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ABSTRACT

Among the many variants of graph neural network (GNN) architectures capable of
modeling data with cross-instance relations, an important subclass involves layers
designed such that the forward pass iteratively reduces a graph-regularized energy
function of interest. In this way, node embeddings produced at the output layer
dually serve as both predictive features for solving downstream tasks (e.g., node
classification) and energy function minimizers that inherit transparent, exploitable
inductive biases and interpretability. However, scaling GNN architectures con-
structed in this way remains challenging, in part because the convergence of the
forward pass may involve models with considerable depth. To tackle this limita-
tion, we propose a sampling-based energy function and scalable GNN layers that
iteratively reduce it, guided by convergence guarantees in certain settings. We also
instantiate a full GNN architecture based on these designs, and the model achieves
competitive accuracy and scalability when applied to the largest publicly-available
node classification benchmark exceeding 1TB in size. Our source code is available
at https://github.com/haitian-jiang/MuseGNN.

1 INTRODUCTION

Graph neural networks (GNNs) are a powerful class of deep learning models designed specifically
for graph-structured data. Unlike conventional neural networks that primarily operate on indepen-
dent samples, GNNs excel in capturing the complex cross-instance relations modeled by graphs
(Hamilton et al., 2017; Kearnes et al., 2016; Kipf & Welling, 2017; Velickovic et al., 2018). Foun-
dational to GNNs is the notion of message passing (Gilmer et al., 2017), whereby nodes iteratively
gather information from neighbors to update their representations. In doing so, information can
propagate across the graph in the form of node embeddings, reflecting both local patterns and global
network effects, which are required by downstream tasks such as node classification.

Among many GNN architectures, one promising subclass is based on graph propagation layers de-
rived to be in a one-to-one correspondence with the descent iterations of a graph-regularized energy
function (Ahn et al., 2022; Chen et al., 2022a; 2021; Yang et al., 2021; Ma et al., 2021; Gasteiger
et al., 2019; Pan et al., 2020; Zhang et al., 2020; Zhu et al., 2021; Xue et al., 2023). For these models,
the layers of the GNN forward pass computes increasingly-refined approximations to a minimizer
of the aforementioned energy function. Importantly, if such energy minimizers possess interpretable
properties or inductive biases, the corresponding GNN architecture naturally inherits them (Zheng
et al., 2024), unlike traditional GNN constructions that may be less transparent. More broadly, this
association between the GNN forward pass and optimization can be exploited to introduce targeted
architectural enhancements (e.g., robustly handling graphs with spurious edges and/or heterophily
(Fu et al., 2023; Yang et al., 2021). Borrowing from Yang et al. (2022), we will refer to models of
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this genre as unfolded GNNs, or UGNNs for short, given that the layers are derived from a so-called
unfolded (in time/iteration) energy descent process.

Despite their merits w.r.t. interpretability, UGNNs face non-trivial scalability challenges. This is in
part because they can be constructed with arbitrary depth (i.e., arbitrary descent iterations) while
still avoiding undesirable oversmoothing effects (Oono & Suzuki, 2020; Li et al., 2018), and the
computational cost and memory requirements of this flexibility are often prohibitively high. Even
so, there exists limited prior work explicitly tackling the scalability of UGNNs, or providing any
complementary guarantees regarding convergence on large graphs. Hence most UGNN models are
presently evaluated on relatively small benchmarks.

To address these shortcomings, we propose a scalable UGNN model that incorporates efficient sub-
graph sampling within the fabric of the requisite energy function. Our design of this model is guided
by the following three desiderata: (i) maintain the characteristic properties, interpretability, and
extensible structure of full-graph unfolded GNN models; (ii) using a consistent core architecture,
preserve competitive accuracy across datasets of varying size, including the very largest publicly-
available benchmarks; and (iii) do not introduce undue computational or memory overhead beyond
what is required to train the most common GNN alternatives. Our proposed model, which we will
later demonstrate satisfies each of the above, is termed MuseGNN in reference to a GNN architec-
ture produced by the minimization of an unfolded sampling-based energy. Building on background
motivations presented in Section 2, our MuseGNN-related contributions are three-fold:

1. In Sections 3 and 4, we expand a widely-used UGNN framework to incorporate offline sampling
into the architecture-inducing energy function design itself, as opposed to a post hoc application
of sampling to existing GNN methods. The resulting model, which we term MuseGNN, allows
us to combine the attractive properties of UGNNs with the scalability of canonical GNNs. No-
tably, by design MuseGNN can exploit an unbiased estimator of the original full-graph energy if
desired, or else sampling-based alternatives that are provably more expressive.

2. We prove in Section 5 that MuseGNN possesses desirable convergence properties regarding both
upper-level (traditional model training) and lower-level (interpretable energy function descent)
optimization processes. A supporting empirical example of the latter is illustrated in Figure 1
above. Critically, our convergence gaurantees are agnostic to the particular offline sampling
operator that is adopted, and so any future options can be seamlessly integrated. These attributes
increase our confidence in reliable performance when moving to new problem domains that may
deviate from known benchmarks.

3. Finally, in Section 6 we provide complementary empirical support that MuseGNN performance
is stable in practice, preserving competitive accuracy and scalability across task size. En route,
we achieve SOTA performance w.r.t. homogeneous graph models applied to the largest, publicly-
available node classification datasets from OGB and IGB exceeding 1TB in size.

Table 1 contextualizes MuseGNN w.r.t. prior work, with details to follow in subsequent sections.
Specifically, we compare with those commonly-used GNN architectures that have been success-
fully scaled and validated on the largest public graphs using some form of neighbor sampling
(NS) (Hamilton et al., 2017; Huang et al., 2024; Waleffe et al., 2023), or alternatively, GNNAu-
toScale (GAS) (Fey et al., 2021; Yu et al., 2022). Note that most GNNs populating competitive
leaderboards such as OGB do not presently scale to the largest graphs, nor do they possess prop-
erties of UGNNs, and hence are not our focus. And finally, we compare with existing full-graph
(FG) UGNN approaches, as well as USP (Li et al., 2022) and LazyGNN (Xue et al., 2023), two
recent frameworks explicitly designed for scaling UGNNs. Appendix B.1 also considers additional
scalable GNN models.

2 BACKGROUND AND MOTIVATION

2.1 GNN ARCHITECTURES FROM UNFOLDED OPTIMIZATION

Notation. Let G = {V, E} denote a graph with n = |V| nodes and edge set E . We define D and A
as the degree and adjacency matrices of G such that the corresponding graph Laplacian is L = D−A.
Furthermore, associated with each node is both a d-dimensional feature vector, and a d′-dimensional
label vector, the respective collections of which are given by X ∈ Rn×d and T ∈ Rn×d′

.
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Table 1: MuseGNN vs. existing methods on largest graphs
(LG), where ‘top acc.’ refers to top LG accuracy. Note that
the convergence guarantee and greater energy expressivity
are specifically defined w.r.t. UGNN models, hence ‘N/A’
for non-UGNNs without a lower-level energy.

energy
descent

converge
guarantee

handle
LGs

top
acc.

↑ energy
expressivity

GNN+NS ✗ N/A ✓ ✗ N/A
GNN+GAS ✗ N/A ✗ ✗ N/A
UGNN(FG) ✓ ✓ ✗ ✗ ✗
USP ✓ partial ✗ ✗ ✗
LazyGNN ✓ ✗ ✗ ✗ ✗
MuseGNN ✓ ✓ ✓ ✓ ✓
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Figure 1: MuseGNN forward pass convergence,
energy descent on ogbn-papers100M dataset
with varying γ (to be introduced in Section 3.2).

GNN Basics. Given a graph defined as above, canonical GNN architectures are designed to pro-
duce a sequence of node-wise embeddings {Y (k)}Kk=1 that are increasingly refined across K model
layers according to the rule Y (k) = h(Y (k−1);W,A,X) ∈ Rn×d. Here h represents a function
that updates Y (k−1) based on trainable model weights W as well as A (graph structure) and option-
ally X (input node features). To facilitate downstream tasks such as node classification, W may be
trained, along with additional parameters θ of any application-specific output layer g : Rd → Rd′

,
to minimize a loss of the form

L(W, θ) =

n′∑
i=1

D
(
g
[
Y (K) (W )i ; θ

]
, Ti

)
. (1)

In this expression, Y (K)
i ≡ Y (K) (W )i reflects the explicit dependency of GNN embeddings on

W and the subscript i denotes the i-th row of a matrix. Additionally, n′ refers to the number of
nodes in G available for training, while D is a discriminator function such as cross-entropy. We
will sometimes refer to the training loss (1) as an upper-level energy function to differentiate its role
from the lower-level energy defined next.

Moving to Unfolded GNNs. An unfolded GNN architecture ensues when the functional form of h
is explicitly chosen to align with the update rules that minimize a second, lower-level energy function
denoted as ℓ(Y ). In this way, it follows that ℓ

(
Y (k)

)
= ℓ

(
h
[
Y (k−1);W,A,X

])
≤ ℓ

(
Y (k−1)

)
,

This restriction on h is imposed to introduce desirable inductive biases on the resulting GNN layers
that stem from properties of the energy ℓ and its corresponding minimizers (see Section 2.2 ).

While there are many possible domain-specific choices for ℓ(Y ) in the growing literature on un-
folded GNNs (Ahn et al., 2022; Chen et al., 2022a; Ma et al., 2021; Gasteiger et al., 2019; Pan et al.,
2020; Yang et al., 2021; Zhang et al., 2020; Zhu et al., 2021; Xue et al., 2023), we will focus our
attention on a particular form that encompasses many existing works as special cases, and can be
easily generalized to cover many others. Originally inspired by Zhou et al. (2003) and generalized
by Yang et al. (2021) to account for node-wise nonlinearities, we consider

ℓ(Y ) :=∥Y − f(X;W )∥2F + λ tr(Y ⊤LY ) +

n∑
i=1

ζ(Yi), (2)

where λ > 0 is a trade-off parameter, f represents a trainable base model parameterized by W (e.g.,
a linear layer or MLP), and the function ζ denotes a (possibly non-smooth) penalty on individual
node embeddings. The first term in (2) favors embeddings that resemble the input features as pro-
cessed by the base model, while the second encourages smoothness across graph edges. And finally,
the last term is included to enforce additional node-wise constraints (e.g., non-negativity).

