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ABSTRACT

Recent advances in automated theorem proving use Large Language Models
(LLMs) to translate informal mathematical statements into formal proofs. How-
ever, informal cues are often ambiguous or lack strict logical structure, making
it hard for models to interpret them precisely. While existing methods achieve
strong performance, little is known about how LLMs internally represent infor-
mal cues, or how these influence proof generation. To address this, we explore
activation steering, an inference-time intervention that identifies linear directions
in residual activations associated with informal reasoning traces and adjusts them
to improve proof construction without fine-tuning. This mechanism also yields in-
terpretable information about how reasoning is internally encoded in the activation
space of LLMs. We test our method for generating formal proofs from already-
formalized theorems. Our contributions are twofold: (1) a novel activation-based
intervention for guiding proof synthesis in LLMs; and (2) demonstration that this
intervention improves performance under two decoding strategies (sampling and
best-first search) without any further training.

1 INTRODUCTION

Interactive proof assistants such as Lean (de Moura et al., [2015)), Isabelle (Wenzel et al.,|2008), and
Rocq (Barras et al.| [1999) provide the infrastructure for formal verification of mathematical proofs
and software. They require proofs to be expressed in precise formal languages (Avigad, 2023;
Ringer et al., [2019). Neural theorem proving, combining LLMs with proof assistants, has shown
promise in automating reasoning (First et al., [2023}; |Polu & Sutskever, [2020; [Polu et al.|, [2022; |[Yang
et al) [2023; Welleck| 2023)). Prior work (Lin et al.| 2024} |Welleck et al.| 2021} [2022) suggests
that training model on natural reasoning for proof steps can improve performance, but it remains
unclear how such informal language is internally represented or whether it can be reliably leveraged
to improve proof generation.

Building on the observation that proofs often interleave natural-language reasoning with formal
steps, we show that informal natural language (NL) context induces distinct activation patterns in
LLMs. We extract these patterns as steering vectors as in (Panickssery et al., [2024b; [Turner et al.}
2024} |[Lucchetti & Guhal 2024), and use them to intervene at inference time. These interventions
improve proof generation quality, while preserving model behavior in unrelated aspects. We test our
approach across three theorem-proving oriented LLMs - Lemma (Azerbayev et al.,[2024), InternLM-
2 (Ying et al., 2024), and InternLM2.5-StepProver (Wu et al., 2024). On established benchmarks
MiniF2F and PutnamBench, we find that steering via informal language context consistently im-
proves proof quality under multiple decoding strategies.

Our key contributions are threefold: (1) We provide mechanistic insights into how informal math-
ematical or natural language context impacts internal reasoning in LLMs for theorem proving. (2)
We propose a method to extract activation vectors that encode such informal context, and use these
vectors to guide proof construction in a structured, grounded way. (3) We demonstrate that activa-
tion steering yields consistent improvements in proof success rates on MiniF2F and PutnamBench
benchmarks under both search- and sampling-based decoding.

By focusing on steering in activation space, our approach sheds light on the link between informal
mathematical language and formal reasoning steps; without needing to fine-tune model weights.
We base this on the hypothesis that many reasoning features are encoded as (approximately) linear
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directions in activation space (Mikolov et al.| [2013 |[Elhage et al.| [2021; Nanda et al., 2023} [Park
et al.,2024)). Although not all features follow perfect linearity (Engels et al., 2025), this assumption
has previously enabled methods like concept erasure and steering to work well (Beaglehole et al.
2025 Zhao et al., [2025a; |Shah et al., [2025)).

The rest of this paper is organized as follows. In Section [2} we review related work on neural
theorem proving, activation steering, and the representation of informal mathematical reasoning in
LLMs. Section [3|presents our activation steering method: how steering vectors are constructed from
informal mathematical contexts, how they are applied at inference time, and how we select layers and
intervention strengths. Section 5] describes our experimental setup, including models, benchmarks
(MiniF2F, PutnamBench), and decoding strategies (sampling vs best-first search). Section [6|reports
results: we analyze performance gains, the effect of steering vectors on proof success rates, and
ablations experiments. Finally, in Section [/| we discuss insights into the internal reasoning of the
model, limitations of our approach, and potential directions for future work.

2 RELATED WORK

This section situates our work in three intersecting strands: automatic theorem proving and auto-
formalization, representation learning in large language models (LLMs), and mechanistic inter-
pretability via activation interventions.

