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Abstract001

Recent advances in text-to-speech technologies002
have enabled realistic voice generation, fueling003
audio-based deepfake attacks such as fraud and004
impersonation. While audio anti-spoofing sys-005
tems are critical for detecting such threats, prior006
work has predominantly focused on acoustic-007
level perturbations, leaving the impact of lin-008
guistic variation largely unexplored. In this009
paper, we investigate the linguistic sensitiv-010
ity of both open-source and commercial anti-011
spoofing detectors by introducing transcript-012
level adversarial attacks. Our extensive eval-013
uation reveals that even minor linguistic per-014
turbations can significantly degrade detection015
accuracy: attack success rates surpass 60%016
on several open-source detector–voice pairs,017
and notably one commercial detection accu-018
racy drops from 100% on synthetic audio to just019
32%. Through a comprehensive feature attri-020
bution analysis, we identify that both linguistic021
complexity and model-level audio embedding022
similarity contribute strongly to detector vulner-023
ability. We further demonstrate the real-world024
risk via a case study replicating the Brad Pitt025
audio deepfake scam, using transcript adver-026
sarial attacks to completely bypass commercial027
detectors. These results highlight the need to028
move beyond purely acoustic defenses and ac-029
count for linguistic variation in the design of030
robust anti-spoofing systems. All source code031
will be publicly available.032

1 Introduction033

Recent advances in text-to-speech (TTS) tech-034

nology have enabled natural speech synthesis in035

over 7,000 languages (Lux et al., 2024) and high-036

fidelity audio from just a single sample of a target037

voice (Chen et al., 2024). However, these inno-038

vations have also made it easier for attackers to039

create deepfake audio for identity fraud, evident in040

a surge by more than 2,000% over the past three041

years in deepfake fraud (Da Silva, 2024) and the042

Figure 1: Linguistic variation of the transcript can swing
the confidence of audio anti-spoofing system.

recent notorious case of Brad Pitt impersonation 043

scam of over $800K (Signicat, 2024). 044

To counter deepfake audio, audio anti-spoofing 045

systems (AASs) have been developed to distinguish 046

genuine–i.e., human-spoken speech, from spoofed 047

one–i.e., machine-synthesized speech for identify 048

falsification (Jung et al., 2021; Tak et al., 2021; Wu 049

et al., 2024; Tak et al., 2022). However, AAS are 050

known to be vulnerable to acoustic-level manipula- 051

tions such as injection of small noise, volume mod- 052

ification, and even deliberate attacks or often so- 053

called adversarial manipulations (Wu et al., 2024, 054

2020; Müller et al., 2023). Such the vulnerabil- 055

ity is also analogous to text-level manipulations 056

targeting deepfake text detectors where synonym 057

replacement of only a few words or small varia- 058

tions in word choice can significantly alter their 059

detection probabilities (Uchendu et al., 2023). 060

Since any speech fed into an AAS is either syn- 061

thesized by TTS or spoken by humans from an 062

input transcript written in human languages, it is 063

natural to hypothesize that AASs, although only 064

accept audio inputs, might be also indirectly in- 065

fluenced by text-level, linguistic manipulations on 066

the audio’ transcripts (Fig. 1). However, research 067

questions such as “whether such an effect of such 068

linguistic variations, such as word choice or di- 069

alect, on anti-spoofing performances of AAS exist? 070
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or “when and how much linguistic variations in071

