
Under review as a conference paper at ICLR 2024

CONSISTENCY REGULARIZATION FOR DOMAIN GEN-
ERALIZATION WITH LOGIT ATTRIBUTION MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Domain generalization (DG) is about training models that generalize well to un-
seen domains with different data distributions than the training domains. It has
recently been shown that an effective way to achieve good out-of-distribution
(OOD) performance is targeted data augmentation, which randomizes spurious
factors while preserving robustly predictive factors in training examples. Data
augmentation (DA) naturally leads to paired training examples that share the same
semantic contents, which can be utilized via consistency regularization (CR). In
this paper, we show that CR can further boost OOD performance on top of tar-
geted DA. We also propose a novel CR-based DG method called Logit Attribution
Matching (LAM). In comparison with previous CR-based DG methods, a key ad-
vantage of LAM is that it leverages class labels often associated with semantic
sharing pairs. Empirically we find that LAM consistently outperforms previous
CR-based DG methods on benchmarks with multiple classes. It is the only one
that can consistently improve over the targeted DA on all the datasets tested in our
experiments. To justify the CR-based approach to DG theoretically, we establish
conditions for optimal DG in a causal framework and explain how CR is related
to those conditions.

1 INTRODUCTION

Deep learning models are successful under the independent and identically distributed (i.i.d.) as-
sumption that test data are drawn from the same distribution as that of training data. However,
models that generalize well in-distribution (ID) may be generalizing in unintended ways out-of-
distribution (OOD) (Szegedy et al., 2013; Shah et al., 2020; Geirhos et al., 2020; Di Langosco
et al., 2022). Some image classifiers with great ID performance, in fact, rely on background cues
to predict the class of foreground objects, leading to poor OOD performance (Beery et al., 2018;
Zech et al., 2018; Xiao et al., 2020). Such reliance on spurious correlations is subject to various
kinds of domain shift, affecting many real-world applications where the i.i.d. assumption cannot be
guaranteed (Michaelis et al., 2019; Alcorn et al., 2019; Koh et al., 2020; Ali et al., 2022).

Domain generalization (DG) deals with the conundrum of generalizing under domain shift. It is
difficult because actual test domains may vary from the training domains in numerous ways. Multi-
source DG methods tackle this issue by utilizing data from multiple training domains, however, as
Gulrajani & Lopez-Paz (2021) has shown, these methods are not generally better than the classic
Empirical Risk Minimization (ERM) (Vapnik, 1998). The stagnation of algorithmic improvement
under the multi-source setting suggests that we may need to rethink what kind of data to use and
how to use them to improve OOD performance.

A promising alternative to multi-source DG is data augmentation (DA). By generating more data
from existing ones, DA exposes a model to more feature variations during training and thereby
enhances its capability in dealing with novel domains. Generic DA methods such as Mixup (Zhang
et al., 2017) and RandAugment (Cubuk et al., 2020) have been shown to improve OOD performance
in many cases, although the improvement is inconsistent across datasets. The limitation of these
methods is that their efficacy largely depends on how well the induced variation aligns with the
domain shift (Wiles et al., 2022). To address this, Gao et al. (2023) proposed targeted augmentation
(or targeted DA) which promotes the idea of designing specific data augmentation tailored for each
individual task. In essence, targeted DA serves as a medium for transferring vital domain knowledge
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from human to machine that is practically infeasible or inefficient through generic DA and multiple
training domains. Empirical evidence shows targeted DA outperforming previous generic DA and
multi-source baselines significantly on two real-world datasets in WILDS (Gao et al., 2023).

In this paper, we further investigate the potential of DA by studying its synergy with consistency
regularization (CR), a widely used technique in machine learning that encourages a model to make
similar predictions on similar inputs (Bachman et al., 2014; Zhang et al., 2020; Chen et al., 2020;
Caron et al., 2021). The rationale behind this synergy is that DA naturally leads to paired training
examples that share the same semantic content, which can be further utilized via CR to enhance DG.
Currently, there is a small number of DG methods that are based on CR (Hendrycks et al., 2019;
Mitrovic et al., 2021; Heinze-Deml & Meinshausen, 2021; Mahajan et al., 2021; Robey et al., 2021;
Ouyang et al., 2021; Wang et al., 2022). Those methods involve several ways to create pairs (or
groups) of semantic sharing examples and various ways to enforce CR between the examples.

We make three contributions in this paper. First, we provide a systematic empirical evaluation of
multiple CR-based DG methods on a range of tasks. This is the first time they are evaluated together
on such a scale and rigor under the same fair setting. We concretely show that CR, if done properly,
can improve OOD performance when combined with DA, especially with targeted DA, in addition
to the performance gains already achieved by DA itself. Second, we provide theoretical insights on
the performance gains. We start by establishing a set of sufficient conditions for optimal DG in a
causal framework, and then show that CR can be viewed as natural way to achieve a key condition
for optimal DG using semantic sharing (SS) pairs, namely causal-invariant prediction.

Third, we propose a novel CR method called logit attribution matching (LAM). When a training
example is augmented, it is usually done in a way to preserve the information for a target class, re-
sulting in a labeled SS pair. Previous CR-based DG methods ignore the class label and aim to match
the entire feature/logit/probability vectors of the pair. This might adversely affect the latent features
of other classes. LAM alleviates this problem by focusing only on the target class, encouraging
equal latent features for both examples in a SS pair. Empirical results show that LAM consistently
outperforms other CR-based DG methods and other representative DG methods on benchmarks with
multiple classes. It is the only one that can consistently improve over targeted DA on all datasets
tested in our experiments. The previous best reported OOD performances of targeted DA on two of
the datasets, IWILDCAM2020-WILDS and CAMELYON17-WILDS, are 36.5% and 90.5% (Gao
et al., 2023) respectively. With LAM, we achieved 41.2% and 93.5% using the same architectures.

2 RELATED WORK

DOMAIN GENERALIZATION: Domain generalization (DG) is a fundamental problem in ma-
chine learning and has attracted much attention in recent years. A large number of methods have
been proposed. In this section, we briefly review several representative methods that are frequently
used as baselines in the literature. They are also used in our experiments as baselines. Most DG
methods assume multiple training domains. Among those multi-source methods, Group Distribu-
tionally Robust Optimization (GDRO) (Sagawa et al., 2020) seeks to minimize the worst-case risk
across all possible training domains. Invariant Risk Minimization (IRM) (Arjovsky et al., 2019)
regularizes ERM with a penalty that enforces cross-domain optimality on the classifier. Variance
Risk Extrapolation (V-REx) (Krueger et al., 2020) penalizes the variance of risks in different train-
ing domains. Domain-Adversarial Neural Networks (DANN) (Ganin et al., 2016) aims at mapping
inputs from each training domain to an invariant distribution in the feature space from which the
original domain is indistinguishable. Single-source DG does not assume access to multiple train-
ing domains. One of the main approaches to single-source DG is to discover predictive features
that are more sophisticated than simple cues spuriously correlated with labels. Representation Self-
Challenging (RSC) (Huang et al., 2020) and Spectral Decoupling (SD) (Pezeshki et al., 2021) are
two prominent methods in this direction. SD suppresses strong dependencies of output on dominant
features by regularizing the logits. RSC aims to achieve the same goal in a heuristic manner. At
each iteration of training, it mutes the feature units associated with the highest gradients, such that
the network is forced to predict the labels through other less salient features.

