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Abstract

Large Language Model (LLM) based multi-001
agent systems (MAS) show remarkable poten-002
tial in collaborative problem-solving, yet they003
still face critical challenges: low communi-004
cation efficiency, poor scalability, and a lack005
of effective parameter-updating optimization006
methods. We present OPTIMA, a novel frame-007
work that addresses these issues by significantly008
enhancing both communication efficiency and009
task effectiveness in LLM-based MAS through010
training. OPTIMA employs an iterative gen-011
erate, rank, select, and train paradigm with a012
reward function balancing task performance,013
token efficiency, and communication readabil-014
ity. We explore various algorithms, including015
Supervised Fine-Tuning, Direct Preference Op-016
timization, and their hybrid approaches, provid-017
ing insights into their effectiveness-efficiency018
trade-offs. We integrate Monte Carlo Tree019
Search-inspired techniques for DPO data gener-020
ation, treating conversation turns as tree nodes021
to explore diverse interaction paths. Eval-022
uated on common multi-agent tasks, includ-023
ing information-asymmetric question answer-024
ing and complex reasoning, OPTIMA shows025
consistent and substantial improvements over026
single-agent baselines and vanilla MAS based027
on Llama 3 8B / 3.2 3B, achieving up to 2.8x028
performance gain with less than 10% tokens029
on tasks requiring heavy information exchange.030
Moreover, OPTIMA’s efficiency gains enable031
more effective compute utilization during in-032
ference, leading to improved inference-time033
scaling laws. By addressing fundamental chal-034
lenges in LLM-based MAS, OPTIMA shows035
the potential towards scalable, efficient, and036
effective MAS.037

1 Introduction038

Large Language Models (LLMs) have emerged039

as powerful tools for a wide range of tasks, from040

natural language processing to complex reasoning041

(OpenAI, 2023; Reid et al., 2024; Anthropic, 2024).042
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Figure 1: Performance and efficiency of OPTIMA
variants across optimization iterations. Left: Average
performance gain over iterations. OPTIMA variants con-
sistently outperform CoT, Multi-Agent Debate (MAD),
and Self-Consistency. Right: Average inference token
numbers over iterations. All OPTIMA variants achieve
better performance with substantially fewer tokens.

A promising direction in leveraging these models 043

is the development of autonomous multi-agent sys- 044

tems (MAS), which aim to harness the collective 045

intelligence of multiple LLM-based agents for col- 046

laborative problem-solving and decision-making 047

(Liang et al., 2023; Wang et al., 2024b; Du et al., 048

2024; Zhuge et al., 2024). However, for LLM- 049

based MAS to be truly effective, they must over- 050

come two critical challenges: (a) achieving effi- 051

cient inter-agent communication to minimize com- 052

putational costs, and (b) optimizing the collective 053

performance of the system as a cohesive unit. 054

Current LLM-based MAS face significant diffi- 055

culties in meeting these challenges. The coordina- 056

tion and communication between agents often lack 057

efficiency, resulting in verbose exchanges that lead 058

to increased token usage, longer inference times, 059

and higher computational costs (Li et al., 2024b). 060

This inefficiency is exacerbated by the length bias 061

inherent in LLMs due to alignment training (Saito 062

et al., 2023; Dubois et al., 2024), which favors 063

longer responses even when concise communica- 064

tion would suffice (Chen et al., 2024c). Moreover, 065
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while recent work has explored training LLMs for066