transcripts influence the effectiveness of audio anti-072

spoofing systems?” are under-explored.073

Such questions are also intuitive and relevant074

to how humans perceive information from audi-075

tory speech. Particularly, linguistic differences can076

influence how human listeners perceive and evalu-077

ate speech, sometimes resulting in bias or negative078

responses (Peters, 2024). Such factors may also079

potentially introduce vulnerabilities or biases into080

AASs, especially from adversarial machine learn-081

ing perspectives when they are often trained on082

human-curated data. For instance, terms like “il-083

legal” versus “undocumented”, although semantic084

neighbors, can affect a speaker’s perceived credibil-085

ity (Lim et al., 2018). If such linguistic sensitivity086

indeed exists in current AASs, they can be manip-087

ulated by malicious actors to carefully craft spoof088

audio that is much more challenging for AASs to089

accurately detect as fake.090

To examine the linguistic sensitivity of AASs,091

this work takes an initial step toward evaluating092

the central hypothesis: subtle linguistic variations093

within a transcript can propagate through a text-094

to-speech (TTS) pipeline and significantly impact095

the predictions of AASs (Fig. 1). To this end, we096

formulate our investigation as an adversarial attack097

scenario, wherein a malicious actor strategically098

introduces minimal perturbations to an audio tran-099

script, while preserving its original meaning, prior100

to its conversion to audio via a TTS pipeline, with101

the goal of evading detection by state-of-the-art102

(SOTA) AASs. Our empirical validation demon-103

strates that both research and production-grade de-104

tectors are significantly vulnerable to such subtle105

linguistic manipulations, with attack success rates106

exceeding 60% across both open-source and com-107

mercial AASs. Moreover, we show that linguistic108

nuances correspond to translated acoustic qualities109

in the spoofed audio, ultimately affecting AASs’110

accuracy. Our contributions can be summarized111

as follows.112

1. To the best of our knowledge, our work is the113

first that formulates and examines linguistic sen-114

sitivity in automatic audio anti-spoofing systems.115

2. We develop a transcript-level adversarial attack116

pipeline that generates semantically valid pertur-117

bations and demonstrates how subtle linguistic118

changes can degrade detection accuracy, in many119

cases from over 90% to just below 20%, in both120

open-source and commercial detectors.121

3. We perform feature attribution analysis of over 122

14 linguistic, acoustic, and model-level features 123

and analyze how they correlate with such lin- 124

guistic vulnerability, offering insights for more 125

robust audio anti-spoofing systems. 126

2 Motivation 127

2.1 Related Work 128

Most adversarial attack work in audio anti-spoofing 129

focuses on signal or acoustic-level attacks, such as 130

noise injection or frequency masking, to expose 131

vulnerabilities in spoof detection models (Attor- 132

resi et al., 2022; Ba et al., 2023). However, little 133

attention has been paid to the role of linguistic 134

variation. As a result, efforts to improve robust- 135

ness have mainly addressed acoustic distortions 136

and cross-dataset challenges via domain adapta- 137

tion and knowledge distillation (Arora et al., 2022). 138

In contrast, specific impacts of transcript manip- 139

ulations, such as what types of text perturbations 140

and what are their effectiveness, remain underex- 141

plored in audio anti-spoofing. Whereas text-based 142

adversarial attacks in NLP have demonstrated that 143

small semantic changes can fool classifiers (Jin 144

et al., 2020; Le et al., 2022), it is still unknown 145

how such linguistic perturbations, when indirectly 146

propagated through TTS synthesis (Fig. 1), would 147

affect downstream audio spoofing detection. 148

2.2 Preliminary Analysis 149

We first carry out a preliminary analysis is to ex- 150

amine whether linguistic variations in transcripts 151

might affect the robustness of AASs. To do this, 152

we randomly substitute one word in each of 1439 153

transcripts with a synonym, synthesized audio for 154

both versions with a TTS model, and test them 155

with the high-performing open-source audio spoof- 156

ing AASIST-2 detector. Surprisingly, even mini- 157

mal, one-word changes cause AASIST-2 detector 158

to misclassify up to 5.7% of samples, and bona-fide 159

detection probabilities drop by as much as 67.9% 160

in some cases (Table 1). Moreover, most open- 161

source AAS are trained on the ASVSpoof-2019 162

LA dataset, which displays significant linguistic 163

disparities between spoofed and bona-fide samples 164

(Table A1). Statistical tests confirm that spoofed 165

transcripts are statistically more complex in terms 166

of token perplexity and readability than bona-fide 167

cases (Table 2). Such disparities in training data 168

can introduce linguistic bias into the trained anti- 169

spoofing models. Motivated by these observations, 170
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Transcript Bona-fide %

She is a successfulgood actor with . . . 3.6 −→ 80.5
The trust was unable to payreward the. . . 3.7 −→ 34.9
. . . for a manguy or woman of letters. 3.7 −→ 50.2

Table 1: A few examples of preliminary transcript-level
adversarial attacks on anti-spoofing detector AASIST-2.

we will then systematically evaluate and quantify171

what degree AASs are sensitive to small changes172

in audio’ transcripts through a comprehensive, al-173

gorithmic approach.174

3 Problem Formulation175

Let F :X→Y be an AAS, which maps the audio176

input X to the bona-fide label output Y . Given177

a set of N transcripts T ={T1, T2, . . . , TN} with178

Ti∈RM , and a TTS model G:T→X , we synthesize179

a collection of N audio X={X1, X2, . . . , XN}180

with Xi∈RL, by entering each transcript in T181

to G(·). Moreover, Y={Y1, Y2, . . . , YN} is the182

ground truth of X , where Yi→0 indicates a spoof-183

ing label, and Yi→1 means a bona-fide label. In184

our setting, Yi is a spoofing label–i.e., Yi←0 ∀i,185

since Xi is a machine-synthesized audio. M is186

the number of words in a transcript, and L is the187

wavelength of an audio.188

We define an AAS F(·) as linguistically sensi-189

tive to a specific TTS model G(·) if its prediction190

of audio synthesized via G(·) is flipped solely by191

making small changes to its underlying transcript192

while preserving its original semantic meaning,193

without modifying the audio synthesis system, the194

speaker profile, the acoustic characteristics directly.195

Formally, given a transcript T , F(·) exhibits lin-196

guistic sensitivity to G(·) if there exists a perturbed197

transcript T̃ such that:198

SIM(T, T̃ )==1, F(G(T̃ ))==Ỹ , and Ỹ ̸=Y,

(1)199

where the boolean indicator SIM(T, T̃ ) ensures200

the adversarial transcript T̃ remains faithful to the201

original meaning or purpose (e..g, intend to transfer202

money) and also the original structure or syntax of203

T , such that the changes are subtle enough that a204

human cannot easily detect an intent to fool the205

system.206

To systematically find such perturbed T̃ or to207

find out if F(·) is linguistically sensitive to G(·),208

therefore, we formulate this task as an optimization209

problem with an objective function as follows.210

Metric ∆ t p(one-sided)

Tokens 1.59 30.70 0.0000
Phonemes 6.26 26.86 0.0000
Readability 0.17 2.12 0.0172
Token PPL 27.43 6.46 0.0000
Phoneme PPL 0.00 0.17 0.4345

Table 2: Results of independent two-sample t-tests com-
paring spoof and bona-fide items on ASVSpoof 2019
training data statistics. PPL is the perplexity.

Objective Function

Given a transcript T={w1, w2, . . . , wM}, a
target AAS F , and a TTS model G, our
goal is to find an alternative transcript T̃ by
minimally perturbing T , or:

T̃ ∗ = argmin
T̃

distance(T, T̃ ∗) s.t.

SIM(T, T̃ )==1, F(G(T̃ ))==Ỹ , and Ỹ ̸=Y

211

4 Method 212

To solve the introduced optimization problem, we 213

adapt the adversarial attack framework in adversar- 214

ial NLP literature to design an adversarial transcript 215

perturbation framework that exploits the linguistic 216

sensitivity of the AASs. The overall algorithm is 217

formalized in Alg. 1 (Appendix). 218

Step 1: Finding Important Words. First, we 219

want to measure how sensitive F(·)’s prediction is 220

to each word, allowing us to prioritize perturbations 221

to the most influential locations in the transcript. To 222

do this, given a transcript T={w1, w2, . . . , wm}, 223

we estimate the impact of each word wi on the anti- 224

spoofing prediction (Lines 3-5). For each word po- 225

sition i, we synthesize audio without wi in the tran- 226

script and then compute the bona-fide probability 227

pi=F(G(T\wi
)). Then, we aggregate all masked- 228

transcript candidates W={T\w1
, ..., T\wm

} and 229

sort them by the descending impact scores pi (Line 230

6, Alg. 1). 231

Step 2: Greedy Word Perturbations. Next, our 232

algorithm iteratively attempts to find effective word 233

substitutions beginning with the positions with the 234

largest impact, potentially minimizing the number 235

of words needed to perturb. For each candidate 236

position, we use a Search(·) to propose a set of 237

replacement candidates (Line 9). To search for the 238

replacement w̃i for wi, Search(·) first finds a list of 239

replacement candidates by utilizing either WordNet 240

to find synonym replacements (Ren et al., 2019), 241
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or a Masked Language Model (Devlin et al., 2019)242

that masks the word wi as the token [MASK] and243

performs the token predictions (Jin et al., 2020).244

For each substitution candidate ck, we then con-245

struct a new transcript T ′ by replacing wi in T̃ with246

ck (Line 10). The new transcript is then synthe-247

sized into speech using G(T ′) and evaluated by the248

anti-spoofing model to obtain an updated bona-find249

prediction score p′ (Line 11). The best replacement250

candidate ck is one that best maximizes p′ while251

satisfying all constraints listed in Eq. (3) (Line252

12-15, Alg. 1).253

Step 3: Semantic and Syntax Preservation. We254

factorize the boolean check SIM(T, T̃ ) (Eq. 3) to255

(1) syntactic and (2) semantic preservation. To256

check for syntactic preservation, we only accept257

a replacement w̃i only if its part-of-speech (POS)258

function in T̃ preserves that of wi in the original259

transcript T . To check for semantic preservation,260

we ensure that the cosine similarity, denoted as261

cos(·), between semantic vectorized representa-262

tions of T and the current T̃ embed using the popu-263

lar Universal Sentence Encoder (USE) (Cer et al.,264

2018), denoted as fembed(·), is at least δ threshold:265

cos
(
fembed(T ), fembed(T̃ )