We now examine the form of h that can be induced when we optimize (2). Although ζ may be non-
smooth and incompatible with vanilla gradient descent, we can nonetheless apply proximal gradient
descent in such circumstances (Combettes & Pesquet, 2011), leading to the descent step

Y (k) = h
(
Y (k−1);W,A,X

)
= proxζ

(
Y (k−1) − α

[
(I + λL)Y (k−1) − f(X;W )

])
, (3)

where α controls the learning rate and proxζ(u) := argminy
1
2∥u−y∥

2
2+ζ(y) denotes the proximal

operator of ζ. Analogous to more traditional GNN architectures, (3) contains a ζ-dependent nonlin-
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ear activation applied to the output of an affine, graph-dependent filter. With respect to the former, if
ζ is chosen as an indicator function that assigns an infinite penalty to any embedding less than zero,
then proxζ reduces to standard ReLU activations; we will adopt this choice for MuseGNN.

2.2 WHY UNFOLDED GNNS?

There are a variety of reasons why it can be advantageous to construct h using unfolded opti-
mization steps as in (3) or related. Of particular note here, UGNN node embeddings inherit ex-
ploitable/interpretable characteristics of the lower-level energy (Chen et al., 2021; Zheng et al.,
2024), especially if K is sufficiently large such that Y (K) approximates a minimum of ℓ(Y ). For
example, it is well-known that an oversmoothing effect can sometimes cause GNN layers to produce
node embeddings that converge towards a non-informative constant (Oono & Suzuki, 2020; Li et al.,
2018). This can be understood through the lens of minimizing the the second term of (2) in isolation
(Cai & Wang, 2020). The latter can be driven to zero whenever Y (K)

i = Y
(K)
j for all i, j ∈ V ,

since tr[(Y (K))⊤LY (K)] ≡
∑

(i,j)∈E ∥Y
(K)
i − Y

(K)
j ∥22. However, it is clear how to design ℓ(Y )

such that minimizers do not degenerate in this way, e.g., by adding the first term in (2), or related
generalizations, it has been previously established that oversmoothing is effectively mitigated, even
while spreading information across the graph (Fu et al., 2023; Ma et al., 2021; Pan et al., 2020; Yang
et al., 2021; Zhang et al., 2020; Zhu et al., 2021).

UGNNs provide other transparent entry points for customization as well. For example, if an energy
function is insensitive to spurious graph edges, then a corresponding GNN architecture constructed
via energy function descent is likely be robust against corrupted graphs from adversarial attacks or
heterophily (Fu et al., 2023; Yang et al., 2021). More broadly, the flexibility of UGNNs facilitates
bespoke modifications of (3) for graph signal denoising (Chen et al., 2021), handling long-range
dependencies (Xue et al., 2023), forming connections with the gradient dynamics of physical sys-
tems (Di Giovanni et al., 2023) and deep equilibrium models (Gu et al., 2020; Yang et al., 2022),
exploiting the robustness of boosting algorithms (Sun et al., 2019), or differentiating the relative
importance of features versus network effects in making predictions (Yoo et al., 2023).

2.3 SCALABILITY CHALLENGES AND CANDIDATE SOLUTIONS

As benchmarks continue to expand in size (see Table 4), it is no longer feasible to conduct full-
graph GNN training using only a single GPU or even single machine, especially so for relatively
deep UGNNs. To address such GNN scalability challenges, there are presently two dominant lines
of algorithmic workarounds. The first adopts various sampling techniques to extract much smaller
computational subgraphs upon which GNN models can be trained in mini-batches. Relevant exam-
ples include neighbor sampling (Hamilton et al., 2017; Ying et al., 2018), layer-wise sampling (Chen
et al., 2018; Zou et al., 2019), and graph-wise sampling (Chiang et al., 2019; Zeng et al., 2021). For
each of these, there exist both online and offline versions, where the former involves randomly
sampling new subgraphs during each training epoch, while the latter (Zeng et al., 2021; Gasteiger
et al., 2022) is predicated on a fixed set of subgraphs for all epochs. Recent work specific to scaling
UGNNs (Li et al., 2022) has incorporated subgraphs based on graph partitioning, i.e., splitting the
original full graph into disjoint subgraphs, and using these to approximate gradients involving the
full-graph energy. While convergence is established for the forward pass, referred to as an unbiased
stochastic proximal-solver (USP), there are no guarantees for the joint forward-backward passes
during training, nor empirical comparisons on large graphs; see Appendix B.5 for further discussion
of USP and how it differs from MuseGNN.

The second line of work exploits the reuse of historical embeddings, meaning the embeddings of
nodes computed and saved during the previous training epoch. In doing so, much of the recursive
forward and backward computations required for GNN training, as well as expensive memory access
to high-dimensional node features, can be reduced (Chen et al., 2017; Fey et al., 2021; Huang et al.,
2024). This technique has recently been applied to training UGNN models via the LazyGNN frame-
work (Xue et al., 2023), as well as somewhat related implicit GNN models (Chen et al., 2022b),
although available performance results do not cover large-scale graphs and there are no convergence
guarantees. Beyond this (and USP from above), we are unaware of prior work specifically devoted
to the scaling and coincident analysis of unfolded GNNs.
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3 GRAPH-REGULARIZED ENERGY FUNCTIONS INFUSED WITH SAMPLING

Our goal of this section is to introduce a convenient family of energy functions formed by applying
graph-based regularization to a set of subgraphs that have been sampled from a given graph of
interest. For this purpose, we first present the offline sampling strategy which will undergird our
approach, followed by details of energy functional form we construct on top of it for use with
MuseGNN. Later, we conclude by analyzing special cases of these sampling-based energies, further
elucidating relevant properties and connections with full-graph training.

3.1 OFFLINE SAMPLING FOUNDATION

In the present context, offline sampling refers to the case where we sample a fixed set of subgraphs
from G once and store them, which can ultimately be viewed as a form of preprocessing step. More
formally, we assume an operator Ω : G → {Gs}ms=1, where Gs = {Vs, Es} is a subgraph of G
containing ns = |Vs| nodes, of which we assume n′

s are target training nodes (indexed from 1 to
n′
s), and Es represents the edge set. The corresponding feature and label sets associated with the s-th

subgraph are denoted Xs ∈ Rns×d and Ts ∈ Rn′
s×d′

, respectively.

There are several key reasons we employ offline sampling as the foundation for our scalable un-
folded GNN architecture development. Firstly, conditioned on the availability of such pre-sampled
subgraphs, there is no additional randomness when we use them to replace energy functions depen-
dent on G and X (e.g., as in (2)) with surrogates dependent on {Gs, Xs}ms=1. Hence we retain a
deterministic energy substructure contributing to a more transparent bilevel (upper- and lower-level)
optimization process and attendant node-wise embeddings that serve as minimizers. Secondly, of-
fline sampling allows us to conduct formal convergence analysis that is agnostic to the particular
sampling operator Ω. In this way, we need not compromise flexibility in choosing a practically-
relevant Ω in order to maintain desirable convergence guarantees. And lastly, offline sampling facil-
itates an attractive balance between model accuracy and efficiency within the confines of unfolded
GNN architectures. As will be shown in Section 6, we can match the accuracy of full-graph training
with an epoch time similar to online sampling methods, e.g., neighbor sampling.

3.2 ENERGY FUNCTION FORMULATION

To integrate offline sampling into a suitable graph-regularized energy function, we first introduce two
sets of auxiliary variables that will serve as more flexible input arguments. Firstly, to accommodate
multiple different embeddings for the same node appearing in multiple subgraphs, we define Ys ∈
Rns×d for each subgraph index s = 1, . . . ,m, as well as Y = {Ys}ms=1 ∈ R(

∑
ns)×d to describe the

concatenated set. Secondly, we require additional latent variables that, as we will later see, facilitate
a form of controllable linkage between the multiple embeddings that may exist for a given node (i.e.,
when a given node appears in multiple subgraphs). For this purpose, we define the latent variables
as M ∈ Rn×d, where each row can be viewed as a shared summary embedding associated with each
node in the original/full graph.

We then define our sampling-based extension of (2) for MuseGNN as

ℓmuse (Y,M) :=

m∑
s=1

[
∥Ys − f(Xs;W )∥2F + λ tr(Y ⊤

s LsYs) + γ∥Ys − µs∥2F +

ns∑
i=1

ζ(Ys,i)

]
, (4)

where Ls is the graph Laplacian associated with Gs, γ ≥ 0 controls the weight of the additional
penalty factor, and each µs ∈ Rns×d is derived from M as follows. Let I(s, i) denote a function
that maps the index of the i-th node in subgraph s to the corresponding node index in the full graph.
For each subgraph s, we then define µs such that its i-th row satisfies µs,i = MI(s,i); per this
construction, µs,i = µs′,j if I(s, i) = I(s′, j). Consequently, {µs}ms=1 and M represent the same
overall set of latent embeddings, whereby the former is composed of repeated samples from the
latter aligned with each subgraph.

Overall, there are three prominent factors which differentiate (4) from (2):
1. ℓmuse (Y,M) involves a deterministic summation over a fixed set of sampled subgraphs, where

each Ys is unique while W (and elements of M ) are shared across subgraphs. As will be dis-
cussed further below, this energy actually has the potential to be more expressive relative to the
full graph form in (2).
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2. Unlike (2), the revised energy involves both an expanded set of node-wise embeddings Y as well
as auxiliary summary embeddings M . When later forming GNN layers designed to minimize
ℓmuse (Y,M), we must efficiently optimize over all of these quantities, which alters the form of
the final architecture.

3. The additional γ∥Ys−µs∥2F penalty factor acts to enforce dependencies between the embeddings
of a given node spread across different subgraphs.

