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ABSTRACT

We address the problem of extending the capabilities of vision foundation models
such as DINO, SAM, and CLIP, to 3D tasks. Specifically, we introduce a novel
method to uplift 2D image features into 3D Gaussian Splatting scenes. Unlike
traditional approaches that rely on minimizing a reconstruction loss, our method
employs a simpler and more efficient feature aggregation technique, augmented
by a graph diffusion mechanism. Graph diffusion enriches features from a given
model, such as CLIP, by leveraging pairwise similarities that encode 3D geom-
etry or similarities induced by another embedding like DINOv2. Our approach
achieves performance comparable to the state of the art on multiple downstream
tasks while delivering significant speed-ups. Notably, we obtain competitive seg-
mentation results using generic DINOv2 features, despite DINOv2 not being
trained on millions of annotated segmentation masks like SAM. When applied to
CLIP features, our method demonstrates strong performance in open-vocabulary,
language-based object detection tasks, highlighting the versatility of our approach.

1 INTRODUCTION

The field of image understanding has recently seen remarkable progress, driven by large pretrained
models such as CLIP (Radford et al., 2021), DINO (Caron et al., 2021; Oquab et al., 2024), or
SAM (Kirillov et al., 2023). A key factor behind their exceptional generalization capabilities lies in
the vast size of their training datasets, often composed of millions or even billions of samples.

3D scene representation has also advanced with machine learning approaches like NeRF (Mildenhall
et al., 2021) and model fitting techniques such as Gaussian Splatting (Kerbl et al., 2023). These
methods typically rely on a few dozen views of the scene captured from different angles. While the
resulting reconstructions effectively capture both appearance and geometrical information, they are
not directly applicable to semantic tasks, which has led to further developments.

The complementarity of these two families of approaches has indeed recently been exploited by
numerous methods that integrate geometry and semantics by uplifting image-level features extracted
by large pretrained models into 3D NeRF or Gaussian Splatting representations. This has led to a
surge in methods for tasks such as language-guided object retrieval (Kerr et al., 2023; Liu et al.,
2023; Zuo et al., 2024), scene editing, (Kobayashi et al., 2022; Chen et al., 2024; Fan et al., 2023),
or semantic segmentation (Cen et al., 2023c; Ye et al., 2024a; Ying et al., 2024).

The main limitation of most previous approaches lies in their reliance on optimization, which re-
quires an iterative process to learn a scene-specific 3D representation by minimizing reprojection
error across all training views. While this loss function is intuitive, a faster and more straightfor-
ward method for transferring 2D generic visual features to already trained Gaussian splatting 3D
models would be preferable, which is the purpose of this work.

In this paper, we demonstrate that a simple, learning-free process is highly effective for uplifting 2D
features or semantic masks into 3D Gaussian Splatting scenes. This process, which can be viewed
as an ‘inverse rendering’ operation, is both computationally efficient and adaptable to any feature
type. We showcase its efficiency by uplifting visual features from DINOv2 (Oquab et al., 2024;
Darcet et al., 2024), semantic masks from SAM (Kirillov et al., 2023) and SAM2 (Ravi et al., 2024),
and language features from CLIP (Ilharco et al., 2021). Then, we show that a graph diffusion
mechanism (Kondor & Lafferty, 2002; Smola & Kondor, 2003) is helpful for feature uplifting in
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3D scenes. This mechanism is rooted in spectral graph theory and used in spectral clustering tech-
niques (Belkin & Niyogi, 2001; Shi & Malik, 2000; Meila & Shi, 2000). In the context of our
work, it serves multiple purposes: first, it enriches 3D features obtained from a given model such as
CLIP with 3D geometry, and it may leverage rich features embeddings such as DINOv2. Second,
graph diffusion transforms coarse segmentation inputs, such as scribbles, into accurate 3D segmen-
tation masks without relying on segmentation models like SAM. When evaluated on segmentation
and open-vocabulary object localization, our method achieves results comparable to state-of-the-art
techniques while being significantly faster than previous approaches relying on optimization.

To summarize, our contributions are threefold: (i) we introduce a simple, learning-free uplifting
approach that can be directly integrated into the rendering process, achieving state-of-the-art re-
sults when applied to SAM-generated semantic masks. (ii) we demonstrate that when using graph
diffusion, uplifting DINOv2 features, yields competitive segmentation results (Section 4), despite
DINOv2 not being trained for segmentation like SAM. (iii) We show that graph diffusion can also
be used to enrich 3D CLIP representations, leveraging similarities computed from DINOv2 features,
thereby achieving competitive performance on open-vocabulary object localization tasks.

2 RELATED WORK

Learning 3D semantic scene representations with NeRF. NeRF (Mildenhall et al., 2021) uses
a multilayer perceptron to predict the volume density and radiance for any given 3D position and
viewing direction. Such representation can naturally be extended to semantic features. The early
works N3F (Tschernezki et al., 2022) and DFF (Kobayashi et al., 2022) distill DINO 2D (i.e., image-
level) features (Caron et al., 2021) in scene-specific NeRF representations. Kobayashi et al. (2022)
also distill LSeg (Li et al., 2022) a CLIP-inspired language-driven model for semantic segmentation.
Shortly after, LERF (Kerr et al., 2023) and 3D-OVS (Liu et al., 2023) learned 3D CLIP (Radford
et al., 2021) and DINO (Caron et al., 2021) features jointly for open-vocabulary segmentation. These
works were extended to other pretrained models such as latent diffusion models (Ye et al., 2023) or
SAM (Kirillov et al., 2023) for semantic segmentation (Cen et al., 2023c; Ying et al., 2024).

Learning 3D semantic scene representations with Gaussian splatting. Subsequent work have
relied on the more recent Gaussian splatting method (Kerbl et al., 2023), achieving high-quality
novel-view synthesis while being orders of magnitude faster that NeRF-based models. Several tasks
have been addressed such as semantic segmentation using SAM (Cen et al., 2023b; Ye et al., 2024a;
Kim et al., 2024), language-driven retrieval or editing using CLIP combined with DINO (Zuo et al.,
2024) or SAM (Ye et al., 2023), or scene editing using diffusion models (Chen et al., 2024; Wang
et al., 2024). These works learn 3D semantic representations by minimizing a reprojection loss. As
a single scene can be represented by over a million Gaussians, such optimization-based techniques
have strong memory and computational limitations. To handle these, FMGS (Zuo et al., 2024) em-
ploys a multi-resolution hash embedding (MHE) of the scene for uplifting DINO and CLIP repre-
sentations, Feature 3DGS (Zhou et al., 2024) learns a 1× 1 convolutional upsampler of Gaussians’
features distilled from LSeg and SAM’s encoder and LangSplat (Qin et al., 2024) learns an au-
toencoder to reduce CLIP feature dimension from 512 to 3. In contrast, our approach requires no
learning, which significantly speeds up the uplifting process and reduces the memory requirements.