)
≥ δ (2)266

Overall, our framework is model-agnostic and267

does not require access to internal parameters or268

gradients of the target AAS, making it applicable269

in practical black-box settings where we only have270

query access to the AAS. By leveraging linguistic271

variability at the transcript level while enforcing272

functional constraints, the proposed method is able273

to systematically probe and exploit the linguistic274

sensitivity of end-to-end audio anti-spoofing detec-275

tors.276

5 Experiments277

5.1 Set-up278

Datasets. We evaluate our algorithm on a to-279

tal of 1,439 test transcripts from the deepfake280

speech VoiceWukong dataset (Yan et al., 2024),281

statistics of which is provided in Table A2.282

VoiceWukong is constructed based on the English283

VCTK dataset (Yamagishi et al., 2019) and is re-284

leased under the Creative Commons Attribution-285

NonCommercial 4.0 International Public License,286

with which we comply by using the data exclu-287

sively for research purposes. To better reflect real-288

world attack scenarios, we restrict our evaluation289

to transcripts having at least 10 tokens.290

Anti-spoofing Detectors. We use three open- 291

source anti-spoofing models: AASIST-2 (Tak et al., 292

2022), CLAD (Wu et al., 2024), RawNet-2 (Tak 293

et al., 2021), and two commercially available deep- 294

fake speech detection APIs, which will be refereed 295

using pseudonyms API-A and API-B. 296

Table A3 presents the precision and recall scores 297

for bona-fide and spoof prediction across all mod- 298

els. Notably, AASIST-2 achieves the most balanced 299

and robust detection, with high precision and re- 300

calls. In contrast, CLAD and RawNet-2 show com- 301

paratively lower and more variable performance. 302

Commercial detectors exhibit much lower bona- 303

fide recall, indicating a tendency to misclassify 304

legitimate speech as spoofed. 305

Text-to-Speech Models. We employ Kokoro TTS, 306

a lightweight high-quality, and community-known 307

model, capable of generating 10K audio in only 308

832 seconds on an NVIDIA A100 GPU. For voice 309

cloning TTS, we use Coqui TTS (having over 39K 310

stars on GitHub) to replicate the voices of four 311

well-known individuals. Additionally, we evaluate 312

F5 TTS (Chen et al., 2024), a recently proposed 313

SOTA model with best-in-class generation quality. 314

For commercial TTS, we employ OpenAI TTS due 315

to its popularity and low cost. 316

Word Perturbation Methods. We adapt four word 317

perturbation strategies for Step 2 of Alg. 1 and Tex- 318

tAttack framework (Morris et al., 2020), including 319

PWWS (Ren et al., 2019), which swaps words us- 320

ing WordNet; TextFooler (Jin et al., 2020), which 321

substitutes words based on contextual word em- 322

beddings while respecting part-of-speech and fil- 323

tering stop words; BAE (Garg and Ramakrishnan, 324

2020), which leverages BERT to propose plausible 325

replacements; and BERTAttack (Li et al., 2020), 326

which also uses BERT to generate adversarial sub- 327

stitutions. These strategies cover most of the word 328

perturbation methods in adversarial NLP literature. 329

Metrics. We report the Original Accuracy (OC), 330

Accuracy Under Attack (AUA) of the target AAS 331

on the synthesized spoof samples. We also measure 332

Attack Success Rate (ASR) or the percentage of 333

spoof audio out of the tested transcripts that were 334

able to flip the original correct spoof predictions 335

of the target AAS detector. We also report the se- 336

mantic preservation score (COS) calculated via Eq. 337

(2) and standardized to 0-100% scale. Intuitively, 338

the higher the ASR, the lower AUA, and the higher 339

the COS, the better an attack is able to preserve the 340

original transcripts’ meaning. 341
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Text-to-Speech AASIST-2 CLAD RawNet-2
OC↑ AUA↓ ASR↑ COS↑ OC↑ AUA↓ ASR↑ COS↑ OC↑ AUA↓ ASR↑ COS↑

Kokoro (British Male) 95.1% 39.9% 58.1% 90.5% 96.9% 43.9% 54.7% 91.7% 100.0% 98.9% 1.1% 89.5%
Kokoro (British Female) 92.4% 30.4% 67.1% 91.3% 97.7% 62.4% 36.2% 90.4% 92.4% 56.9% 38.4% 90.4%
Kokoro (American Male) 90.4% 37.9% 58.0% 91.1% 83.3% 43.3% 56.6% 91.5% 100.0% 100.0% 0.0% 88.2%
Kokoro (American Female) 92.2% 32.6% 64.6% 91.0% 98.3% 32.6% 66.9% 92.1% 83.2% 20.3% 75.6% 93.3%

Coqui (Donald Trump) 85.5% 25.7% 69.9% 93.2% 98.9% 62.0% 37.3% 92.3% 99.8% 88.4% 11.4% 90.2%
Coqui (Elon Musk) 98.0% 75.9% 22.5% 90.9% 98.4% 62.1% 36.9% 91.1% 100.0% 99.9% 0.1% 89.7%
Coqui (Taylor Swift) 94.4% 17.0% 82.0% 92.9% 95.1% 20.0% 79.0% 92.8% 99.7% 88.2% 11.5% 89.5%
Coqui (Oprah Winfrey) 98.9% 79.0% 20.1% 91.5% 99.7% 99.7% 0.0% 90.5% 95.8% 86.2% 9.9% 91.0%

F5 (Male) 88.5% 33.4% 62.2% 92.8% 93.2% 7.9% 91.6% 94.6% 99.4% 78.0% 21.5% 90.7%

Table 3: Open-source model results. Bold values indicate the TTS-voice pair that is most effective at attacking
(ASR) each detector model.