With respect to the latter, it is elucidating to consider minimization of ℓmuse (Y,M) over Y with M
set to some fixed M ′. In this case, up to an irrelevant global scaling factor and additive constant, the
energy can be equivalently reexpressed as

ℓmuse (Y,M = M ′) ≡
m∑
s=1

[
∥Ys − [f ′(Xs;W ) + γ′µs] ∥2F + λ′ tr(Y ⊤

s LsYs) +

ns∑
i=1

ζ ′(Ys,i)

]
,

(5)
where f ′(Xs;W ) := 1

1+γ f(Xs;W ), γ′ := γ
1+γ , λ′ := λ

1+γ , and ζ ′(Ys,i) :=
1

1+γ ζ(Ys,i). From this
expression, we observe that, beyond inconsequential rescalings (which can be trivially neutralized
by simply rescaling the original choices for {f, γ, λ, ζ}), the role of µs is to refine the initial base
predictor f(Xs;W ) with a corrective factor reflecting embedding summaries from other subgraphs
sharing the same nodes. Conversely, when we minimize ℓmuse (Y,M) over M with Y fixed, we find
that the optimal µs for every s is equal to the mean embedding for each constituent node across all
subgraphs. Hence M ′ chosen in this way via alternating minimization has a natural interpretation
as grounding each Ys to a shared average representation reflecting the full graph structure. We now
consider two limiting special cases of ℓmuse (Y,M) that provide complementary contextualization.

3.3 NOTABLE LIMITING CASES

We first consider setting γ = 0, in which case the resulting energy completely decouples across each
subgraph such that we can optimize each

ℓsmuse(Ys) := ∥Ys − f(Xs;W )∥2F + λ tr(Y ⊤
s LsYs) +

ns∑
i=1

ζ(Ys,i), ∀s (6)

independently, s = 1, . . . ,m. Under such conditions, the only cross-subgraph dependency stems
from the shared base model weights W which are jointly trained. Hence ℓsmuse(Ys) is analogous to
a full graph energy as in (2) with G replaced by Gs. We remark that there exists non-isomorphic
graphs such that the induced full-graph energies from (2) have equivalent minima, and yet the cor-
responding {ℓsmuse(Ys)}ms=1 from (6) do not; see Appendix C for additional analysis and examples.
Hence in this sense the sampling-based energy has the potential to be more expressive than the orig-
inal, and need not be viewed as merely an approximation thereof. In Section 5 we will examine
convergence conditions for the full bilevel optimization process over all Ys and W that follows the
γ = 0 assumption. We have also found that this simplified setting performs well in practice; see
Appendix B.2 for ablations.

At the opposite extreme when γ = ∞, we are effectively enforcing the constraint Ys = µs,∀s. As
such, we can directly optimize all Ys out of the model leading to the reduced M -dependent energy

ℓmuse(M) :=

m∑
s=1

[
∥µs − f(Xs;W )∥2F + λ tr(µ⊤

s Lsµs) +

ns∑
i=1

ζ(µs,i)

]
. (7)

Per the definition of {µs}ms=1 and the correspondence with unique node-wise elements of M , this
scenario has a much closer resemblance to full graph training with the original G. In this regard, as
long as a node from the original graph appears in at least one subgraph, then it will have a single,
unique embedding in (7) aligned with a row of M .

Moreover, we can strengthen the correspondence with full-graph training via the suitable selection
of the offline sampling operator Ω. In fact, there exists a simple uniform sampling procedure such
that, at least in expectation, the energy from (7) is equivalent to the original full-graph version from
(2), with the role of M equating to Y . More concretely, we present the following (all proofs are
deferred to Appendix E):

Proposition 3.1. Suppose we have m subgraphs (V1, E1), . . . , (Vm, Em) constructed independently
such that ∀s = 1, . . . ,m, ∀u, v ∈ V,Pr[v ∈ Vs] = Pr[v ∈ Vs | u ∈ Vs] = p; (i, j) ∈ Es ⇐⇒ i ∈
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Vs, j ∈ Vs, (i, j) ∈ E . Then when γ = ∞, we have E[ℓmuse(M)] = mp ℓ(M) with the λ in ℓ(M)
rescaled to pλ.

Strengthened by this result, we can more directly see that (7) provides an intuitive bridge between
full-graph models based on (2) and subsequent subgraph models we intend to build via (4), with
the later serving as an unbiased estimator of the former. Even so, we have found that relatively
small γ values nonetheless work well in practice, possibly (at least in some situations) because the
sampling-based energy itself may be more expressive as mentioned earlier.

4 FROM SAMPLING-BASED ENERGIES TO THE MUSEGNN FRAMEWORK

Having defined and motivated a family of sampling-based energy functions vis-a-vis (4), we now
proceed to derive minimization steps that will serve as GNN model layers that define MuseGNN
forward and backward passes as summarized in Algorithm 1. Given that there are two input argu-
ments, namely Y and M , it is natural to adopt an alternating minimization strategy whereby we fix
one and optimize over the other, and vice versa.

With this in mind, we first consider optimization over Y with M fixed. Per the discussion in Section
3.2, when conditioned on a fixed M , ℓmuse (Y,M) decouples over subgraphs. Consequently, opti-
mization can proceed using subgraph-independent proximal gradient descent, leading to the update
rule

Y (k)
s = proxζ

[
Y (k−1)
s − α

(
[(1 + γ)I + λLs]Y

(k−1)
s − [f(Xs;W ) + γµs]

)]
, ∀s. (8)

Here the input argument to the proximal operator is given by a gradient step along (4) w.r.t. Ys.
We also remark that execution of (8) over K iterations represents the primary component of a single
forward training pass of our proposed MuseGNN framework as depicted on lines 6-8 of Algorithm 1.

We next turn to optimization over M which, as mentioned previously, can be minimized by the mean
of the subgraph-specific embeddings for each node. However, directly computing these means is
problematic for computational reasons, as for a given node v this would require the infeasible col-
lection of embeddings from all subgraphs containing v. Instead, we adopt an online mean estimator
with forgetting factor ρ. For each node v in the full graph, we maintain a mean embedding Mv and
a counter cv . When this node appears in the s-th subgraph as node i (where i is the index within the
subgraph), we update the mean embedding and counter via

MI(s,i) ←
ρcI(s,i)

cI(s,i) + 1
MI(s,i) +

(1− ρ)cI(s,i) + 1

cI(s,i) + 1
Y

(K)
s,i , cI(s,i) ← cI(s,i) + 1. (9)

Also shown on line 9 of Algorithm 1, we update M and c once per forward pass, which serves to
refine the effective energy function observed by the core node embedding updates from (8).

For the backward pass, we compute gradients of

Lmuse(W, θ) :=

m∑
s=1

n′
s∑

i=1

D
(
g
[
Y (K)
s (W )i ; θ

]
, Ts,i

)
(10)

w.r.t. W and θ as listed on line 10 of Algorithm 1, where Lmuse(W, θ) is a sampling-based modifica-
tion of (1). For W though, we only pass gradients through the calculation of Y (K)

s , not the full online
M update; however, provided ρ is chosen to be sufficiently large, M will change slowly relative to
Y

(K)
s such that this added complexity is not necessary for obtaining reasonable convergence.

5 CONVERGENCE ANALYSIS OF MUSEGNN

Global Convergence with γ = 0. In the more restrictive setting where γ = 0, we derive condi-
tions whereby the entire MuseGNN bilevel optimization pipeline converges to a solution that jointly
minimizes both lower- and upper-level energy functions in a precise sense to be described shortly.
We remark here that establishing convergence is generally harder for bilevel optimization problems
relative to more mainstream, single-level alternatives (Colson et al., 2005). To describe our main
result, we first require the following definition:
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Definition 5.1. Assume f(X;W ) = XW , γ = 0, ζ(y) = 0, g(y; θ) = y, and that D is a Lipschitz
continuous convex function. Given the above, we then define L(k)

muse(W ) as (10) with K set to k.
Analogously, we also define L∗

muse(W ) as (10) with Y
(K)
s replaced by Y ∗

s := argminYs
ℓsmuse(Ys)

for all s.
Theorem 5.2. Let W ∗ be the optimal value of the loss L∗

muse(W ) per Definition 5.1, while W (t) de-
notes the value of W after t steps of stochastic gradient descent overL(k)

muse(W ) with diminishing step
sizes ηt = O( 1√

t
). Then provided we choose α ∈

(
0,mins ∥I + λLs∥−1

2

]
and Y

(0)
s = f(Xs;W ),

for some constant C we have that

E
[
L(k)

muse(W
(t))

]
− L∗

muse(W
∗) ≤ O

(
1√
t
+ e−Ck

)
.

Algorithm 1 MuseGNN Training Procedure

Require: {Gs}ms=1: subgraphs, {Xs}ms=1: feat.,
K: # unfolded layers, E: # epochs

1: Randomly initialize W and θ;
Initialize c ∈ Rn and M ∈ Rn×d to zero

2: for e = 1, 2, . . . , E do
3: for s = 1, 2, . . . ,m do
4: µs,i ←MI(s,i), i = 1, 2, . . . , ns

5: Y
(0)
s ← f(Xs;W )

6: for k = 1, 2, . . . ,K do
7: Update Y

(k)
s using (8)

8: end for
9: Update M, c via (9)

10: Update W, θ via SGD over loss (10)
11: end for
12: end for

Given that L∗
muse(W

∗) is the global minimum of
the combined bilevel system, this result guaran-
tees that we can converge arbitrarily close to it
with adequate upper- and lower-level iterations,
i.e., t and k respectively. Note also that we have
made no assumption on the sampling method. In
fact, as long as offline sampling is used, conver-
gence is guaranteed, although the particular of-
fline sampling approach can potentially impact
the convergence rate; see Appendix D.2 for fur-
ther details.

Lower-Level Convergence with arbitrary γ.
We now address the more general scenario where
γ ≥ 0 is arbitrary. However, because of the added
challenge involved in accounting for alternating
minimization over both Y and M , it is only pos-
sible to establish conditions whereby the lower-
level energy (4) is guaranteed to converge as fol-
lows.