CONSISTENCY REGULARIZATION: Consistency regularization (CR) encourages a model to
make similar predictions on similar inputs. The idea originated from the semi-supervised learning
literature (Bachman et al., 2014; Sohn et al., 2020). It is also used in contrastive learning (Chen
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et al., 2020) and non-contrastive self-supervised learning (Caron et al., 2021). There is a small
number of DG methods based on CR (Hendrycks et al., 2019; Mitrovic et al., 2021; Heinze-Deml
& Meinshausen, 2021; Mahajan et al., 2021; Robey et al., 2021; Wang et al., 2022). They differ in
their ways to create and use SS pairs.

A straightforward way to create SS pairs is to use generic DA methods such as CutMix (Yun et al.,
2019) and RandAugment (Cubuk et al., 2020), or Targeted Augmentations (Gao et al., 2023) that
are specifically designed for DG. An input image x and an augmentation x̃ form an SS pair. SS
pairs can also be created/obtained in ways other than conventional DA. When analyzing the CelebA
dataset (Liu et al., 2015), Heinze-Deml & Meinshausen (2021) pair up photos of the same person.
When analyzing medical images, Ouyang et al. (2022) create pairs by performing image transfor-
mations to simulate different possible acquisition processes. In the case of multiple source domains,
SS pairs can be learned. Robey et al. (2021) and Wang et al. (2022) build image-to-image translation
networks between domains and use them to create pairs. Mahajan et al. (2021) propose an iterative
algorithm that uses contrastive learning to map images to a latent space, and then match up images
from different domains that have the same class label and are close to each other in the latent space.

Let x and x̃ be two training examples with the same semantic content. There are a number of
ways to use them to regularize a model: Probability matching minimizes the divergence between
the output distributions P (Ŷ |x) and P (Ŷ |x̃) (Hendrycks et al., 2019; Mitrovic et al., 2021); logit
matching minimizes the difference between the logit vectors logit(x) and logit(x̃) (Heinze-Deml
& Meinshausen, 2021); and feature matching minimizes the difference between the feature vectors
f(x) and f(x̃) (Mahajan et al., 2021).

3 A CAUSAL THEORY OF DOMAIN GENERALIZATION

In DG, a domain d is defined by a distribution P d(X,Y ) over the space of input-label pairs (X,Y ).
We assume the pairs are generated by the casual model shown in Figure 1 (a): (1) the input of a train-
ing example X is generated from two latent variables Xc and Xn, (2) Xc and Xn are statistically
correlated, and (3) the label Y is generated from only Xc. The causal mechanisms that generate
X and Y are assumed to be invariant across domains. The corresponding conditional distributions
are denoted as P ∗(X|Xc, Xn) and P ∗(Y |Xc). The joint distribution P d(Xn, Xc) of the two latent
variables may change across domains. The variable Xc denotes the essential information in an im-
age X that a human relies on to assign a label Y to the image. In contrast, the variable Xn denotes
the other aspects of X that are not essential to label assignment. Similar models are also proposed
by Liu et al. (2021); Heinze-Deml & Meinshausen (2021); Mahajan et al. (2021); Mitrovic et al.
(2021); Ye et al. (2022), where Xc/Xn are referred to as semantic/variation factors, causal/non-
causal factors, content/style, etc. In this paper we will call them core factors and non-core factors
respectively. Moreover, we refer to the model as the causal latent decomposition (CLD) model.

To ground the CLD model, we need to specify three distributions: P d(Xc, Xn), P ∗(X|Xc, Xn)
and P ∗(Y |Xc). Together, the three distributions define a joint distribution over the four variables:

P d(Xc, Xn, X, Y ) = P d(Xc, Xn)P ∗(X|Xc, Xn)P ∗(Y |Xc).

This joint distribution defines a domain in the CLD framework. We refer to the collection of all such
domains for some fixed P ∗(X|Xc, Xn) and P ∗(Y |Xc) as a CLD family.

Let X c and X n be the sets of all possible values of the latent variables Xc and Xn respectively.
Consider an example x generated by P ∗(X|xc, xn) from a pair of values (xc, xn) ∈ X c × X n of
Xc and Xn. 1 Let x̃ be another example sampled from the same xc and a different x̃n. Formally,

x ∼ P ∗(X|xc, xn), x̃ ∼ P ∗(X|xc, x̃n). (1)

The two examples x and x̃ contain the same semantic contents and hence should be classified into
the same class. In this sense, x and x̃ make up a semantic sharing (SS) pair. Let P̂θ(Ŷ |X) be a
prediction model with parameters θ. It is said to be causal-invariant if

P̂θ(Ŷ |x) = P̂θ(Ŷ |x̃), (2)

1We use upper case letters to denote variables and lower case letters to denote their values.
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Figure 1: A causal model for DG (a) and an illustration of conditions for optimal DG (b).

for any x and x̃ sampled via (1) from any xc ∈ X c, xn ∈ X n and x̃n ∈ X n. In other words, the
prediction output does not change in response to variations in the non-core factors Xn as long as the
core factors Xc remain fixed.

The concept of causal-invariant prediction (CIP), as defined above, is not a new one and frequently
appears in the DG literature in various forms (Mitrovic et al., 2021; Mahajan et al., 2021). It is
closely related to a notion described in Peters et al. (2016) that has a very similar name, invariant
causal prediction (ICP). One difference between the two is that we are concerned with the invariance
of prediction with respect to a latent variable Xn, which is entangled with another latent variable
Xc to yield the observed input X . Our objective is to make the prediction model invariant to Xn,
although we cannot observe it. In contrast, ICP is concerned with the invariance of prediction with
respect to observed variables and does not address the problem of entanglement.

Theorem 1 (Conditions for Optimal DG) Let P̂θ be a prediction model for a CLD family, and P s

and P t be a source and a target domains from the family respectively. Suppose: 1). P̂θ minimizes
the in-distribution (ID) cross entropy loss ℓP s(P̂θ) = E(x,y)∼P s(X,Y )[− log P̂θ(Ŷ = y|x)]; 2). P̂θ is
causal-invariant; and 3). supp[P t(Xc)] ⊆ supp[P s(Xc)]. Then, the prediction model P̂θ also min-
imizes the out-of-distribution (OOD) cross entropy loss ℓP t(P̂θ) = E(x,y)∼P t(X,Y )[− log P̂θ(Ŷ =
y|x)]. In other words, it generalizes optimally to the target domain.

