̂

T

t−i

]

+

q∑
i=1

ΛF ,iE

[
diag(g(ξ̂t−iξ̂

T

t−i))
]

+

p∑
j=1

ΛD,jE

[
Ĥt−j

]
. (38)

�

C. Principal Component Graph GARCH

We defined the principal component of graph GARCH as

H ′
t = U(I · Ĥt)U

T , (39)

where H ′
t denotes the principal component approximation of

Ht. The matrix I in (39) is the N by N indicator matrix
with diagonal entries 0 or 1, which decides which of the graph
frequency is adopted as the principal component. This matrix
is known as the bandlimited filter and is commonly used in
GSP [26].

In practice, for a graph signal with N frequencies, the low-
frequency parts such as λ0 indicate the slow-varying component
among the graph, and normally the low-frequency components
have a higher impact than the high-frequency components. In
other words, the graph signals are assumed to be smooth [4].
With these in mind, we can directly use the first M lower graph
frequency with the indicator matrix IM to define an ideal graph
low-pass filter. Then, the principal components become

H ′
t = U(IM · Ĥt)U

T ,where IM,ii = 1 if i < M. (40)

It is worth mentioning that the low-pass filter in the graph spec-
tral domain corresponds to diffusion in the graph spatial domain
as a low-pass filter could represent the signal propagation among
the node neighborhood [37], [38].

Remarks: To estimate a GARCH model, we need to first
estimate the ARMA process to obtain the parameters of the
ARMA part and the approximate ARMA residuals, then again
estimate the ARMA process of the residuals to get the parameters
of the GARCH part [44]. Likewise, the estimation process
of our graphical GARCH models is the same. Therefore, the
discussion of the estimation methods, such as the Maximum
Likelihood Estimation (MLE), is not included. Please refer
to [44] for the details. The main result of our models is to
decompose the multivariate GARCH into several uncorrelated
univariate GARCH with parameter saving. For instance, the

original parameter size of the GARCH part of the G-GARCH
model is N ×N × (p+ q), the G-EGARCH model, and the
G-GJR-GARCH model are of size N ×N × (p+ 2× q). By
conducting eigendecomposition to the graph Laplacian matrix,
we could transfer the graph signals into the graph spectral
domain with GFT, and the new parameter size of the GARCH
part of G-GARCH is N × (p+ q), and the new parameter
size of these asymmetric graphical GARCH models becomes
N × (p+ 2×q). The parameter size of the G-VARMA model
is N × (P +Q) after GFT, our models inherit the parame-
ters saving advantage and add GARCH parts with additional
N × (p+ q) or N × (p+ 2×q) to model the volatility. In con-
trast to N univariate GARCH processes, we could utilize the
graph topology information and make better predictions with the
same model complexity. In addition, we can further reduce the
estimation cost using the principal component graph GARCH.

IV. EXPERIMENTAL STUDIES

In this section, we will test the performance of the graph for-
mulation of multivariate GARCH in synthetic data and real data,
including the G-GARCH model, the G-EGARCH model, and
the G-GJR-GARCH model. The baseline algorithms will be the
ARMA model, the GARCH model, and the G-VARMA model.
The code of the experiment is written in MATLAB (All the codes
are open at https://github.com/Jacob-Hong17/Graph-GARCH).

A. Evaluation Metrics

In all the experiments, the metrics to evaluate the performance
are the MAE (Mean Absolute Error) and the rNMSE (root
Normalize Mean Square Error):

MAE =
1

N

1

T

N∑
n=1

T∑
t=1

|ynt − ynt|, (41)

and

rNMSE =

√∑N
n=1

∑T
t=1 ||ynt − ynt||22∑N

n=1

∑T
t=1 ||ynt||22

. (42)

In (41) and (42), N is still the number of nodes, T is the total
test sample length, ynt implicates the observation for node n at
time t, and ynt denotes the prediction for node n at time t.

B. Synthetic Data Experiments

In this part, the purpose is to verify that our framework is effec-
tive at multi-step prediction, ranging from 1 step to 6 steps, and
test whether the asymmetric graph GARCH models are capable
of capturing asymmetric volatility. We would like to start with a
toy example with 5 nodes, and the underlying graph topology of
the synthetic graph signal is shown in Fig. 1. The graph spectral-
domain signals are generated using a G-GARCH(2,1,1,1) for the
symmetric case, and a G-EGARCH(2,1,1,1) for the asymmetric
case. These two cases share the same ARMA coefficients shown
in Table I. The time-varying covariance model coefficients for
the G-GARCH and G-EGARCH are given in Table II, respec-
tively. The duration of the time-varying graph signal is 1000
time steps. Then we use the inverse GFT to acquire the data in
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Fig. 1. Graph topology of the synthetic graph signal.