Leveraging 3D information to better segment in 2D. Most prior works focusing on semantic
segmentation leverage 2D models specialized for this task. The early work of Yen-Chen et al. (2022)
uplifts learned 2D image inpainters by optimizing view consistency over depth and appearance.
Later, subsequent works have mostly relied on uplifting either features from SAM’s encoder (Zhou
et al., 2024), binary SAM masks (Cen et al., 2023c;b), or SAM masks automatically generated for
all objects in the image (Ye et al., 2024a; Ying et al., 2024; Kim et al., 2024). The latter approach
is computationally expensive, as it requires querying SAM on a grid of points over the image. It
also requires matching inconsistent mask predictions across views, with e.g. a temporal propagation
model (Ye et al., 2024a) or a hierarchical learning approach (Kim et al., 2024), which introduces
additional computational overhead. In this work, we focus on single instance segmentation and
show that our uplifted features are on par with state-of-the-art approaches (Cen et al., 2023c;b;
Ying et al., 2024). Standing out from prior work uplifting DINO features (Tschernezki et al., 2022;
Kobayashi et al., 2022; Kerr et al., 2023; Liu et al., 2023; Ye et al., 2023; Zuo et al., 2024), we
quantitatively show that DINOv2 features can be used on their own for semantic segmentation and
rival SAM-based models through a simple graph diffusion process that leverages 3D geometry.
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Learning 3D CLIP features for open-vocabulary object localization. For learning 3D CLIP
features, prior works leverage vision models such as DINO or SAM. DINO is used to regularize and
refine CLIP features (Kerr et al., 2023; Liu et al., 2023; Zuo et al., 2024), while SAM is employed for
generating instance-level CLIP representations. These approaches suffer from high computational
costs, resorting to either dimensionality reduction or efficient multi-resolution embedding represen-
tations, and usually run for a total of one to two hours for feature map generation and 3D feature
optimization. In contrast, our approach bypasses the high computational cost of gradient-based opti-
mization and, combined with graph diffusion, is an order of magnitude faster than these prior works.

3 UPLIFTING 2D VISUAL REPRESENTATIONS INTO 3D

In this section, we present a simple yet effective method for lifting 2D visual features into 3D using
Gaussian splatting and discuss its relation with more expensive optimization-based techniques.

3.1 BACKGROUND ON GAUSSIAN SPLATTING

Scene representation. The Gaussian splatting method consists in modeling a 3D scene as a set
of n Gaussians densities Ni, each defined by a mean µi in R3, a covariance Σi in R3×3, an opacity
σi in (0, 1), and a color function ci(d) that depends on the camera pose d.

A 2D frame at a given view is an image rendered by projecting the 3D Gaussians onto a 2D plane,
parametrized by the camera pose d. This projection accounts for the opacity of the Gaussians and
the order in which rays associated with each pixel pass through the densities. More precisely, a pixel
p for a view d is associated to an ordered set Sd,p of Gaussians and its value is obtained by their
weighted contributions:

Îd(p) =
∑

i∈Sd,p

ci(d)wi(d, p). (1)

The above weights are obtained by α-blending, i.e. wi(d, p) = αi(d, p)
∏

j∈Sd,p,j<i (1− αj(d, p)),
where the Gaussian contributions αi(d, p) are computed by multiplying the opacity σi by the Gaus-
sian density Ni projected onto the 2D plane at pixel position p.

Scene optimization. Let I1, . . . , Im be a set of 2D frames from a 3D scene and d1, . . . , dm the
corresponding viewing directions. Gaussian Splatting optimizes the parameters involved in the scene
rendering function described in the previous section. This includes the means and covariances of
the Gaussian densities, their opacities, and the color function parametrized by spherical harmonics.
Denoting by θ these parameters, the following reconstruction loss is used

min
θ

1

m

m∑
k=1

L(Ik, Îdk,θ), (2)

where Îdk,θ is the rendered frame of the scene in the direction dk, as in Eq. (1), by using the param-
eters θ, and L is a combination of ℓ1 and SSIM loss functions (Kerbl et al., 2023).

3.2 UPLIFTING OF 2D FEATURE MAPS INTO 3D

Given a set of m 2D training frames and the corresponding 3D scene obtained by Gaussian Splatting,
our goal is to compute generic features fi in Rc for each Gaussian i, which would be effective for
solving future downstream tasks, e.g., high-resolution semantic segmentation for new frames of the
scene, or robot navigation. In other words, fi can be seen as an extension of the color function ci,
even though, for simplicity, we do not consider view-dependent features in this work.

A natural approach is to consider a pre-trained vision model that provides 2D feature maps for each
of the m frames used in Gaussian splatting, and then devise a technique to uplift these 2D feature
maps into 3D. This uplifting principle can also be directly applied to semantic masks instead of
generic features, as demonstrated in Section 5. Interestingly, once the features fi are computed
for each Gaussian i, it is possible to render two-dimensional feature maps for any new view, at a
resolution that can be much higher than the feature maps computed for the m training frames.
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Uplifting with simple aggregation. We construct uplifted features for each 3D Gaussian of the
3D Gaussian Splatting scene as a weighted average of 2D features from all frames. Each 2D feature
Fd,p from a frame at a given viewing direction d and pixel p contributes to the feature fi by a
factor proportional to the rendering weight wi(d, p), if the Gaussian i belongs to the ordered set Sd,p

associated to the view/pixel pair (d, p). The resulting features are then normalized to maintain the
same order of magnitude as the original 2D features, thus resulting in the following simple equation:

fi =

m∑
d=1

∑
p

w̄i(d, p)Fd,p with w̄i(d, p) =
1i∈Sd,p

wi(d, p)∑m
d=1

∑
p 1i∈Sd,p

wi(d, p)
, (3)

where 1i∈Sd,p
is equal to 1 if the Gaussian i belongs to Sd,p and 0 otherwise. We can interpret

this equation as a normalized version of the transposed rendering operation over the m viewing
directions. More precisely, the rendering of any view-independent collection of features f = (fi)
attached to the n Gaussians into the m training frames can be represented as a linear operator W
acting on the collection f and returning a collection of 2D feature maps F̂ = (F̂d,p), see (4) below.
Here, the matrix W consists of all rendering weights 1i∈Sd,p

wi(d, p) at row (d, p) and column i,
and F̂ is a 2D matrix containing all (flattened) 2D feature maps generated for all cameras poses,
with F̂d,p pointing to the feature of pixel p viewed from camera pose d. Similarly, the uplifting
expression introduced in Eq. (3) can be expressed in terms of the transpose of W and a diagonal
matrix D of size m representing the normalization factor and whose diagonal elements are obtained
by summing over the rows of W as in Eq. (5) below:

Rendering to m frames

F̂ = W f , (4)

Uplifting from m frames

f = D−1W⊤F. (5)

It is important to note that W and D are not explicitly constructed. Instead, they are computed
by calling the forward rendering function for Gaussian Splatting and replacing the color vectors
by the feature vectors. All these operations are performed within the CUDA rendering process.
The procedure in (5), illustrated in Figure 1, bears similarity with the one from Chen et al. (2024)
for uplifting 2D binary masks to a 3D Gaussian splatting scene. In their method, uplifted masks
are thresholded to create 3D binary masks that can be rendered into different 2D frames. Such a
thresholding operation would not be appropriate for uplifting generic features such as those from
DINOv2. Moreover, unlike in Eq. (3) and (5), Chen et al. (2024) propose to normalize their uplifted
masks based on the total count of view/pixel pairs (d, p) contributing to the mask of a Gaussian i,
i.e.

∑m
d=1

∑
p 1i∈Sd,p

, without taking the rendering weight wi(d, p) into account. Consequently,
the uplifted features tend to have larger values for large, opaque Gaussians, making the rendering of
these features more likely to ignore details provided by smaller and more transparent Gaussians.

Connection with optimization-based inverse rendering. An alternative approach to uplifting 2D
features F is to minimize a reconstruction objective L(f), where the goal is to find uplifted features f
whose rendering closely matches the original 2D features F (Tschernezki et al., 2022; Kerr et al.,
2023; Zuo et al., 2024). A natural choice is to minimize the mean squared error between the 2D
features F and the rendered ones F̂ as defined by Eq. (4):

min
f

L(f) := 1

2
∥F−W f∥2. (6)

Such an approach requires using an optimization procedure which would be costly compared to the
proposed uplifting method. Nevertheless, it is possible to interpret the proposed uplifting scheme
in Eq. (5) as a single pre-conditioned gradient descent step on the reconstruction objective, starting
from a 0 feature, i.e., f = −D−1∇L(0). In practice, we found that performing more iterations
on the objective L(f) did not result in particular improvement of the quality of the features, thus
suggesting that the cheaper scheme in Eq. (5) is already an effective approach to uplifting.