The proof of this theorem can be found in Appendix A. Note that the first condition requires ℓP s(P̂θ)

be minimized not only with respect to the parameters of the prediction model P̂θ, but also its archi-
tecture. The support supp[P d(Xc)] := {xc|P d(xc) > 0} of P d(Xc) consists of all core factors
that appear in a domain P d. To gain an intuitive understanding of Theorem 1, take a look at Figure
1 (b). Training examples x are sampled from a latent space spanned by the values xc and xn of
the latent variables Xc and Xn, which we depict as a two-dimensional box. A prediction model is
causal-invariant if it makes the same prediction for examples sampled from the same “vertical line”
in the latent space. If such a causal-invariant model also minimizes the cross-entropy loss of a source
domain, then it makes optimal prediction on all examples x̃ sampled from supp[P s(Xc)]×X n (the
inner rectangle), not only those sampled from supp[P s(Xc, Xn)]. This enables optimal generaliza-
tion to any target domain P t such that supp[P t(Xc)] ⊆ supp[P s(Xc)].

Theorem 1 is similar in spirit to the theoretical findings of several previous works (Mahajan et al.,
2021; Mitrovic et al., 2021; Wang et al., 2022). However, there is a crucial distinction in that
the prior results are linked to particular methods for achieving the conditions of optimal domain
generalization. In contrast, our theorem solely concentrates on why these conditions result in optimal
domain generalization. This allows us to use it to motivate the consistency regularization approach
to DG, which will be shown in the next section.

4 CONSISTENCY REGULARIZATION FOR DOMAIN GENERALIZATION

Suppose we have a collection of SS pairs Π = {(xk, x̃k)}Kk=1. To achieve the first two conditions for
optimal DG, a straightforward approach is to solve the following constrained optimization problem:

min
θ

E(x,y)∼P s [− log P̂θ(Ŷ = y|X = x)]

subject to P̂θ(Ŷ |X = xk) = P̂θ(Ŷ |X = x̃k) ∀(xk, x̃k) ∈ Π.
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If we turn the equality constraints into a consistency regularization term, the problem becomes:

min
θ

E(x,y)∼P s [− log P̂θ(Ŷ = y|X = x)] + λ
1

K

K∑
k=1

rθ(xk, x̃k), (3)

where λ is a balancing parameter.

4.1 PREVIOUS CR-BASED DG METHODS

Suppose P̂θ consists of a feature extractor fϕ with parameters ϕ and a linear classification head gw
with parameters w. Hence, θ = (ϕ,w). For an input x, let fu

ϕ (x) be the component of the feature
vector fϕ(x) that is associated with a feature unit u. Let wuy be the weight between the feature unit
u and the output unit for a class y. The logit for the class y is zyθ (x) =

∑
u wuyf

u
ϕ (x).

2

For each SS pair, the regularization term rθ(xk, x̃k) can be defined in several ways:

• Probability Matching (KL): rθ(xk, x̃k) = KL(P̂θ(Ŷ |xk)||P̂θ(Ŷ |x̃k)),

• Probability Matching (JS): rθ(xk, x̃k) = JS(P̂θ(Ŷ |xk)||P̂θ(Ŷ |x̃k)),
• Logit Matching: rθ(xk, x̃k) =

∑
y(z

y
θ (xk)− zyθ (x̃k))

2,

• Feature Matching: rθ(xk, x̃k) =
∑

u(f
u
ϕ (xk)− fu

ϕ (x̃k))
2.

Probability matching (KL) is used in Representation Learning via Invariant Causal Mechanisms
(ReLIC) (Mitrovic et al., 2021); probability matching (JS) is used in AugMix (Hendrycks et al.,
2019); logit matching is used in Conditional Variance Regularization (CoRE) (Heinze-Deml &
Meinshausen, 2021); and feature matching is used in MatchDG (Mahajan et al., 2021). It is worth
noting that while we focus on pairs for simplicity, logit and feature matching can also be applied to
the case with groups of multiple examples that share the same semantic contents. To achieve this,
we can simply replace the sum of squared differences with the sum of variances. This is done in
CoRE and MatchDG.

An SS pair (xk, x̃k) is usually obtained by changing an original training example xk. The seman-
tic information for the ground-truth label yk is typically preserved. The simplest way to use the
augmented example (x̃k, yk) is to add it to the training set. As a method to improve OOD perfor-
mance, this is known as data augmentation (DA). The effect is to push both Pθ(ŷ = yk|xk) and
Pθ(ŷ = yk|x̃k) toward 1.0. When Pθ(ŷ = yk|xk) and Pθ(ŷ = yk|x̃k) differ significantly from each
other, CR places additional regularization force on the model. This is why CR can further improve
OOD performance on top of DA.

Among the aforementioned CR-based DG methods, probability matching aims to directly enforce
the equality (2) on the SS pairs. This makes the model more causal-invariant, which is conducive to
good OOD performance according to Theorem 1. Feature matching aims to make the feature vectors
of xk and x̃k identical, which is a stronger condition than the equality (2). The same can be said
about logit matching. Enforcing a condition stronger than necessary can hurt OOD performance.

4.2 LOGIT ATTRIBUTION MATCHING

As mentioned above, the semantic information for the ground-truth label yk is typically preserved
when an training example xk is changed to produce an augmented example x̃k. This means that
our SS pair is actually labelled and can be written as (xk, x̃k : yk). The crucial difference between
labeled and unlabeled SS pairs, used in most prior CR-based DG methods, lies in the information
they carry: while unlabelled pairs imply that xk and x̃k hold identical information about all classes,
labelled pairs signify that they contain the same information about one specific class yk. This dis-
tinction matters because, in practice, it is much harder to ensure that xk and x̃k hold identical
information about all classes of interest than a single class yk, especially when the total number of
classes is large. For instance, images labeled with class yk may have small objects of other classes in
the background, a type of label noise common in machine learning datasets (Northcutt et al., 2021).

2Assume the bias is represented by a dummy unit.
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Therefore, in real-world scenarios, rather than matching the probability/logit distributions over all
classes or the entire feature vectors, it is more logical to match only the features pertinent to the yk
class. The narrowed focus on the yk reduces the theoretical requirement from Theorem 1 for pairs
to perfectly share the same features across all classes of interest. With this perspective, we propose
a new regularization term to better leverage the information in the labelled SS pairs (xk, x̃k : yk):

rθ(xk, x̃k) =
∑
u

w2
uyk

(fu
ϕ (xk)− fu

ϕ (x̃k))
2, (4)

where the wuyk
is the weight in the classification layer (assumed to be linear, so effectively the

last layer) between the feature unit u and the logit of class yk. To understand the underlying idea
of the proposed regularization term, imagine the ideal case where the feature extractor f cleanly
disentangles xc

k and xn
k , in the sense that the feature vector fϕ(xk) is divided into two parts H1(xk)

and H2(xk) that depend only on xc
k and xn

k respectively, with H1(xk) = H1(x̃k) and H2(xk) ̸=
H2(x̃k). A causal-invariant predictor should predict yk based only on H1(xk). Hence the weights
wuyk

for the feature units u in H2 should be 0, such that the features from the non-core factors
xn
k are ignored. In practice, it is difficult to cleanly disentangle xc

k and xn
k . In such a case, our

regularization term has the following effects:

1) It encourages gw to put high weights wuyk
on the units u where fu

ϕ (xk) ≈ fu
ϕ (x̃k), and

2) It encourages fϕ to make fu
θ (xk) ≈ fu

ϕ (x̃k) for units u with high weights wuyk
.

