
Under review as a conference paper at ICLR 2024

ON THE DISCONNECT BETWEEN THEORY AND PRAC-
TICE OF OVERPARAMETRIZED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The infinite-width limit of neural networks (NNs) has garnered significant atten-
tion as a theoretical framework for analyzing the behavior of large-scale, over-
parametrized networks. By approaching infinite width, NNs effectively converge
to a linear model with features characterized by the neural tangent kernel (NTK).
This establishes a connection between NNs and kernel methods, the latter of which
are well understood. Based on this link, theoretical benefits and algorithmic im-
provements have been hypothesized and empirically demonstrated in synthetic
architectures. These advantages include faster optimization, reliable uncertainty
quantification and improved continual learning. However, current results quanti-
fying the rate of convergence to the kernel regime suggest that exploiting these
benefits requires architectures that are orders of magnitude wider than they are
deep. This assumption raises concerns that practically relevant architectures do
not exhibit behavior as predicted via the NTK. In this work, we empirically in-
vestigate whether the limiting regime either describes the behavior of large-width
architectures used in practice or is informative for algorithmic improvements. Our
empirical results demonstrate that this is not the case in optimization, uncertainty
quantification or continual learning. This observed disconnect between theory and
practice calls into question the practical relevance of the infinite-width limit.

1 INTRODUCTION

The behavior of large-scale, overparametrized neural networks (NNs) has for a long time been poorly
understood theoretically. This is in stark contrast to their state-of-the-art performance on tasks like
image classification (He et al., 2016; Zagoruyko & Komodakis, 2016), natural language processing
(Devlin et al., 2019; Sun et al., 2019), as well as generative and sequence modeling (Brown et al.,
2020; Touvron et al., 2023). The seminal work of Jacot et al. (2018) established a link between
the evolution of NNs during training and kernel methods by considering networks with infinite
width. In this limit, NNs effectively converge to linear models with fixed features such that their
predictions are equivalent to those made by a Gaussian process (GP) model using the neural tangent
kernel (NTK). Kernel methods and GPs are theoretically well-understood (Rasmussen & Williams,
2005). Consequently, this finding has led to a flurry of research interest in the NTK with the hope of
an improved understanding of the behavior of NNs (e.g. Du et al., 2019; Zhou et al., 2020; Bowman
& Montúfar, 2022b; Mirzadeh et al., 2022).

Kernel methods enjoy several benefits which are desirable for NNs. First, training a linear model or
kernel regressor requires solving a quadratic optimization problem, which reduces to solving a linear
system with the kernel matrix evaluated pairwise at the training data (Rasmussen & Williams, 2005).
Conceptually this simplifies training significantly as the well-studied machinery of convex optimiza-
tion and numerical linear algebra can be exploited. This is in contrast to the challenges of large-scale
stochastic optimization, which compared to the convex setting suffers from slow convergence, re-
quires manual tuning, and choosing an optimizer from a long list of available methods (Schmidt
et al., 2021). Second, via the connection to GPs in the case of regression, uncertainty can be quan-
tified via the posterior covariance defined through the NTK. As for prediction, uncertainty quan-
tification then reduces to well-studied numerical methods (Rasmussen & Williams, 2005), unlike
Bayesian NNs which generally suffer from similar issues as optimization (Zhang et al., 2020; Kris-
tiadi et al., 2022a). Third, data often becomes available continually and we want to incorporate it
into the model rather than retrain from scratch. This continual learning setting in practice often

1

Under review as a conference paper at ICLR 2024

Figure 1: Infinitely-wide NN in theory and its finite-width approximation in practice.
1 The two

models make very different predictions about the data-generating latent function, suggesting that
the finite-width NN with a commonly selected architecture for real-world regression (L = 3,m =
128, P = 21M, Li et al., 2023) is not well-described by the kernel regime. Increasing the width by
an order of magnitude does not significantly improve the approximation via the empirical NTK.

leads to a drop in performance on previous tasks, known as catastrophic forgetting (McCloskey &
Cohen, 1989; Goodfellow et al., 2013). It has been observed that large-scale overparametrized net-
works forget less catastrophically (Ramasesh et al., 2022; Mirzadeh et al., 2022) and this has been
hypothesized to be a consequence of these NNs behaving according to the NTK regime. If this were
indeed the reason, worst-case forgetting could be predicted theoretically (Evron et al., 2022; 2023;
Goldfarb & Hand, 2023) and mitigated algorithmically (Bennani et al., 2020; Doan et al., 2021).

Given the advantageous network properties and algorithmic implications in terms of training, uncer-
tainty quantification, and continual learning close to the kernel regime, the question becomes when a
network architecture satisfies the necessary assumptions. Loosely speaking, most theoretical results
on NN convergence to a kernel regressor give rates of the form eO(1/p

m) in the (minimum) width of
the hidden layers m (Du et al., 2019; Lee et al., 2019; Bowman & Montúfar, 2022b). However, this
asymptotic notation suppresses a dependence on the network depth L, which is generally at least
polynomial (Arora et al., 2019) or even exponential (Bowman & Montúfar, 2022b). Even for quite
shallow networks, this requires layer widths that are orders of magnitude larger than any of the com-
mon architectures (such as WideResNets). Figure 1 illustrates, that even shallow networks, if not
sufficiently wide, can behave very differently from their infinite-width Gaussian process limit. This
prompts the important question of whether assumptions based on the kernel regime, and methods
derived thereof, apply to deep architectures that are used in practice.

Contribution In this work, we consider three areas for which the neural tangent kernel perspec-
tive on neural networks promises to be informative: optimization, uncertainty quantification and
continual learning. We empirically evaluate whether the infinite-width regime either describes the
behavior of large-width architectures used in practice or is useful for algorithm design. We find that
in all three domains, assumptions based on NTK theory do not translate to predictable phenomena or
improved performance. This disconnect between theory and practice challenges the significance of
overparametrization theory when applied to common architectures. We hope our negative findings
can serve as a call to action for theory development and as a cautionary tale for algorithm design.

Limitations Our work studies architectures that are currently being used in practice. This does
not mean that future architectures with large widths are not described well via the kernel regime.
However, achieving competitive performance with wide NNs is a challenge, likely due to reduced
representation learning (Pleiss & Cunningham, 2021; Zavatone-Veth et al., 2021; Noci et al., 2021;
Coker et al., 2022), and the NTK does not predict the scaling laws of finite-width NNs well (Vyas
et al., 2023). Finally, we do not claim that the methods we consider fail to be competitive in any

setting, rather just that their motivation via the kernel regime is unsuitable for practical architecture
choices and problems. They may work well on specific choices of models and datasets.