Gaussian filtering The normalization βi =
∑m

d=1

∑
p 1i∈Sd,p

wi(d, p) serves as an estimator of
the relative importance of each Gaussian in the scene. Therefore, it can be used as a criterion to prune
the set of Gaussians for memory efficiency. In our experiments, we filter out half of the Gaussians
based on βi and observe no qualitative nor quantitative degradation of the results. This approach is
inspired by prior work on efficient Gaussian Splatting representation such as proposed by Fan et al.
(2023) that also prunes Gaussians based on their contribution to each pixel in the training frames.
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Uplifting or inverse rendering:  
2D features to 3D gaussians

Forward rendering:  
3D gaussian features to 2D features

Training frames

Rendered image

F̂ = W ffi ← fi + w̄i(d, p) Fd,p

F1,p

F2,p For every Gaussian ,  
every pixel , every view :

i
p d

relative impact of Gaussian ,  
on pixel  of view 

i
p d

fi

3DGS representation

pixel ray

View 2

View 1

Rendering 
view

Figure 1: Illustration of the inverse and forward rendering. In the inverse rendering (or uplifting)
phase, features f are created for each 3D Gaussian by aggregating coarse 2D features F over all
viewing directions. For forward rendering, the 3D features f are projected on any given viewing
direction as in regular Gaussian splatting. The rendering weight w̄i(d, p) represents the relative
influences of the Gaussian i on pixel p, defined in Eq. (3).

3.3 ENRICHING FEATURES BY DIFFUSION ON GRAPHS

DINOv2 features have shown remarkable performance on semantic segmentation tasks with simple
linear probing (Oquab et al., 2024), making them a good candidate to enrich features that lack such
a property like CLIP (Wysoczańska et al., 2024; Zuo et al., 2024; Liu et al., 2023). Inspired by
spectral clustering techniques (Shi & Malik, 2000; Kondor & Lafferty, 2002; Belkin & Niyogi,
2001), and aligning with the goals of recent work on 2D segmentation that improve CLIP features
with DINO (Wysoczańska et al., 2024), we then propose to diffuse features that have been uplifted to
3D by leveraging pairwise similarities induced by DINOv2 while taking into account 3D geometry.

Graph construction From uplifted DINOv2 features f in Rn we construct a graph whose nodes
are given by the 3D Gaussians and whose edges, represented by a matrix A of size n×n, encode both
the 3D Euclidean geometry between the nodes and the similarity between their DINOv2 features.

More precisely, each node i is connected to its k nearest neighbors N (i) as measured by the Eu-
clidean distance between the centers of the 3D Gaussians. The edge weight between neighboring
nodes i and j is given by a local feature similarity Sf (fi, fj) between their DINOv2 features, typ-
ically a cosine similarity or an RBF kernel. For segmentation tasks, we prevent diffusion into the
background by adding a node-wise unary regularization term P (fi), a similarity between node fea-
ture fi and some reference features f̄ . For details on Sf and P please refer to Appendix A.3.

Aij = 1j∈N (i) Sf (fi, fj)P (fi). (7)

Diffusion on the graph. Given uplifted features g0 in Rn, which we would like to improve by
using information encoded in A (3D geometry or DINOv2 similarities, or both), we perform T
diffusion steps to construct a sequence of diffused features (gt)1≤t≤T defined as follows:

gt+1 = Ag̃t, g̃t = gt/∥gt∥2, (8)

which can be seen as performing a few steps of the power method, making g0 closer to the dominant
eigenspace of A. Note that depending on the downstream task, g0 may be CLIP features, but it may
also represent uplifted 2D segmentation masks provided by SAM.

4 FROM 3D UPLIFTING TO DOWNSTREAM TASKS

In this section, we describe our approach for uplifting DINOv2, SAM and CLIP models and evalu-
ating the 3D features on two downstream tasks: segmentation and open-vocabulary object detection.

5
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As in Sec. 3, we are given a set of 2D frames I1, . . . , Im, with camera poses d1, . . . , dm and corre-
sponding 3D scene obtained by the Gaussian Splatting method.

4.1 MULTIPLE-VIEW SEGMENTATION

We assume that a foreground mask of the object to be segmented is provided on the reference
frame I1. The foreground masks are either scribbles or a whole reference mask of the object, both
of which define a set of foreground pixels P . In the following, we present the proposed approaches
for segmentation using SAM and DINOv2 features, based on both types of foreground masks.

Multiple-view Segmentation with SAM. SAM (Kirillov et al., 2023; Ravi et al., 2024) is a pow-
erful model that can generate object segmentation masks from point prompts, on a single 2D image.
Aggregating SAM 2D segmentation masks in 3D allows for cross-view consistency and improves
single-view segmentation results. We proceed by generating 2D feature maps based on SAM seg-
mentation masks of each training frame while only relying on the foreground mask for the reference
frame I1. The 2D feature maps are generated by constructing several sets of point prompts on each
training frame which are then provided to SAM to obtain several segmentation masks. The point
prompts are obtained using the foreground mask provided on the reference frame as described in
Appendix A.1. Averaging the resulting segementation masks for each frame results in the final 2D
SAM feature maps. These are then uplifted using the aggregation scheme in Sec. 3.2. Our final
prediction is obtained by rendering the uplifted feature maps into the target frame.

Multiple-view segmentation with DINOv2. We construct 2D feature maps at the patch level
using DINOv2 with registers (Darcet et al., 2024) and uplift them into a high resolution and fine-
grained 3D semantic representation which is then used for segmentation. The 2D feature maps are
constructed using a combination of a sliding windows mechanism and dimensionality reduction of
the original DINOv2 features as described in Appendix A.2 and illustrated in Fig. 4 therein. This
approach enhances the granularity of spatial representations by aggregating patch-level representa-
tions to form pixel-level features. The 2D feature maps from the m training views are uplifted using
Eq. (3) and the resulting 3D features are then re-projected into any viewing direction d using Eq. (4)
to compute rendered 2D features (F̂d,p). To obtain segmentation masks, we construct a predictor
score P (F̂d,p) for a 2D pixel p to belong to the foreground, based on its corresponding rendered fea-
ture. The score P is obtained by comparing the rendered features (F̂d,p) with foreground features
Fref := (F̂d1,p)p∈P corresponding to the foreground mask computed on the reference frame I1, see
Appendix A.2. The final segmentation mask is then obtained by thresholding.

Enhancing segmentation with DINOv2 using 3D graph diffusion. DINOv2 provides generic
visual features that do not explicitly include segmentation information, unlike models such as SAM
that were specifically trained for such a task. Consequently, 2D projections of uplifted DINOv2
features might fail to separate distinct objects that have similar features. This challenge can be
mitigated by incorporating 3D spatial information, which may help separate them.

To this end, we propose to leverage the graph diffusion process introduced in Section 3.3. We set the
initial vector of weights g0 in Rn of the graph diffusion algorithm to be a coarse estimation of the
contribution of each Gaussian to the final segmentation mask. This initial weight vector is computed
by uplifting the 2D foreground mask (either scribbles or a reference mask) from the reference frame
into 3D using Eq. (3), normalizing and thresholding them (see appendix Sec. A.3). The nodes for
which g0 has a positive value define a set of anchor nodes M that are more likely to contribute to
the foreground. We retain the last weight vector gT and render it into 2D for segmentation (Eq. (4)).
The regularization term P appearing in Eq. (7) is obtained by comparing the uplifted features with
anchor features obtained using the foreground mask as described in the appendix.