Note that
∑

u w
2
uyk

(fu
ϕ (xk) − fu

ϕ (x̃k))
2 =

∑
u(wuyk

fu
ϕ (xk) − wuyk

fu
ϕ (x̃k))

2. The regularization
term essentially matches the contributions wuyk

fu
ϕ (xk) and wuyk

fu
ϕ (x̃k) from the feature units u to

the logit zyk

θ of yk. As such, we call the new regularization term logit attribution matching (LAM).
It encourages the logits of yk for xk and x̃k be computed from the same latent features and using
the same weights. This is a more fine-grained regularization force than equation (2), prompting the
model to concentrate on the specific features that are directly associated with the specific class yk.

5 EXPERIMENTS

There are four objectives in our empirical studies. First, we determine the effectiveness of previous
CR-based DG methods in improving OOD performance on top of targeted DA, and their relative
merits. Those methods were proposed and evaluated separately and with different SS pair creation
methods (see Section 2). This is the first time they are evaluated together on the same data, with
SS pairs created by targeted DA. Second, we compare LAM with previous CR-based DG methods.
Third, we compare LAM with other representative DG methods. Finally, we investigate the impact
of the quality and quantity of SS pairs on the performance of LAM, and demonstrate that LAM helps
models focus on core factors for prediction.

5.1 DATASETS

Our experiments involve five datasets, three with background shifts and two with style shifts.

IWILDCAM2020-WILDS (iWildCam) (Koh et al., 2020) consists of camera trap photos of ani-
mals taken at different locations. There are totally 217,640 images and 182 classes. The training
domain of iWildCam comprises images from 200 locations, while the test domain contains images
from a separate set of locations. A validation domain with images from additional locations is also
provided for model selection and hyperparameter tuning. For generating the augmented examples
for iWildCam, we cut-and-paste the animals in the training image to another image without animals
taken at a different location where the same animals sometimes appear. This is believed to random-
ize the spurious low-level background factors while preserving the robustly predictive species and
habitat factors in the training examples.

ImageNet-9 (Xiao et al., 2020) consists of about 50,000 images from ImageNet, and it involves
nine coarse-grain classes. Several synthetic variations are created by segmenting the foreground of
each image and place it onto a different background. In our main experiments, we use the variations
where the segmentation is done using GrabCut (Rother et al., 2004). The synthetic images with a
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black background are used as augmented examples. The test domain mixed-rand consists of samples
where the foreground of an original image is placed onto the background of a random image.

NICO (He et al., 2020) includes around 25,000 images across 19 classes of animals or vehicles
captured in different contexts such as “at home” or “on the beach”. Each class encompasses 9 or
10 different contexts. As there is no predefined train-test split, we randomly select one context per
class for testing and use the remaining contexts for training. Similar to ImageNet-9, we perform
augmentation on NICO using the GrabCut segmentation. We place the foreground segmentation
onto the background of a random image.

CAMELYON17-WILDS (Camelyon) contains histopathology images from multiple hospitals for
binary tumor classification. Images from three hospitals are used for training, while images from a
fourth and fifth hospital are used for testing and validation respectively. There are stylistic variations
among images from different hospitals. One key stylistic difference often observed is the stain color.
Therefore, the stain color jitter (Tellez et al., 2018) is applied to training images to create augmented
examples. The jitter can effectively randomize the average stain level of images.

PACS (Li et al., 2017) contains images of objects and creatures depicted in four different style
domains: photo, art, cartoon and sketch. In total, it includes 9,991 images of 7 classes. Following
the common practice (Li et al., 2017; Gulrajani & Lopez-Paz, 2021), we train three separate models,
using the art, cartoon and sketch domain respectively as the test domain, while the remaining three
domains are used for training in each model. We report the average accuracy of the three models
for each DG method. The photo domain is excluded from being the test domain, since we perform
augmentation on images from it. Specifically, we employ StableDiffusion (Rombach et al., 2022)
to transform the style of images from the photo domain, guided by the text prompt “a minimalist
drawing of a class name, outline only, no texture” (more details in Appendix B).

For the iWildCam and Camelyon, whose shifts arise naturally from the real-world application, we
use all training images including animals for iWildCam, and all training images for Camelyon to
create the augmented examples. To assess the performance of CR-based DG methods when only
a relatively small proportion of augmented examples is available, we only apply augmentation on
approximately 5% of the training data for ImageNet-9 and NICO, and about 10% of the training data
for PACS. All CR-based methods have a balancing parameter λ, which is tuned on the validation
domain for iWildCam and Camelyon, and tuned on the training domain for the other three datasets.

5.2 PRETRAINED MODELS

In our experiments, we started with pretrained models and finetuned them on the aforementioned
datasets. Different pretained models are used for different datasets so as to be consistent with pre-
vious work (Gao et al., 2023). Specifically, we used the ImageNet pretrained ResNet-50 model
on iWildCam, and a randomly initialized DenseNet-121 model (Huang et al., 2017) on Camelyon.
We used the CLIP-pretrained (Radford et al., 2021) ViT-B/16 model (Dosovitskiy et al., 2020) on
ImageNet-9 and NICO, and the CLIP-pretrained ResNet-50 model on the PACS experiment. See
Appendix D for more details.

5.3 PERFORMANCES OF PREVIOUS CR-BASED DG METHODS

Our main results are summarized in Table 1. The first row shows the OOD performances of the
models obtained by minimizing the empirical cross entropy (ERM). The second row shows the
performance of the models obtained via ERM with the target-augmented data added to the training
set (ERM+DA). We see that targeted DA improves OOD performances drastically on iWildCam and
Camelyon. Those results are consistent with what were reported in Gao et al. (2023). Targeted DA
also boosts OOD performances on ImageNet-9, NICO and PACS albeit to lesser extents.

The four rows in the middle show the results for previous CR-based DG methods. We see that
the best of them improves over ERM+DA significantly on iWildCam and Camelyon, and slightly
on ImageNet-9 and PACS. Those indicate that CR, if done properly, can indeed improve OOD
preformance when combined with targeted DA.