TABLE I
MODEL COEFFICIENTS OF THE ARMA

TABLE II
MODEL COEFFICIENTS OF G-GARCH

the graph spatial domain. When generating the graph signal, the
signals in the graph frequency domain are purposefully kept to
be i.i.d to match the graph stationary assumption. The first 800
samples and the last 200 samples are used as the training and
testing set respectively. The experiment is repeated 50 times and
each time we re-generate the graph signal randomly.

The average MAE and rNMSE of the 50 experiment runs
are shown in Fig. 2 for the experiments with symmetric data
and Fig. 3 for the experiments with asymmetric data respec-
tively. From Fig. 2, we can clearly observe that the G-GARCH
model has lower forecasting MAE and rNMSE than the ARMA,
GARCH, and G-VARMA models from 1 step to 6 steps. It can
also be observed from Fig. 2 that the performance improvement
of the G-GARCH model compared to the G-VARMA model
increases as the desired number of forecasting steps increases.
Furthermore, in Fig. 3, we can see for asymmetric GARCH data,
asymmetric models such as G-EGARCH and G-GJR-GARCH
are superior to the G-GARCH both in MAE and rNMSE.

C. Real Data Experiments

In this section, we evaluate these proposed models in two real-
world data scenarios: sensor networks and power grids. Each
data set is split into training set, validation set, and test set.
The experiments on the real data sets are conducted using the
following five-step procedure.

1. Data collection and preprocessing: For the real-world data
sets, Engle’s ARCH test [6] is applied to every univariate
time series in all of these data sets to examine if there is an
ARCH effect [6] present in the data sets or not. Using this
strategy, we have confirmed that all two data sets show the
existence of the ARCH effect. Also, we can test whether
the graph residuals have a correlation or not. Therefore,

Fig. 2. Performance of the G-GARCH model on simulated data.

using these data sets, we expect that there is a performance
gap between models with GARCH and without GARCH.

2. Graph construction: The original geographic information
contained in the data is the latitude and the longitude of the
location where the time series are gathered. To generate the
graph topologies, we projected these nodes into a 2D plane
with the tool pyproj [45], and generated a distance matrix
for all nodes, then we can calculate the graph topologies
and weights mentioned in Section II-A.

3. Model parameter selection: The model parameters of
(P,Q, p, q) are chosen by the lowest rNMSE from the
validation set. We first determine the P and Q, then the
p and q. Note that the p and q are either ARCH(1) or
GARCH(1,1) due to the fact that GARCH(1,1) is sufficient
for most applications [46]. All the graphical GARCH mod-
els share the same parameters as G-GARCH(P,Q, p, q)
for comparison.

4. Estimation: We estimate the parameters via the MLE
method through MATLAB under the Gaussian distribution
setting.

5. Forecasting: Make the forecasting with the test set using
our proposed graphical models and compare them with the
baseline models.

The first real-world data set is the Molene weather data, which
has been widely used in the GSP community [43]. Here we
select 12 nodes with 744 observations for hourly temperature
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Fig. 3. Performance of the asymmetric graphical GARCH models on simu-
lated data.

Fig. 4. Graph topology of Molene and AEMO data sets, red points are used
in the later demonstration.

monitoring in France, which could be seen as a sensor network.
The data set is split using the following ratio: 35% of the data
as the training set, 15% of the data as the validation set, and
the rest of the data as the test set. For graph construction, we
use k-NN with k = 4 to generate the graph is also shown in
Fig. 4. In this data set, we reduce the models to behave similarly
to an AR model by setting Q to 0, as a consequence in our
validation, we only select a P value ranging from 1 to 5. The
resulting G-GARCH(2,0,1,1) from the validation is the optimal
G-GARCH parameter, while the GARCH baseline is set to
GARCH(3,0,1,1).

The second real-world data set of the experiments is the Aus-
tralian Energy Market Operator (AEMO) wind farms data set
from R software1 [47], which can be viewed as a case of a power

1We obtained from AEMO function, onlineVAR(version 0.1-1)

grid. Among the wind farms, we select the data from the follow-
ing 6 close wind farms to be our graph signals: STARHLWF,
SNOWTWN1, NBHWF1, NBHWF1.1, WATERLWF, and LK-
BONNY1. We use the first 20000 data samples, which make
the time interval 5 minutes, and the maximum wind farm power
is 100 MWH. We split the data set using the following ratio:
70% of the data as the training set, 10% of the data as the
validation set, and 20% of the data as the test set. To find
the optimal GARCH and G-GARCH parameters (P,Q, p, q),
a grid search is performed on the validation set performance.
For graph construction, we select k = 3 for the AEMO data
set, the graph topology can be seen in Fig. 4. The selection
of P ∈ {1, 2, 3, 4, 5}, and Q ∈ {0, 1, 2, 3, 4, 5}. The validation
results obtained from the grid search for the experiment on the
AEMO data set are G-GARCH(4,4,1,1) and GARCH(2,5,1,1).