4.2 OPEN-VOCABULARY OBJECT DETECTION

As in (Kerr et al., 2023; Qin et al., 2024; Zuo et al., 2024) we propose to uplift CLIP features
(Radford et al., 2021) which are excellent for aligning images and text, and evaluate the uplifted
features task of open-vocabulary detection (Kerr et al., 2023). As CLIP outputs only one feature
vector per input image, a couple of extra steps are needed to distill CLIP into the 3D Gaussians.

6
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Construction of CLIP feature maps We follow the common practice (Kerr et al., 2023; Zuo
et al., 2024) of constructing multi-resolution CLIP 2D feature maps by querying CLIP on a grid of
overlapping patches at different scales and aggregating the resulting representations. As in Zuo et al.
(2024), rather than keeping the different representations separate, we choose to aggregate them with
a simple average pooling. These multi-resolution CLIP features are uplifted into 3D using Eq. (3).

Refinement with DINOv2 graph diffusion We further refine those features with the diffusion
procedure described in Sec. 3.3. To this end, DINOv2 features are also uplifted, and the similar-
ity matrix is built as in Eq. (7), with no unary term P . The diffusion process locally aggregates
CLIP features from Gaussians whose DINOv2 features are similar. This enhances the granularity
of CLIP visual representations while remaining in the CLIP feature space, allowing for downstream
applications with text queries. Wysoczańska et al. (2024) perform a similar procedure for 2D image
segmentation, with only one step in the diffusion. This process can also be related to the pixel-
alignment loss in (Zuo et al., 2024), as a diffusion step corresponds to a gradient step for that loss.

5 EXPERIMENTS

5.1 EXPERIMENT DETAILS

3D scene training and pruning. All scenes are trained using the original Gaussian Spatting im-
plementation (Kerbl et al., 2023) with default hyperparameters. For memory efficiency, half of the
Gaussians are filtered out based on their importance, as described in Sec. 3.2.

2D vision models. Our experiments are conducted using DINOv2’s ViT-g with registers (Darcet
et al., 2024), SAM (Kirillov et al., 2023), SAM 2 (Ravi et al., 2024) and the OpenCLIP ViT-B/16
model (Ilharco et al., 2021).

Segmentation tasks. We consider two segmentation tasks: i) Neural Volumetric Object Selection
(NVOS, Ren et al. 2022), which is derived from the LLFF dataset (Mildenhall et al., 2019), and ii)
SPIn-NeRF, which contains a subsets of scenes from NeRF-related datasets (Knapitsch et al., 2017;
Mildenhall et al., 2019; 2021; Yen-Chen et al., 2022; Fridovich-Keil et al., 2022). The NVOS dataset
consists of forward-facing sequences in which one frame is labeled with a segmentation mask and
another one is labeled with scribbles to be used as reference. SPIn-NeRF contains both forward-
facing and 360-degree scenes, in which all frames are labeled with segmentation masks, and the
standard evaluation protocol uses the segmentation mask from the first frame as reference to label
the subsequent frames.

Open-vocabulary object detection We evaluate on the LERF Localization dataset (Kerr et al.,
2023) consisting of complex in-the-wild scenes. We report our results on the extended evaluated task
introduced by LangSplat (Qin et al., 2024) containing additional challenging localization samples.

Evaluation and hyperparameter tuning. Our segmentation results are averaged over 3 in-
dependent runs. Segmentation with 3D SAM masks requires setting a threshold for fore-
ground/background pixel assignment, and optionally choosing one of the three masks proposed by
SAM (representing different possible segmentations of the object of interest). Segmentation with DI-
NOv2 uses graph diffusion with RBF kernels as the similarities P and Sf and therefore needs three
hyperparameters: the 2 bandwidths of the RBF kernels, and the threshold for foreground/background
pixel assignment.

For SPIn-NeRF, all hyperparameters are chosen based on the IoU for the available reference mask.
For NVOS, only reference scribbles are provided, hence i) for SAM/SAM2, only one mask is gen-
erated, and the threshold for segmentation is fixed for all scenes for SAM and automatically chosen
using Li iterative Minimum Cross Entropy method (Li & Lee, 1993) for SAM 2, ii) for DINOv2 we
predict a SAM mask based on the scribbles of the reference frame, and choose the hyperparameters
maximizing the IoU with this SAM mask. This is consistent with a scenario where the user, here
SAM, would choose hyperparameters based on visual inspection on one of the frames.

For the LERF Localization task, graph diffusion is run with P = 1 and an RBF kernel for Sf ,
with a set of different bandwidths. The resulting feature maps are automatically selected based on
the relevancy score with the text prompt. This aligns with the semantic level selection process of
LERF (Kerr et al., 2023) and LangSplat (Kerbl et al., 2023).
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(a) RGB image (b) Single-view PCA (c) Multi-view PCA

Figure 2: PCA visualizations. The DINOv2 patch-level representations (middle) predicted from
the RGB images (left) are aggregated into highly detailed 3D representations (right) using Eq. 3.

(a) RGB image (b) 3 steps (c) 7 steps (d) 100 steps

Figure 3: Illustration of the diffusion process. 2D projection of the weight vector gt (white) and
unary regularization term (red) at different diffusion steps t. The diffusion process allows filtering
out unwanted objects that have similar features to the object of interest (such as the two smaller skulls
on horns, bottom-row), but are disconnected in space. The regularization term (red background)
prevents leakage from the object to the rest of the scene (such as through the fern’s trunk, top-row).

5.2 QUALITATIVE RESULTS

DINOv2 feature uplifting. First, we illustrate the effectiveness of our simple uplifting approach.
Figure 2 shows the first three PCA components (one channel per component) over DINOv2’s patch
embeddings. The coarse patch-level representations from every view (middle) are aggregated using
Eq. 5 to form a highly detailed 3D semantic representation, and reprojected into 2D (right) using
Eq. 4. The aggregation is very fast, as it is directly implemented in the Gaussian Splatting CUDA-
based rendering process. The procedure takes about 1.5ms per view and can be parallelized across
the feature dimension. The first principal component (encoded in the red channel) mostly captures
the foreground object, and the subsequent ones allow refining the foreground representations and
delivering a detailed background. In the appendix, we provide additional comparative visualizations
of our learned 3D features (Fig. 8) and of 3D segmentation for scene editing (Fig. 7).
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Geometry only Single view Uplifting Uplifting + Graph diffusion

Reference mask DINOv2 SAM2 DINOv2 SAM2 DINOv2

80.4 88.3 90.5 90.8 93.7 92.8

Table 1: Segmentation (IoU) on SPIn-NeRF (Mirzaei et al., 2023). We compare purely geometri-
cal reference mask uplifting and reprojection and single-view prediction, feature/mask uplifting or
graph diffusion leveraging DINOv2 or SAM2.

MVSeg SA3D-TRF SA3D-GS SAGA OmniSeg3D LUDVIG (Ours)

3D representation: TensoRF GS GA NeRF GS
Uplifting: SAM SAM SAM SAM DINOv2 SAM SAM2

NVOS - 90.3 92.2 92.6 91.7 92.4 91.3 91.2
SPIn-NeRF 90.9 93.7 93.2 93.4 94.3 92.8 93.7 93.7

Table 2: Segmentation (IoU) on NVOS (Ren et al., 2022) and SPIn-NeRF (Mirzaei et al., 2023).

Graph diffusion. Figure 3 illustrates the effectiveness of the diffusion process. In the Fern scene,
diffusion progressively spreads through the branches to their extremities and the regularization (red
background) prevents it from leaking beyond the trunk. As illustrated with the case of Horns, diffu-
sion filters out unwanted objects that are similar to the object of interest (here the two skulls on the
side). The graph nodes are initialized with the reference scribbles and the diffusion spreads through
the object of interest and stop at its borders. The regularization sets a constraint that prevents leak-
age, even after a large number of iterations. This is also illustrated in Appendix Figure 6 for the
Flower and Trex scenes: diffusion rapidly spreads, with near-full coverage after only 5 steps, before
reaching all the much smaller Gaussians on the border, allowing for a refined segmentation.