None of the four methods dominates the others across the board. Probability matching generally
outperforms logit and feature matching, particularly on iWildCam. We conjecture that this is because
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Table 1: OOD performances of models trained using ERM, ERM+DA, previous CR-Based DG
methods, and LAM. The OOD performance of a model is assessed on held-out test domain(s) using
Macro F1 score on iWildCam or classification accuracy on all other datasets. Each model is trained
three times, with the standard deviation reported. The best result is in bold and second best is
underlined. Arrows indicate changes relative to ERM+DA. The Count ↓ represents the number of
datasets on which the CR-based DG method is worse than ERM+DA: a lower count indicates better
performance relative to ERM+DA.

ImageNet-9 NICO PACS iWildCam Camelyon iWildCam-N Count ↓

ERM 83.3±1.1 95.3±0.1 82.8±0.5 30.2±0.3 65.2±2.6 15.8±2.1 —-

ERM+DA 86.0±1.0 95.9±0.3 84.5±0.5 36.5±0.4 90.5±0.9 28.2±0.5 —-

Prob. (JS) 86.0±0.4− 95.0±0.3 ↓ 84.3±0.3 ↓ 37.1±0.4 ↑ 94.8±1.2 ↑ 25.5±0.6 ↓ 3

Prob. (KL) 86.9±0.2 ↑ 95.4±0.2 ↓ 85.0±1.0 ↑ 40.3±0.3 ↑ 92.8±1.5 ↑ 26.3±0.7 ↓ 2

Logit 86.8±0.6 ↑ 95.3±0.2 ↓ 83.1±0.8 ↓ 34.3±0.5 ↓ 93.4±0.3 ↑ 23.9±0.5 ↓ 4

Feature 87.6±0.1 ↑ 95.5±0.2 ↓ 81.7±0.2 ↓ 36.0±0.3 ↓ 94.3±0.6 ↑ 25.3±0.7 ↓ 4

LAM 88.1±0.2 ↑ 96.5±0.3 ↑ 86.0±0.3 ↑ 41.2±0.2 ↑ 93.5±1.8 ↑ 29.8±0.3 ↑ 0

probability matching faithfully enforces the causal-invariant constraints on SS pairs, while logit and
feature matchings enforce stronger conditions.

5.4 PERFORMANCES OF LAM

The results for LAM are shown at the bottom row of Table 1. On the first four datasets, it achieves
the best OOD performance among all the five CR-based methods. As indicated by the arrows, it is
the only CR-based method that consistently improves over ERM+DA on all the four datasets.

In LAM, a labelled SS pair (xk, x̃k : yk) is used only to regularize the contributions from feature
units to the logit of the ground-truth class yk. It does not impact other classes as should be. In the
previous CR-based DG methods, on the other hand, the pair is used to regularize the entire feature,
logit or probability vector for xk. It affects other classes as well as yk. This is a problem when
a training example xk contains multiple objects of interest. Some objects that appear in the back-
ground of the main object in xk might be removed during data augmentation. In such a case, the
features for those minor objects would be suppressed. To demonstrate the adverse consequences,
we created a new version of the iWildCam dataset by adding a small image of another animal to the
background of each image. The new dataset is named iWildCam-N (examples of this dataset are
given in Appendix C). On this dataset, LAM still improves over ERM+DA. However, the perfor-
mances of all the previous CR-based DG methods are substantially worse than that of ERM+DA.

In binary classification problems, there is essentially only one class (since the two classes are mu-
tually exclusive). Here, the aforementioned advantage of LAM no longer exists. This explains why
LAM is inferior to two previous methods on the binary classification dataset Camelyon. Nonethe-
less, it still significantly outperforms ERM+DA.

The results in Table 1 are based on targeted DA. In Table 8 (Appendix E), we provide results for
iWildCam, iWildCam-N, and Camelyon using RandAugment (Cubuk et al., 2020), a more generic
DA technique, to create augmented examples. Despite the change in DA, LAM consistently im-
proves OOD performance and outperforms other CR-based DG methods.

5.5 COMPARISON OF LAM AND OTHER DG METHODS

Table 2 compares the OOD performances of LAM with those of the six representative other DG
methods reviewed in Section 2. For the single-source methods RSC and SD, the augmented exam-
ples are simply added to the training set. For the multi-sources methods DANN, GDRO, IRM and
V-REx, the augmented examples are treated as an additional training domain.

On the first four datasets, LAM outperforms all the six other DG methods. It beats them by large
margins on iWildCam. As indicated by the arrows, the other DG methods are not as good as
ERM+DA in the majority of the cases while LAM improves over ERM+DA on all the first four
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Table 2: OOD performances of models trained using ERM, ERM+DA, LAM and other represen-
tative DG methods. Each model is trained three times and the standard deviation across runs is
reported as ±. Arrows indicate changes relative to ERM+DA.

ImageNet-9 NICO PACS iWildCam Camelyon

ERM 83.3±1.1 95.3±0.1 82.8±0.5 30.2±0.3 65.2±2.6

ERM+DA 86.0±1.0 95.9±0.3 84.5±0.5 36.5±0.4 90.5±0.9

RSC 86.4±0.2 ↑ 94.0±1.8 ↓ 84.3±0.6 ↓ 32.7±0.9 ↓ 91.6±0.3 ↑
SD 86.7±0.3 ↑ 96.0±0.2 ↑ 85.0±0.4 ↑ 32.7±0.8 ↓ 93.5±0.5 ↑

DANN 86.5±0.7 ↑ 95.4±0.7 ↓ 77.9±1.1 ↓ 26.0±2.9 ↓ 90.1±0.9 ↓
GDRO 83.7±0.8 ↓ 91.8±1.2 ↓ 83.5±0.5 ↓ 37.0±1.0 ↑ 92.2±0.9 ↑
IRM 87.1±0.2 ↑ 93.5±0.2 ↓ 83.2±0.4 ↓ 31.7±0.1 ↓ 90.8±2.6 ↑

V-REx 83.6±1.4 ↓ 94.0±0.9 ↓ 84.4±0.2 ↓ 35.6±1.6 ↓ 90.4±4.1 ↓

LAM 88.1±0.2 ↑ 96.5±0.3 ↑ 86.0±0.3 ↑ 41.2±0.2 ↑ 93.5±1.8 ↑

Table 3: The impact of the quality and quantity of SS pairs on LAM.

Seg. GrabCut

# Pairs 0% 5% 10% 20% 50% 100%

Acc. 83.3 88.1 88.5 88.6 89.7 90.4

Seg. Box Auto GrabCut

ERM+DA LAM ERM+DA LAM ERM+DA LAM

Acc. 85.2 85.9 83.9 86.6 86.0 88.1

datasets. On the binary classification dataset Camelyon, however, LAM is on par with SD method,
and still outperforms ERM+DA.