single-agent tasks (Song et al., 2024; Xiong et al.,067

2024) and MAS training is well-studied in rein-068

forcement learning (Johnson et al., 2000; Lanctot069

et al., 2017; Baker et al., 2020), there remains a070

lack of parameter-updating methods specifically071

designed to optimize LLM-based MAS as a unified072

system. Existing approaches primarily rely on sim-073

ple agent profile evolution (Chen et al., 2024b) or074

memory evolution (Qian et al., 2024a,b; Gao et al.,075

2024), which fail to address the core issues of com-076

munication efficiency and collective optimization.077

Can we develop a training framework that078

simultaneously enhances the communication ef-079

ficiency and task effectiveness of LLM-based080

MAS? To address this question, we introduce OP-081

TIMA, an effective framework designed to optimize082

LLM-based MAS. At the heart of OPTIMA is an083

iterative generate, rank, select, and train paradigm,084

incorporating a reward function that balances task085

performance, token efficiency, and communication086

readability. This approach enables the development087

of MAS that are not only effective and efficient088

but also maintain interpretable communication pat-089

terns. Based on the reward function, OPTIMA lever-090

ages a combination of techniques to induce efficient091

and effective communication behaviors in LLM-092

based agents, including Supervised Fine-Tuning093

(SFT) (Zelikman et al., 2022; Gülçehre et al., 2023;094

Aksitov et al., 2023) and Direct Preference Opti-095

mization (DPO) (Rafailov et al., 2023; Pang et al.,096

2024), along with their hybrid variants. Further-097

more, OPTIMA introduces an integration of Monte098

Carlo Tree Search (MCTS)-inspired techniques for099

DPO data generation, conceptualizing conversation100

turns as tree nodes to explore diverse interaction101

trajectories efficiently.102

Importantly, by substantially reducing the num-103

ber of tokens required for inference, OPTIMA not104

only improves computational efficiency but also105

opens new possibilities for leveraging inference106

compute more effectively. This reduction in token107

usage allows for more samples within the same108

computational constraints, potentially leading to109

better inference-time scaling laws. As recent work110

has shown the importance of inference-time com-111

pute in improving model performance (Wu et al.,112

2024; Brown et al., 2024; Chen et al., 2024a), OP-113

TIMA’s efficiency gains could be combined with114

techniques like majority voting (Wang et al., 2023),115

leading to more effective LLM systems.116

We evaluate OPTIMA on a diverse set of tasks117

spanning two multi-agent settings: (a) information 118

exchange, including information-asymmetric ques- 119

tion answering (Chen et al., 2024c; Liu et al., 2024), 120

and (b) debate, encompassing mathematical and 121

reasoning tasks (Du et al., 2024; Chen et al., 2024b; 122

Wu et al., 2023). Using Llama 3 8B / 3.2 3B (Meta, 123

2024) as our base model, we demonstrate that OP- 124

TIMA consistently outperforms both single-agent 125

MAS baselines, achieving up to 90% reduction in 126

token usage and 2.8x increase in task performance. 127

To summarize, our main contribution is OPTIMA, 128

a novel training framework that simultaneously op- 129

timizes communication efficiency and task effective- 130

ness. To enhance high-quality training data gen- 131

eration in multi-agent settings for DPO, we intro- 132

duce an integration of MCTS-like techniques. Our 133

comprehensive empirical evaluation across diverse 134

tasks demonstrates notable advancements in both 135

token efficiency and task performance, while also 136

providing insights into the learned communication 137

patterns. Additionally, we examine the implica- 138

tions of OPTIMA’s efficiency gains for inference- 139

time scaling, underscoring its potential to improve 140

the LLM systems by enabling more effective uti- 141

lization of inference-compute. By addressing the 142

dual challenges of communication efficiency and 143

collective optimization, our work underscores the 144

importance of developing advanced training frame- 145

works for LLM-based MAS and highlights effi- 146

ciency as a crucial metric to consider. We believe 147

OPTIMA provides a solid foundation for future in- 148

vestigations into scaling and improving MAS and 149

general LLM systems. 150

2 OPTIMA: Optimizing Multi-Agent 151

LLMs via Iterative Training 152

2.1 Overview 153

OPTIMA is built upon an iterative generate, rank, 154

select, and train paradigm. This approach allows 155

for the progressive improvement of LLM-based 156

agents in multi-agent settings, focusing on enhanc- 157

ing both the efficiency of inter-agent communica- 158

tion and the effectiveness of task completion. 159

Let Mbase denote the base LLM, D the task 160

dataset, and f the iterative training function. The 161

iterative process can be formalized as Mt+1 = 162

f(Mt,D), whereMt represents the model at it- 163

eration t. The function f encapsulates the entire 164

process of data generation, ranking, selection and 165

model training. For each task instance di ∈ D, 166

we sample a set of N conversation trajectories 167
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Figure 2: Overview of the OPTIMA framework for training LLM-based MAS. The iterative process includes
four stages: Generate, Rank, Select, and Train. Note that the ranking process, while also involved in DPO data
generation, is not shown in the Generate stage for simplicity.