5.3 SEGMENTATION RESULTS

In this section, we quantitatively evaluate the segmentation task on NVOS (Ren et al., 2022) and
SPin-NeRF (Mirzaei et al., 2023). We evaluate segmentation based on SAM and SAM2 mask up-
lifting, and on DINOv2 feature uplifting combined with graph diffusion. We compare our segmen-
tation results to the current state of the art: SA3D (Cen et al., 2023c), SA3D-GS (Cen et al., 2023b),
SAGA (Cen et al., 2023a), OmniSeg3D (Ying et al., 2024). All these methods are specifically de-
signed for uplifting the 2D segmentation masks produced by SAM into 3D using gradient-based
optimization of a projection loss. We also report results from NVOS (Ren et al., 2022) and MVSeg
(Yen-Chen et al., 2022), who respectively introduced the NVOS and SPIn-NeRF datasets.

Results. Table 2 reports the average IoU across all scenes for the two datasets. Per-scene results
can be found in Appendix Tables 4 and 5. Our results comparable to the state of the art while
not relying on gradient-based optimization. Surprisingly, our segmentation with DINOv2 using
graph diffusion also gives results on par with models leveraging SAM masks. Compared to SAM,
DINOv2 better captures complex objects, but sometimes also capture some background noise. This
can be seen in Appendix Figure 5 with the example of Trex: while SAM misses out the end of the
tail as well as the end of the ribs, DINOv2 captures the whole Trex, but also captures part of the
stairs behind. Our lower segmentation results compared to OmniSeg’s can be partly attributed to
poor Gaussian Splatting reconstruction of highly specular scenes such as the Fork, in which semi-
transparent Gaussians floating over the object try to represent reflections or surface effects that are
difficult to capture with standard rasterization techniques (Jiang et al., 2024).

Ablation study. We compare our segmentation protocol using DINOv2 and SAM2 to multiple
simpler variants. More precisely, we evaluate i) a purely geometrical variant that reprojects the ref-
erence mask on the other views, without using SAM2 or DINOv2, ii) single-view segmentation in
2D based on SAM2 or DINOv2 2D predictions, iii) uplifting DINOv2 features or SAM2 masks into
3D then rendering them for segmentation, and iv) segmenting using graph diffusion over DINOv2
3D feature similarities. Results are reported in Table 1, and per-scene IoU as well as a detailed
analysis can be found in Appendix Table 6 and Sec. B.1. We observe that the purely geometrical
approach works well on the forward-facing scenes and fails on 360-degree scenes. The single-view
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LERF Loc. dataset Extended LERF Loc. dataset

LERF FMGS LERF LangSplat LUDVIG

ramen 62.5 90.0 62.0 73.2 77.5
figurines 87.2 89.7 75.0 80.4 78.6
teatime 96.9 93.8 84.8 88.1 94.9
waldo kitchen 85.2 92.6 72.7 95.5 86.4
overall 83.0 91.5 73.6 84.3 84.4

average time (mins) 45 100 45 105 9

Table 3: LERF Localization We evaluate on the more challenging dataset introduced by
LangSplat (Qin et al., 2024) and report results from LERF (Kerr et al., 2023) and FMGS (Zuo
et al., 2024) on the original dataset.

variant performs reasonably well on average but, the low resolution of patch-level representations
(illustrated in Fig. 2) lead to a coarser segmentation. 3D uplifting considerably boosts results com-
pared to single-view approaches, and introducing 3D spatial information through 3D graph diffusion
further enhances results on the more challenging 360-degree scenes.

5.4 OPEN-VOCABULARY OBJECT DETECTION

Table 3 presents results on the open-vocabulary localization task. The reported average running
times, include feature map generation and 3D feature training whenever relevant. For reference,
we report the results of LERF and FMGS (Zuo et al., 2024) on the original version of the LERF
localisation dataset introduced in Kerr et al. (2023). We also report LERF Kerr et al. (2023) and
LangSplat (Qin et al., 2024) on the extended and more challenging version of the LERF localisation
dataset introduced by LangSplat (Qin et al., 2024), on which LERF incurs a significant drop in
performance. LUDVIG performs on par with LangSplat and outperforms LERF on the extended
LERF localisation dataset while being significantly faster than all methods (around 10 times faster).

A more thorough analysis on running times can be found in appendix Sec. B.2. Additionally, Ap-
pendix Sec. C.3 provides illustrations of the impact of the diffusion process (Fig. 10), and compara-
tive visualizations of localization heatmaps with LangSplat and LERF (Fig. 11).

6 CONCLUDING REMARKS AND LIMITATIONS

Learning-free uplifting. In this work, we introduce a simple yet effective aggregation mechanism
for transferring 2D visual representations into 3D, bypassing the traditional optimization-based ap-
proach. The aggregation builds upon already trained Gaussian Splatting representations and is im-
plemented within the CUDA rendering process, making 2D-to-3D uplifting as fast as 3D-to-2D
rendering. Note however that the quality of learned 3D features is bound by that of the 3D scene
reconstruction. Reconstruction by Gaussian Splatting is notoriously challenging when dealing with,
e.g., highly specular scenes (Jiang et al., 2024; Yang et al., 2024), blurred images Zhao et al. (2024);
Lee et al. (2024) or high-frequency regions (Ye et al., 2024b; Zhang et al., 2024). In such scenarios,
learning 3D features along with 3D Gaussian Splatting reconstruction may lead to improved scene
geometry, opening promising perspectives for future work.

Graph diffusion. Our proposed graph diffusion process allows injecting the rich DINOv2 repre-
sentations to refine arbitrary features such as segmentation masks or CLIP embeddings. Our CLIP
feature refinement builds upon prior works using DINO features as a regularization (Kerr et al., 2023;
Zuo et al., 2024), while alleviating the computational overhead associated with joint gradient-based
optimization of CLIP and DINO features. However, it does rely on the adequate choice of band-
width hyperparameter(s) when defining the similarity graph. In this work, these hyperparameters
are chosen based on IoU with a SAM-predicted mask for segmentation, and based on the relevancy
score with the text prompt for object localization. While automatic, this decision process requires
multiple evaluations of a success criterion with different candidate bandwidth values.
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Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, and Qi Tian.
Segment any 3d gaussians. arXiv preprint arXiv:2312.00860, 2023a.

Jiazhong Cen, Jiemin Fang, Zanwei Zhou, Chen Yang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, and
Qi Tian. Segment anything in 3d with radiance fields. arXiv preprint arXiv:2304.12308, 2023b.

Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Wei Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng
Zhang, Qi Tian, et al. Segment anything in 3d with nerfs. In Advances in Neural Information
Processing Systems (NeurIPS), 2023c.

Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei
Yang, Huaping Liu, and Guosheng Lin. Gaussianeditor: Swift and controllable 3d editing with
gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. Depth-regularized optimization for 3d gaus-
sian splatting in few-shot images. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In Proceedings of the International Conference on Learning Representations (ICLR),
2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint
arXiv:2311.17245, 2023.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
Farhadi, and Ludwig Schmidt. Openclip, 2021.

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin
Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In Proceedings of the International Conference on Computer
Vision (ICCV), 2023.

Chung Min Kim, Mingxuan Wu, Justin Kerr, Ken Goldberg, Matthew Tancik, and Angjoo
Kanazawa. Garfield: Group anything with radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the International Conference on Computer Vision (ICCV), 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures. In
International Conference on Machine Learning (ICML), 2002.