2 OVERPARAMETRIZATION THEORY: AN OVERVIEW

Let f : X ⇥ ⇥ ! Y be a neural network (NN) with input space X ✓ RD, output space Y ✓ RC

and parameter space ⇥ ✓ RP . Assume we linearize f around a parameter vector ✓0 2 ⇥, i.e.
f(x;✓) ⇡ flin(x;✓) := f(x;✓0) + J(x;✓0)(✓ � ✓0) (1)

1Computed via the neural-tangents library (Novak et al., 2020).

2

Under review as a conference paper at ICLR 2024

where J(x;✓0) := (@f✓(x)/@✓)|✓=✓0 2 RC⇥P . When ✓ is close to ✓0, the linear model flin(x;✓)
with features defined by the network’s Jacobian J(x;✓0) is a good approximation of f(x;✓). Con-
sider a fully connected neural network fMLP(x;✓) = hL(xL�1) defined recursively as

h`(x`�1) = W `x`�1 + b`
, x`�1(h`�1) = '(h`�1), x0 = x (2)

for ` = L, . . . , 1 with parameters ✓ = {W ` = 1/
p

m`�1V `
}

L
`=1 [{b`

}
L
`=1, s.t. V `

ij , b
`
i ⇠ N (0, 1),

layer widths m` and activation function '.2 Remarkably, Jacot et al. (2018) showed that for infinitely
wide fully connected NNs, the parameters remain sufficiently close to their initialization ✓0 during
training via gradient descent. This means we can (approximately) understand the properties of
a wide NN fMLP(x;✓) by considering a much simpler-to-understand linear model with features
defined by the Jacobian J(x;✓0) instead. Or more precisely, from a function space perspective,
in the infinite width limit the behavior of a fully connected NN is described by the (deterministic)
neural tangent kernel KNTK, defined as the limit in probability of the finite-width or empirical NTK

K
✓
eNTK(x,x

0) := J(x;✓)J(x0;✓)>
P
�! KNTK(x,x

0) as m1, . . . ,mL !1.

This is known as the linear or kernel regime. In this regime, at initialization, the implicit prior over
functions defined by the network is given by a Gaussian process GP(0,KNTK) with zero-mean and
covariance function defined by the NTK. Further, the (continuous-time) training dynamics of the
network can be described via the differential equation @tf(x;✓t) = �KNTK(x,X)rfL(f(X;✓t))
i.e. the optimization trajectory of f(x;✓) is given by kernel gradient descent with respect to the loss
function L. In the case of square loss regression on a training dataset (X,y), this is a linear ODE,
which in the limit of infinite training t!1 admits a closed-form solution. The network prediction
is equivalent to the mean function

lim
t!1

f(x;✓t) = µ⇤(x) := f(x;✓0) +KNTK(x,X)KNTK(X,X)�1(y � f(X;✓0)) (3)

of a GP posterior GP(µ⇤,K⇤), resulting from conditioning the prior GP(0,KNTK) on observations
y = f⇤(X) from the latent function f⇤ generating the data. These results for fully connected NNs
have since been extended to nearly all architectures currently used in practice, such as CNNs, RNNs,
and GNNs (Yang & Littwin, 2021).

Implications for Training, Uncertainty Quantification and Continual Learning The connec-
tion to GP regression with the NTK demonstrates why the kernel regime is powerful as a theoretical
framework. First, training a neural network simplifies to solving a linear system or equivalently a
convex optimization problem (assuming KNTK is positive (semi-)definite) since

KNTK(X,X)�1(y � f(X;✓0)) = argminv
1
2v

>
KNTK(X,X)v � (y � f(X;✓0))>v (4)

which can be solved using well-understood, fast converging algorithms from numerical analysis
(Nocedal & Wright, 2006). This is in contrast to the challenges of stochastic, non-convex optimiza-
tion (Schmidt et al., 2021). Second, one often cited limitation of NNs is their lack of uncertainty
quantification (Hein et al., 2019; Kristiadi et al., 2022b;a). The connection to the posterior mean of
a GP in the kernel regime when training to convergence (3) provides a strategy for Bayesian deep
learning (Lee et al., 2018; Khan et al., 2019), by using the posterior covariance function

K⇤(x,x
0) := KNTK(x,x

0)�KNTK(x,X)KNTK(X,X)�1
KNTK(X,x0) (5)

to quantify uncertainty. Finally, in a continual learning problem, the similarity between tasks in
the kernel regime is measured via the NTK, which in turn describes the amount of catastrophic
forgetting when training on new tasks (Doan et al., 2021).

Convergence to the Kernel Regime When should we expect a neural network’s behavior to be
well-described by the NTK? We can characterize how quickly a network approaches the kernel
regime as a function of its (minimum) width m = min`2{1,...,L�1} m`. The typical rate of conver-
gence of the finite-width NTK at initialization to the NTK is

|K
✓0
eNTK(x,x

0)�KNTK(x,x
0)| = Õ(1/p

m) (6)

2This normalized form of the weight matrices is known as the NTK parametrization (NTP).

3

Under review as a conference paper at ICLR 2024

either pointwise (Du et al., 2019; Arora et al., 2019; Huang & Yau, 2020) or uniform (Buchanan
et al., 2021; Bowman & Montúfar, 2022a;b) with high probability. These results assume an over-

parametrized NN with width m = ⌦(poly(N)) significantly exceeding the number of training
datapoints N .3 Note that the asymptotic notation in (6) suppresses a dependence on the (constant)
depth L of the NN. This dependence of the width on the depth is polynomial (e.g. m = ⌦(L6)
in Arora et al., 2019) or even exponential (Bowman & Montúfar, 2022b), which suggests that to
approach the kernel regime, a large network width is required already at moderate depth.

For most architectures, an analytical/efficient-to-evaluate expression for the NTK is not known.4
Therefore in practice, the finite-width NTK K

✓
eNTK ⇡ KNTK is used as an approximation. However

as Fig. 1 illustrates, the prediction of a finite-width NN and the associated uncertainty given by the
empirical NTK can be very different from the network’s theoretical infinite-width limit. Therefore,
making assumptions based on the kernel regime can potentially be misleading.

3 CONNECTING THEORY AND PRACTICE

To empirically study whether the predictions from the kernel regime about the behavior of over-
parametrized NNs are reproducible in architectures used in practice, we take a closer look at train-
ing, uncertainty quantification and continual learning. For each of these, the kernel regime either
makes predictions about the behavior of the network, motivates certain algorithms, or both.