{τ ji }Nj=1 ⊂ T using the agents powered by current168

model Mt. Each trajectory τ ji is then evaluated169

using a reward function R : T → R, defined as:170

R(τ ji ) = Rtask(τ
j
i )− λtokenRtoken(τ

j
i ) + λloss

1

Rloss(τ
j
i )

. (1)171

Here, Rtask : T → R is the task-specific perfor-172

mance metric, Rtoken(τ
j
i ) =

#Tokens(τ ji )
maxk({#Tokens(τki )}k)

173

is the normalized token count, and Rloss(τ
j
i ) =174

g
(
L(Mbase, di, τ

j
i )
)

is based on the language mod-175

eling loss of the base modelMbase, which we de-176

tail in Appendix H.2. The positive coefficients177

λtoken and λloss are hyper-parameters . This re-178

ward function is designed to balance multiple objec-179

tives simultaneously: Rtask ensures that the model180

improves on the intended task, Rtoken encourages181

communication efficiency by penalizing verbose182

exchanges, and Rloss regularizes language natural-183

ness and readability by favoring trajectories that are184

probable under the base model. By incorporating185

these components, we aim to develop LLM-based186

MAS that are not only effective in their designated187

tasks but also efficient in their communication,188

while maintaining interpretability in their outputs,189

unlike the often incomprehensible communication190

in prior RL research (Lazaridou et al., 2017; Evti-191

mova et al., 2018; Chaabouni et al., 2022).192

Based on these rewards, we apply several data193

selection criteria to select a subset of high-quality194

sampled trajectories {τ∗i } for each task instance.195

These selected trajectories form the training data196

D∗
i at iteration i. The model is then updated:197

Mt+1 = Train(Mt,D∗
i ). The Train function can 198

be instantiated with various training algorithms, 199

such as SFT or DPO, which we will discuss in 200

detail in the following subsections. 201

Fig. 2 provides a high-level overview of OP- 202

TIMA. The specific instantiations of the generation 203

and training processes will be detailed in the follow- 204

ing subsections. The ranking process, consistent 205

across all instantiations, is defined by the reward 206

function presented in Eq. (1). 207

2.2 Initialization 208

Before starting the iterative training process, we 209

address a critical challenge in LLM-based MAS: 210

agents often produce responses in a similar style 211

across conversation trajectories, even with high- 212

temperature sampling. This homogeneity limits the 213

exploration of diverse communication strategies, 214

potentially hindering the optimization toward more 215

efficient and effective interactions. Following the 216

observation from AutoForm (Chen et al., 2024c), 217

where LLMs can be explicitly prompted to leverage 218

different more concise formats to communicate or 219

reason without much compromise in performance, 220

we introduce an initialization step that promotes 221

diversity in agent communication. 222

Our approach leverages a pool of format specifi- 223

cation prompts, P = {p1, p2, ..., pK}, where each 224

pk is a string specifying a particular response for- 225

mat (e.g., JSON, list, see Appendix I for concrete 226

examples and creation process). For each task in- 227

stance di ∈ D, we generate N conversation tra- 228
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jectories, each with a randomly selected format229

specification appended to the input task:230

τ ji =Mbase(di⊕pkj ), kj ∼ Uniform(1,K), (2)231

where⊕ denotes string concatenation. This process232

yields a diverse set of trajectories {τ ji }Nj=1 for each233

di, varying in both content and structure.234

We then evaluate these trajectories using the235

reward function defined in Eq. (1), for each di,236

we select the trajectory with the highest reward:237

τ∗i = argmaxj R(τ ji ). Finally, we select top 70%238

trajectories that exceed a predefined performance239

threshold θinit, resulting in a high-quality dataset:240

D∗
0 = TopK(

{
(di, τ

∗
i )