Byeonghyeon Lee, Howoong Lee, Xiangyu Sun, Usman Ali, and Eunbyung Park. Deblurring 3d
gaussian splatting. In Proceedings of the European Conference on Computer Vision (ECCV),
2024.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and Rene Ranftl. Language-driven
semantic segmentation. In Proceedings of the International Conference on Learning Representa-
tions (ICLR), 2022.

Chun Hung Li and CK Lee. Minimum cross entropy thresholding. Pattern recognition, 26(4):
617–625, 1993.

Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Saddik,
Christian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary segmen-
tation. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Marina Meila and Jianbo Shi. Learning segmentation by random walks. Advances in neural infor-
mation processing systems (NIPS), 13, 2000.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ra-
mamoorthi, Ren Ng, and Abhishek Kar. Local light field fusion: Practical view synthesis with
prescriptive sampling guidelines. ACM Transactions on Graphics (ToG), 38(4):1–14, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the i, 65(1):99–106, 2021.

Ashkan Mirzaei, Tristan Aumentado-Armstrong, Konstantinos G Derpanis, Jonathan Kelly, Mar-
cus A Brubaker, Igor Gilitschenski, and Alex Levinshtein. Spin-nerf: Multiview segmentation
and perceptual inpainting with neural radiance fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 20669–20679, 2023.
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Appendix

A USING LUDVIG FOR DOWNSTREAM TASKS

In this section, we describe our approach for uplifting DINOv2, SAM and CLIP models and evalu-
ating the 3D features on two downstream tasks: segmentation and open-vocabulary object detection.

As in Sec. 3, we are given a set of 2D frames I1, . . . , Im, with camera poses d1, . . . , dm and
corresponding 3D scene obtained by the Gaussian Splatting method, which can be used to uplift 2D
features from the m frames to 3D.

Multiple-view segmentation. For this task, we assume that a foreground mask of the object to be
segmented is provided on a reference frame taken to be the first frame I1. We consider two types
of foreground masks: either scribbles or a whole reference mask of the object, both of which define
a set of foreground pixels P . In the following subsections, we present the proposed approaches for
segmentation using SAM and DINOv2 features, based on both types of foreground masks.

A.1 MULTIPLE-VIEW SEGMENTATION WITH SAM

SAM (Kirillov et al., 2023; Ravi et al., 2024) is a powerful image segmentation model, that can
generate object segmentation masks from point prompts on a single 2D image. Aggregating SAM
2D segmentation masks in 3D allows for cross-view consistency and improves single-view segmen-
tation results. In order to leverage SAM, we propose a simple mechanism for generating SAM 2D
features for each frame from a foreground mask in the reference frame.

Construction of 2D feature maps. The key idea is to generate point prompts on each training
frame from the foreground mask provided on the reference frame. To this end, we perform an
uplifting of the foreground mask (Eq. (3)) and re-project it on all frames (Eq. (4)). This results in 2D
scalar maps that we further normalize by their average value. A higher values indicates the presence
of the target object. For each frame with camera pose d, we retain a subset of pixels Pd with values
higher than a threshold fixed for all scenes and select point prompts for SAM from this subset.
Finally, we compute 2D segmentation masks for each frame using SAM by randomly selecting 3
points prompts from Pd, repeating the operation 10 times and averaging the resulting masks for each
view to obtain the final 2D SAM feature maps.

Segmentation with uplifted SAM masks. The 2D segmentation masks generated by SAM are
uplifted using the aggregation scheme described in Sec. 3.2. Our final prediction is obtained by
rendering the uplifted feature maps into the target frame.

A.2 MULTIPLE-VIEW SEGMENTATION WITH DINOV2

DINOv2 (Oquab et al., 2024) is a self-supervised vision model recognized for its generalization
capabilities. In this work, we aggregate the patch-level representations produced by DINOv2 with
registers (Darcet et al., 2024) into a high resolution and fine-grained 3D semantic representation.

Construction of 2D feature maps. We construct the 2D feature maps using a combination of a
sliding windows mechanism and dimensionality reduction of the original DINOv2 features. Specif-
ically, we i) extract DINOv2 patch-level representations across multiple overlapping crops of the
training images, ii) apply dimensionality reduction over the set of all patch embeddings, ii) upsam-
ple and aggregate the dimensionality-reduced patch embeddings to obtain pixel-level features for
each image. The process is illustrated in Figure 4. This approach enhances the granularity of spatial
representations by aggregating patch-level representations to form pixel-level features.

Segmentation with uplifted DINOv2 features. The 2D feature maps from the m training views
are uplifted using Eq. (3) and the resulting 3D features are then re-projected into any viewing di-
rection d using Eq. (4) to compute rendered 2D features (F̂d,p). To obtain segmentation masks, we
construct a score P (F̂d,p) for a 2D pixel p to belong to the foreground, based on its corresponding
rendered feature. More precisely, P relies on the rendered foreground features Fref := (F̂d1,p)p∈P
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Figure 4: Sliding windows for construction of DINOv2 feature maps.

corresponding to the foreground mask computed on the reference frame I1. We propose two ap-
proaches for constructing P . The first one is a simple approach that sets P (F̂d,p) = SF (F̂d,p, F̄ )
where F̄ is the average over foreground features Fref , and SF is defined based on the cosine simi-
larity. The second approach is more discriminative and first trains a logistic regression model P on
all rendered 2D features of the reference frame, so that the foreground features Fref are assigned a
positive label. Then P (F̂d,p) gives the probability that a pixel p belongs to the foreground. The final
mask is then obtained by thresholding.

Experimentally, the second approach is extremely efficient when the set of foreground pixels P
covers the whole object to segment, so that P captures all relevant features. This is the case when
a whole reference mask of the object is provided. When the foreground pixels P does not cover the
whole object, as with scribbles, P can be discriminative to parts of the object that are not covered
by P . Therefore, we rely on the second approach for tasks where a reference mask is provided, and
use the simpler first approach when only scribbles serve as reference.

A.3 ENHANCING SEGMENTATION WITH DINOV2 USING 3D GRAPH DIFFUSION

DINOv2 provides generic visual features that do not explicitly include information for segmentation,
unlike models such as SAM that were specifically trained for such a task. Consequently, using the
2D projections of uplifted DINOv2 features, as proposed in Sec. A.2, might fail to separate different
objects that happen to have similar features while still being distinct entities. This challenge can be
mitigated by incorporating 3D spatial information in which the objects are more likely to be well-
separated. To this end, we propose to leverage the graph diffusion process introduced in Section 3.3.

For this task, the initial vector of weights g0 ∈ Rn representing a coarse estimation of the contribu-
tion of each Gaussian to the segmentation mask. We retain the last weight vector gT and render it
into 2D for segmentation (Eq. (4)). Below, we describe the initialization of the weight vector g0 and
the construction of the adjacency matrix A.

Initialization of the weight vector. The initial weight vector g0 is computed by uplifting the
2D foreground mask (either scribbles or a reference mask) from the reference frame into 3D using
Eq. (3), normalizing the 3D mask by its mean value over all nodes and setting to zero all values
below a fixed threshold. The nodes for which g0 has a positive value define a set of anchor nodes
M that are more likely to contribute to the foreground. The resulting weight vector is a coarse
estimation of how much each Gaussian contributes to a rendered 2D segmentation mask.