We refer the readers to the Appendix for addi-342

tional implementation details.343

5.2 Results344

5.2.1 Attacking Open-Source Detectors345

Table 3 summarizes the average performance346

of three open-source anti-spoofing detectors:347

AASIST-2, CLAD, and RawNet-2 under adversar-348

ial attacks on synthetic speech generated from a349

variety of TTS models across four word pertur-350

bation strategies (PWWS, TextFooler, BAE, and351

BERTAttack), totaling 108 experiments.352

Overall Linguistic Sensitivity. All three detectors353

show a marked reduction in AUA, suggesting that354

adversarially perturbed transcripts can noticeably355

degrade anti-spoofing performance while consis-356

tently maintaining high semantic preservation close357

to or higher than 90%. Consequently, ASR is often358

substantial, reaching as high as 82%, specially for359

certain voice profiles.360

Voice Gender Effect. Overall, female voices ex-361

hibit a higher ASR than male voices across both de-362

tectors and TTS systems. For example, for Kokoro363

TTS voices, British Female and American Female364

identities consistently yield higher ASRs than their365

male counterparts, often accompanied by sharply366

lower AUA. This implies that spoof female voices367

are more prone to become undetected under lin-368

guistic adversarial manipulations.369

Notable Exceptions. Some voice profiles are no-370

tably resistant to attack. For instance, Coqui TTS371

voice for Oprah Winfrey shows almost zero ASR372

on both CLAD (0.02%), but this phenomenon does373

not repeat with other detectors. Similarly, the374

RawNet-2 detector demonstrates strong robustness375

to some male voice profiles, such as Kokoro TTS376

(British Male and American Male) and Coqui Elon377

Musk voice cloning, where the ASR only reaches378

OC↑ AUA↓ ASR↑ COS↑
API-A - Coqui 100.0% 98.0% 2.0% 85.7%
API-A - F5 99.0% 70.0% 29.3% 86.2%
API-A - Kokoro 100.0% 74.0% 26.0% 84.1%
API-A - OpenAI 95.0% 32.0% 66.3% 89.3%

API-B - Coqui 100.0% 100.0% 0.0% 87.0%
API-B - F5 100.0% 100.0% 0.0% 87.3%
API-B - Kokoro 100.0% 100.0% 0.0% 80.8%
API-B - OpenAI 100.0% 96.0% 4.0% 86.3%

CLAD - OpenAI 86.0% 4.0% 95.3% 93.4%

Table 4: Commercial Anti-spoofing Detectors Results

(1.06% and 0.00%) and 0.14%, respectively, in- 379

dicating that linguistic sensitivity of an AAS is 380

TTS-specific and some detector-voice combina- 381

tions are far less susceptible to transcript-based 382

attacks. This also validates our AAS-TTS pair lin- 383

guistic sensitivity formulation in Sec. 3. We later 384

show that these voice-detector combinations have 385

nearly perfect Audio Encoder Similarity (Fig. 2), 386

meaning that audio encoders of the TTS and the 387

detector are more or less encoding similar informa- 388

tion. 389

5.2.2 Attacking Commercial Detectors 390

Table 4 presents the attack results on commer- 391

cial AASs when paired with both commercial 392

and non-commercial TTS models. To conserve 393

API usage and cost, each experiment applies only 394

the strongest attack method identified in prior ex- 395

periments (TextFooler), and evaluates 100 items 396

that were randomly sampled to maintain the same 397

length distribution as the main test set. For each 398

TTS-detector pair, we attack the voice profile with 399

the highest original accuracy (OC) to demonstrate 400

the lower bound effectiveness in the hardest-case 401

scenario. For OpenAI’s TTS, we choose CLAD 402

which has the highest original accuracy among the 403

open-source models. 404

For API-A, we observe a substantial drop in de- 405
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tection accuracy under attack when pairing with406

most TTS models except Coqui. While its OC is407

nearly perfect across all voices, adversarial attack408

reduces AUA to as low as 32% when paired with409

OpenAI TTS, resulting in a high attack success410

rate (ASR) of 66.3%. Notably, API-A is vulnerable411

when tested with realistic, high-quality TTS syn-412

thesis. API-B, in contrast, retains perfect detection413

(AUA = 100%) for Coqui, F5, and Kokoro TTS,414

and only exhibits a minor decrease (AUA = 96%,415

ASR = 4%) with OpenAI TTS. However, Table A3416

reveals this robustness is partly due to a strong bias417

toward labeling all samples as spoof, with poor418

bona-fide recall and moderate spoof precision. For419

the open-source CLAD model evaluated on Ope-420

nAI TTS, adversarial attack drops the accuracy421

from 86% to just 4%, yielding the highest ASR422

(95.3%) among all tested scenarios. These findings423

highlight the concerning vulnerability to linguis-424

tic sensitivity of commercial detectors faced when425

with high-fidelity synthetic speech.426

6 Feature Analysis427

Beyond providing empirical validation on our ini-428

tial hypothesis that audio anti-spoof detectors are429

sensitive to small linguistic changes in the audio’430

underlying transcripts, this section aims to investi-431

gate and analyze what factors and how much they432

associate with varying anti-spoofing detectors’ de-433

cisions under adversarial attacks. Particularly, we434

extract linguistic, acoustic, and model-level fea-435

tures from 108 open-source attack experiments,436

utilize logistic regression analysis, and train predic-437

tive models to estimate the bona-fide probability of438

perturbed inputs. Formulations of all features are439

provided in the Appendix.440

6.1 Feature Engineering441

We first seek to understand how linguistic features442

(LF) at transcript-level shift under adversarial at-443

tacks.444

LF1. Perturbed Percentage measures the fraction445

of modified words in a transcript; higher values446

indicate more extensive lexical changes.447

LF2. Readability Difference quantifies the change448

in reading comprehension difficulty between the449

original and perturbed transcripts using the Dale-450

Chall Readability Score.451

LF3. Semantic Similarity assesses the similar-452

ity in meaning between the original and perturbed453

coef std err z P>|z|

Perturbed Percentage -0.3507 0.009 -39.31 0.000
∆ Readability 0.0352 0.007 4.69 0.000
∆ PPL 0.0758 0.009 8.48 0.000
∆ Tree Depth 0.0125 0.007 1.76 0.077

∆ Duration 0.0748 0.008 8.89 0.000
DTW Distance 0.2063 0.008 26.73 0.000
∆ Phoneme PPL -0.0112 0.007 -1.54 0.122
∆ Content Enjoyment 0.0536 0.013 4.18 0.000
∆ Content Usefulness 0.0679 0.021 3.17 0.001
∆ Production Complexity 0.0110 0.010 1.12 0.264
∆ Production Quality 0.0307 0.017 1.82 0.069

Audio Encoder Similarity -0.9013 0.011 -81.60 0.000
Spoof F1 3.1254 0.159 19.60 0.000
Bona-fide F1 -2.5911 0.159 -16.25 0.000

Table 5: Logistic regression feature analysis for bona-
fide detection on adversarial samples. ∆ is the differ-
ence and Semantic Similarity feature is removed due
to the high Variance Inflation Factor to avoid multi-
collinearity.