3.1 TRAINING: CONDITIONS FOR FAST CONVERGENCE OF SECOND-ORDER OPTIMIZATION

The empirical risk is typically a convex function of the network output, but generally non-convex in
the network’s parameters. In addition, stochastic approximations are often necessary due to memory
constraints. However, for a NN close to the kernel regime, informally, the loss landscape becomes
more convex, since the network approaches a linear model. In fact, for square loss the problem
becomes quadratic, see (4). Using this intuition about the kernel regime, Du et al. (2019) have shown
that gradient descent, a first-order method, can achieve zero training loss in spite of non-convexity.
First-order methods, such as SGD and ADAM, are state-of-the-art for deep learning optimization
(Schmidt et al., 2021). This is in contrast to “classical” convex optimization, in which second-order
methods are favored due to their fast convergence (e.g. Nesterov, 2008; 2021). If NNs in practice are
described well theoretically via the kernel regime, this may seem like a missed opportunity, since
the near-convexity of the problem would suggest second-order optimizers to be an attractive choice.

There are multiple challenges for making second-order methods practical. They are less stable under
noise—predominant in deep learning where data is fed in mini-batches—have higher per-iteration
costs, and are often more complex to implement efficiently. Here, we investigate whether the the-
oretical argument in favor of second-order methods applies to real-world networks in that they are
sufficiently close to the kernel regime. We exclude the aforementioned additional challenges, which
amount to an entire research field (e.g. Martens & Grosse, 2015; Gupta et al., 2018; Ren & Gold-
farb, 2021), since in the overparametrization regime approximate second-order methods that over-
come these challenges can be shown to exhibit similar behavior than their deterministic counterparts
(Karakida & Osawa, 2020).

Fast Convergence of NGD in the Kernel Regime To empirically test whether (practical) NNs can
be efficiently optimized via second-order optimization as predicted by theory in the infinite-width
limit, we consider natural gradient descent (NGD). Zhang et al. (2019) studied the convergence be-
havior of NGD theoretically. They give conditions for fast convergence of finite-step NGD, which
extend to approximate NGD methods such as KFAC (Martens & Grosse, 2015). For simplicity, we
focus on the special case of NNs with scalar-valued output and mean-squared error. Consider a net-
work f(✓,x) := f(x;✓) with flattened parameters ✓ 2 RP . For a dataset {(xn, yn)}

N
n=1, we mini-

mize the empirical risk L(✓) = 1/2N kf � yk22 where f(t) := (f(✓(t),x1) . . . f(✓(t),xN))> 2
RN and y := (y1 . . . yN)>. Zhang et al. (2019) describe two conditions to ensure fast convergence
of finite-step NGD to a global minimum which apply to arbitrary architectures:

3Note, that Bowman & Montúfar (2022b) relax this requirement to m ⇡ N via the use of a stopping time.
4A fully connected neural network with ReLU activations being a notable exception (Lee et al., 2018).

4

Under review as a conference paper at ICLR 2024

102 104 106

Width

10�6

10�4

10�2

�
m

in
(G

(0
))

102 104 106

Width

103

108

1013

1018

C
�
(c

lo
se

-t
o-

li
n
ea

ri
ty

)

Toy (theory), L = 2

Toy, L = 3

Toy, L = 5

Real-world (practice), L = 10

Figure 2: Conditions for fast convergence of NGD for different NN widths and problems (dots rep-
resent medians and shaded areas represent the 25/75-quantiles over three independent initializations
and five parameter perturbations). The problems range from shallow (theory) ReLU MLP and depth-
3 and -5 ReLU MLPs on a synthetic regression task to WideResNets on a sub-set of CIFAR-10 with
N = 400 (practice). Left: Relatively small widths are sufficient to satisfy the Gram matrix condi-
tion (7) (dashed line corresponds to the theory prediction of the limiting eigenvalue �0 for the toy
problem). Right: None of the NNs achieve the required Jacobian stability (horizontal dashed line at
1/2) from (8) for any width both for synthetic and benchmark data.

1. Full row-rank of the network Jacobian J(X;✓(0)) 2 RN⇥P
at initialization, implying

�min(G(0)) > 0, (7)

where G(0) = K
✓(0)
eNTK(X,X) and restricting the trajectory to be close to initialization.5

2. Stable Jacobian, 90  C  1/2 such that 8✓ : k✓ � ✓(0)k2  ⇢ := 3ky�f(0)k2/
p

�min(G(0))

kJ(✓)� J(0)k2 
C
3

p
�min(G(0)) . (8)

The smaller C, the ‘closer’ to linear the network is to initialization, with equality for C = 0.

We can evaluate both conditions in a scalable, matrix-free fashion using standard functions of au-
tomatic differentiation frameworks (see Section A.1). As a proxy for (8), we compute C

0(✓) :=
3kJ(✓)�J(0)k2/

p
�min(G(0)) with ✓ drawn uniformly from a sphere with radius ⇢. If C 0(✓) > 1/2 for

any ✓, then C 62 [0; 1/2] and the network violates the stable Jacobian condition. Figures 2 and 3
summarize our findings which we now discuss in more detail.

Shallow ReLU Net + Synthetic Data We start with a synthetic problem for which Zhang et al.
(2019) give theoretical guarantees. We generate a regression problem with N = 16 by i.i.d. draw-
ing xn 2 R2

⇠ U([0; 1]2), ✏n 2 R ⇠ N (0, 1), and setting yn = sin(2⇡([xn]1 + [xn]2)) + 0.1✏n.
Our model is a shallow two-layer ReLU net f(x,✓) = 1/

p
mW (2)ReLU(W (1)x) where W (1)

2

Rm⇥2
⇠ N (0, ⌫2I) with ⌫ = 1, W (2)

2 R1⇥m
⇠ U({�1, 1}m). Only W (1) is trainable and

each input is normalized in the pre-processing stage, xn xn/kxnk2, to satisfy the theoretical as-
sumptions. In this setting, Zhang et al. (2019) show that m = ⌦(N4

/⌫2�4
0�3) is required for fast

convergence of NGD with probability at least 1� � and achieves an improvement of O(�0/N) over
GD.6 The Jacobian has full row-rank with high probability for m = ⌦(N log(N/�)/�0) and we empir-
ically observe a sharp increase in �min(G(0)) at relatively low widths (around m = 500) in Fig. 2.

101
2 ⇥ 101 3 ⇥ 101 4 ⇥ 101

Width

104

1010

1016

C
�
(c

lo
se

-t
o-

li
n
.) N = 400

N = 2000

Figure 3: More data decreases the Jacobian sta-
bility for WideResNet on a subset of CIFAR-10.