Construction of the graph edges. We define Sf based on the cosine similarity between features
and choose a global unary regularization term P (fi) on each node i to encourages similarity be-
tween the uplifted node feature fi and those belonging to the foreground. More precisely, P is
defined using a similar approach as in Sec. A.2: either as a similarity P (fi) = Sf (fi, f̄) with the
averaged feature f̄ over the anchor nodes M (in the case when scribbles are provided), or as a lo-
gistic regression model trained on the uplifted features, so that anchor nodes’ features are assigned
a positive label (in the case when a full foreground mask is available). The local term Sf , typically
a cosine similarity, allows diffusion to neighbors that have similar features while the unary term
prevents leakage to background nodes during diffusion by encouraging closeness to the foreground
features and allows using an arbitrary number of diffusion steps.
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MVSeg SA3D-GS SAGA OmniSeg3D LUDVIG (Ours)

3D representation: NeRF GS GS NeRF GS
Uplifting: SAM SAM SAM DINOv2 SAM SAM2

Orchids 92.7 84.7 - 92.3 92.6 91.9 90.7
Leaves 94.9 97.2 - 96.0 93.9 96.4 96.4
Fern 94.3 96.7 - 97.5 95.6 96.8 96.7
Room 95.6 93.7 - 97.9 94.7 96.5 96.6
Horns 92.8 95.3 - 91.5 94.4 92.3 94.9
Fortress 97.7 98.1 - 97.9 97.6 98.3 98.3

Fork 87.9 87.9 - 90.4 81.6 87.1 86.8
Pinecone 93.4 91.6 - 92.1 90.1 90.8 90.8
Truck 85.2 94.8 - 96.1 94.8 94.3 92.6
Lego 74.9 92.0 - 90.8 93.2 92.8 92.9

Average 90.9 93.2 93.4 94.3 92.8 93.7 93.7

Table 4: Segmentation (IoU) on SPIn-NeRF (Mirzaei et al., 2023) with DINOv2, SAM and SAM2.

Fern Flower Fortress HornsC HornsL Leaves Orchids Trex Average

NVOS - - - - - - - - 70.1
SA3D 82.9 94.6 98.3 96.2 90.2 93.2 85.5 82.0 90.3
OmniSeg3D 82.7 95.3 98.5 97.7 95.6 92.7 84.0 87.4 91.7
SA3D-GS - - - - - - - - 92.2
SAGA - - - - - - - - 92.6
Ours-DINOv2 84.4 96.3 95.3 95.4 93.4 95.9 92.1 86.4 92.4
Ours-SAM 85.5 97.6 98.1 97.9 94.1 96.4 73.1 88.0 91.3
Ours-SAM2 84.8 97.2 98.3 97.7 92.4 96.9 73.0 89.0 91.2

Table 5: Segmentation (IoU) on NVOS (Ren et al., 2022) with DINOv2, SAM and SAM2.

B ADDITIONAL RESULTS

B.1 PER-SCENE SEGMENTATION RESULTS

In this section, we present per-scene segmentation results on NVOS and SPIn-NeRF in Tables 4, 5
and 6, along with an extended analysis of these results..

Segmentation on SPIn-NeRF. We report our segmentation results for the SPin-NeRF
dataset (Mirzaei et al., 2023) in Table 4. Our results are comparable to the state of the art while
not relying on optimization-based approaches. Surprisingly, our segmentation with DINOv2 using
graph diffusion also gives results on par with models leveraging SAM masks. Our lower segmenta-
tion results compared to OmniSeg’s can be partly attributed to poor Gaussian Splatting reconstruc-
tion of highly specular scenes such as the Fork, in which semi-transparent Gaussians floating over
the object try to represent reflections or surface effects that are difficult to capture with standard
rasterization techniques (Jiang et al., 2024).

Segmentation on NVOS. We report our segmentation results for the NVOS dataset (Ren et al.,
2022) in Table 5. Our results are comparable to those obtained by prior work. Again, DINOv2
performs surprisingly well while not having been trained on billions of labeled images like SAM.
Compared to SAM, DINOv2 better captures complex objects, but sometimes also capture some
background noise. This can be seen in Appendix Figure 5 with the example of Trex: while SAM
misses out the end of the tail as well as the end of the ribs, DINOv2 captures the whole Trex, but
also captures part of the stairs behind. Visualisations of Orchids in Appendix Figure 5 also explain
the lower performance of SAM on this scene: the two orchids SAM is missing are not covered by
the positive scribbles, which makes the task ambiguous.

Ablation study In Table 6, we compare our segmentation protocol using DINOv2 and SAM2 to
multiple simpler variants. More precisely, we evaluate i) a purely geometrical variant that does not
use SAM2 or DINOv2, ii) single-view segmentation in 2D based on SAM2 or DINOv2 2D predic-
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Geometry only Single view Uplifting Graph diffusion

Model: Reference mask DINOv2 SAM2 DINOv2 SAM2 DINOv2

Orchids 80.9 91.4 79.2 91.7 90.7 92.6
Leaves 94.8 89.3 96.6 94.3 96.4 93.9
Fern 95.5 94.4 96.7 96.7 96.7 95.6
Room 85.7 94.5 96.3 97.1 96.6 94.7
Horns 90.4 90.7 92.7 93.1 94.9 94.4
Fortress 95.4 96.8 97.8 98.7 98.3 97.6

Fork 66.3 85.6 77.2 88.4 86.8 81.6
Pinecone 58.8 92.9 90.3 86.7 90.8 90.1
Truck 60.0 86.2 89.3 88.8 92.6 94.8
Lego 77.2 63.5 89.1 72.4 92.9 93.2

Average 80.4 88.3 90.5 90.8 93.7 92.8

Table 6: Segmentation (IoU) on SPIn-NeRF (Mirzaei et al., 2023). We compare purely geomet-
rical reference mask uplifting and reprojection and single-view prediction, feature/mask uplifting or
graph diffusion leveraging DINOv2 or SAM2.

tions, iii) uplifting DINOv2 features or SAM2 masks into 3D then rendering them for segmentation,
as described in Sec. A.1 and A.2, and iv) segmenting using graph diffusion over DINOv2 3D feature
similarities.

The purely geometrical approach works well on the forward-facing LLFF scenes (Orchids to
Fortress). In these scenes, the reference mask is accurately uplifted and reprojected as the view-
ing direction changes only a little between each frame. However, it fails on the 360-degree scenes
(Fork, Pinecone, Truck, Lego). This points to a suboptimal 3D reconstruction of the scene, likely
due to overfitting on the limited numbers of available training views (Chung et al., 2024).

The single-view variants use a similar process for constructing the features and using them for
segmentation as in Sec. A.1 and A.2 but without uplifting and rendering. It improves from a purely
geometrical approach and performs reasonably well on average, the foreground being well isolated
from the rest of the scene. However, as illustrated in Figure 2, the semantic features are at a much
lower resolution than those resulting from 3D uplifting, leading to a coarser segmentation.

3D uplifting considerably boosts results compared to single-view approaches. However, performing
segmentation in 2D based on the uplifted DINOv2 features does not benefit from the 3D spatial
information and typically fails on the 360-degree scenes (Pinecone, Truck and Lego) which have
higher variability between frames from different views. Introducing 3D spatial information through
3D graph diffusion results in a boosted performance on these scenes.

B.2 RUNTIME ANALYSES

The total reported times can be divided between pre-uplifting, uplifting and post-uplifting. These
steps are detailed below. Experiments for LUDVIG are run on a GPU A6000 ADA.

Pre-uplifting. This step includes 2D feature map generations. The time this step takes depends on
the backbone model, on the number of training images and on the number of calls to the model per
image. The total time ranges from a few seconds up to an hour for models such as LangSplat (Qin
et al., 2024), that queries SAM over a grid of points on the image at various resolutions to generate
full image segmentation masks. This process takes 24s/image on a GPU 6000 ADA and amounts
to an average of 80 minutes for the evaluated scenes In our experiments, the feature generation step
takes from 1 to 5 minutes.