Theorem 5.3. Assume ζ(y) = 0. Suppose that we have a series of Y(k) and M (k), k=0, 1, 2, . . .
constructed following the updating rules Y(k) := argminY ℓmuse(Y,M (k−1)) and M (k) :=
argminM ℓmuse(Y(k),M), with Y(0) and M (0) initialized arbitrarily. Then

lim
k→∞

ℓmuse(Y(k),M (k)) = inf
Y,M

ℓmuse(Y,M). (11)

While technically this result does not account for minimization over the upper-level MuseGNN loss,
we still empirically find that the entire process outlined by Algorithm 1, including the online mean
update, is nonetheless able to converge in practice; see Appendix D.1 example.

6 EXPERIMENTS

We now seek to show that MuseGNN serves as a reliable unfolded GNN model that:

1. Preserves competitive accuracy across datasets of widely varying size, especially on the very
largest publicly-available graph benchmarks, with a single fixed architecture,

2. Operates with comparable computational complexity relative to common alternatives that are
also capable of scaling to the largest graphs, and

3. Empirically converges across different γ values that modulate our proposed sampling-based en-
ergy, in accordance with theory.

For context though, we note that graph benchmark leaderboards often include top-performing en-
tries based on complex compositions of existing models and training tricks, at times dependent on
additional features or external data not included in the original designated dataset. Although these
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approaches have merit, our goal herein is not to compete with them, as they typically vary from
dataset to dataset. Additionally, they are more frequently applied to smaller graphs using architec-
tures that have yet to be consistently validated across multiple, truly large-scale benchmarks.

Table 2: Node classification accuracy (%) on the test set, except for MAG240M which only has
labels for validation set. Bold numbers denote the highest accuracy. For the two largest datasets,
MuseGNN is currently the top-performing homogeneous graph model on the relevant OGB-LSC
and IGB leaderboards respectively, even while maintaining the attractive interpretability attributes
of an unfolded GNN. We omit error bars for baseline results in the two largest datasets because of
the high cost to run them all. Additionally, OOM refers to out-of-memory.

Small
(|V| <0.5M)

Medium
(|V| ≈2M)

Large
(|V| ≈100M)

Largest
(|V| >240M)

Model arxiv IGB-tiny products papers100M MAG240M IGB-full

GCN (NS) 69.71±0.25 69.77±0.11 78.49±0.53 65.83±0.36 65.24 48.59
SAGE (NS) 70.49±0.20 72.42±0.09 78.29±0.16 66.20±0.13 66.79 54.95
GAT (NS) 69.94±0.28 69.70±0.09 79.45±0.59 66.28±0.08 67.15 55.51
SGFormer (NS) 70.55±0.24 73.37±0.12 78.94±0.25 66.01±0.37 65.29 N/A
MariusGNN 69.36±0.09 73.06±0.06 76.95±0.24 62.97±0.13 63.17 54.99
FreshGNN 71.51±0.03 71.49±0.13 79.21±0.37 66.22±0.07 65.53 56.50

GCN (GAS) 71.68±0.3 67.86±0.20 76.6±0.3 54.2±0.7 OOM OOM
SAGE (GAS) 71.35±0.4 69.35±0.06 77.7±0.7 57.9±0.4 OOM OOM
GAT (GAS) 70.89±0.1 69.23±0.17 76.9±0.5 OOM OOM OOM

UGNN (FG) 72.74±0.25 72.44±0.09 OOM OOM OOM OOM
LazyGNN1 72.30±0.18 72.92±0.17 81.21±0.21 39.80±0.09 OOM OOM
USP 71.6±0.2 N/A 73.8±0.3 N/A N/A N/A
MuseGNN 72.50±0.19 73.42±0.03 81.23±0.39 66.82±0.02 67.67±0.13 61.74±0.05

Datasets. We evaluate the performance of MuseGNN on node classification tasks from the Open
Graph Benchmark (OGB) (Hu et al., 2020; 2021) and the Illinois Graph Benchmark (IGB) (Khatua
et al., 2023), which are based on homogeneous graphs spanning a wide range of sizes. Table 4 in
Appendix A presents the relevant size-related details. Of particular note is IGB-full, currently
the largest publicly-available graph benchmark exceeding 1TB in size. We also point out that while
MAG240M is originally a heterogenous graph, we follow the common practice of homogenizing
it (Hu et al., 2021); similarly for IGB datasets, we adopt the provided homogeneous versions.

MuseGNN Design. For all experiments, we choose the following fixed MuseGNN settings: Both
f(X;W ) and g(Y ; θ) are 3-layer MLPs, the number of unfolded layers K is 8 (rationale discussed
later below), and the embedding dimension d is 512, and the forgetting factor ρ for the online mean
estimation is 0.9. For offline subgraph sampling, we choose a variation on neighbor sampling called
ShadowKHop (Zeng et al., 2021), which loosely approximates the conditions of Proposition 3.1.
See Appendix A for further details regarding the MuseGNN implementation and hyperparameters.

Baseline Models. With the stated objectives of this section in mind, we compare MuseGNN
with very recent scalability-focused GNN frameworks MariusGNN (Waleffe et al., 2023),
FreshGNN (Huang et al., 2024), and SGFormer (Wu et al., 2024), the latter representing a graph
transformer equipped with neighbor sampling2 and other adaptations explicitly for handling large
graphs. Likewise we include GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), and
GraphSAGE (Hamilton et al., 2017), in each case testing with both neighbor sampling (NS) (Hamil-
ton et al., 2017) and GNNAutoScale (GAS) (Fey et al., 2021) for scaling to the largest graphs. As
a key point of reference, we note that GAT with neighbor sampling is currently the top-performing
homogeneous graph model on both the MAG240M and IGB-full leaderboards. Another natural
baseline we adopt is the analogous full-graph (FG) UGNN with the same architecture as MuseGNN

1The accuracy of LazyGNN on arxiv and products is slightly different from what is reported in Xue et al.
(2023) for reasons specified in Appendix A.

2In Wu et al. (2024), neighbor sampling is only used for larger graphs; however, for consistency across meth-
ods and benchmarks in our experiments, we apply sampling to SGFormer for all datasets regardless of size;
likewise for MuseGNN and all other sampling-based models.
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but without scalable sampling. And finally, we compare with both recent approaches explicitly
designed for scaling UGNNs, namely, USP (Li et al., 2022) and LazyGNN (Xue et al., 2023) as dis-
cussed in Sections 1 and 2.3. For USP, the core solver is applied to the energy from (2) for the most
direct head-to-head comparisons, noting that MuseGNN, LazyGNN, and USP can all potentially be
applied to alternative energy functions to improve performance if needed (we use the accuracy re-
ported in the USP paper where available because there is no public code at this time). Further com-
parisons against other scalable baselines Cluster-GCN (Chiang et al., 2019), GraphFM (Yu et al.,
2022), SGC (Wu et al., 2019), and SIGN (Rossi et al., 2020) are deferred to Appendix B.1.

Accuracy Comparisons. As shown in Table 2, MuseGNN achieves similar accuracy to a compara-
ble full-graph unfolded GNN model on the small datasets (satisfying our first objective from above),
while the latter is incapable of scaling to even the mid-sized products benchmark. Meanwhile,
MuseGNN is generally better than the other GNN baselines, particularly so on the largest dataset,
IGB-full. Notably, MuseGNN exceeds the performance of GAT (NS) and FreshGNN, the cur-
rent SOTA for homogeneous graph models on MAG240M and IGB-full. Similarly, MuseGNN
outperforms all of the additional scalable GNN frameworks presented in Appendix B.1. In terms
of prior work scaling UGNNs, public code for USP is presently not available; however, based on
reported results from Li et al. (2022) using the same full-graph energy (2), MuseGNN performance
is significantly higher; see arxiv and products results in Table 2. As for LazyGNN, results are
competitive on the small- and medium-sized datasets, but deteriorate rapidly on papers100M and
run OOM on the largest datasets. We note that all methods relying on GAS (including LazyGNN)
experience degradation as the data sizes increase. See Appendix A for more USP/LazyGNN details.

Table 3: Training speed (epoch time) in seconds;
hardware configurations in Appendix A.

Model papers-
100M

MAG240M IGB-full

SAGE (NS) 102.48 795.19 17279.98
GAT (NS) 164.14 1111.30 19789.79

LazyGNN 6972.38 OOM OOM
MuseGNN 158.85 1370.47 20413.69

Timing Comparisons. Turning to model com-
plexity, Table 3 displays the training speed
of MuseGNN relative to two common GNN
baselines as well as LazyGNN. From these re-
sults, we observe that MuseGNN executes with
a similar epoch time to the GNNs (satisfying
our second objective from above), and much
more efficiently relative to LazyGNN. Note that
without public code, we are unable to compare
timing with USP.

Convergence Illustration and Ablations. In Figure 1 we show the empirical convergence of (4)
w.r.t. Y during the forward pass of MuseGNN models on ogbn-papers100M for differing values
of γ. In all cases the energy converges within 8 iterations, supporting our choice of K = 8 for
experiments (and satisfying our third objective). Please see Appendix B for additional ablations
involving γ and the MuseGNN offline sampler.

7 CONCLUSION

In this work, we have proposed MuseGNN, an unfolded GNN model that scales to large datasets
by incorporating sampled subgraphs into the design of its lower-level, architecture-inducing energy
function. In so doing, MuseGNN readily handles graphs with ∼ 108 or more nodes and high-
dimensional node features, exceeding 1TB in total size. Moreover, this is accomplished while main-
taining interpretable layers with desirable inductive biases, concomitant convergence guarantees,
and competitive (and at times SOTA) accuracy on the largest available benchmarks. The latter sig-
nificantly exceeds the capabilities of prior efforts to scale UGNNs.
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A EXPERIMENT DETAILS

Dataset Statistics. Table 4 contains the details of the datasets we use for the experiments in Sec-
tion 6 and the ablation study in Appendix B.2.

Table 4: Dataset details, including node feature dimension (Dim.) and number of classes (# Class).