However, the Jacobian stabilizes with
kJ(✓)� J(0)k2 = O(m�1/6), and even
for extreme widths (up to 107) we observe that
C

0
> 1/2, and therefore C > 1/2.

Deep ReLU Net + Synthetic Data Next, we
move away from the kernel regime by adding
depth to the architecture while keeping the
same synthetic data and pre-processing. We use
two fully connected NNs, as defined in (2), with
L 2 {3, 5} layers of equal width and ReLU
activations. For these models, scaling to large

5Note, that this implicitly assumes P � N , i.e. overparametrization.
6Here �0 = �min(KNTK(X,X)) is the minimum eigenvalue of the NTK from Du et al. (2019).

5

Under review as a conference paper at ICLR 2024

widths is more expensive than for the shallow case, as the NN’s parameters grow quadratically in
m. For both depths, we observe a sharp transition in �min(G(0)) at relatively small widths (around
m = 500) that are computationally accessible. In the close-to-linearity measure, we can see that
depth increases non-linearity. While we observe a similar sharp transition in C

0 to smaller values
around m = 500 for both depths, its values remain well above 1/2.

CNN + Benchmark Data Finally, we investigate a practical architecture (WideResNet, depth L =
10) on CIFAR-10. We convert the classification task into a regression problem for class indices and
use a subset of the data. We rely on the implementation of Kuen (2017) and use its built-in widening
factor, which scales the channels of the intermediate features within a block, as a measure for the
network’s width m. In contrast to the previous cases, this net’s Jacobian has a full row rank even for
small widths. However, for larger widths attainable within our compute budget, C 0 remains many
orders of magnitude above 1/2. And the stability further deteriorates when using more data (Fig. 3).

Summary: In the kernel regime, NGD has favorable convergence over GD in theory. However,
empirically we find that the necessary conditions consistently do not hold throughout problem
scales—even for a shallow network with theoretical guarantees.

3.2 UNCERTAINTY QUANTIFICATION: NEURAL BANDITS

In sequential decision-making problems, not only predictive accuracy of a model is important, but
crucially also accurate uncertainty quantification (Lattimore & Szepesvári, 2020; Garnett, 2023).
Recently, the connection between infinitely wide NNs and GPs has been exploited to design neural
bandit algorithms, whose guarantees rely on the assumption that the surrogate model f✓t is suffi-
ciently close to the kernel regime (Zhou et al., 2020; Zhang et al., 2021; Kassraie & Krause, 2022;
Nguyen-Tang et al., 2022). We empirically test whether this assumption holds in practice.

Neural Contextual Bandits via the Kernel Regime Our goal is to sequentially take optimal
actions with regard to an unknown time-varying reward function rt(at,xt) 2 R which de-
pends on an action-context pair (at,xt) 2 {1, . . . ,K} ⇥ Rn where t = 1, . . . , T . To do
so, we learn a surrogate f✓t(at,xt) ⇡ rt(at,xt) approximating the reward from past data
Dt = {(at0 ,xt0), rt0(at0 ,xt0)}t�1

t0=1. An action eat = argmaxat
u(at,xt) is then selected based

on a utility function u which generally depends on both the prediction and uncertainty of the
neural surrogate for the reward. Overall we want to minimize the cumulative regret R(T) =PT

t=1rt(eat,xt) � rt(a⇤
t ,xt), where a

⇤
t are the optimal actions, and the reward rt(eat,xt) is only

observable once an action eat is taken. Here we use the popular UCB (Auer, 2002) utility function

u(at,xt) = f✓t(at,xt) + �t

p
var f✓t(at,xt), (9)

where �t > 0 controls the exploration-exploitation tradeoff. Due to the importance of uncertainty
quantification in the selection of an action based on u(at,xt), GPs have been used extensively as
surrogates (Krause & Ong, 2011). Here, we consider neural surrogates instead, which quantify
uncertainty via the empirical NTK at a MAP estimate ✓t. This can be thought of as a finite-width
approximation to the limiting GP in the kernel regime, or equivalently from a weight space view as
a linearized Laplace approximation (LLA, MacKay, 1992; Khan et al., 2019; Immer et al., 2021b;
Daxberger et al., 2021; Kristiadi et al., 2023b).

100 101 102 103 104

t

1010

1020

1030

�
t

NTK m = 1024

Figure 4: Setting �t via NTK theory re-
sults in overexploration in practice.

Exploration-Exploitation Trade-off The parameter �t

in (9) controlling the exploration-exploitation trade-off
strongly impacts the cumulative regret, making its choice
an important problem in practice. Recent works prove
(near-)optimal regret bounds for the neural bandit setting
by choosing �t based on the kernel regime (Zhou et al.,
2020; Kassraie & Krause, 2022). To approach the kernel
regime, the convergence results discussed in Section 2 re-
quire the width of the network m to be polynomial in the depth L and number of training data
N = t�1. This poses the question whether the proposed choice of �t is useful in practice. Here, we
consider the NeuralUCB algorithm proposed by Zhou et al. (2020), where the exploration parameter
�t = Õ(poly(1/p

m, L, t)). We find that even for shallow NNs (L = 3), �t rapidly grows very large
(see Fig. 4), which by (9) results in essentially no exploitation, only exploration. This suggests that
for �t to achieve a non-vacuous value, m must be potentially unfeasibly large.

6

Under review as a conference paper at ICLR 2024

5k 10k

t

0

5k

10k

C
u
m

.
R

eg
re

t
(�

) magic

5k 10k

t

avila

5k 10k

t

letter

5k 10k

t

covertype

5k 10k

t

bean

5k 10k

t

pendigits
Random

Const � = 0.01

Const � = 0.1

Const � = 1

Const � = 10

NTK m = 100

NTK m = 1024

ML PostHoc

ML Online

Figure 5: Cumulative regret of neural bandits with different degrees of exploration (�t)t on bench-
mark data. Setting the exploration parameter �t via NTK theory yields second-worst performance
after random search. Constant exploration achieves the best results but the optimal �t ⌘ � = 10�2

is a-priori unknown. Online marginal-likelihood (ML) calibration performs near-optimally.

1
2
3
4
5
6
7
8
9

R
a
n
k

(�
)

2.5k 5k 7.5k 10k

t

0

2k

4k

|R
(t

)
�

R
�
(t

)|
(�

)

Figure 6: Ranking of methods for set-
ting �t w.r.t. cumulative regret and abs.
difference to optimal regret. Averaged
over datasets and random seeds.