Uplifting. For LUDVIG, uplifting takes 1.3ms per feature dimension for an image of size
480 × 640. For example, uplifting 100 training images with a feature dimension of 40 takes 5
seconds. Gradient-based optimization requires approximately additional time, where represents the
number of gradient steps, typically ranging from 3,000 to 30,000 for 3D feature distillation (Kerr
et al., 2023; Qin et al., 2024; Zuo et al., 2024). Gradient-based optimization can still be very fast
for low-dimensional features such as SAM masks (can take as little as a few seconds, as reported
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(a) Reference image (b) Ground truth mask (c) DINOv2 mask (d) SAM mask

Figure 5: Segmentation results on NVOS (Ren et al., 2022) with DINOv2 and SAM.

by SA3D-GS (Cen et al., 2023b)) or dimensionality-reduced features (LangSplat (Qin et al., 2024)
trains an autoencoder to reduce the CLIP feature dimension from 512 to 3 and runs for 25 min-
utes). However, optimization becomes intractable for high-dimensional features such as CLIP and
DINO; FMGS (Zuo et al., 2024) relies on an efficient multi-resolution hash embedding of the scene;
however, their total training time still amounts to 1.4 hours.

Post-uplifting. After uplifting, LUDVIG leverages graph diffusion using pairwise DINOv2 fea-
ture similarities for segmentation tasks as well as for CLIP feature refinement. This refinement can
be seen as a proxy for regularization losses used in prior works when jointly training CLIP and DI-
NOv2 features. Graph diffusion first requires querying the nearest neighbors for each node, which is
linear in the number of Gaussians and takes about 1 minute with 1,000,000 Gaussians. This can be
further optimized by using approximate nearest neighbor search algorithms (Wang et al., 2021). The
diffusion then takes less than 1 second for 1D features such as segmentation masks, and up to 30
seconds for higher-dimensional features such as CLIP. Therefore, graph diffusion comes as a small
overhead to the total running time.

C ADDITIONAL VISUALISATIONS

C.1 SEGMENTATION TASKS

Segmentation on NVOS. Figure 5 shows our segmentation masks from SAM and DINOv2 for
the three most challenging scenes of the NVOS dataset: Fern, Orchids and Trex.

Diffusion process. Figure 6 illustrates different steps of the diffusion process for Fern, Leaves,
Flower and Trex from the NVOS (Ren et al., 2022) dataset. Starting from the reference scribbles,
the diffusion rapidly spreads through the large neighboring Gaussians. Covering the entire object
takes more time for complex structures such as Fern, or for masks with disconnected components
such as Orchids. As illustrated in the case of Flower, the last diffusion steps allow spreading to the
smaller Gaussians on the flowers’ edges, yielding a refined segmentation mask. For Trex, the parts
being reached the latest are the head and tail. Their features are further away from the reference
features (defined as the average feature over 3D reference scribbles), and therefore the regulariza-
tion for diffusion is stronger in these regions. Overall once the object has been fully covered, the
regularization is very effective at preventing leakage, which allows diffusion to run for an arbitrary
number of steps.
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Scene editing. Figure 7 shows comparative visualizations of scene editing with N3F (Tschernezki
et al., 2022) and LUDVIG. For rendering the edited RGB image, N3F sets to zero the occupancy
for all 3D points belonging to the object. For LUDVIG, we remove all Gaussians pertaining to the
3D semantic mask resulting from graph diffusion. We observe that the regions behind to segmented
object are much smoother for LUDVIG than for N3F. Regions unseen from any viewpoint are black
for LUDVIG (no gaussians) and result in a background partially hallucinated by NeRF for N3F.

C.2 VISUALIZATIONS OF UPLIFTED DINOV2 FEATURES

Visual comparisons with N3F. Figure 8 show a comparison of LUDVIG’s 3D DINOv2 features
with learned 3D DINO features of N3D (Tschernezki et al., 2022). Their figures are taken from their
work. The notable differences are a more fine-grained reconstruction of the background for the trex
and horns, and overall smoother features across all scenes.

Comparison to GaussianEditor’s uplifting. Figure 9 shows a qualitative comparison of our pro-
posed aggregation with the one introduced by GaussianEditor Fan et al. (2023) (see Sec. 3. The
visualizations illustrate that GaussianEditor’s aggregation fails to assign the right semantics to large
gaussians, which is particularly visible in scenes with high specularity such as Room. This show-
cases the importance of defining 3D features as convex combinations of 2D pixel features.

C.3 VISUALIZATION OF CLIP FEATURES AND LOCALIZATION TASK

In this section, we present illustrations of the impact of the diffusion process (Figure 10), and com-
parative visualizations of localization heatmaps with LangSplat and LERF (Figure 11).

Impact of DINOv2-guided graph diffusion for CLIP feature refinement. Figure 10 shows PCA
visualizations of uplifted CLIP features before and after refinement with graph diffusion as well as
DINOv2 features used to define edge weights. Graph diffusion allows transferring DINOv2 visual
representations into the CLIP feature space, which is well illustrated with the top example: after
diffusion, the two figurines on the foreground acquire different semantics. The diffusion process
also yields more homogeneous features for a given object, as illustrated with the ramen bowl in the
middle, or the table at the bottom. Globally, graph diffusion greatly enhances the semantic coherence
and granularity within the scene.

Qualitative comparison of open-vocabulary objet localization. Figure 11 illustrates open-
vocabulary object localization with LERF (Kerr et al., 2023), LangSplat (Qin et al., 2024) and LUD-
VIG. Both LangSplat and LUDVIG correctly localize all four example objects. For queries such as
the chopsticks, LangSplat’s localization is more precise, as the CLIP features are constructed by
generating full image segmentation masks with SAM. This process is computationally expensive,
as constructing a full segmentation mask requires querying SAM over a grid of points on the image
and takes about 23s for a single image (on a GPU A6000 ADA), which amounts to an average of
80 minutes for a scene from the LERF dataset. However, it yields coherent instance-level CLIP
representations, which is desirable for downstream segmentation tasks.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 6: Illustration of the graph diffusion process. 2D projections of i) first three PCA compo-
nents of DINOv2 3D features, ii) unary regularization term (red), iii) weight vector gt at timesteps
t ∈ {0, 3, 5, 10, 100}, iv) RGB segmentation obtained using a mask based on the 2D projection of
g100.
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(a) RGB image (b) N3F (Tschernezki et al., 2022) (c) LUDVIG

Figure 7: Scene editing. 3D segmentation, removal and rendering for LUDVIF and N3F (Tsch-
ernezki et al., 2022). For N3F, figures are sourced from (Tschernezki et al., 2022).

Figure 8: Comparison between LUDVIG’s uplifted DINOv2 features (bottom) and N3F’s (Tsch-
ernezki et al., 2022) learned DINO features (top). For N3F, figures are sourced from (Tschernezki
et al., 2022).

(a) GaussianEditor (b) LUDVIG (c) GaussianEditor (d) LUDVIG

Figure 9: Comparison to GaussianEditors’s uplifting. Comparison of PCA visualization of up-
lifted features between LUDVIG’s and GaussianEditor’s aggregation (Chen et al., 2024).
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(a) RGB image (b) CLIP (c) CLIP refined (d) DINOv2

Figure 10: CLIP, refined CLIP and DINOv2 features. PCA visualizations of 3D CLIP features,
3D CLIP features refined using graph diffusion with DINOv2 similarities, and DINOv2 features.
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'chopsticks'

RGB LangSplat

LERF LUDVIG

RGB LangSplat

LERF LUDVIG

RGB LangSplat

LERF LUDVIG

RGB LangSplat

LERF LUDVIG

'plate'

'red apple' 'waldo'

Figure 11: Qualitative comparisons of open-vocabulary 3D object localization on the LERF
dataset. The red points are the model predictions and the black dashed bounding boxes denote the
annotations. This figure is sourced and adapted from LangSplat’s website.
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