Automatic Theorem Proving and Auto-formalization Recent progress in automatic theorem
proving frames proof search as sequence generation. The GPT-f framework (Polu & Sutskever,
2020) trains a language model to map proof states to tactics, combining it with best-first search to
assemble proofs. Extensions explore data augmentation via proof transformations or synthesis (Han
et al| 2022} Rotella et al., 2025} |Wang & Deng, [2020), improved search strategies (Wang et al.,
2023)), curriculum training (Polu et al.l 2022)), and retrieval from proof libraries (Yang et al.,[2023).
Systems like LLMStep unify these ideas into usable frameworks (Welleck & Sahal 2023).

Auto-formalization complements this by translating informal mathematics (e.g. text, sketches) into
formal proofs. Surveys highlight translation techniques (Wu et al.,|2022), while Draft-Sketch-Prove
shows LLMs prompted with informal sketches outperform formal-only baselines (Jiang et al.,[2023).
LeanStar (Lin et al.| [2024) interleaves informal reasoning with tactic prediction, typically via super-
vised fine-tuning on synthetic data. A central open question remains: How do informal reasoning
patterns inform formal proving within a model’s internal representations? Our approach explores
this via steering vectors in activation space, injecting implicit natural-language “thoughts” at in-
ference to guide proof steps without heavy fine-tuning, probing the latent link between informal
intuition and formal reasoning.

Language Model Representation of Concepts Our method is motivated by prior work demon-
strating that task or feature concepts can be represented as linear directions in the activation space of
LLMs when given appropriate contextual examples. [Hendel et al.|(2023) and|Todd et al.|(2024)) show
that a context (e.g. a prompt) can induce a task embedding in some activation subspace. A broader
literature examines linear decompositions of features such as truthfulness (Azaria & Mitchell, 2023;
Li et al.,|2023; Marks & Tegmark, [2024), sentiment (Tigges et al.l 2024)), harmlessness (Zou et al.}
2025}, [Zheng et al.,|2024)), sycophancy or alignment steering (Perez et al., 2023} [Panickssery et al.,
2024a; |Sharma et al., [2024)), factual knowledge (Gurnee & Tegmarkl, 2024), and refusal behavior
(Arditi et al, 2024). Relatedly, unsupervised methods like sparse autoencoders have been used to
extract concept directions in hidden space (Bricken et al., 2023} [Huben et al.,|2024; Templeton et al.,
2024)). These works generally share the hypothesis that LLMs encode high-level features or con-
cepts as (approximately) linear directions in activation space (Elhage et al.l |2021; [Mikolov et al.,
2013 Nanda et al.l 2023} [Park et al.,|[2024). While recent work cautions that not all features may
admit clean linear representations (Engels et al., 2025), the linearity assumption has proven effective
in practice for concept erasure, model steering, and interpretability (Beaglehole et al., [2025; [Zhao
et al.| [2025a; Shah et al., 2025). Within this framework, we explore whether generating a natural-
language informal explanation can itself be represented as a linear direction, and how injecting this
direction at inference improves formal theorem proving performance.

Mechanistic Interpretability and Activation Patching A rich body of work in mechanistic in-
terpretability seeks to locate, analyze, and manipulate internal representations in transformer-based
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models. Early studies localized factual knowledge or associative memory to particular neurons or
circuits (Meng et al.,|2022), and probed hidden layers for high-level features (Li et al., 2024; |Dong
et al., 2023). The idea of implicit evaluation i.e. measuring latent capability of a model rather than
just output behavior, has been developed to complement benchmark-based evaluation (Dong et al.;
2023). One particularly relevant tool is activation patching (or residual stream intervention) (Vig
et al., |2020; |Variengien & Winsor, |2023)), wherein one alters specific activations in a layer (often in
the residual stream) at inference time to influence model outputs. Recent works have used this to edit
factual associations or steer behavior (Zhao et al.,[2025b). The residual stream is a high-dimensional
accumulator of intermediate features (propagated via skip connections) that each transformer layer
refines or adds to; intervening there offers a principled way to steer model behavior (Elhage et al.,
2021)). In the domain of theorem proving, activation interventions provide a promising lens into how
a model processes and integrates informal guidance with formal reasoning. In our approach, we
generate steering vectors (patches) that, when applied to the residual stream at certain layers, help
the model emit an internal “natural-language thought” prior to or alongside tactic prediction. We
find that effective steering tends to realign activations such that the output of the model conforms
to a structured reasoning format, thereby improving downstream proof search and reducing failure
modes.