Dataset |V| |E| Dim. # Class Dataset Size

ogbn-arxiv (Hu et al., 2020) 0.17M 1.2M 128 40 182MB
IGB-tiny (Khatua et al., 2023) 0.1M 0.5M 1024 19 400MB
ogbn-products (Hu et al., 2020) 2.4M 123M 100 47 1.4GB
IGB-medium (Khatua et al., 2023) 10.0M 120M 1024 19 40.8GB
ogbn-papers100M (Hu et al., 2020) 111.1M 1.6B 128 172 57GB
MAG240M (Hu et al., 2021) 244.2M 1.7B 768 153 377GB
IGB-full (Khatua et al., 2023) 269.3M 4.0B 1024 19 1.15TB

Model Details. For MuseGNN, we choose the base model f(X;W ) and output function g(Y ; θ)
to be two shallow 3-layer MLPs with standard residual skip connections (although for the somewhat
differently-structured ogbn-products data we found that skip connections were not necessary).
The node-wise constraint η in the energy function (4) is set to be non-negativity, making the proximal
operator proxη in the model (8) to be ReLU. The number of unfolded layers, K, is selected to be
8, and the hidden dimension d is set to 512. The forgetting factor ρ for the online mean estimation
is set to be 0.9. All the models and experiments are implemented in PyTorch (Paszke et al., 2019)
using the Deep Graph Library (DGL) (Wang, 2019).

Offline Samples. As supported by Proposition 3.1, subgraphs induced from nodes (where all the
edges between sampled nodes are kept) pair naturally with the energy function. Therefore we use
node-induced subgraphs for our experiments. For ogbn-arxiv, we use the 2-hop full neighbor
because it is a relatively small graph. For IGB-tiny, ogbn-papers100M, and MAG240M, we
use ShadowKHop with fanout [5,10,15]. For the rest of the datasets, we use ShadowKHop with
fanout [10, 15]. Note that ShadowKHop sampler performs node-wise neighbor sampling and returns
the subgraph induced by all the sampled nodes.

Training Hyperparameters. In the training process, we set the dropout rate of the MLP layers to
be 0.2, and we do not have dropout between the propagation layers. The parameters are optimized
by Adam optimizer (Kingma & Ba, 2014) with the weight decay parameter set to 0 and the learning
rate being 0.001. For ogbn-arxiv and ogbn-papers100M, α = 0.05, λ = 20. For MAG240M
and the IGB series datasets, α = 0.2, λ = 4. And for ogbn-products, α = λ = 1 with precon-
ditioning on the degree matrix for each unfolded step/layer. The batch size n′

s in the offline samples
are all set to 1000. For large-scale datasets, an expensive hyperparameter grid search as commonly
used for GNN tuning is not feasible. Hence we merely applied simple heuristics informed from
training smaller models to pick hyperparameters for the larger datasets. Also it is worth noticing
that α should not in principle affect accuracy if set small enough, since the model will eventually
converge. In this regard, α can be set dependent on λ, since the latter determines the size of α needed
for convergence.

Evaluation Process. In the presented results, the training, validation and test set splits all follow
the original splits from the datasets. The evaluation process for validation and test datasets uses
the same pipeline as the training process does: doing offline sampling first and then use these fixed
samples to do the calculation. The only difference is that in the evaluation process, the backward
propagation is not performed. While we used the same pipeline for training and testing, MuseGNN
is modular and we could optionally use online sampling for the evaluation or even multi-hop full-
neighbor loader in the evaluation time.

Configurations in the Speed Experiments. We use a single AWS EC2 p4d.24xlarge instance
to run the speed experiments. It comes with dual Intel Xeon Platinum 8275CL CPU (48 cores,
96 threads), 1.1TB main memory and 8 A100 (40GB) GPUs. All the experiments are run on single
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GPU. When running MuseGNN, the pre-sampled graph structures are stored in the NVMe SSDs and
the input feature is loaded into the main memory (for IGB-full, its feature exceeds the capacity
of the main memory, so mmap is employed). In the baseline setting, ogbn-papers100M and
MAG240M are paired with neighbor sampling of fanout [5, 10, 15] and IGB-full is paired with
neighbor sampling of fanout [10, 15]. So the fanout for the online neighbor sampling baselines and
MuseGNN are the same so that they can have a fair comparison. In these experiments, the hidden
size is set to 256 as is typical.

Additional Details Regarding USP and LazyGNN Results. Since the source code for USP is
not available, we can only cite the published numbers that are directly applicable in Table 2. For
a fair comparison, we choose USP results listed as “IRLS” as the base model in (Li et al., 2022).
This model corresponds to minimizing the energy function (2), which is equivalent to what is used
for our full-graph unfolded GNN baseline, UGNN (FG), and the original basis for MuseGNN. Note
that MuseGNN and USP can both handle alternative energy function forms to potentially improve
performance depending on the application.

As for LazyGNN, its training pipeline incorporates METIS partitioning similar to other GAS-based
methods. The more partitions used for this, the smaller the subgraphs are (so that they can fit
into the GPU memory), and the more iterations it takes for training one epoch. For obtaining
ogbn-arxiv and ogbn-products results, the partitions are only 60 and 150. However, for
ogbn-papers100M, as this dataset is much larger in size, the number of partitions is set to 40000
so that the subgraphs can fit into GPU memory. But GAS-based LazyGNN also uses historical em-
beddings and historical gradients, and the staleness of these variables can become very large due to
higher number of iterations per epoch needed with so many partitions. Hence this staleness could
partially account for the relatively low accuracy on ogbn-papers100M. Related discussion of
this aspect of GAS-based models can be found in Huang et al. (2024). And finally, for obtaining
the accuracy results of LazyGNN, we ran the exact open-sourced code1 with the hyper-parameters
provided by the authors for each overlapping dataset they considered (i.e., arxiv and products),
and found that it is actually maximum accuracy values (over 5 trials) that matches what is reported in
their paper. However, for consistency within our experiments across all methods, we instead report
the LazyGNN mean accuracy values with error bars in Table 2.

B ADDITIONAL EXPERIMENTS AND DISCUSSION

B.1 ACCURACY COMPARISONS WITH ADDITIONAL BASELINES

For a more general comparison beyond Table 2 in the main paper, this section introduces additional
baselines, and in particular, some recent models explicitly designed for scalability (although none
of these models are UGNNs). Specifically, we include SGC (Wu et al., 2019), SIGN (Rossi et al.,
2020), Cluster-GCN (Chiang et al., 2019), and GraphFM (Yu et al., 2022). Note that GraphFM is
built on top of GAS (Fey et al., 2021), while the others (i.e., SGC, SIGN, ClusterGCN) represent
traditional GNN architectures that are naturally amenable to larger graphs. Results using these ad-
ditional baselines, as presented in Table 5, further solidify the competitive advantage of MuseGNN.
Additionally, all baseline results are from OGB leaderboards or published papers (Huang et al.,
2024; Zhu & Koniusz, 2020). In this regard, we do not report performance on IGB datasets as,
being quite new, most prior work does not contain such results and it is extremely expensive to run
ourselves.

B.2 FURTHER DETAILS REGARDING THE ROLE OF γ IN MUSEGNN

The incorporation of γ > 0 serves two purposes within our MuseGNN framework and its supporting
analysis. First, by varying γ we are able to build a conceptual bridge between the decoupled γ = 0
base scenario, and full-graph training as γ → ∞, provided the sampled subgraphs adhere to the
conditions of Proposition 3.1. In this way, the generality of γ > 0 has value in terms of elucidating
connections between modeling regimes, independently of empirical performance.

1https://github.com/RXPHD/Lazy_GNN/
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Table 5: Node classification accuracy (%) results using additional non-UGNN baselines. Reported
numbers are from the test set, except for MAG240M which only has labels for the validation set.

Model arxiv products papers100M MAG240M

SGC 68.78 68.87 63.29 65.82
SIGN 71.95 80.52 65.68 66.64
Cluster-GCN 68.11 78.97 53.35 OOM
GraphFM 71.53 70.76 48.03 OOM
MuseGNN 72.50 81.23 66.82 67.67

That being said, the second role is more pragmatic, as γ > 0 can indeed improve predictive accuracy.
As shown in the ablation in Table 6 (where all hyperparameters except γ remain fixed), γ = 0
already achieves good performance; however, increasing γ leads to further improvements. This is
likely because larger γ enables the model to learn similar embeddings for the same node in different
subgraphs, which may be more robust to the sampling process.

Table 6: Ablation study of the penalty factor γ. Results shown represent the accuracy (%) on the
test set. Bold numbers denote the best performing method.

γ = 0 γ = 0.1 γ = 0.5 γ = 1 γ = 2 γ = 3

papers100M 66.29 66.31 66.53 66.45 66.64 66.82
ogbn-arxiv 72.51 72.67 72.47 72.21 72.15 72.08
IGB-tiny 72.66 72.78 73.42 73.02 72.70 72.69

IGB-medium 75.18 75.80 75.83 N/A N/A N/A
ogbn-products 80.42 80.92 81.23 N/A N/A N/A

That being said, while we can improve accuracy with γ > 0, this generality comes with an additional
memory cost for storing the required mean vectors. However, this memory complexity for the mean
vectors is only O(nd), which is preferable to the memory complexity O(ndK) of GAS (Fey et al.,
2021), which depends on the number of layers K. Importantly, this more modest O(nd) storage
is only an upper bound for the MuseGNN memory complexity, as the γ = 0 case is already very
effective even without requiring additional storage. As an additional point of reference, the GAS-
related approach from Xue et al. (2023) also operates with only single-layer O(nd) of additional
storage; however, unlike MuseGNN, this storage is mandatory for large graphs (not amenable to
full-graph training) and therefore serves as a lower bound for memory complexity. Even so, the
approach from Xue et al. (2023) is valuable and complementary.

B.3 SAMPLING ABLATION ON THE BASELINE MODELS

We choose neighbor sampling for the baselines because it is most commonly used, but since Shad-
owKHop is paired with MuseGNN, we use Table 7 to show that the improvement is not coming from
the change in the sampling method but the usage of energy-based scalable unfolded model. In Ta-
ble 7, the baseline models are trained on ogbn-papers100M with the same offline ShadowKHop
samples used in the training of MuseGNN, but they suffer from a decrease in the accuracy compared
with the online neighbor sampling counterparts, so the change in sampling method cannot account
for the enhancement in the accuracy.

Table 7: Ablation study of the accuracy improvement compared with baselines. Shown results are
the accuracy (%) on the test set of ogbn-papers100M.