transcripts using Universal Sentence Encoder em- 454

beddings, or the COS evaluation metric. 455

LF4. Perplexity Difference measures the change 456

in perplexity between the original and perturbed 457

transcripts. 458

LF5. Syntactic Complexity Difference measures 459

the change in maximum syntactic tree depth be- 460

tween the original and perturbed transcripts. 461

Given that text-level changes can propagate to 462

measurable differences at the acoustic level, we 463

further investigate how variations in several acous- 464

tic features (AF) contribute to the performance of 465

anti-spoofing detectors. 466

AF1. DTW Distance utilizes Dynamic Time Warp- 467

ing to measure the alignment cost between the mel 468

spectrograms of the original and perturbed audio. 469

AF2. Duration Difference captures the difference 470

in audio length. 471

AF3. Phoneme Perplexity Difference measures 472

the corresponding change in phoneme sequence 473

perplexity, calculated via the CharsiuG2P (Zhu 474

et al., 2022) T5-based model. 475

AF4. Aesthetics Difference measures the shifting 476

aesthetics computed by Meta Audiobox Aesthetics 477

(Tjandra et al., 2025) which includes four auto- 478

matic quality assessment measures: Content Enjoy- 479

ment (CE), Content Usefulness (CU), Production 480

Complexity (PC), Production Quality (PQ). 481

For model-level features (MF), we propose: 482

MF1. Audio Encoder Similarity(AES) metric 483

quantifies how closely synthesized audios of the 484

same voice cluster in the detector’s representation 485
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Figure 2: Feature impact on bona-fide probability prediction. A positive effect means the feature increases the
likelihood of a perturbed item being classified as bona-fide.

space. A high AES score indicates that the detec-486

tor perceives all TTS-generated audio for a given487

voice as acoustically similar, or being able to cap-488

ture them as originally from the same voice profile,489

which may enhance robustness against transcript-490

level adversarial attacks.491

MF2, MF3. Spoof and bona-fide F1. Addition-492

ally, we include spoofed and bona-fide F1 scores493

(Table A3) as model-level features to analyze how494

pre-existing biases influence behavior under adver-495

sarial attacks. Notably, if these features can predict496

attack outcomes, they are especially useful because497

they can be computed before any adversarial per-498

turbation, guiding the selection or development of499

more robust anti-spoofing models.500

6.2 Analysis Results501

Table 5 presents the results of a logistic regres-502

sion analysis predicting the bona-fide probability503

for adversarial audio samples using the engineered504

features.505

Linguistic Features Impact. Several features dis-506

play significant associations with the detector’s re-507

sponse to adversarial perturbations with statistical508

significance. Notably, the proportion of perturbed509

words in a transcript is negatively correlated with510

bona-fide detection, indicating that increasing lexi-511

cal modifications decreases the likelihood that the512

detector classifies the input as bona-fide. Syntactic513

complexity differences are less significant, indi-514

cating that deep syntactic restructurings are less515

impactful than surface-level wording and fluency516

changes. PPL difference and readability difference517

are both positively correlated with bona-fide prob-518

ability. The trends in Fig. 2 suggests that when 519

the perturbed transcript exhibits greater linguis- 520

tic complexity than the original, the adversarial 521

sample is more likely to be classified as bona-fide. 522

This leads to an assumption that the disparities in 523

linguistic features between spoofed and bona-fide 524

training samples (Table A1) might have introduced 525

linguistic vulnerabilities that can be exploited by 526

adversarial attack algorithms. 527

Acoustic Features Impact. The DTW distance 528

between mel-spectrograms and the duration dif- 529

ference indicate that greater spectral or temporal 530

deviations between original and perturbed audio 531

samples are associated with higher bona-fide prob- 532

abilities (trends in Fig. 2). In contrast, the effect of 533

phoneme perplexity difference is not statistically 534

significant, suggesting that changes in phoneme- 535

level predictability are less associated with varia- 536

tions in acoustic realization, such as spectral and 537

durational differences. The positive correlations 538

observed for Content Enjoyment and Content Use- 539

fulness suggest that enhanced emotional and artis- 540

tic qualities in perturbed audio may increase its 541

likelihood of deceiving anti-spoofing detectors. 542

Model-Level Features Impact. AES provides the 543

strongest predictive signals for susceptibility to ad- 544

versarial attacks. AES is negatively associated with 545

bona-fide prediction, implying that models that pro- 546

duce highly clustered audio embeddings for a given 547

TTS and voice are less likely to recognize perturbed 548

inputs as bona-fide. Notably, as shown in Fig. 2, 549

when AES approaches 100%, there is a signifi- 550

cant reduction in the likelihood of attack success. 551

Additionally, the original detector F1 scores on 552
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Transcript Bona-fide

Fraud: Anne, I need to bebecome direct. . . . I need your help immediatelysuccinctly. 0.2 −→ 69.7
Victim: Brad? What is it? You sound serious. N/A
Fraud: I’m in the hospitalconvalescent. It’s serious. KidneyLiver cancer. They needcrucial to . . . 0.2 −→ 62.4
Victim: Cancer? Oh no, Brad, I’m so sorry to hear that. What kind of problem with funds? Don’t you? N/A
Fraud: My accounts are frozen. . . . the courtsjudiciary have tied up everything. . . hospitaloutpatient bill. 0.4 −→ 90.3
Fraud: The doctors need paymentreimbursement now to proceed with this vital step. . . . 0.3 −→ 73.1
Victim: Me? But I... I’m not a millionaire, Brad. How much do they need? N/A
Fraud: . . . It’s 830,000 euros. I knowunderstand it’s a huge ask, Anne, but my life could depend on this. 0.7 −→ 58.2
Victim: 830,000 euros?! That’s an enormous sum. But how would I even? And where would I send it? N/A

Table 6: Illustration of how adversarial transcript attacks on Brad Pitt voice cloning scam enable the attacker to
significantly undermine a commercial audio anti-spoof detector.

Model Precision Recall F1 Score

Logistic Regression 66.82% 71.54% 69.10%
XGBoost 74.70% 78.39% 76.50%
Random Forest 64.28% 76.88% 70.02%
SVM (poly kernel) 46.83% 97.00% 63.16%
LightGBM 72.98% 77.00% 74.94%
AdaBoost 70.30% 77.82% 73.87%

Table 7: Performance of approximating anti-spoof detec-
tor’s bona-fide prediction of various predictive models
built on our engineered features.