Building on these insights, we adapt activation interventions to theorem proving by treating informal
reasoning as a direction in activation space. We then show how extracting and injecting this direction
can guide proof generation. The next section details the architecture, design choices, and evaluation
of this steering approach.

3 STEERING FOR IMPROVING THEOREM PROVING

We aim to steer theorem-proving models toward using informal reasoning via activation interven-
tions. This section describes (i) how we compute steering vectors, (ii) how we choose layers and
apply steering, and (iii) efficiency and practical considerations.

3.1 INTUITION AND OVERVIEW

Modern transformer models often encode high-level semantic behavior (e.g. reasoning, style) as
approximately linear directions in activation space (residual streams) (Zou et al.,[2025; |[Elhage et al.,
2021). We exploit this property: given pairs of prompts that differ only by the presence of natural-
language reasoning (but otherwise describe the same proof step), we can estimate a vector in acti-
vation space that points in the “informal reasoning” direction. At inference time, adding this vector
(appropriately scaled) nudges the model toward producing reasoning-augmented proofs.

In the rest of this section, we detail how we compute these steering vectors, how we pick which
layers to intervene on, and how we incorporate them efficiently at inference.

3.2 CONSTRUCTING STEERING VECTORS

We adopt a difference-of-means (contrastive) method (Belrose et al.,[2023)), which has been effective
at extracting feature directions across multiple domains (e.g. refusal, truthfulness) (Arditi et al.,
2024; Panickssery et all, [2024b; [Marks & Tegmark, 2024). Let D = {(p;, pj)}fil be a dataset
of paired prompts, where p; is a standard formal proof prompt and p;r is its version augmented
with explicit natural-language reasoning. We feed both prompts into our model M and extract the
residual stream activations at a chosen layer ¢. Denote the activation at the final token position by
v{ = resid(M(p), £).

0

Then the steering vector u(®) is computed as:

1 + 1 -
0 - _— pT T p
Wsp LV i LV M
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Here D and D~ are the two halves of the prompt-pair dataset (augmented and unaugmented), so
the subtraction isolates the direction most correlated with natural-language reasoning while largely
cancelling out shared biases or irrelevant activation patterns.
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Figure 1: Steering Vectors are computed as difference of means for p™ and p

We emphasize that this method requires only forward passes; no gradient-based finetuning or pa-
rameter updates; making it computationally lightweight.

3.3 LAYER SELECTION AND INTERVENTION STRATEGY

Not all layers are equally responsive to steering, so we first perform an activation analysis to find
suitable intervention points. For each layer ¢, we measure:

1
sim(¢) = D Z cos(vY, v§+) (2)
(p.pT)€ED
Empirically, we observe that in early layers, sim(¥) is close to 1 (i.e. little divergence), but in deeper
layers it drops and exhibits local minima (“valleys”) as seen in Figure 2]

We find that in early layers, activations remain

hlghly similar between P and p+, but as we g0 Cosine Similarity of residual stream with and without informal reasoning
deeper, the cosine similarity drops and exhibits 10 T ez,
local minima. Intuitively, these are the layers

where the representations diverge most when
informal reasoning is introduced (see Figure2).
Thus, these “valley” layers are promising can-
didates for steering. These valleys likely cor-
respond to points where the internal representa-
tion of the model is most sensitive to reasoning- ! . 0 - " » ©
specific perturbations. Layer

—— Llemma

o
©

o
®

Cosine Similarity
5 2

°
o

o
=

We select intervention layers where (a) cosine
similarity dips significantly, and (b) representa-
tion is still semantically stable. At inference,
we inject the steering vector into those layers:

Figure 2: Cosine similarity across model’s resid-
ual stream activations for each layer.

vy =vi+a-u? (3)

We treat o as a hyperparameter and specify that it will be tuned on held-out validation data. The
method instantiates a sweep to find the optimal balance between influencing reasoning and main-
taining validity. We place constraints (e.g. an upper bound on «) to avoid destabilizing proofs. We
present the complete pseudocode of our approach in Algorithm|T]}
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Algorithm 1 Activation Steering for Theorem Proving