5.6 EXTENDED EMPIRICAL ANALYSIS OF LAM

In our main experiments with ImageNet-9, only 5% of the training data was used to create SS pairs.
To determine how the OOD performance of LAM is influenced by the number of SS pairs, we ran
additional experiments with different amounts of SS pairs (in percentages of training data). The
results are shown in Table 3 (left). It is clear that the increase in the quantity of SS pairs benefits and
the availability of small proportion of SS pairs can significantly improve OOD performance already.

In our main experiments with ImageNet-9, the SS pairs were created with GrabCut (Rother et al.,
2004). To determine how the OOD performance of LAM is influenced by the quality of SS pairs, we
ran additional experiments where the SS pairs were created in less ideal ways, one with bounding
boxes that come with ImageNet-9 (Box) and another using a semantic segmentation method (Long
et al., 2015) (Auto). The results are shown in Table 3 (right). We see that LAM improves over
ERM+DA in all cases. See Appendix B for more details and Appendix E for additional results.

We have argued that CR-based DG methods, particularly LAM, can help models focus more on
core factors for prediction. To verify the claim, we examine the GradCAM (Selvaraju et al., 2017)
saliency maps of the top predicted class by models trained using those methods. Examples are
shown in Figure 9 and Figure 10. Those examples indicate that the CR-based DG methods are
indeed effective in making model focus on core factors and LAM is the most effective among them.

6 CONCLUSION

In this paper, we have investigated the use of consistency regularization (CR) for domain general-
ization (DG). Theoretically, we argue that CR-based methods can boost the OOD performance of
models because they make models more causal-invariant using semantic sharing (SS) pairs. Em-
pirically, we find previous CR-based DG methods often improve over targeted data augmentation,
but not consistently. We propose a novel CR-based DG method, LAM, that leverages class labels
naturally associated with SS pairs. LAM improves over targeted data augmentation on all datasets
tested in our experiments. The improvements increase with the quantity and quality of SS pairs.
It outperforms previous CR-based methods on datasets with multiple classes, but may trail behind
some of them on binary classification problems. A promising future direction is to develop more
effective methods for creating SS pairs and apply LAM on them.
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REPRODUCIBILITY STATEMENT

The methodologies of both previous CR-based DG methods and our proposed CR-based DG
method, Logit Attribution Matching (LAM), are thoroughly discussed in Section 4. Detailed in-
formation regarding the use of targeted data augmentation to create augmented examples for each
dataset is provided in Section 5.1 and Appendix B .We implemented the targeted DA on iWildCam
and Camelyon using the code provided by Gao et al. (2023).

Section 5.2 and Appendix D present the pre-trained models and other implementation specifics,
including the selection of hyperparameters for various models. The implementation of other DG
methods listed in Table 2 is based on the DomainBed (Gulrajani & Lopez-Paz, 2021).

All datasets used in our experiments are publicly accessible, except for iWildCam-N. The creation
of the iWildCam-N are detailed in Section 5.4 and Appendix C. Upon paper acceptance, all related
codes and the iWildCam-N dataset will be available online.
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APPENDICES

A PROOFS

Proof of Theorem 1: Let us start with the ID cross entropy loss:

ℓP s(P̂θ) = E(x,y)∼P s(X,Y )[− log P̂θ(Ŷ = y|x)]
= E(xc,xn)∼P s(Xc,Xn),x∼P∗(X|xc,xn),y∼P∗(Y |xc)[− log P̂θ(Ŷ = y|x)]
= E(xc,xn)∼P s(Xc,Xn),x∼P∗(X|xc,xn),y∼P∗(Y |xc)[− logQθ(Ŷ = y|xc)],

where the last equality holds for some distribution Qθ(Y |Xc) because P̂θ is causal-invariant. By
removing irrelevant variables and re-arranging terms, we get:

ℓP s(P̂θ) = −Exc∼P s(Xc)[Ey∼P∗(Y |xc)[logQθ(Ŷ = y|xc)].

As the ID ℓP s(P̂θ) loss is minimized (over all model parameters and all model architectures), the
inner expectation is maximized for any xc such that P s(xc) > 0.

Now, consider the OOD cross entropy loss of the target domain P t ℓP t(P̂θ). By symmetry, we have:

ℓP t(P̂θ) = −Exc∼P t(Xc)[Ey∼P∗(Y |xc)[logQθ(Ŷ = y|xc)].

We know from above that the inner expectation is maximized for all xc such that P s(xc) > 0. It is
also maximized for any xc such that P t(xc) > 0, because

supp[P t(Xc)] ⊆ supp[P s(Xc)].

Therefore, the OOD loss ℓP t(P̂θ) is minimized. □

B MORE DETAILS OF SS PAIR CREATION USING TARGETED DA

A SS pair is formed by a training example and an augmented example. The SS pair creation using
targeted DA for each dataset has been introduced in Section 5.1. We provide more details and sample
augmented examples here.

B.1 IWILDCAM

For iWildCam, we utilized a targeted DA technique named Copy-Paste (same-y) from Gao et al.
(2023). This DA method pastes the animal foreground onto a background image sampled from
the same habitat where the same animal species has been observed. There is a category of images
labeled “empty” in the iWildCam dataset. These images do not contain any animals and were
used as background images when creating augmented examples. We used the segmentation for the
animal foregrounds provided by Beery et al. (2021) to apply this DA. Sample augmented examples
produced by this DA approach are provided in Figure 2.

B.2 IMAGENET-9

In our main experiments, the synthetic images with a black background were used as augmented
data for ImageNet-9. Those augmented examples were created based on the GrabCut segmentation.
As also described in Section 5.6, to assess the performance of LAM under augmented examples in
various qualities, we also considered the augmented examples created based on the bounding boxes
and semantic segmentation. Specifically, we used the bounding boxes provided by the ImageNet
(Deng et al., 2009) and semantic segmentation produced via FCN (Long et al., 2015), a semantic
segmentation method. Sample augmented examples in various qualities are given in Figure 3.
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Figure 2: SS pairs created via Copy-Paste (same-y) DA for iWildCam. This DA method involves
pasting the animal onto another image without animals sampled from the location where the same
animal species has been observed.

Figure 3: Augmented examples in various quality created for ImageNet-9.

B.3 NICO

For creating the augmented examples for NICO, we placed the foreground segmentation onto the
background of a random image. We used GrabCut (Rother et al., 2004) to identify the foreground
segmentation for 20 images in each class of NICO, which constituted about 5% of its training data.
On average, the segmentation of an image took us around three seconds.

Since NICO does not have “empty” background images like iWildCam, we had to create synthetic
background images. To do this, we removed the foreground in the image by coloring the image
region corresponding to the foreground segmentation in black. We created the synthetic background
images for all images with the foreground segmentation. When creating the augmented example,
the foreground segmentation in the training example is pasted onto a randomly selected synthetic
background image. See Figure 4 for some sample NICO augmented examples.