Experiment Setup We empirically test whether the as-
sumptions based on the kernel regime in the neural ban-
dit setting result in good performance in practice for re-
alistic architectural choices. We use standard contextual
bandit benchmark problems, based on UCI classification
datasets (Zhou et al., 2020; Zhang et al., 2021; Gupta
et al., 2022) (see Section A.2). We compare (i) a ran-

dom baseline policy and various neural UCB baselines,
(ii) the UCB policy with constant exploration parameter
�t ⌘ � 2 {0.01, 0.1, 1, 10} as for simplicity often used in
practice, (iii) the UCB policy where �t is set via the NTK
theory with widths m 2 {100, 1024} (Zhou et al., 2020),
and (iv) setting �t ⌘ 1, but leveraging the connection
between the (empirical) NTK and the LLA in Bayesian
deep learning (Immer et al., 2021b) to learn a prior pre-
cision hyperparameter via marginal likelihood both post-

hoc and online (Immer et al., 2021a).7

Experiment Results The results of our experiment are given in Fig. 5, which shows the cumulative
regret R(t) over time. Perhaps frustratingly, the NTK-based policy performs poorly, oftentimes no
better than the random baseline, with an order of magnitude larger width having no discernable
effect. This is likely explained by the overexploration problem discussed previously. Therefore,
in this setting, relying on assumptions based on the kernel regime results in a poorly performing
algorithm in practice. In fact, Zhou et al. (2020) set �t to be constant in their experiments instead of
according to the proposed (near-)optimal value based on NTK theory. This disconnect between NTK
theory and practice can also be observed for other utility functions such as expected improvement
(Gupta et al., 2022) and Thompson sampling (Zhang et al., 2021). We find that setting �t ⌘ �

to a value with a well-chosen � performs best in our experiments (see also Fig. 6 top) However,
the optimal value of � is unknown a-priori and can only be obtained via grid search. This can be
problematic in a real-world setting, where a sufficiently large, representative, validation set may not
be available, and multiple experiments may not be possible prior to running the “real” experiment—
it defeats the spirit of online learning. With that in mind, the marginal-likelihood-based choice of �t

both post-hoc and online perform well in terms of their cumulative regret. While using grid search
provides better results in terms of rank (Fig. 6 top), the difference in terms of the cumulative regret
R(t) is small for all t—see Fig. 6 bottom. The minimal difference in cumulative regret between the
marginal-likelihood-based strategies and the best strategy suggests that learning a good exploration-
exploitation trade-off is possible, but likely not via an algorithm motivated via the kernel regime.

Summary: Avoid setting the exploration parameter in eNTK-based neural bandits via the NTK
theory. Instead, use the toolbox of the Laplace approximation to optimize the scale of the poste-
rior variance via evidence maximization.

7Computing the evidence in the LLA setting incurs no overhead since the LA itself is an approximation of
both the posterior p(✓ | Dt) and the marginal likelihood p(Dt) =

R
p(Dt | ✓) p(✓) d✓ (MacKay, 1992).

7

Under review as a conference paper at ICLR 2024

3.3 CONTINUAL LEARNING: CATASTROPHIC FORGETTING

In many applications, such as robotics, NNs need to be trained continually on new tasks, given by a
sequence of training datasets. The primary challenge in continual learning (Thrun & Mitchell, 1995;
Parisi et al., 2019) is to train on new tasks without a significant loss of performance on previous tasks,
known as catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2013).

Catastrophic Forgetting in the Kernel Regime Assuming the NN is sufficiently wide to be in
the linear regime, worst-case forgetting and the convergence to an offline solution—i.e. training on
data from all tasks at once–can be described theoretically (Evron et al., 2022; 2023; Goldfarb &
Hand, 2023). One way to algorithmically avoid forgetting is orthogonal gradient descent (OGD,
Farajtabar et al., 2020), which projects gradients on new tasks such that model predictions on previ-
ous tasks change minimally. Bennani et al. (2020) show that, in the kernel regime, OGD provably
avoids catastrophic forgetting on an arbitrary number of tasks (assuming infinite memory). Addi-
tionally, for SGD and OGD generalization bounds have been given, which are based on the task
similarity with respect to the NTK (Bennani et al., 2020; Doan et al., 2021). Ramasesh et al. (2022)
investigated catastrophic forgetting empirically in the pretraining paradigm and found that forget-
ting systematically decreases with scale of both model and pretraining dataset size. Mirzadeh et al.
(2022) report that increasing the width of a neural network reduces catastrophic forgetting signifi-
cantly as opposed to increasing the depth. The hypothesis for this is that as the model becomes wider,
gradients across tasks become increasingly orthogonal, and training becomes “lazy”, meaning the
initial parameters change very little during training, consistent with the convergence of the empirical
NTK at initialization to the NTK (6). This naturally leads to the question of whether increasing the
width of networks that are used in practice is in fact a simple way to mitigate catastrophic forgetting.

Experiment Setup To test whether the predictions about continual learning in the kernel regime
apply in practice, we train increasingly wide NNs on a sequence of tasks. We train toy two-layer
NNs with ReLU activations on the RotatedMNIST dataset, as well as WideResNets (Zagoruyko &
Komodakis, 2016) with depth L = 10 on the SplitCIFAR10, SplitCIFAR100 and SplitTinyImageNet
datasets. See Section A.3 for details. Our main goal is to study the effect of width on forgetting. Let
at,i denote test accuracy on task i after training on task t. We compute the average forgetting �̄T =
1/T�1

PT�1
i=1 maxt2{1,...,T�1}(at,i�aT,i), i.e. the average maximal accuracy difference during task-

incremental training; the average accuracy ↵̄T = 1/T
PT

i=1aT,i, i.e. the average accuracy across
tasks after training on all tasks; and the learning accuracy ↵̄max = 1/T

PT
i=1ai,i, i.e. the average

accuracy across tasks immediately after training on the current task.8 To ascertain whether a network
operates in the lazy training/kernel regime, we also track the relative distance in parameter space
d(wT ,w0) = kwT �w0k2/kw0k2 between the initial parameters w0 and the parameters wT after
training on all tasks.

Experiment Results The results of our experiment are shown in Fig. 7. We find that for the shal-
low NN, average forgetting decreases monotonically with the network width. Further, the relative
change in parameters d(wT ,w0) approaches zero, consistent with the lazy training hypothesis in
the kernel regime. This seems to confirm observations by Mirzadeh et al. (2022) that wide neu-
ral networks forget less. However, for WideResNets we find that a crucial confounding factor is
whether the network has been fully trained. NNs that are trained insufficiently show a decrease in
forgetting as they become wider. But, this decrease is primarily due to lower learning accuracy, and
thus a smaller gap between peak accuracy and minimum accuracy across tasks (see Section B.2).
In contrast, training networks to high accuracy increases average forgetting since the peak perfor-
mance across tasks increases. This can be explained by the fact that they are not actually operating
in the kernel regime. The relative change of the weights during training remains large even as width
increases beyond what is used in practice, meaning the networks are still adapting to unseen tasks.