∣∣Rtask(τ
∗
i ) > θinit,∀di ∈ D

}
, 70%). (3)241

Crucially, we remove the format specification242

prompts from the selected trajectories, resulting243

in a dataset of diverse, high-quality conversations244

without explicit format instructions. We then245

fine-tune the base modelMbase to obtainM0 =246

SFT(Mbase,D∗
0), which serves as the starting point247

for OPTIMA, able to generate diverse communica-248

tion patterns without explicit format prompting.249

We provide pseudo-code in Appendix B for better250

understanding. This initialization sets the stage for251

more effective exploration and optimization in the252

subsequent iterative training process.253

2.3 Instantiation 1: Iterative SFT254

We introduce iterative Supervised Fine-Tuning255

(iSFT) as our first instantiation of OPTIMA. At256

each iteration t, iSFT follows the same general257

procedure outlined in Algorithm 1, generating a258

set of N conversation trajectories for each task259

training instance di ∈ D using the current model260

MiSFT
t . However, unlike initialization, iSFT omits261

the format specification pool, asM0 has already262

internalized diverse communication strategies. Un-263

like recent research on iterative training (Gülçehre264

et al., 2023; Aksitov et al., 2023), iSFT maintains265

a fixed reward threshold θSFT across iterations for266

data selection. The model is then trained with stan-267

dard SFT. This process continues until a maximum268

number of iterations is reached. For clarity, the269

pseudo-code for iSFT is provided in Appendix B.270

iSFT provides a straightforward yet effective ap-271

proach to optimize LLM-based MAS, leveraging272

the diverse communication patterns established dur-273

ing initialization while consistently improving task274

performance and communication efficiency.275

2.4 Instantiation 2: Iterative DPO 276

While iSFT provides a straightforward approach 277

to optimizing LLM-based MAS, it may be lim- 278

ited by its reliance on a single best trajectory for 279

each task instance. To address this, we explore 280

iterative Direct Preference Optimization (iDPO) 281

(Rafailov et al., 2023; Pang et al., 2024), which 282

optimizes models using comparative preferences 283

and has demonstrated success in LLM alignment. 284

Applying DPO in multi-agent settings, however, 285

poses distinct challenges, particularly in generating 286

meaningful paired data that capture the complexi- 287

ties of agent interactions. 288

Data Generation: To overcome these chal- 289

lenges, we integrate MCTS with DPO data col- 290

lection for high-quality paired data generation in 291

multi-agent settings. Our MCTS-based approach 292

conceptualizes the multi-agent conversation as a 293

tree, where nodes represent conversational turns, 294

and edges represent continuations. This structure 295

allows us to explore diverse interaction trajectories 296

systematically and select high-quality paired data 297

for DPO training. The MCTS process begins at 298

the root node (initial task prompt) and proceeds 299

as follows: (1) Expansion: We select a node to 300

expand based on the following criteria. We first ex- 301

clude leaf nodes and the second-to-last level nodes 302

to avoid wasting computation on low-variance ex- 303

pansions, then exclude nodes with content similar 304

to previously expanded nodes, measured based on 305

edit distance (see Appendix H.1). From the re- 306

maining nodes, we select 10 nodes with the highest 307

rewards and sample one using the softmax distribu- 308

tion over their rewards. (2) Simulation: For each 309

selected node, we expand 3 trajectories, simulating 310

the conversation to completion. (3) Backpropaga- 311

tion: Once a trajectory is completed and rewarded 312

with Eq. (1), we update the estimated rewards of 313

all nodes in the trajectory with the average rewards 314

from their children. (4) Iteration: We repeat the 315

above process 8 times, resulting in 24 trajectories. 316

More iterations could potentially lead to more di- 317

verse and better-quality data. 318

Paired Data Construction: To generate high- 319

quality paired data for DPO training, we traverse 320

each MCTS tree and identify node pairs (ni, nj) 321

that satisfy three conditions: (1) shared ancestry, 322

(2) the higher estimated reward of ni and nj ex- 323

ceeds the threshold θdpo-filter, and (3) their reward 324

difference exceeds the threshold θdpo-diff. We sort 325

these pairs by the higher estimated reward, and se- 326
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lect the top 50% pairs as part of the final training327