B.4 CAMELYON

In dealing with the Camelyon dataset, we adopted the strategy outlined in Gao et al. (2023) to use
the stain color jitter (Tellez et al., 2018) as the targeted DA to create the augmented examples.
This technique transforms images by jittering their color in the hematoxylin and eosin staining
color space. This DA addresses the style shift associated with the stain color resulting from diverse
staining techniques used across different hospitals. It randomizes the average stain level in each
image while maintaining all other information as predictive features. Sample augmented examples
are shown in Figure 5.
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Figure 4: SS pairs created for NICO by placing the foreground segmentation onto a randomly se-
lected synthetic background image.

Figure 5: SS pairs created by stain color jitter for Camelyon dataset. This DA randomizes the
average stain level in the image.

Figure 6: SS pairs created via StableDiffusion that generates augmented example from the training
examples of the photo domain in PACS dataset. The prompt we use is “a minimalist drawing of a
class name, outline only, no texture” where class name is the name of the true class label.

B.5 PACS

To create SS pairs for PACS, we used StableDiffusion v2 (Rombach et al., 2022) to translate images
from the photo domain of PACS into a different style. Given a training example xk, we added a
mild level of Gaussian noise to the latent representation of xk, and then removed the noise under the
guidance of a text prompt. The prompt we used is “a minimalist drawing of a class name, outline
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only, no texture” where class name is the name of yk. We chose this prompt because it produces
the best visual quality among what we have explored. Finally, we decoded the generated noise-free
latent representation, producing the corresponding augmented example x̃k. See Figure 6 for some
examples.

B.6 IMPLEMENTATION SUMMARY OF DIFFERENT DATASETS

We summarize setting of each dataset in model training, which includes how many training examples
used to create augmented pairs and corresponding methods.

Table 4: Dataset details of shifts, pair quantity and methods to create aug. examples. We use “aug.”
as a shorthand for “augmentation”.

Dataset Shift Pair quantity.
(% of training examples) Method to create aug. examples

ImageNet-9 Background 5% Only preserve foreground objects,
remove background as black

NICO Background 5%
Only preserve foreground objects,
background replaced with one
sampled from other images

iWildCam Background All images
with animals

The animals are cut-and-paste to
another image without animals taken
at a different location where the same
animals sometimes appear

iWildCam-N Background All images
with animals

The animals are cut-and-paste to
another image without animals taken
at a different location where the same
animals sometimes appear

PACS Style 100 samples for each
class in Photo domain (P)

Employ StableDiffusion to transform the
image style using the text prompt “a
minimalist drawing of a class name,
outline only, no texture”

Camelyon Style 100% Use augmentation of stain color jitter

C DETAILS OF IWILDCAM-N DATASET

iWildCam-N dataset is an altered version of the iWildCam dataset, which includes extra background
noise in addition to the original background shift in the iWildCam. This additional noise was created
by inserting an animal foreground of a different animal species, sourced from a randomly selected
image, onto the background of the image. To ensure the main semantic context of the image is not
distorted due to the introduced noise, we limited the size of the introduced animal to be smaller than
the pre-existing animal foreground and took steps to prevent overlap between the newly incorporated
animal and the original animal foreground. We applied this operation on all images in the iWildCam
dataset except for the images in the “empty” category, which do not contain any animals. The
“empty” category was also excluded from the iWildCam-N dataset.

In Figure 7. We provide some examples of the iWildCam-N and their original images in the iWild-
Cam to illustrate the background noise introduced in iWildCam-N.
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iWildCam iWildCam-N iWildCam iWildCam-N

Figure 7: Sample images in iWildCam-N. The background noise is created by adding to the back-
ground of each image a small image of another animal.

D ADDITIONAL IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION DETAILS OF BASELINES

In Section 4.1, we introduce the formulation of previous CR-based methods. And in Section 2,
we introduce other representative DG methods. According to their categories, the training data are
organized differently to meet the assumption of each individual method. For datasets of ImageNet-9
and NICO, the setting is shown in Table 5. And for datasets of iWildCam, PACS and Camelyon, the
setting is displayed in Table 6.

Table 5: Implementation details of LAM and the baselines on ImageNet-9 and NICO under back-
ground shift. The category of the methods is explained in section 5 of our paper. According to
their categories, the training data are organized differently to meet the assumption of each individual
method. On the other hand, the test data is the same for all methods: mixed-rand for ImageNet-9,
and one unseen context per class for NICO. We use “aug.” as a shorthand for “augmentation”.

Category Method Training data Remark

Baseline ERM training examples -

Data Aug.
&

Single-source

ERM-DA
RSC
SD

training examples
+ aug. examples†

As additional training data, aug. examples are
mixed with training examples to train the model.

CR-based

LAM
Prob. Match
Logit Match

Feature Match

training examples
+ aug. examples†

Only 5% training examples are paired with
aug. examples, which are also as additional
training data

Multi-source

DANN domain #1:
training examples
domain #2:
aug. examples

Training examples are regarded as one domain.
Aug. examples form another.

GDRO
IRM

VREx
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Table 6: Implementation details of LAM and the baselines on iWildCam, PACS and Camelyon. The
category of the methods is explained in section 5 of our paper. According to their categories, the
training data are organized differently to meet the assumption of each individual method. On the
other hand, the test data is the same for all methods: unseen domains. We use “aug.” as a shorthand
for “augmentation”.

Category Method Training data Remark

Baseline ERM training examples -

Data Aug.
&

Single-source

ERM-DA
RSC
SD

training examples
+ aug. examples†

As additional training data, aug. examples are
mixed with training examples to train the model.

CR-based

LAM
Prob. Match
Logit Match

Feature Match

training examples
+ aug. examples†

For PACS, only 100 training examples in
Photo (P) domain are paired with aug. examples.
For other datasets, each training example is
paired with an aug. example.
They are all also as additional training data.

Multi-source

DANN
GDRO
IRM
VREx

domain #1:
training examples-1
+aug. examples†-1
...
domain #m:
training examples-m
aug. examples†-m

aug. examples are put in the domain having
corresponding training examples.

D.2 HYPERPARAMETER SETTING AND OTHER DETAILS

Each experiment is conducted on a single Nvidia V100 GPU. For datasets of ImageNet-9, NICO
and PACS, we take LP-FT training scheme following (Kumar et al., 2022), while for other datasets
we just take general fine-tuning. During LP, we take learning rate of 0.003 uniformly. And during
FT, we take learning rate 3e-5 for ImageNet-9, NICO, PACS, and 3.49e-5 for iWildCam, 3.07e-3 for
Camelyon. During LP, it trains models for 10 epochs. For FT, it trains 20 epochs for ImageNet-9,
NICO, iWildCam, 40 epochs for PACS, and 10 epochs for Camelyon. The summary of hyperpa-
rameter setting is shown in Table 7.
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Table 7: Hyperparameter setting for all the main experiments. SS-pair transformation refers to the
transformation applied to training examples and corresponding augmented examples while training.
If not specified otherwise, for other DG methods, the method-specific hyperparameters follow the
default setting in DomainBed (Gulrajani & Lopez-Paz, 2021). For general training hyperparameters,
if the ones are the same as CR-based methods, they will not be listed again. “bs” is the abbreviation
of batchsize. For ImageNet-9, NICO, and PACS datasets, we take the linear probing (LP) and Fine-
tuning (FT) scheme from (Kumar et al., 2022), while other datasets just take FT.