Summary: Increasing the width of a practical NN architecture only avoids catastrophic forget-
ting if not trained to high accuracy per task. Since a smaller change in the weights of the network
throughout training correlates with reduced forgetting, strategies that constrain parameter updates
when training on new tasks (e.g. Kirkpatrick et al., 2017) or along directions which minimally
change performance on previous tasks (e.g. OGD) promise to be more useful strategies in practice
than increasing network width.

8In practice, ↵̄max almost always equals the average maximum accuracy per task, justifying the notation.

8

Under review as a conference paper at ICLR 2024

0.25

0.50
A

v
g.

F
or

ge
tt

in
g

(�
)

MLP
RotatedMNIST

WideResNet
SplitCIFAR10

WideResNet
SplitCIFAR100

WideResNet
SplitTinyImageNet

0.25

0.50

0.75

A
v
g.

A
cc

u
ra

cy
(�

)

0.50

0.75

1.00

L
ea

rn
in

g
A

cc
u
ra

cy
(�

)

101 102 103 104 105

Width

10�1

�w
T

�
w

0
� 2

�w
0
� 2

20 21 22 23 24 25

Width Factor

20 21 22 23 24 25

Width Factor

20 21 22 23 24 25

Width Factor

Training stopped early. Trained to convergence.

Figure 7: Catastrophic forgetting of wide NNs in theory and practice. As the width of the shallow
MLP approaches the kernel regime, average forgetting decreases, while average accuracy increases.
Similar observations hold for WideResNets if trained for a few of epochs only—consistent with
experiments by Mirzadeh et al. (2022). However, if they are trained to convergence on each task,
resulting in increased learning accuracy, forgetting does not decrease with width. This suggests that
architectures in practice are not actually wide enough to reduce forgetting via the kernel regime.

4 CONCLUSION

In this work, we empirically evaluated whether predictions about the behavior of overparametrized
neural networks through the theoretical framework of the neural tangent kernel hold in architec-
tures used in practice. We considered three different areas in which the kernel regime either makes
predictions about the behavior of a neural network or informs algorithmic choices. We find that
across optimization, uncertainty quantification, and continual learning, theoretical statements in the
infinite-width limit do not translate to observable phenomena or improvements in practical architec-
tures with realistic widths. For optimization, we found that such architectures are not sufficiently
close to linear to enjoy fast convergence from a second-order method as predicted by existing theory.
For uncertainty quantification, we found that controlling the exploration-exploitation trade-off in a
sequential decision-making problem via assumptions based on the kernel regime led to performance
only marginally better than a random baseline. Finally, in continual learning, we found that wide
neural networks as used in practice, if fully trained, do not actually forget less catastrophically.

This observed disconnect between theory and practice leads to two important conclusions. First, our
theoretical understanding of the behavior of large-scale overparametrized neural networks is still
limited and in particular restricted to architectures that do not resemble those used in practice. This
paper is empirical evidence to that effect and thus calls for an effort to improve our understanding by
developing a theory under more practically relevant assumptions. Second, algorithms motivated by
the neural tangent kernel theory should be scrutinized closely in terms of their practical performance,
and researchers should be careful in basing their ideas too strongly on the lazy training regime in the
infinite-width limit. We hope in this way our negative results can serve as a cautionary tale and will
ultimately benefit both the theory and practice of deep neural networks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. In NeurIPS, 2019.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. JMLR, 3(Nov), 2002.

Mehdi Abbana Bennani, Thang Doan, and Masashi Sugiyama. Generalisation guarantees for continual learning
with orthogonal gradient descent. arXiv preprint arXiv:2006.11942, 2020. doi: 10.48550/arXiv.2006.11942.

Benjamin Bowman and Guido Montúfar. Implicit bias of MSE gradient optimization in underparameterized
neural networks. In ICLR, 2022a.

Benjamin Bowman and Guido Montúfar. Spectral bias outside the training set for deep networks in the kernel
regime. In NeurIPS, 2022b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In
NeurIPS, 2020.

Sam Buchanan, Dar Gilboa, and John Wright. Deep networks and the multiple manifold problem. In ICLR,
2021.

Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, and Finale Doshi-Velez. Wide mean-field
Bayesian neural networks ignore the data. In AISTATS, 2022. doi: 10.48550/arXiv.2202.11670. URL
http://arxiv.org/abs/2202.11670.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hen-
nig. Laplace redux–effortless Bayesian deep learning. In NeurIPS, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

Thang Doan, Mehdi Bennani, Bogdan Mazoure, Guillaume Rabusseau, and Pierre Alquier. A theoretical
analysis of catastrophic forgetting through the NTK overlap matrix. In AISTATS, 2021.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In ICLR, 2019.

Itay Evron, Edward Moroshko, Rachel Ward, Nathan Srebro, and Daniel Soudry. How catastrophic can catas-
trophic forgetting be in linear regression? In COLT, 2022.

Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, and Daniel
Soudry. Continual learning in linear classification on separable data. In ICML, 2023.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual learning.
In AISTATS, 2020.

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

Daniel Goldfarb and Paul Hand. Analysis of Catastrophic Forgetting for Random Orthogonal Transformation
Tasks in the Overparameterized Regime. In AISTATS, 2023.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation of
catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

Sunil Gupta, Santu Rana, Tuan Truong, Long Tran-Thanh, Svetha Venkatesh, et al. Expected improvement for
contextual bandits. In NeurIPS, 2022.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimization. In
ICML, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why ReLU networks yield high-confidence
predictions far away from the training data and how to mitigate the problem. In CVPR, 2019.

Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy. In
ICML, 2020.

10

Under review as a conference paper at ICLR 2024

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Mohammad Emtiyaz Khan. Scalable
marginal likelihood estimation for model selection in deep learning. In ICML, 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian neural nets via
local linearization. In AISTATS, 2021b.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In NeurIPS, 2018.

Ryo Karakida and Kazuki Osawa. Understanding approximate Fisher information for fast convergence of
natural gradient descent in wide neural networks. In NeurIPS, 2020.

Parnian Kassraie and Andreas Krause. Neural contextual bandits without regret. In AISTATS, 2022.

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate inference
turns deep networks into Gaussian processes. In NeurIPS, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. PNAS, 114(13), 2017.