Baseline Model

Sampling Method GCN GAT SAGE

ShadowKHop (offline) 64.89 63.84 65.57
Neighbor Sampling (online) 65.83 66.28 66.2
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B.4 ALTERNATIVE SAMPLING METHOD FOR MUSEGNN

We also paired MuseGNN with online neighbor sampling, the most popular choice for sampling,
on ogbn-papers100M to account for our design choice of sampling methods coupled with
MuseGNN. Theoretically, the convergence guarantee no longer holds true for online sampling. Ad-
ditionally, neighbor sampling removes terms regarding edge information from the energy function,
so we expect it to be worse than the offline ShadowKHop sampling that we use. This is also sup-
ported by Proposition 3.1 because neighbor sampling does not provide subgraphs induced from the
nodes with all the edges. Empirically, with online neighbor sampling, the test accuracy is 66.11%;
it is indeed lower than the 66.82% from our offline ShadowKHop results.

B.5 DIFFERENCES BETWEEN MUSEGNN AND USP

Despite both being methods for scaling UGNN training, the USP approach (Li et al., 2022) and
MuseGNN differ in multiple important respects. First, USP is based on an unbiased stochastic
proximal solver and partitioned subgraphs to approximate the gradient steps used for minimizing an
original full-graph energy as in (2). Quite differently, MuseGNN is actually predicated on defining
a new subgraph-based energy function given by (4) that is distinct from its full-graph counterpart.
See Section C below for discussion of the potentially greater expressiveness of (4) relative to (2).

Secondly, USP convergence has only been established for the forward pass (i.e., lower-level energy
function minimization), with no guarantees provided for full convergence in conjunction with the
backward pass (i.e., minimizing the upper-level training loss w.r.t. model parameters). In contrast,
we establish MuseGNN convergence under certain conditions across the full bilevel optimization
process, simultaneously covering forward and backward passes.

And lastly, there does not as of yet exist any published demonstration that USP is empirically ef-
fective on large graph datasets, nor public code available for implementing such a demonstration.
In fact, ogbn-products is the largest benchmark adopted in Li et al. (2022), which is viewed as
medium-sized relative to the other datasets we consider. Note that full-graph GNNs can be effec-
tively trained on ogbn-products using a single GPU, so this dataset does not generally require
intensive scalability measures. This is unlike MuseGNN, which we have validated on the largest
publicly-available benchmarks. We also note that Li et al. (2022) presents a compelling acceleration
method to reduce training iterations; however, the per-iteration computational complexity of this
step is comparable to full-graph training and therefore is not suitable for the largest graphs.

C MUSEGNN EXPRESSIVENESS RELATIVE TO FULL-GRAPH UNFOLDED
GNNS

In this section we consider the expressiveness of MuseGNN versus full graph unfolded GNN models.
As suggested in Section 3, there exists non-isomorphic graphs such that the induced full-graph
energies from (2) have effectively equivalent minima, and yet the corresponding {ℓsmuse(Ys)}ms=1
from (6), as a special case of the MuseGNN energy (4) with γ = 0, do not. This would imply that
the subgraph-based energy of MuseGNN can actually be more expressive in some sense. We first
formalize this notion and then subsequently provide illustrative examples.

C.1 FORMAL ANALYSIS

The following proposition demonstrates that for two non-isomorphic graphs that are considered as
isomorphic by the Weisfeiler-Lehman (WL) test (Shervashidze et al., 2011), minimizing the full-
graph energy (2) will yield equivalent embeddings, even when initialized in such a way that the
actual descent iterations need not follow the WL criteria which underpin the test itself.

Proposition C.1. Suppose two attributed graphs G1 = (V1, E1, X1) and G2 = (V2, E2, X2), al-
though possibly non-isomorphic, cannot be distinguished as non-isomorphic by the WL test. Fur-
thermore, w.l.o.g. assume the node indices of G1 and G2 are aligned such that each node with the
same index has the same final hash value produced by the WL test, i.e., the multi-set of their neigh-
borhoods are identical (if this were not the case, it can be trivially achieved via permutation of node
indices, an operation that does not impact the energy (2)). Now consider optimizing (2) using either
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graph with a convex ζ. Beginning from arbitrary initial embeddings Y (0)
1 and Y

(0)
2 respectively, not

necessarily equal to one another nor adhering to WL test stipulations, the unfolded GNN descent
iterations from (3) will converge to minimizing solutions Y ∗

1 and Y ∗
2 satisfying Y ∗

1 = Y ∗
2 .

Proof. Since G1 and G2 are considered isomorphic by WL test, we have X1 = X2. Let X1 = X2 =
X . The energy functions for G1 and G2 are then ℓ1(Y ) = ∥Y − f(X;W )∥2F + λ tr(Y ⊤L1Y ) +∑n

i=1 ζ(Yi) and ℓ2(Y ) = ∥Y − f(X;W )∥2F +λ tr(Y ⊤L2Y )+
∑n

i=1 ζ(Yi) respectively, where L1

and L2 denote the graph Laplacians associated with G1 and G2.

We first prove that within one graph, the nodes with the same final WL hash value will have the
same embedding. Since here the energy function is strongly convex, the initialization can be arbi-
trary and the forward pass will finally reach the same global minimum. Now suppose we initialize
the embeddings as f(X;W ). In this case, the nodes with same WL hash values have the same
initial embeddings. Now consider each proximal gradient descent step on the energy function, i.e.,
the forward propagation layer of the unfolded GNN. As the neighborhood multi-sets of the nodes
with same WL hash are exactly the same, for these nodes in every step, the aggregation and update
functions take in exactly the same inputs. Therefore in every step these nodes have the same em-
beddings, thus at the final minimum, the embeddings are still the same. And since any initialization
leads to the same minimum, this will be true regardless of the descent steps that led there.

Now we prove the proposition regarding two graphs. Considering the first order optimality condition
of the energy ℓ1(Y ), we have −(Y ∗

1 − f(X;W ) + λLY ∗
1 ) ∈ ∂ζ(Y ∗

1 ), where ∂ζ(Y ∗
1 ) denotes the

subdifferential of ζ evaluated at Y = Y ∗
1 . With the assumption on the alignment of node indices,

we want to show that Y ∗
1 = Y ∗

2 , which is equivalent to Y ∗
1 satisfying the first order condition

of ℓ2(Y ). Therefore, it is sufficient to show when −(Y ∗
1 − f(X;W ) + λL2Y

∗
1 ) ∈ ∂ζ(Y ∗

1 ) ⇒
−(Y ∗

1 −f(X;W )+λL1Y
∗
1 ) ∈ ∂ζ(Y ∗

1 ). Since multiplying the Laplacian matrix and the embeddings
is essentially doing one step of neighbor aggregation, we have L1Y

∗
1 = L2Y

∗
1 . This is because the

1-hop neighborhood of each node in G1 and G2 have the same hash value combinations as guaranteed
by the WL test, and each node with same hash value has the same embedding in Y ∗

1 as we proved
above. Therefore −(Y ∗

1 − f(X;W ) + λL1Y
∗
1 ) = −(Y ∗

1 − f(X;W ) + λL2Y
∗
1 ), so they both exist

in ∂ζ(Y ∗
1 ). Thus, Y ∗

1 is also the minimum for ℓ2(Y ), so Y ∗
1 = Y ∗

2 .

Interestingly though, something equivalent to Proposition C.1 need not hold for the MuseGNN
energy based on sampled subgraphs. To see this, we rely on analysis from (Frasca et al., 2022),
which reveals that the expressive power of GNNs trained on subgraphs can actually surpass the
expressive power of the WL test. In our setting, it can be shown that this translates into more
expressive minimizers of the MuseGNN energy (4), particularly when γ = 0. To intuitively convey
this phenomena, we next lean on illustrative examples whereby minimizers of (4) can distinguish
two graphs that were not originally distinguishable by the WL test or minimizers of (2).

C.2 ILLUSTRATIVE EXAMPLES

To begin, we consider pairs of non-isomorphic graphs that have been initially assigned identical
input features across all nodes in both graphs. For simplicity of presenting useful illustrative ex-
amples, we also base our assumed energy functions on symmetric normalized graph Laplacians
L̃ = D− 1

2LD− 1
2 = I −D− 1

2AD− 1
2 . Note that Proposition C.1 still holds equally well under this

revision.

Starting with uniform initial node features, the WL test will ultimately identify the two pairs of
non-isomorphic graphs in Figure 2a as isomorphic. And with the WL test result, we can match each
node in the left graph with a corresponding node in the right graph if they have the same final hash
value in the WL test. A bijection can be established for such corresponding nodes because these two
graphs are considered isomorphic by the WL test.

If we use the left-right pair of graphs in Figure 2a and uniform initial features to form the energy (2),
subsequent optimization using (3) will produce the final embedding minimizers as indicated by the
node colors in Figure 2a. Here the same color indicates the same embedding vector of the minimizer.
As the corresponding nodes from the left-right pair have the same colors, the minimizers of the
corresponding full-graph energies are equivalent. Thus the left-right pair cannot be distinguished.
Such cases resonate with the implications of Proposition C.1.
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(a) Same colors indicate that these nodes
have the same embedding vector upon min-
imizing the full-graph energy from (2) us-
ing the corresponding graphs. The non-
isomorphic graphs within each left-right pair
cannot be differentiated.

(b) Based on subgraphs of the original
graphs on the left, minimizers of a re-
vised energy akin to (6) and by extension
(4) can in fact now differentiate each non-
isomorphic graph, as noted by the distinct
color patterns within each left-right pair.

Figure 2: Building on analysis from Frasca et al. (2022), it is possible to achieve increased expres-
siveness via energy functions based on sampled subgraphs (as incorporated by MuseGNN).

However, if we sample subgraphs from the full graphs, we are now able to distinguish such pairs. By
taking the subgraphs of the left-right pair in Figure 2a, we obtain the graph structures in Figure 2b.
But now, even with the uniform node features, the final embeddings minimizing the graph energy
(6) will yield different distributions for the left-right pair, thus differentiating the two graphs. The
final embeddings are illustrated as colors in Figure 2b. As such, the MuseGNN energy function (4)
based on sampled subgraphs is in this sense more expressive than the full-graph energy alternative
from (2), as minimizers of the former can differentiate some non-isomorphic graph pairs that are not
distinguishable by the minimizers of the latter.