Dataset ImageNet-9&NICO PACS iWildCam Camelyon
Model CLIP ViT CLIP ResNet-50 ResNet-50 DenseNet-121

Pretrained ImageNet Pretrained False
Image Size [224,224] [448,448] [96,96]

LAM/
Logit

Match/
KL

LP epochs: 10
FT epochs: 20

LP epochs: 10
FT epochs: 40 epochs: 20 epochs: 10

LP learning rate: 0.003
FT learning rate: 3e-5

learning rate:
3.49e-5

learning rate:
3.07e-3

LP training bs: 128
LP ss-pair bs: 256
FT training bs: 64
FT ss-pair bs: 64

LP training bs: 48
LP ss-pair bs: 32
FT training bs: 48
FT ss-pair bs: 32

training bs: 10
ss-pair bs: 10

training bs: 128
ss-pair bs: 128

λ = 10 λ = 0.5 λ = 0.2
λ = 5 (LAM, KL)
λ = 0.05 (Logit)

λ = 10 (LAM)
λ = 1 (Logit, KL)

ss-pair transform:
RandCrop
RandHorizontalFlip
Normalize

ss-pair transform:
RandCrop
RandHorizontalFlip
ColorJitter
RandGrayscale
Normalize

ss-pair transform:
Normalize

ss-pair transform:
Normalize

N/A p = 0.9 N/A
Feature

Matching λ = 0.01 λ = 0.05 λ = 0.1

JS FT training bs: 32
FT ss-pair bs: 48

FT training bs: 48
FT ss-pair bs: 48

FT training bs:10
FT ss-pair bs: 20

FT training bs: 128
FT ss-pair bs: 128

Other
Methods

LP training bs: 128
FT training bs: 64

LP training bs: 48
FT training bs: 48 training bs: 24 training bs: 128

E EXPERIMENTAL RESULTS WITH GENERIC-AUGMENTED EXAMPLES

For our main experiments reported in the Section 5, we used the targeted DA to create the aug-
mented examples and evaluate the performance of CR-based DG methods under those augmented
examples. Here we show some additional experiment results of those CR-based DG methods under
the augmented examples produced by a generic DA method.

There are some popular generic DA methods such as Autoaugment (Cubuk et al., 2019), Fast Au-
toaugment (Lim et al., 2019), and RandAugment (Cubuk et al., 2020). They apply a sequence of
PIL operations (such as rotation, shearing, autocontrast, RGB color jitter, etc.) onto images to gen-
erate a more diverse set of augmented examples. We select RandAugment Cubuk et al. (2020) as a
representative of generic DA to generate the augmented examples for iWildCam, iWildCam-N and
Camelyon, and then apply different CR-based DG methods based on those augmented examples.
The results are reported in Table 8.

The results show that RandAugment can also improve model OOD performance on the three
datasets, but the improvement is smaller compared to targeted DA. Similar to when augmented
examples from targeted DA are used, when using augmented examples from RandAugment, the
probability matching methods improve OOD performance on iWildCam over ERM+DA. However,
the stronger conditions of logit matching and feature matching fail to make this improvement. LAM
also produces significantly better performance than other CR methods when using RandAugment
examples. For the iWildCam-N dataset, with RandAugment, only LAM can improve OOD per-
formance over ERM+DA while other CR-based DG methods cannot, similar to when targeted data
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augmentation is used. This again demonstrates the advantage of LAM in that it does not suppress
features of other classes in the image.

The results on the Camelyon dataset again shows that LAM can effectively improve the model OOD
performance even when the more generic data augmentation is used. The improvement of LAM over
the ERM+DA baseline (which simply treats the augmented examples as additional training data) in
fact larger when RandAugment is used (improve from 84.3 to 89.0) than when targeted DA is used
(improve from 90.5 to 93.5).

Table 8: OOD performances of models trained using ERM, ERM+DA, previous CR-Based DG
Methods, and LAM under different augmented data. The OOD performance of a model is assessed
on held-out test domain(s) using Marcro F1 score of retrieval for iWildCam(-N) and accuracy for
Camelyon. We do the following for models trained with the same augmented data: The best result
is in bold and second best is underlined; Arrows indicate changes relative to ERM+DA.

iWildCam iWildCam-N Camelyon
ERM No DA 30.2 15.3 62.5

ERM+DA 34.2 27.7 84.3
Prob. (JS) 34.7 ↑ 26.4 ↓ 83.4 ↓
Prob. (KL) 34.6 ↑ 27.1 ↓ 86.7 ↑
Logit RandAugment 29.3 ↓ 26.3 ↓ 88.0 ↑
Feature 31.5 ↓ 26.0 ↓ 81.7 ↓
LAM 36.6 ↑ 28.4 ↑ 89.0 ↑
ERM+DA 36.5 28.2 90.5
Prob. (JS) 37.1 ↑ 25.5 ↓ 94.8 ↑
Prob. (KL) 40.3 ↑ 26.3 ↓ 92.8 ↑
Logit Targeted DA 34.3 ↓ 23.9 ↓ 93.4 ↑
Feature 36.0 ↓ 25.3 ↓ 94.3 ↑
LAM 41.2 ↑ 29.8 ↑ 93.5 ↑

F WEIGHT ANALYSIS AND MORE VISUALIZATION RESULTS

F.1 WEIGHT ANALYIS

We visualize the distribution of weight in model classifiers with Histograms in Figure 8. From it
we can see that compared with probability matching, the weight distribution finetuned with LAM
becomes sharper. It means that only a small proportion of weight units have large values while
others are all near zero, which matches the target that only regularizes a subset of features.

F.2 MORE VISUALIZATION RESULTS

We provide examples of saliency maps visualized by GradCAM. The examples in Figure 9 and
Figure 10 are all randomly sampled from mixed-rand of ImageNet-9, which is our OOD test set for
ImageNet-9.
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(a) Initial weight (b) Weight of Prob. Match (JS) (c) Weight of LAM

Figure 8: Distribution of weight in model classifiers with Histograms. The model is CLIP-pretrained
ViT finetuned on ImageNet-9 dataset.

Figure 9: GradCAM saliency maps for the top predicted class by models trained using various
methods. The examples are from the test domain of ImageNet-9.
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Figure 10: More GradCAM heatmaps of LAM compared with those of ERM-DA, Feature Matching
and Probability Matching.
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