Require: Contrastive prompt pairs D = {(pi,pj) N | where p; are standard prompts and p;r
include natural language reasoning
Require: Language model M with L layers
Require: Test theorem 7" to prove
Ensure: Enhanced proof generation
. Offline: Create Steering Vectors
: for each layer ¢ € {1,...,L} do

ot « LS resid(M (p;), £) {Mean activation for augmented prompts}

1
2
3
4 T+ % Zfil resid(M (p;), ¢) {Mean activation for standard prompts}
5. u® « 5T — 5~ {Steering vector at layer ¢}
6: end for
7. L + SELECTLAYERS({u"}L_, D) {Identify optimal intervention layers}
8: Online: Apply Steering During Inference
9: Initialize proof context with theorem T’
10: while proof incomplete and within computational budget do
11:  Perform forward pass through model
12:  for each intervention layer ¢ € £ do
13: v} + v + a - u® {Inject steering vector}
14:  end for
15:  Generate next proof step using modified activations
16:  Validate and apply proof step if correct
17: end while
18: return Generated proof or failure

4 EXPERIMENTAL SETUP

4.1 MODELS

We conduct experiments on three open-source 7B-parameter language models optimized for math-
ematical reasoning:

* Llemma-7B (Azerbayev et al., [2024): Built on Code Llama architecture, pre-trained on
mathematical texts and formal mathematics corpora.

e InternLLM2-7B (Ying et al.,|2024): LLaMA-based architecture with extended training on
mathematical problem-solving.

* InternL.LM2.5-StepProver (Wu et al., 2024): Enhanced variant with expert iteration on
large-scale Lean problems.

All models share transformer architectures with consistent residual stream dimensionality, facilitat-
ing uniform steering vector extraction.

4.2 DATA AND VECTOR CONSTRUCTION

We construct steering vectors from the Lean-STaR dataset(Lin et al.l 2024), randomly sampling
10,000 theorem-proof pairs. Each datapoint (p, p™) consists of a formal proof step p and its aug-
mented version p™ containing explicit natural language reasoning.

For robustness, we generate model responses 7, and 7,+ for each prompt pair and retain only in-
stances where both responses are valid proof steps with r, # r,+. This filtering yields approxi-
mately 7,400 high-quality contrastive pairs.

Vector construction requires only forward passes through the model, consuming ~ 1 GPU-hour on
NVIDIA A100, a 60x reduction compared to LoRA fine-tuning while achieving superior perfor-
mance gains.
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4.3 CHOSEN LAYERS AND «

Based on activation similarity analysis (Section [3.3), we apply steering vectors to Layers 22, 25 in
InternLM2-7B and Layers 24, 25 in Llemma-7B. These correspond to layers where the model’s
representation diverges most from baseline while maintaining semantic coherence. We empirically
determine o = 0.8 through validation experiments.

4.4 EVALUATION BENCHMARKS

miniF2F Our primary evaluation utilizes miniF2F (Zheng et al.|[2022), a standardized benchmark
comprising 244 theorems drawn from mathematical competitions (AMC, AIME, IMO). These prob-
lems span algebra, number theory, geometry, and combinatorics with varying proof complexities.
We employ two proof search strategies:

* Best-first search: Expansion budget N € {50,600}, tactic sampling width S = 32, se-
lecting states by cumulative log-probability

* Parallel sampling: K independent proof attempts to accommodate probability shifts from
natural language injection

PutnamBench We additionally evaluate on PutnamBench (Tsoukalas et al.l [2024), containing
problems from the William Lowell Putnam Mathematical Competition. Following standard eval-
uation protocol, we test on both the Lean subset (657 problems) and Rocq subset (412 problems)
using the benchmark’s default search parameters: N = 600 expansion budget with S = 32 tactic
width for best-first search, and parallel sampling with K = 2 attempts. This benchmark features
more challenging problems with longer average proof lengths, providing a stringent test of steering
effectiveness on complex mathematical reasoning.

Evaluation Metrics.  Following established practice in neural theorem proving, we report pass
rates (percentage of theorems successfully proved within computational budget) as our primary met-
ric. For detailed analysis, we additionally examine proof characteristics including average length,
tactic distribution, and the frequency of intermediate lemma usage (via the have tactic) to under-
stand how steering affects proof structure and strategy.

5 RESULTS AND ANALYSIS

Our experiments were designed to address the following research questions:

. Does activation steering improve theorem-proving performance of existing models?
. Which layers contribute most effectively when steered?