Andreas Krause and Cheng Ong. Contextual Gaussian process bandit optimization. In NeurIPS, 2011.

Agustinus Kristiadi, Runa Eschenhagen, and Philipp Hennig. Posterior refinement improves sample efficiency
in Bayesian neural networks. In NeurIPS, 2022a.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being a bit frequentist improves Bayesian neural
networks. In AISTATS, 2022b.

Agustinus Kristiadi, Felix Dangel, and Philipp Hennig. The geometry of neural nets’ parameter spaces under
reparametrization. In NeurIPS, 2023a.

Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, and Vincent Fortuin. Promises and pitfalls of the
linearized Laplace in Bayesian optimization. arXiv preprint arXiv:2304.08309, 2023b.

Jason Kuen. Wide residual networks (WideResNets) in PyTorch. https://github.com/xternalz/
WideResNet-pytorch, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Deep neural networks as Gaussian processes. In ICLR, 2018.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent. In
NeurIPS, 2019.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-scale eigen-

value problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Yucen Lily Li, Tim GJ Rudner, and Andrew Gordon Wilson. A study of Bayesian neural network surrogates
for Bayesian optimization. arXiv preprint arXiv:2305.20028, 2023.

Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes,
Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin Mundt, Qi She, Keiland Cooper,
Jeremy Forest, Eden Belouadah, Simone Calderara, German I. Parisi, Fabio Cuzzolin, Andreas Tolias, Si-
mone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost van de Weijer,
Tinne Tuytelaars, Davide Bacciu, and Davide Maltoni. Avalanche: an end-to-end library for continual learn-
ing. In CVPR, 2nd Continual Learning in Computer Vision Workshop, 2021.

David JC MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5),
1992.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate curvature.
In ICML, pp. 2408–2417, 2015.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165. Elsevier, 1989.

11

Under review as a conference paper at ICLR 2024

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Huiyi Hu, Razvan Pascanu, Dilan Gorur, and Mehrdad
Farajtabar. Wide neural networks forget less catastrophically. In ICML, 2022.

Yu Nesterov. Accelerating the cubic regularization of newton’s method on convex problems. Mathematical

Programming, 2008.

Yurii Nesterov. Superfast second-order methods for unconstrained convex optimization. Journal of Optimiza-

tion Theory and Applications, 2021.

Thanh Nguyen-Tang, Sunil Gupta, A. Tuan Nguyen, and Svetha Venkatesh. Offline neural contextual bandits:
Pessimism, optimization and generalization. In ICLR, 2022.

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.

Lorenzo Noci, Gregor Bachmann, Kevin Roth, Sebastian Nowozin, and Thomas Hofmann. Precise characteri-
zation of the prior predictive distribution of deep ReLU networks. In NeurIPS, 2021.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and
Samuel S. Schoenholz. Neural Tangents: Fast and easy infinite neural networks in Python. In ICLR, 2020.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural networks, 113:54–71, 2019.

Geoff Pleiss and John P Cunningham. The limitations of large width in neural networks: A deep Gaussian
process perspective. In NeurIPS, 2021.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic forgetting in
neural networks. In ICLR, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes in machine learning. 2005.

Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. NeurIPS, 2021.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-benchmarking
deep learning optimizers. In ICML, 2021.

Chi Sun, Luyao Huang, and Xipeng Qiu. Utilizing BERT for aspect-based sentiment analysis via constructing
auxiliary sentence. In NAACL, 2019.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. Robotics and autonomous systems, 15(1-2):
25–46, 1995.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

Nikhil Vyas, Yamini Bansal, and Preetum Nakkiran. Empirical Limitations of the NTK for Understanding
Scaling Laws in Deep Learning. TMLR, 2023. ISSN 2835-8856. URL https://openreview.net/
forum?id=Y3saBb7mCE.

Greg Yang and Etai Littwin. Tensor programs IIb: Architectural universality of neural tangent kernel training
dynamics. In ICML, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Jacob Zavatone-Veth, Abdulkadir Canatar, Ben Ruben, and Cengiz Pehlevan. Asymptotics of representation
learning in finite Bayesian neural networks. In NeurIPS, 2021.

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent for over-
parameterized neural networks. In NeurIPS, 2019.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical stochastic
gradient MCMC for Bayesian deep learning. In ICLR, 2020.

Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural Thompson sampling. In ICLR, 2021.

Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based exploration. In
ICML, 2020.

12

Under review as a conference paper at ICLR 2024

APPENDIX A EXPERIMENT DETAILS

A.1 TRAINING: SECOND-ORDER OPTIMIZATION

Conditions for Fast Convergence of NGD For (7), we use Jacobian-vector and vector-Jacobian
products to compute the Gram matrix’s smallest eigenvalue with an iterative sparse eigen-
solver (Lehoucq et al., 1998). We noticed that such solvers exhibit slow convergence for small
eigenvalues out of the box and require additional techniques. As the Gram matrices we investigate
here are relatively small, we explicitly computed and decomposed them instead. However, the im-
plicit approach scales beyond that. Likewise, we obtain spectral norms from a partial singular value
decomposition which also relies on matrix-free multiplication.

A.2 UNCERTAINTY QUANTIFICATION: NEURAL BANDITS

We use a two-hidden-layer MLP with width m = 100 unless specified otherwise. We use the stan-
dard parametrization and initialization in PyTorch—see Section B for a comparison with a different
parametrization. To obtain the MAP estimate, we train for 500 epochs using a batch size of 128 and
the AdamW optimizer with learning rate 0.001 and weight decay 0.01.

To quantify uncertainty via the empirical NTK, we do a Laplace approximation using the
laplace-torch library (Daxberger et al., 2021). We use the Kronecker-factored generalized
Gauss-Newton to approximate the Hessian. Furthermore, we tune the prior precision via either
post-hoc or online marginal likelihood optimization, following Daxberger et al. (2021). We use 10
observations using a random policy as the initial dataset for training the neural network and do-
ing the Laplace approximation. Furthermore, we retrain and perform Bayesian inference every 100
iterations.

We use standard UCI bandits benchmark datasets to compare the algorithms we considered, follow-
ing (Zhou et al., 2020; Nguyen-Tang et al., 2022; Gupta et al., 2022; Zhang et al., 2021). See Table 1
for details. All experiments were repeated for five random seeds.