Molene data set: From Fig. 5, the first thing we can observe is
that the G-GARCH model is superior to the ARMA model, the
GARCH model, and the G-VARMA model for all times in MAE
and rNMSE. The G-GARCH model outperforms the G-VARMA
model more and more significantly as the time horizon increases,
such as the G-GARCH model is superior to the G-VARMA
model by 5.5 percent in MAE and 3.7 percent in rNMSE for
7-step forecasting. Furthermore, the graph models are better
than the non-graph models, to give an example, the G-VARMA
model achieves better results than the ARMA model. The models
with volatility are better than the models without volatility, for
example, the GARCH model is better than the ARMA model
in terms of MAE and rNMSE performance. The asymmetric
Graph GARCH models, such as the G-EGARCH model and the
G-GJR-GARCH model, are inferior to the G-GARCH model
but still superior to the G-VARMA model. One possible reason
is that the volatility is symmetric in temperature data [48]. In
addition, we only need 4 graph frequency estimations to achieve
lower MAE, and 9 graph frequencies to achieve a lower rNMSE
than ARMA, GARCH, and G-VARMA models in 3 steps ahead
prediction. Finally, the G-GARCH model can match the true
signals well in three steps ahead prediction in the selected node
mentioned in Fig. 4. The forecasting result of the node in red is
shown in Fig. 6(a), and the G-GARCH model has a smaller error
62% of the time, and 6.4% less error on average in contrast to
the G-VARMA model from Fig. 6(b). Among all the 12 nodes,
the G-GARCH model has better forecasting results than the
G-VARMA model in 10 nodes for 3-step ahead. In Fig. 6(c),
we show the 95% confidence interval of the G-GARCH model
for 3-step prediction.

AEMO data set: In Fig. 7, the G-GARCH model outperforms
the ARMA, GARCH, and G-VARMA models for all times in
terms of MAE and rNMSE. The G-GARCH model can surpass
the G-VARMA model by more than 6 percent in MAE, and about
2.5 percent in rNMSE for 3 hours prediction. The G-EGARCH
model and the G-GJR-GARCH model perform slightly better
than the G-GARCH model due to the asymmetry factor con-
sideration. For instance, the G-EGARCH model outperforms
the G-GARCH model by 1.2 percent in MAE and 0.7 percent
in rNMSE. And the G-GJR-GARCH model is superior to the
G-GARCH model by 0.7 percent in MAE and 0.6 percent in
rNMSE for 3 hours prediction. Furthermore, we can use 4 graph
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Fig. 5. Experiment results for the Molene data set.

Fig. 6. Forecasting for the Molene data set.

frequencies to get better performance in MAE and rNMSE in
18-step prediction. The asymmetric GARCH models on graphs,
such as the G-EGARCH model, are able to predict the true
signals well for 18 steps ahead prediction for the selected node
mentioned in Fig. 4. The forecasting result of the node in red is
shown in Fig. 8(a), the G-EGARCH model has a smaller error
63.5% of the time, and 7.0% less error on average compared with
the G-VARMA model from Fig. 8(b). Among all the 6 nodes,
the G-EGARCH model has better forecasting results than the
G-VARMA model in all 6 nodes for 18 steps ahead. In Fig. 8(c),
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Fig. 7. Experiment results for the AEMO data set.

Fig. 8. Forecasting for the AEMO data set.

we demonstrate the 95% confidence interval of the G-EGARCH
model for 18-step prediction.

V. CONCLUSION AND FUTURE WORK

We have proposed a graph framework for the multivariate
GARCH process with significant parameter and complexity
reduction. The framework allows us to use the principal com-
ponents of graph frequency to balance performance and cost.
Based on this framework, we are able to propose the G-GARCH
model, the G-EGARCH model, and the G-GJR-GARCH model.
Among the three models we proposed, we can use G-GARCH
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for the symmetric data, and the G-EGARCH model or the
G-GJR-GARCH model for asymmetric data. Experiment results
show that the graph spectral GARCH methods can surpass the
multi-step forecasting performance of the G-VARMA model and
of the ordinary GARCH model. Compared with the G-VARMA
model, by extending the volatility to the graph frequency do-
main, our models can achieve better results in high-volatility
cases.

Our future research will be directed to studying time-varying
graphs, that is graphs with varying branch weights and eventu-
ally time-varying topology. We will also explore other applica-
tions where signals present high volatility.
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