. Does steering enhance proof structure and search efficiency?

Are improvements consistent across different search budgets?

. How effective and efficient are steering vectors compared to LoRA fine-tuning?

. Do steering vectors generalize across provers?

5.1 QI1: IMPACT OF ACTIVATION STEERING

Activation steering consistently improves model performance across all tested configurations, en-
abling the discovery of proofs not derivable by the base models alone.

MiniF2F. As shown in Table[l| steering improves performance across all models on the miniF2F-
Test benchmark (Zheng et al.,[2022). We adopt the sampling decoding strategy from LeanStar (Lin
et al.,[2024])), which mitigates variance from natural-language generation and provides more effective
node selection than standard Best-First Tree Search (see Appendix for Best-First results).

Steering introduces structured natural-language comments that enhance mathematical reasoning and
proof generation. Importantly, we find that steering enables a significant number of new proofs
beyond the base model’s reach, suggesting that steering vectors guide the model toward otherwise
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Model MiniF2F Model PutnamBench
Llemma 78 26.6% InternLM2 7B 4(0.6%)
InternLM2-7B 28.7% InternLM2.5-StepProver 6 (0.9%)
InternLM2.5-Step Prover 48.2% ¢ ~->leprrove 7
LLEMMA-7B + Steering 28.1% InternLM2 7B + Steering 4 (0.6%)
InternLM2-7B + Steering 32.4% InternLM2.5-StepProver + Steering 7(1.1%)

InternL.M2.5-StepProver + Steering 66.4%

Table 1: Performance on MiniF2F (sampling Table 2: Performance on PutnamBench (Lean).
. Results reported out of 657 attempts.
decoding, 50x32x1).

inaccessible solution paths. Interestingly, models occasionally succeed despite incorrect informal
reasoning, implying that steering exerts influence beyond surface-level natural language.

While steering increases successful proofs, it also introduces more failure cases. We hypothesize
this stems from biases in the data used to construct steering vectors, which encode inductive priors
that align well with some theorem classes but misalign with others. Despite this trade-off, the net
effect is strongly positive, establishing activation steering as a lightweight, parameter-free alternative
to fine-tuning.

PutnamBench. On PutnamBench (Table [2), steering improves success rates for both InternLM2
and InternLM2.5 on Lean, and achieves non-trivial gains on Rocq problems (details in Section[A.3)).
These results highlight steering’s ability to support reasoning in more complex, multi-step proofs.

5.2 Q2: LAYER CHOICE

We evaluate layer sensitivity following the strategy described in Section Steering vectors are
patched layer-wise to analyze their influence. Figure [d] and Table [3] show that later layers exert
stronger influence on theorem-proving performance.

Steering accuracy of InternLM2

0.35 Steering Vector
— Random Vector
0.30 Base InternLM2

Selected Layers Pass Rate (%)

25-30 (Late) 51.6
14-24 (Middle) 50.8 015
5-13 (Early) 49.5 010

Accuracy on Held out set
o
' N
o

o
o
&

Figure 3: Pass rates at 2 x 32 x 600 for

mni 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
InternL.M2.5-StepProver on miniF2F. Layers Patchod

o
o
]

Figure 4: Layer-wise ablation results.

These findings suggest that steering vectors primarily affect later-stage reasoning circuits. To ensure
robustness, we also compare against random steering vectors, confirming that observed improve-
ments arise from semantically meaningful directions rather than incidental noise.

5.3 Q3: PROOF STRUCTURE AND SEARCH EFFICIENCY

Table [3| shows that steering primarily benefits shorter proofs (<5 steps), while gains diminish for
longer ones (>15 steps). Qualitative analysis suggests that informal reasoning introduces noisy
intermediate steps for long proofs, reducing effectiveness. Interestingly, steering sometimes shortens
proof length by guiding the model toward alternate proof strategies.
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Proof Length  Without Steering ~ With Steering (total)

<5 76 83 (94)
6-10 16 13 (19)
10-15 10 11 (20)
15-30 15 13 (18)
>30 11 8(11)

Table 3: Proof length analysis for InternLLM2.5-StepProver on miniF2F.