D ADDITIONAL CONVERGENCE DETAILS

D.1 EMPERICAL CONVERGENCE RESULTS

Here we show the empirical results of the previous convergence analysis. Though we do not have
the full bilevel convergence results for the γ > 0 case like Theorem 5.2, Figure 3 shows that in
real-world dataset, the bilevel optimization system will still converge with the imprecise estimation
of optimal embeddings Y (K)

s ≈ Y ∗
s and the online mean estimation of M .
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Iteration
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Figure 3: Convergence of the upper-level loss on ogbn-arxiv dataset for 20 epochs with penalty
factor γ = 1.
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D.2 A NOTE ON SAMPLING METHODS IMPACTING CONVERGENCE RATES

As stated in the main paper, offline sampling allows us to conduct formal convergence analysis that is
agnostic to the particular sampling operator. So our convergence guarantee is valid for all sampling
methods. However, different sampling methods can still actually have an impact on the convergence
rate of the bilevel optimization. This is because different sampling methods will produce subgraphs
with different graph Laplacian matrices, and the latter may have differing condition numbers σ

τ as
mentioned later in Lemma E.4. In this regard, a larger such condition number will generally yield a
slower convergence rate. Further details are elaborated in the proof of Theorem 5.2 in Appendix E.2.

E PROOFS

E.1 CONNECTION WITH FULL GRAPH TRAINING

Proposition 3.1. Suppose we have m subgraphs (V1, E1), . . . , (Vm, Em) constructed independently
such that ∀s = 1, . . . ,m, ∀u, v ∈ V,Pr[v ∈ Vs] = Pr[v ∈ Vs | u ∈ Vs] = p; (i, j) ∈ Es ⇐⇒ i ∈
Vs, j ∈ Vs, (i, j) ∈ E . Then when γ = ∞, we have E[ℓmuse(M)] = mp ℓ(M) with the λ in ℓ(M)
rescaled to pλ.

Proof. The probability that an edge is sampled is Pr[(i, j) ∈ Es | (i, j) ∈ E ] = p2. ∀v ∈ V , if
v ∈ Vs, v ∈ Vt, then Ys,v = Yt,v = Mv . We have

ℓmuse(M) =

m∑
s=1

∑
v∈Vs

(
∥Mv − f(X;W )v∥22 + ζ(Mv)

)
+

λ

2

∑
(i,j)∈Es

∥Mi −Mj∥22


E [ℓmuse(M)] =

m∑
s=1

∑
v∈Vs

(
∥Mv − f(X;W )v∥22 + ζ(Mv)

)
· Pr[v ∈ Vs]

+
λ

2

m∑
s=1

∑
(i,j)∈Es

∥Mi −Mj∥22 · Pr[(i, j) ∈ Es]

=mp
∑
v∈V

(
∥Mv − f(X;W )v∥22 + ζ(Mv)

)
+mp2

λ

2

∑
(i,j)∈E

∥Mi −Mj∥22

=mp

[
∥M − f(X;W )∥2F + pλ tr

(
M⊤LM

)
+

n∑
i=1

ζ(Mi)

]
=mp ℓ(M)

E.2 FULL CONVERGENCE ANALYSIS

According to Definition 5.1, Y ∗
s (W ) = (I + λLs)

−1f(Xs;W ) := P ∗
s f(Xs;W ) is the optimal

embedding for the subgraph energy ℓsmuse(Ys). Additionally, we initialize Y
(0)
s as f(Xs;W ), so

Y
(k)
s can be written as P (k)

s f(X;W ) where P
(k)
s is also a matrix. We have α ≤ ∥I + λLs∥−1

2 , so
P

(k)
s will converge to P ∗

s as k grows. The output of D over matrix input is the sum of D over each
row vectors, as typical discriminator function like squared error or cross-entropy do.

Plugging the Y
(k)
s (W ) and Y ∗

s (W ) into the loss function, we have

L(k)
muse(W ) =

m∑
s=1

D
(
Y (k)
s (W )1:n′

s
, Ts

)
= D

(
P(k)XW,T

)
(12)
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where 1 : n′
s means the first n′

s rows, T := (T1, T2, . . . , Tm)⊤, P(k) := diag

{(
P

(k)
s

)
1:n′

s

}m

s=1

.

Similarly, for ℓ∗W (W ), we change all the Y
(k)
s and P

(k)
s to Y ∗

s and P ∗
s . That is,

P∗ := diag
{
(P ∗

s )1:n′
s

}m

s=1
, L∗

muse(W ) = D (P∗XW,T)

Stochastic Gradient Descent The updating rule by gradient descent for the parameter is

W (t+1) = W (t) − η∇W (t)L(k)
muse(W

(t))

= W (t) − η

m∑
s=1

∂D
(
Y

(k)
s (W (t)), Ts

)
∂W (t)

In reality, we use stochastic gradient descent to minimize L(k)
muse(W ), and the updating rule becomes

W (t+1) = W (t) − η
∂D

(
Ts, g

(
Y

(k)
s (W (t))

))
∂W (t)

(13)

Here s is picked at random from {1, 2, . . . ,m}, so the gradient is an unbiased estimator of the true
gradient.

Lemma E.1. As defined in (12), L(k)
muse(W ) is a convex function of W . Furthermore, there exist the

global optimal W (k∗) such that L(k)
muse(W (k∗)) ≤ L(k)

muse(W ) for all W .

Proof. L(k)
muse(W ) is a composition of convex function D with an affine function, so the convexity is

retained. By the convexity, the global optimal W (k∗) exists.

Lemma E.2. When the loss function L(k)
muse is defined as equation (12), and the parameter W is

updated by (13) with diminishing step sizes ηt = O( 1√
t
), E

[
L(k)

muse(W (t))
]
− L(k)

muse(W (k∗)) =

O(1/
√
t).

Proof. Since the loss function L(k)
muse is convex by Lemma E.1, and the step size is diminishing in

O( 1√
t
), by (Nemirovski et al., 2009), the convergence rate of the difference in expected function

value and optimal function value is O( 1√
t
).

Lemma E.3. The subgraph energy function (6) with ζ(y) = 0 (as defined in Definition 5.1) is σs-
smooth and τs-strongly convex with respect to Ys, with σs = σmax(I + λLs) and τs = σmin(I +
λLs), where σmax and σmin are the maximum and minimum singular value of the matrix.

Proof. The proof is simple by computing the Hessian of the energy function. Additionally, since the
graph Laplacian matrix Ls is positive-semidefinite, we have σs ≥ τs > 0.

Lemma E.4. Let σ, τ = argmaxσs,τs
σs

τs
, s = 1, 2, · · · ,m, where σ

τ gives the worst condition
number of all subgraph energy functions. In the descent iterations from (8) that minimizes (6)
with step size α = 1

σ , we can establish the bound on the propagation matrix ∥P(k) − P∗∥ ≤
m exp(− τ

2σk)
∑m

s=1 ∥P
(0)
s − P ∗

s ∥

Proof. By Bubeck et al. (2015)[Theorem 3.10], we have∥∥∥P (k)
s f(X;W )− P ∗

s f(X;W )
∥∥∥2 ≤ e−

τs
σs

k
∥∥∥P (0)

s f(X;W )− P ∗
s f(X;W )

∥∥∥2
Since this bound holds true for any f(X;W ), by choosing f(X;W ) = I to be the identity matrix,
we have ∥∥∥P (k)

s − P ∗
s

∥∥∥ ≤ e−
τs
2σs

k
∥∥∥P (0)

s − P ∗
s

∥∥∥ ≤ e−
τ
2σ k

∥∥∥P (0)
s − P ∗

s

∥∥∥
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Adding up all the m subgraphs, we have∥∥∥P(k) − P∗
∥∥∥ ≤ me−

τ
2σ k

m∑
s=1

∥∥∥P (0)
s − P ∗

s

∥∥∥

Theorem 5.2. Let W ∗ be the optimal value of the loss L∗
muse(W ) per Definition 5.1, while W (t) de-

notes the value of W after t steps of stochastic gradient descent overL(k)
muse(W ) with diminishing step

sizes ηt = O( 1√
t
). Then provided we choose α ∈

(
0,mins ∥I + λLs∥−1

2

]
and Y

(0)
s = f(Xs;W ),

for some constant C we have that

E
[
L(k)

muse(W
(t))

]
− L∗

muse(W
∗) ≤ O

(
1√
t
+ e−Ck

)
.

Proof. In Definition 5.1, we assume D to be Lipschitz continuous for the embedding variable, so
for any input Y and Y′, we have |D(Y,T)−D(Y′,T)| ≤ LD∥Y− Y′∥.

L(k)
muse

(
W (k∗)

)
− L∗

muse (W
∗)

≤L(k)
muse (W

∗)− L∗
muse (W

∗)

=D
(
P(k)XW ∗,T

)
−D (P∗XW ∗,T)

≤LD

∥∥∥P(k)XW ∗ − P∗XW ∗
∥∥∥

≤LD

∥∥∥P(k) − P∗
∥∥∥ ∥XW ∗∥

≤O
(
e−

τ
2σ k

)
Therefore,

E
[
L(k)

muse(W
(t))

]
− L∗

muse(W
∗)

=E
[
L(k)

muse(W
(t))

]
− L(k)

muse(W
(k∗)) + L(k)

muse(W
(k∗))− L∗

muse(W
∗)

≤O(
1√
t
) +O(e−

τ
2σ k)

≤O(
1√
t
+ e−ck),

where c = τ
2σ .

E.3 ALTERNATING MINIMIZATION

The main reference for alternating minimization is Csiszár & Tusnády (1984). In this paper, they
proved that the alternating minimization method will converge to the optimal value when a five-point
property or both a three-point property and a four-point property holds true. We will show that the
global energy function and the corresponding updating rule satisfy the three-point property and the
four-point property. Thus, the alternating minimization method will converge to the optimal value.