bona-fide and spoofed samples have the highest-553

magnitude coefficients, indicating that initial model554

bias in spoof discrimination translates directly into555

vulnerability or robustness under adversarial condi-556

tions.557

Table 7 further shows how predictive models558

built on our engineered features can effectively559

approximate the outcomes of the detector’s deci-560

sions. Notably, XGBoost achieves an F1 score of561

up to 76.50%, with several other models perform-562

ing in the 69% to 74% range. This shows that these563

models can enable the development of grey-box or564

black-box adversarial attacks where attacker access565

to the actual detector is restricted or limited. By566

optimizing transcript modifications based on proxy567

predictions from the predictive models, adversaries568

can effectively attack audio anti-spoofing systems569

even without full transparency of the detector, un-570

derscoring the urgent need for more robust and571

resilient defenses.572

7 Case Study: Deepfake Voice Cloning573

Table 6 presents a simulated case study adapt-574

ing from the recent, notorious Brad Pitt imper-575

sonation scam where adversarial perturbations are576

applied to the fraudster’s dialogue generated by577

ChatGPT and synthesized using the SOTA F5 TTS578

voice-cloned model. The transcripts illustrate the579

original and perturbed words, with correspond-580

ing bona-fide detection probabilities reported from 581

API-A commercial anti-spoofing detector. In all 582

tested exchanges, the unperturbed fraud utterances 583

are assigned extremely low bona-fide probabil- 584

ities (< 1%), suggesting effective spoof detec- 585

tion. However, after targeted adversarial pertur- 586

bation of key lexical items (e.g., “be”→“become”, 587

“hospital”→“convalescent”), the bona-fide proba- 588

bility rises dramatically, with post-attack scores 589

ranging from 58.2% to as high as 90.3%. Notably, 590

even minimal lexical changes can evade commer- 591

cial detectors, flipping the label from clear spoof to 592

likely bona-fide. 593

These findings demonstrate the concerning real- 594

world risks of transcript-level adversarial attacks in 595

voice cloning scenarios, highlighting the urgency 596

for developing more robust anti-spoofing mecha- 597

nisms that can withstand subtle semantic and lexi- 598

cal manipulations. 599

8 Conclusion 600

This work demonstrate that SOTA audio anti- 601

spoofing systems are vulnerable to transcript-level 602

linguistic nuances. By systematically applying se- 603

mantic preserving perturbations to transcripts, we 604

show that even subtle linguistic changes can sig- 605

nificantly degrade detection accuracy in both open- 606

source and commercial deepfake detectors. Our 607

experiments and feature analyses reveal that these 608

vulnerabilities are driven by both linguistic com- 609

plexity and characteristics of the model’s learned 610

audio representations. This underscores the need 611

for anti-spoofing systems to consider linguistic vari- 612

ation, not just acoustics. For future work, we plan 613

to further investigate the interplay between model 614

architecture, training data, and linguistic features 615

that contribute to adversarial susceptibility, with the 616

goal of guiding more comprehensive and resilient 617

detection strategies. 618
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Limitation619

One limitation of our work is the lack of exper-620

imentation on false positive cases, such as those621

involving non-native speakers who may stutter or622

use incorrect wording during conversations. These623

effects can act as natural adversarial attacks on624

the transcript and potentially reduce bona-fide de-625

tection accuracy. Additionally, vocalizations such626

as laughter, giggling, and chuckling, which may627

enhance the enjoyment and naturalness of gener-628

ated audio, are not addressed in this study; these629

elements could also serve as another modality for630

transcript-based adversarial attacks.631

Our experiments are primarily limited to English-632

language data, leaving open the question of how633

linguistic attacks generalize to other languages and634

multilingual TTS systems. Diverse syntactic and635

morphological structures in non-English languages636

may uniquely impact anti-spoofing system robust-637

ness, which remains unexplored in this work.638

Furthermore, although the linguistic perturba-639

tions in our experiments are constrained to retain640

semantic meaning, we do not measure their de-641

tectability by humans or plausibility in real conver-642

sational contexts. User studies are needed to as-643

sess whether such adversarial modified transcripts644

sound unnatural or prompt suspicion among human645

listeners.646

Broader Impacts and Potential Risks647

By uncovering vulnerabilities related to linguistic648

perturbations, our findings encourage audio anti-649

spoofing research to move beyond acoustic analysis650

and incorporate linguistic robustness into system651

design and evaluation. This insight can directly652

inform the development of safer, more resilient653

voice authentication and verification products.654

Our methodology highlights the importance of655

adversarial testing and “red teaming” in the respon-656

sible development of AI security systems. This657

proactive approach enables the community to iden-658

tify and mitigate attacks before they are exploited659

in practice, ultimately safeguarding critical voice-660

driven infrastructure.661

This research is conducted to advance audio se-662

curity and raise awareness of vulnerabilities in cur-663

rent anti-spoofing systems. The authors are com-664

mitted to promoting social good and responsible665

AI development, with no intention of enabling any666

malicious or unethical applications of these find-667

ings.668

However, by publicly revealing specific attack 669

strategies and demonstrating their effectiveness, 670

our work could inadvertently lower the barrier for 671

malicious actors to evade anti-spoofing systems. 672

Additionally, making our adversarial techniques 673

and code openly available—while essential for re- 674

producibility and further research—introduces the 675

risk that these methods might be misused for fraud- 676

ulent purposes. 677
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Male Voice Female Voice
Spoof Bona-fide Spoof Bona-fide

E[Tokens] 7.85 7.08 9.09 6.92
E[Phonemes] 30.09 27.26 35.56 26.89
E[Readability] 6.27 6.26 6.89 6.60
E[TokenPPL] 100.12 96.18 94.58 96.20
E[PhonePPL] 1.0461 1.0458 1.0460 1.0460

Table A1: ASVSpoof 2019 LA statistics. All values is
statistically significant (p− value < 0.001). E[·] is the
average value of that metric, and PPL is perplexity.

A Dataset statistics820

A.1 ASVSpoof 2019 statistics821

Table A1 summarizes the key linguistic and struc-822

tural statistics of the ASVSpoof 2019 LA training823

dataset, segmented by speaker gender (male and fe-824

male) and ground-truth label (spoof vs. bona-fide).825

For each group, we report the average number of826

tokens and phonemes per utterance, the average827

readability score (which reflects the linguistic com-828

plexity of the transcripts), and perplexity values829

computed at both the token and phoneme levels.830

Notably, all reported values are statistically sig-831

nificant (p-value < 0.001), suggesting consistent832

differences between spoof and bona-fide samples833

across these linguistic features. These statistics834

provide critical insight into the dataset composi-835

tion, which may influence both the performance836

and the generalization capacity of anti-spoofing837

models during training and evaluation.838

A.2 VoiceWukong dataset statistics839

Table A2 presents key statistical features of the840

VoiceWukong dataset used in our experiments. In841

addition to average transcript length in tokens and842

phonemes, we report average readability scores,843

which provide an estimate of the linguistic com-844

plexity of the dataset’s transcripts, as well as token-845

level and phoneme-level perplexity (PPL), which846

serve as measures of sequence unpredictability.847

These features offer a comprehensive overview of848

the structural and linguistic properties of the eval-849

uation data, and help contextualize the challenges850

involved for both TTS synthesis and anti-spoofing851

detection.852

B Equations and Results853

B.1 Implementation Details854

For open-source detectors, instead of fine-tuning855

models for each specific TTS-generated voice,856

Feature Value

Average Tokens 11.05
Average Phonemes 42.46
Average Readability 7.28
Token PPL 43.86
Phoneme PPL 1.0497

Table A2: VoiceWukong dataset features such as read-
ability and perplexity.