Pass Rate vs N on miniF2F-test with InternLM-2.5-StepProver

= N
@ O
o O

— Examples Passed With Steering
Examples Passed Without Steering

N
[«
o

[
N A OO 0 O N
o O O O O o

Number of examples passed in miniF2F-test

o

100 200 300 400 500 600
N (Search Attempts per Problem)

Figure 5: Pass rates on miniF2F with varying search budgets.

While new proofs increase substantially, so do failure cases, likely reflecting inductive biases en-
coded in steering vectors. Characterizing these biases will be crucial for extending steering to
broader proof distributions.

5.4 Q4: SEARCH BUDGET

Figure [5] shows that steering yields consistent improvements across all search budgets N. Gains
grow with larger budgets: at N = 100, steering triples performance (6 vs. 2 proofs), and at N =
600, steering delivers a 38% improvement (162 vs. 117 proofs). These results suggest that steering
vectors not only boost baseline performance but also scale effectively with additional computational
resources by guiding the search toward more productive proof trajectories.

5.5 QS5: EFFECTIVENESS VS. LORA FINE-TUNING

We compare steering against LORA fine-tuning (Hu et al.,[2021)) on InternLM?2. LoRA models were
trained on p* prompts with (rank=8, ay ,ra=16) and (rank=32, ay ,ra=64). Performance is reported
on miniF2F after each epoch (Figure|[6).

LoRA with higher rank outperforms steering, but lower-rank adaptations underperform, highlight-
ing their limited representational capacity. In contrast, steering achieves competitive performance
immediately, without additional training or parameters. This demonstrates that activation steering
offers a highly parameter-efficient alternative, complementing but not replacing fine-tuning.

5.6 Q6: GENERALIZATION ACROSS PROVERS

We evaluate if the steering vector is generalizable across different provers. In particular we use
Putnambench (Tsoukalas et al.| [2024) for evaluating cross lingual transfer for steering vectors. A
particularly compelling finding emerges from our cross-system evaluation: despite the steering vec-
tors being derived from Lean-based datasets, the augmented model successfully proves one Rocq
problem an improvement over the base model’s zero success rate. Specifically, InternLM2.5 with
steering successfully constructs a proof for Putnam 1988 BI in Rocl, while the same model fails
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Model Performance Comparison Across Training Epochs

e LoRArank 8
LoRArank 16
B5 — = Steering Baseline

Pass Rate (%)

Epochs

Figure 6: Comparison of steering and LoRA fine-tuning.

to complete the corresponding proof in Lean. In Appendix [A.3] we showcase the proof written by
InternLM2.5-StepProver.

This preliminary cross-system success suggests that steering vectors may capture reasoning patterns
transferable across systems. The transferability suggests that our approach enables model to cap-
ture deeper mathematical concepts that transcend the specific formal language, encoding universal
reasoning strategies that benefit theorem proving across different proof assistants. This finding has
important implications for developing general-purpose mathematical reasoning systems, indicating
that steering vectors trained on one formal system may provide value across the broader ecosystem
of interactive theorem provers.

6 CONCLUSION

Our work presents a deep analysis of the underlying mechanisms that drive natural language
thoughts in Large Language Models for formal theorem proving. By isolating and manipulating
specific activation directions associated with natural language “thoughts”, we have demonstrated a
method to enhance LLMs’ capabilities in mathematical theorem proving without requiring costly
fine-tuning. Our experiments showcase how language models comprehend natural language very
differently compared to formal proof steps and theorems. We explore the use of activation vectors
to represent the task of producing NL information (or thought) with the proof step. And it performs
consistently better than base models trained for theorem proving. We provide a closer look into
how language models represent theorems in activation space to generate proofs. The use of steering
vectors to isolate layers responsible for formal reasoning shows the promise in this approach. We
believe this provides insight into the challenges LLMs face on Olympiad-level problems and how
activation steering may mitigate them.

7 LIMITATIONS AND FUTURE WORK

This work investigates the use of activation steering to interpret and enhance the performance of lan-
guage models on theorem-proving tasks. While our explorations are thorough and yield consistent
empirical results, there are several limitations worth noting.

First, our study focuses solely on incorporating natural language information to guide the theorem-
proving process. However, we do not systematically evaluate the relevance or factual correctness
of the natural language inputs with respect to the underlying proof obligations. In certain cases, the
model may generate correct tactics even when the provided natural language guidance is partially in-
correct or misleading. Understanding this phenomenon requires a deeper analysis of the relationship
between instruction quality and proof validity, which we leave for future work.
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