For simplicity, we define rs,i as rs,i =
∑m

s′=1

∑n′
s

j=1 I{I(s, i) = I(s′, j)}, where I{·} is the indica-
tor function. Therefore, rs,i means the node in the full graph with index I(s, i) appears rs,i times in
all subgraphs. With some abuse of the notation, we let rI(s,i) = rs,i.

In the energy function (4), we still want to find a set of {Ys}ms=1 and {µs}ms=1 to minimize the
global energy function. We can use the alternating minimization method to solve this problem. In
each step, we minimize {Ys}ms=1 first and then minimize {µs}ms=1. We want to show that when the
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parameter W is fixed, by alternatively minimizing {Ys}ms=1 and {µs}ms=1, the energy will converge
to the optimal value.

We can easily get the updating rule for {Ys}ms=1 and {µs}ms=1 by taking the derivative of the energy
function. Note that we always first update {Ys}ms=1 and then update {µs}ms=1. For {Ys}, we have

Y (k)
s = [(1 + γ)I + λLs]

−1[f(Xs;W ) + γµ(k−1)
s ] (14)

For {µs}ms=1, we have the i-th row of µ(k)
s is

µ
(k)
s,i =

1

rs,i

m∑
s′=1

n′
s∑

j=1

Y
(k)
s′,j · I{I(s, i) = I(s′, j)} (15)

Namely, the updated µ(k) is the average of the embeddings of the same node in different subgraphs.

Note that here {Ys} with {µs} and Y with M are used simultaneously. We will use {Ys} and {µs}
when we want to emphasize the subgraphs and use Y and M when we want to emphasize them as
the input of the global energy function. But in essence they represent the same variables and can be
constructed from each other.

The three-point property and four-point property call for a non-negative valued helper function
δ(Y, Y ′) such that δ(Y, Y ) = 0. We define the helper function as δ(Y, Y ′) = (1 + γ)∥Y − Y ′∥2F .
We can easily verify that δ(Y, Y ) = 0 and δ(Y, Y ′) ≥ 0.

Lemma E.5 (Three-point property). Suppose that we have a series of Y(k) and M (k), k =
0, 1, 2, · · · constructed following the updating rule (14) and (15) and that they are initialized ar-
bitrarily. For any Y and k, ℓmuse(Y, µ(k))− ℓmuse(Y(k+1), µ(k)) ≥ δ(Y,Y(k+1)) holds true.

Proof. We only need to show ℓsmuse(Ys, µ
(k)
s ) − ℓsmuse(Y

(k+1)
s , µ

(k)
s ) ≥ δ(Ys, Y

(k+1)
s ). By iterating

s from 1 to m and adding the m inequalities together, we can get the desired result.

ℓmuse(Ys, µ
(k)
s )− ℓmuse(Y

(k+1)
s , µ(k)

s )− δ(Ys, Y
(k+1)
s )

= ∥Ys − f(Xs;W )∥2F + λ tr
(
Y ⊤
s LsYs

)
+ γ

∥∥∥Ys − µ(k)
s

∥∥∥2
F
−

∥∥∥Y (k+1)
s − f(Xs;W )

∥∥∥2
F

− λ tr
(
Y (k+1)⊤
s LsY

(k+1)
s

)
− γ

∥∥∥Y (k+1)
s − µ(k)

s

∥∥∥2
F
− (1 + γ)

∥∥∥Ys − Y (k+1)
s

∥∥∥2
F

=
∥∥∥Ys − Y (k+1)

s + Y (k+1)
s − f(Xs;W )

∥∥∥2
F
+ λ tr

(
Y ⊤
s LsYs

)
+ γ

∥∥∥Ys − Y (k+1)
s − Y (k+1)

s − µ(k)
s

∥∥∥2
F
−

∥∥∥Y (k+1)
s − f(Xs;W )

∥∥∥2
T

− λ tr
(
Y (k+1)⊤
s LsY

(k+1)
s

)
− γ

∥∥∥Y (k+1)
s − µ(k)

s

∥∥∥2
F
− (1 + γ)

∥∥∥Ys − Y (k+1)
s

∥∥∥2
F

=2
〈
Ys − Y (k+1)

s , Y (k+1)
s − f(Xs;W )

〉
+ 2γ

〈
Ys − Y (k+1)

s , Y (k+1)
s − µ(k)

s

〉
+ λ tr

(
Y ⊤
s LsYs

)
− λ tr

(
Y (k+1)⊤
s LsY

(k+1)
s

)
=2

〈
Ys − Y (k+1)

s , (1 + γ)Y (k+1)
s −

(
f(Xs;W ) + γµ(k)

s

)〉
+ λ

〈
Ys − Y (k+1)

s , Ls

(
Ys + Y (k+1)

s

)〉
=
〈
Ys − Y (k+1)

s , 2 (λLs + (1 + γ)I)Y (k+1)
s − 2

(
f(Xs;W ) + γµ(k)

s

)
+ λLs

(
Ys − Y (k+1)

s

)〉
=
〈
Ys − Y (k+1)

s , λLs

(
Ys − Y (k+1)

s

)〉
⩾ 0

Lemma E.6 (four-point property). Suppose that we have a series of Y(k) and M (k), k = 0, 1, 2, · · ·
constructed following the updating rule (14) and (15) and that they are initialized arbitrarily. For
any Y, µ and k, δ(Y,Y(k)) ≥ ℓmuse(Y, µ(k))− ℓmuse(Y, µ) holds true.
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Proof. Expanding all the functions we can get our target is equivalent to
m∑
s=1

(1 + γ)
∥∥∥Ys − Y (k)

s

∥∥∥2 ≥ γ

m∑
s=1

(∥∥∥Ys − µ(k)
s

∥∥∥2
F
− ∥Ys − µs∥2F

)
We can actually show a stronger result, that is

m∑
s=1

∥∥∥Ys − Y (k)
s

∥∥∥2
F
≥

m∑
s=1

(∥∥∥Ys − µ(k)
s

∥∥∥2
F
− ∥Ys − µs∥2F

)
By the updating rule for µs, we have

m∑
s=1

〈
µs − µ(k)

s , µ(k)
s − Y (k)

s

〉
=

m∑
s=1

ns∑
i=1

〈
µs,i − µ

(k)
s,i , µ

(k)
s,i − Y

(k)
s,i

〉
=

n∑
v=1

m∑
s=1

ns∑
i=1

I{I(s, i) = v}
〈
Mv −M (k)

v ,M (k)
v − Y

(k)
s,i

〉
=

n∑
v=1

rv

〈
Mv −M (k)

v ,M (k)
v − 1

rv

m∑
s=1

ns∑
i=1

I{I(s, i) = v}Y (k)
s,i

〉
= 0

(16)

Therefore,
m∑
s=1

∥∥∥Ys − Y (k)
s

∥∥∥2
F
=

m∑
s=1

(
∥Ys − µs∥2F +

∥∥∥µs − Y (k)
s

∥∥∥2
F
+ 2

〈
Ys − µs, µs − Y (k)

s

〉)

=

m∑
s=1

(
∥Ys − µs∥2F +

∥∥∥µs − µ(k)
s

∥∥∥2
F
+

∥∥∥µ(k)
s − Y (k)

s

∥∥∥2
F
+ 2

〈
Ys − µs, µs − Y (k)

s

〉)

+

m∑
s=1

2
〈
µs − µ(k)

s , µ(k)
s − Y (k)

s

〉
(16)
=

m∑
s=1

(
2 ∥Ys − µs∥2F +

∥∥∥Ys − µ(k)
s

∥∥∥2
F
+

∥∥∥µ(k)
s − Y (k)

s

∥∥∥2
F

)

+ 2

m∑
s=1

(〈
Ys − µs, µs − Y (k)

s

〉
+
〈
µs − Ys, Ys − µ(k)

s

〉)
=

m∑
s=1

(
2 ∥Ys − µs∥2F +

∥∥∥Ys − µ(k)
s

∥∥∥2
F
+

∥∥∥µ(k)
s − Y (k)

s

∥∥∥2
F

)

+

m∑
s=1

(
−2 ∥Ys − µs∥2F + 2

〈
Ys − µs, µ

(k)
s − Y (k)

s

〉)
=

m∑
s=1

(∥∥∥Ys − µ(k)
s

∥∥∥2
F
+
∥∥∥µ(k)

s − Y (k)
s

∥∥∥2
F
+ 2

〈
Ys − µs, µ

(k)
s − Y (k)

s

〉)

=

m∑
s=1

(∥∥∥Ys− µ(k)
s

∥∥∥2
F
+
∥∥∥µ(k)

s − Y (k)
s + Y ′

s − µs

∥∥∥2
F
− ∥Ys − µs∥2F

)

≥
m∑
s=1

(∥∥∥Ys − µ(k)
s

∥∥∥2
F
− ∥Ys − µs∥2F

)

Theorem 5.3. Assume ζ(y) = 0. Suppose we have a series of Y(k) and M (k), k = 0, 1, 2, · · ·
constructed following the updating rule (14) and (15), with Y(0) and M (0) initialized arbitrarily.
Then

lim
k→∞

ℓmuse(Y(k),M (k)) = inf
Y,M

ℓmuse(Y,M),

25



Published as a conference paper at ICLR 2025

Proof. By Lemma E.5 and Lemma E.6 where both the three-point and four-point property hold true,
the theorem is obtained according to Csiszár & Tusnády (1984).

F LIMITATIONS

While MuseGNN was primarily designed for scaling the most common UGNNs on homogeneous
graphs, there do exist prior UGNNs models based on energy functions sensitive to heterogeneous
graph structure. The basic idea is to update the trace term in Equation (4) to include additional
trainable weight matrices that serve to align embeddings of nodes of different types and relation-
ships. HALO (Ahn et al., 2022) is one such example of this. But there is nothing to prevent us from
extending the core techniques and analysis that undergird MuseGNN to scale such heterogeneous
cases.

G IMPACT STATEMENT

While we do not envision that there are any noteworthy risks introduced by our work, it is of course
always possible that a large-scale model like MuseGNN could be deployed, either intentionally or
unintentionally, in such a way as to cause societal harm. For example, a graph neural network
designed to screen fraudulent credit applications could be biased against certain minority groups.
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