Table 1: Datasets used in our neural bandit experiment.

magic avila letter covertype bean pendigits

Input dim. D 10 10 16 54 16 16
Num. of classes C 2 12 26 7 7 10

A.3 CONTINUAL LEARNING: CATASTROPHIC FORGETTING

The experiment on continual learning discussed in Section 3.3 was carried out using the
Avalanche library (Lomonaco et al., 2021) on an NVIDIA GeForce RTX 2080 GPU. As mod-
els, we chose a 2-layer neural net with ReLU non-linearities (MLP) and a WideResNet (depth
L = 10) with varying widening factors based on the implementation by Kuen (2017). The bench-
mark datasets we used are standard benchmarks from continual learning and are described below:

RotatedMNIST: Tasks correspond to rotated MNIST digits at varying degrees from 0 to 180
in 22.5-degree increments resulting in nine tasks in total.

SplitCIFAR10: Each task corresponds to training on a previously unseen set of 2 out of the
total 10 classes of CIFAR10.

SplitCIFAR100: Each task corresponds to training on a previously unseen set of 5 out of the
total 100 classes of CIFAR100.

SplitTinyImageNet: Each task corresponds to training on a previously unseen set of 10 out of
the total 200 classes of TinyImageNet.

The exact training hyperparameters we chose are summarized in Table 2. All experiments were
repeated for five different random seeds.

13

Under review as a conference paper at ICLR 2024

Table 2: Training hyperparameters for the continual learning experiment from Section 3.3.

Model Depth Dataset Tasks Optim. Learn. Rate Mom. Weight Decay Batch Size Epochs

MLP 2 RotatedMNIST 9 SGD 10�4 0.9 10�4 32 5
WideResNet 10 SplitCIFAR10 5 SGD 10�1 0.9 10�4 128 5/50
WideResNet 10 SplitCIFAR100 20 SGD 10�1 0.9 10�4 128 5/50
WideResNet 10 SplitTinyImageNet 20 SGD 10�1 0.9 10�4 128 5/50

APPENDIX B ADDITIONAL EXPERIMENTAL RESULTS

B.1 UNCERTAINTY QUANTIFICATION: NEURAL BANDITS

In the neural bandit experiment we used the standard parametrization (SP)—the default in PyTorch,
also known as the NNGP parametrization (Lee et al., 2018). We provide an additional result com-
paring NeuralUCB with the SP and the neural tangent parametrization (NTP) in Fig. 8.9 We observe
that they give very similar results. In conjunction with the fact that the SP is the de facto standard
in practice—i.e. it is the default in PyTorch—these facts justify our choice of parametrization in the
bandit experiment in Section 3.2.

2k 4k 6k 8k 10k

t

0

1

2

3

�
t

⇥1038

NTP m = 128

NTP m = 1024

SP m = 100

SP m = 1024

2k 4k 6k 8k 10k

t

0

2.5k

5k

7.5k

10k
C

u
m

.
R

eg
re

t
(�

)

NTP m = 128

NTP m = 1024

SP m = 100

SP m = 1024

Figure 8: NeuralUCB with the standard parametrization (SP) and the neural tangent parametrization
(NTP) on the magic dataset. Overexploration can be seen in both parametrizations, resulting in a
similarly poor performance.

B.2 CONTINUAL LEARNING: CATASTROPHIC FORGETTING

We provide the detailed results from our continual learning experiment in Figs. 9 and 10 and Fig. 11.
In the toy setting of an MLP trained on RotatedMNIST in Fig. 9, where widths are orders of mag-
nitude larger than in practice, the amount of forgetting decreases with width for each task. This is
in line with the hypotheses for why in the kernel regime catastrophic forgetting should be mitigated,
namely increasingly orthogonal gradients across tasks and minimal changes in the weights of the
network.

In the practical setting for WideResNets trained on SplitCIFAR100 and SplitTinyImageNet, we see a
similar, albeit less pronounced, phenomenon for networks only trained for a few (here five) epochs.
However, peak accuracy per task drops significantly–more so for wider networks. This indicates
they are not trained sufficiently. The amount of forgetting in this “short training” setting decreases
primarily due to a drop in peak accuracy, and less of a decrease in performance as the NN is trained
on new tasks. However, if WideResNets of increasing width are trained to convergence (here fifty
epochs), i.e. to high learning accuracy, a decrease in forgetting with width is no longer observable.
In fact, the higher peak accuracy leads to larger forgetting, because the difference between peak and
final accuracy is increased.

9The term “parametrization” here is rather misleading (Kristiadi et al., 2023a), but we follow the standard
naming convention for clarity.

14

Under review as a conference paper at ICLR 2024

0

1

Task 0 Task 1 Task 2

0

1

Task 3 Task 4 Task 5

0 1 2 3 4 5 6 7 8

0

1

Task 6

0 1 2 3 4 5 6 7 8

Task 7

0 1 2 3 4 5 6 7 8

Task 8

102

103

104

105

Width

Tasks Learned

T
es

t
A

cc
u
ra

cy
(�

)

Figure 9: Accuracy of a fully-connected NN with ReLU non-linearities, depth L = 2 and increasing
width trained sequentially on different tasks from the RotatedMNIST dataset.

0.0

0.5

1.0

Task 0 Task 1 Task 2 Task 3 Task 4

0.0

0.5

1.0

Task 5 Task 6 Task 7 Task 8 Task 9

0.0

0.5

1.0

Task 10 Task 11 Task 12 Task 13 Task 14

0 3 6 9 121518

0.0

0.5

1.0

Task 15

0 3 6 9 121518

Task 16

0 3 6 9 121518

Task 17

0 3 6 9 121518

Task 18

0 3 6 9 121518

Task 19

20

21

22

23

24

25

Width Factor

Tasks Learned

T
es

t
A

cc
u
ra

cy
(�

)

Training stopped early. Trained to convergence.

Figure 10: Accuracy of a WideResNet with depth L = 10 and increasing width factor trained
sequentially on different tasks from the SplitCIFAR-100 dataset.

15

Under review as a conference paper at ICLR 2024

0.0

0.5

1.0

Task 0 Task 1 Task 2 Task 3 Task 4

0.0

0.5

1.0

Task 5 Task 6 Task 7 Task 8 Task 9

0.0

0.5

1.0

Task 10 Task 11 Task 12 Task 13 Task 14

0 3 6 9 121518

0.0

0.5

1.0

Task 15

0 3 6 9 121518

Task 16

0 3 6 9 121518

Task 17

0 3 6 9 121518

Task 18

0 3 6 9 121518

Task 19

20

21

22

23

24

25

Width Factor

Tasks Learned

T
es

t
A

cc
u
ra

cy
(�

)

Training stopped early. Trained to convergence.

Figure 11: Accuracy of a WideResNet with depth L = 10 and increasing width factor trained
sequentially on different tasks from the SplitTinyImageNet dataset.

16