we adapt them using batch normalization calibra- 857

tion (Shomron and Weiser, 2020) on a small set that 858

does not overlap the evaluation data, which shifts 859

the mean and variance of the feature distributions 860

to better match those of the current TTS system 861

until detection accuracy exceeds 90%. We argue 862

that retraining on every possible voice is infeasible, 863

given the potentially over 8 billion unique speak- 864

ers worldwide; however, these voices are likely to 865

share similar statistical properties in their acoustic 866

features. 867

B.2 Anti-spoof detection performance on 868

VoiceWukong dataset 869

Table A3 compares the performance of various anti- 870

spoofing detectors on the VoiceWukong dataset, 871

reporting both precision and recall for bona-fide 872

and spoofed audio. We evaluate two commercial 873

APIs (API-A and API-B) alongside several state- 874

of-the-art open-source models: RawNet-2, CLAD, 875

and AASIST-2. The results reveal considerable 876

variation in performance across different systems. 877

Notably, AASIST-2 achieves the highest and most 878

balanced precision and recall scores for both bona- 879

fide and spoofed classes, suggesting superior gen- 880

eralization capability. In contrast, the commercial 881

detectors—especially API-B—exhibit strong bias, 882

with high spoof recall but low bona-fide recall, indi- 883

cating a tendency to label most samples as spoofed. 884

These findings highlight the strengths and limita- 885

tions of existing anti-spoofing solutions on chal- 886

lenging synthetic datasets, and motivate the need 887

for further robustness against linguistic and genera- 888

tive variation. 889

B.3 Transcript-level Adversarial Attack 890

Algorithm 891

Our transcript-level adversarial attack Algorithm 1 892

identifies the most influential words in a target 893

transcript and greedily substitutes them—using 894

synonym replacement or masked language mod- 895

els—with alternatives that maximize the chance 896

12



Bona-fide Spoof
Detector Precision Recall Precision Recall

API-A 80.9% 63.0% 58.2% 77.5%
API-B 90.0% 28.1% 46.8% 95.3%

RawNet-2 89.1% 63.0% 61.3% 88.3%
CLAD 88.4% 66.7% 63.4% 86.8%
AASIST-2 90.3% 90.9% 86.1% 85.4%

Table A3: Anti-spoof detection performance compari-
son.

Algorithm 1 Adversarial Transcript Generation

1: Input: A transcript T = {w1, w2, . . . , wm},
the audio anti-spoofing detection F(·), a Text-
to-Speech model G(·), SeachMethod and
Constraints

2: Output: Adversarial transcript T̃
3: Identify the impact pi of a word wi

4: for wi in w1, w2, . . . , wm do
5: pi←F(G(T\wi

))
6: end for
7: W ← {T\w1

, T\w2
, . . . , T\wm

}, sorted by de-
scending values of pi

8: T̃ ← T , p̃←F(G(T̃ ))
9: for T\wi

inW do
10: Candidates← Search(T\wi

)
11: for ck in Candidates do
12: T ′← Replace ck with wi in T̃
13: p′←F(G(T ′))
14: if SIM(T , T̃ ) AND p′ > p̃ then
15: T̃ ← T ′, p̃← p′

16: end if
17: end for
18: end for
19: return T̃

of misclassification by the anti-spoofing system,897

while ensuring both semantic and syntactic fidelity898

through embedding similarity and part-of-speech899

checks. This model-agnostic, black-box frame-900

work exploits the linguistic sensitivity of audio901

anti-spoofing systems without requiring access to902

internal model parameters, demonstrating the prac-903

tical risks posed by transcript-level adversarial per-904

turbations.905

B.4 Additional Results906

We provide experimental results for AASIST-2 in907

Table A4, CLAD in Table A5, and Rawnet-2 in908

Table A6.909

Voice Method OC AUA ASR COS

Donald Trump BAE 85.5 27.3 68.0 93.3
Donald Trump BertAttack 85.5 21.6 74.7 93.7
Donald Trump PWWS 85.5 35.7 58.2 94.4
Donald Trump TextFooler 85.5 18.3 78.6 91.3

Elon Musk BAE 98.0 78.3 20.1 91.7
Elon Musk BertAttack 98.0 76.3 21.4 92.3
Elon Musk PWWS 98.0 79.8 19.1 93.6
Elon Musk TextFooler 98.0 70.3 28.3 87.5

Oprah Winfrey BAE 98.9 79.0 20.1 91.8
Oprah Winfrey BertAttack 98.9 77.1 22.4 92.5
Oprah Winfrey PWWS 98.9 86.2 12.9 94.1
Oprah Winfrey TextFooler 98.9 71.9 27.3 88.6

Taylor Swift BAE 94.4 21.5 77.2 92.7
Taylor Swift BertAttack 94.4 6.2 93.4 94.2
Taylor Swift PWWS 94.4 32.9 65.2 93.8
Taylor Swift TextFooler 94.4 7.5 92.0 91.0

F5 Male BAE 88.5 32.9 62.8 92.8
F5 Male BertAttack 88.5 27.4 69.0 93.6
F5 Male PWWS 88.5 41.5 53.1 94.4
F5 Male TextFooler 88.5 31.9 64.0 90.3

American Female BAE 92.2 37.3 59.5 91.7
American Female BertAttack 92.2 26.9 70.8 92.3
American Female PWWS 92.2 52.5 43.1 92.6
American Female TextFooler 92.2 13.9 84.9 87.4
American Male BAE 90.4 40.3 55.4 92.3
American Male BertAttack 90.4 35.7 60.5 92.0
American Male PWWS 90.4 58.6 35.2 93.1
American Male TextFooler 90.4 17.2 81.0 87.0
British Female BAE 92.4 39.2 57.6 92.2
British Female BertAttack 92.4 22.4 75.7 92.1
British Female PWWS 92.4 47.5 48.5 93.2
British Female TextFooler 92.4 12.5 86.5 87.8
British Male BAE 95.1 41.8 56.0 91.5
British Male BertAttack 95.1 33.8 64.4 91.4
British Male PWWS 95.1 62.1 34.8 92.3
British Male TextFooler 95.1 21.9 77.0 86.9

Table A4: Complete experimental results on AASIST-2
detector

B.5 Linguistic Feature Equations 910

Equation 3: ρperturbed quantifies the ratio of words 911

that have been perturbed in the transcript. 912

ρperturbed =
Nperturbed

Nwords
(3) 913

Equation 4: ∆read measures the change in tran- 914

script readability after perturbation. 915

∆read = readperturbed − readoriginal (4) 916

Equation 5: simsemantic computes the cosine 917

similarity between the semantic embeddings of the 918

perturbed and original transcripts. 919

simsemantic = cosine(Embperturbed, Emboriginal)
(5) 920

Equation 6: ∆PPL captures the difference in 921

language model perplexity before and after pertur- 922

bation, as measured by Llama 3. 923

∆PPL = PPLperturbed − PPLoriginal (6) 924
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Voice Method OC AUA ASR COS

Donald Trump BAE 98.8 63.7 35.6 91.7
Donald Trump BertAttack 98.8 48.2 51.3 92.1
Donald Trump PWWS 99.0 74.2 25.1 93.0
Donald Trump TextFooler 99.0 46.2 53.6 91.7

Elon Musk BAE 98.5 69.8 29.1 91.9
Elon Musk BertAttack 98.1 47.5 51.6 91.4
Elon Musk PWWS 98.5 80.4 18.4 93.7
Elon Musk TextFooler 98.5 50.7 48.5 87.5

Oprah Winfrey BAE 99.7 99.7 0.0 91.3
Oprah Winfrey BertAttack 99.7 99.7 0.0 91.0
Oprah Winfrey PWWS 99.7 99.7 0.1 93.3
Oprah Winfrey TextFooler 99.7 99.7 0.0 86.4

Taylor Swift BAE 95.1 24.3 74.4 92.9
Taylor Swift BertAttack 95.1 14.4 84.8 93.6
Taylor Swift PWWS 95.1 34.5 63.7 93.8
Taylor Swift TextFooler 95.1 6.6 93.1 91.1

F5 Male BAE 93.2 9.8 89.5 94.5
F5 Male BertAttack 93.2 2.9 96.9 95.4
F5 Male PWWS 93.2 16.6 82.2 94.5
F5 Male TextFooler 93.2 2.1 97.7 93.9

American Female BAE 98.3 37.9 61.4 92.3
American Female BertAttack 98.3 27.3 72.2 92.8
American Female PWWS 98.3 48.0 51.2 93.8
American Female TextFooler 98.3 17.1 82.6 89.7
American Male BAE 99.8 64.5 35.4 91.1
American Male BertAttack 99.8 58.9 41.0 90.9
American Male PWWS 34.0 0.0 100.0 98.8
American Male TextFooler 99.8 49.8 50.1 85.2
British Female BAE 97.7 67.3 31.1 91.1
British Female BertAttack 97.7 57.8 40.8 91.0
British Female PWWS 97.7 77.7 20.5 93.4
British Female TextFooler 97.7 46.6 52.3 86.0
British Male BAE 96.9 48.4 50.0 92.2
British Male BertAttack 96.9 39.2 59.5 91.8
British Male PWWS 96.9 59.1 39.0 93.6
British Male TextFooler 96.9 28.9 70.2 89.2

Table A5: Complete experimental results on CLAD
detector

Equation 7: ∆syntactic reflects the change in syn-925

tactic tree depth between the perturbed and original926

transcripts.927

∆syntactic = Depthperturbed−Depthoriginal (7)928

B.6 Acoustic Feature Equations929

Equation 8: dtwdistance calculates the dynamic930

time warping (DTW) distance between the mel-931

spectrograms of the perturbed and original audio.932

933

dtwdistance = DTW(melperturbed,meloriginal)
(8)934

Equation 9: ∆duration shows the change in dura-935

tion between the perturbed and original synthesized936

speech.937

∆duration = Dperturbed −Doriginal (9)938

Equation 10: ∆PhonePPL measures the change939

Voice Method OC AUA ASR COS

Donald Trump BAE 99.8 88.6 11.2 91.2
Donald Trump BertAttack 99.8 87.5 12.7 89.8
Donald Trump PWWS 99.8 91.2 8.6 93.0
Donald Trump TextFooler 99.8 85.3 14.5 86.3

Elon Musk BAE 100.0 99.9 0.1 90.8
Elon Musk BertAttack 100.0 99.9 0.1 91.5
Elon Musk PWWS 100.0 99.9 0.1 93.1
Elon Musk TextFooler 100.0 99.8 0.2 85.2

Oprah Winfrey BAE 95.8 86.7 9.4 91.9
Oprah Winfrey BertAttack 95.8 84.1 12.2 91.4
Oprah Winfrey PWWS 95.8 90.8 5.2 93.7
Oprah Winfrey TextFooler 95.8 83.4 12.9 87.0

Taylor Swift BAE 99.7 93.3 7.4 92.3
Taylor Swift BertAttack 99.7 82.1 18.3 87.5
Taylor Swift PWWS 99.7 94.8 4.9 93.2
Taylor Swift TextFooler 99.7 81.7 18.1 85.8

F5 Male BAE 99.4 79.1 20.5 91.3
F5 Male BertAttack 99.4 69.3 30.3 91.3
F5 Male PWWS 99.4 86.0 13.6 93.6
F5 Male TextFooler 99.4 77.7 21.9 86.3

American Female BAE 83.2 21.9 73.7 93.9
American Female BertAttack 83.2 16.1 80.6 94.1
American Female PWWS 83.2 36.1 56.7 94.4
American Female TextFooler 83.2 7.0 91.6 90.7
American Male BAE 100.0 100.0 0.0 88.6
American Male BertAttack 100.0 100.0 0.0 90.6
American Male PWWS 100.0 100.0 0.0 92.9
American Male TextFooler 100.0 100.0 0.0 83.5
British Female BAE 92.4 62.2 32.7 91.8
British Female BertAttack 92.4 45.4 50.9 91.0
British Female PWWS 92.4 75.0 18.7 93.2
British Female TextFooler 92.4 45.1 51.2 85.7
British Male BAE 100.0 99.4 0.6 90.6
British Male BertAttack 100.0 96.8 3.2 90.1
British Male PWWS 100.0 99.9 0.1 92.9
British Male TextFooler 100.0 99.6 0.4 84.5

Table A6: Complete experimental results on Rawnet-2
detector

in phoneme-level perplexity after transcript pertur- 940

bation. 941

∆PhonePPL = PhonePPLperturbed−
PhonePPLoriginal

(10) 942

Equation 11: ∆CE , ∆CU , ∆PC , and ∆PQ rep- 943

resent the changes in various audio aesthetics met- 944

rics—clarity, continuity, pronunciation correctness, 945

and prosody quality—due to the perturbation. 946

∆CE = CEperturbed − CEoriginal

∆CU = CUperturbed − CUoriginal

∆PC = PCperturbed − PCoriginal

∆PQ = PQperturbed − PQoriginal

(11) 947

B.7 Audio Encoder Similarity Equation 948

We first extract acoustic embeddings for all origi- 949

nal transcripts by the detector. We then compute 950
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the centroid embedding by averaging these embed-951

dings and normalizing the result to unit length:952

c =
1

N

N∑
i=1

ei, ĉ =
c

|c|
(12)953

where ei denotes the embedding for the i-th sample954

and N is the total number of samples in the group.955

The Audio Encoder Similarity for the group is956

then defined as the average cosine similarity be-957

tween the centroid ĉ and each sample embedding:958

959

AES =
1

N

N∑
i=1

cos(êi, ĉ) (13)960
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