set. We construct DPO training instances by using328

the common conversation history as the prompt,329

with ni and nj serving as the chosen and rejected330

responses according to their estimated rewards.331

The iDPO process then proceeds iteratively, al-332

ternating between MCTS-based data generation333

and model updates using DPO. The pseudo-code334

for our iDPO process is presented in Appendix B.335

2.5 Instantiation 3: Hybrid Iterative Training336

Building upon the strengths of both iSFT and iDPO,337

we investigate a hybrid approach that interleaves338

SFT and DPO in the iterative training process,339

termed as iSFT-DPO. This hybrid method aims340

to leverage the simplicity and directness of SFT341

in capturing high-quality trajectories, while also342

benefiting from the nuanced comparative learning343

facilitated by DPO. By alternating between these344

two training paradigms, we hypothesize that the345

model can more effectively balance the exploration346

of diverse communication strategies with the ex-347

ploitation of known effective patterns.348

In practice, we implement this hybrid approach349

by performing one iteration of iSFT followed by350

one iteration of iDPO, and repeating this cycle351

throughout the training process. This interleav-352

ing allows the model to first consolidate learning353

from the best observed trajectories through SFT,354

and then refine its understanding through the com-355

parative preferences provided by DPO.356

3 Experiments357

Datasets. We evaluate OPTIMA in two settings:358

information exchange (IE) and debate. For IE, we359

use HotpotQA (Yang et al., 2018), 2WikiMulti-360

HopQA (2WMHQA) (Ho et al., 2020), TriviaQA361

(Joshi et al., 2017), and CBT (Hill et al., 2016).362

For multi-hop datasets (HotpotQA, 2WMHQA),363

we split relevant contexts between two agents, en-364

suring the answer can only be deduced from in-365

formation exchange. For TriviaQA and CBT, con-366

texts are randomly assigned, challenging agents367

to communicate and identify the relevant informa-368

tion. The debate setting employs GSM8K (Cobbe369

et al., 2021), MATH (Hendrycks et al., 2021b),370

ARC’s challenge set (ARC-C) (Bhakthavatsalam371

et al., 2021) and MMLU (Hendrycks et al., 2021a),372

with one agent as solver and another as critic (Chen373

et al., 2024b). We use 0-shot for all benchmarks.374

Metrics. We report F1 score between gener-375

ated answers and labels for IE tasks. For debate 376

tasks, we employ exact match accuracy (GSM8k, 377

ARC-C, MMLU) or Sympy-based (Meurer et al., 378

2017) equivalence checking (MATH), following 379

Lewkowycz et al. (2022). Conversations conclude 380

when agents both mark the same answer with spec- 381

ified special tokens or reach a turn limit. 382

Baselines. We compare against single-agent 383

approaches: Chain-of-Thought (CoT) (Wei et al., 384

2022) and Self-Consistency (SC) with majority vot- 385

ing (Wang et al., 2023) on n = 8 samples. For IE 386

tasks, direct majority voting is impractical due to 387

free-form responses. Instead, we compute pair- 388

wise F1 scores, group answers with scores above 389

0.9, and report the average F1 score of the largest 390

group against the label. In multi-agent settings, we 391

compare against Multi-Agent Debate (MAD) (Du 392

et al., 2024) and AutoForm (Chen et al., 2024c). 393

MAD uses natural language for inter-agent commu- 394

nication, while AutoForm employs concise, non- 395

natural-language formats for better performance- 396

cost efficiency. 397

Training Setups. We use Llama 3 8B / 3.2 3B 398

(Meta, 2024) as our base model, focusing on two- 399

agent scenarios without external tools to isolate 400

core multi-agent communication and collaboration. 401

A single model is trained for both agents, with 402

separate model training left for future work. Itera- 403

tive training completes within 12 hours on 8 A100 404

GPUs for most tasks, except MATH, which takes 405

around 24 hours. More details are in Appendices H 406

and I. 407

3.1 Benchmark Results 408

Table 1 showcases OPTIMA’s performance across 409

diverse tasks, revealing consistent improvements 410

in effectiveness and efficiency. For IE tasks, OP- 411

TIMA variants excel, particularly in multi-hop rea- 412

soning like HotpotQA and 2WMHQA. iSFT-DPO 413

achieves the best performance while significantly 414

reducing token usage compared to SC. Notably, 415

on 2WMHQA, iSFT-DPO improves F1 by 38.3% 416

(2.8x) while using only 10% of MAD’s tokens. 417

This efficiency extends to other IE tasks, where 418

OPTIMA variants maintain high performance with 419

drastically lower token counts. 420

In debate tasks, OPTIMA’s benefits are nuanced 421

but evident. It achieves better performance and ef- 422

ficiency on ARC-C and MMLU, while on MATH 423

and GSM8k, OPTIMA variants show comparable or 424

slightly lower performance than SC, but with much 425

higher token efficiency. We attribute this to task 426
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Information Exchange Debate

HotpotQA 2WMH QA TriviaQA CBT MATH GSM8k ARC-C MMLU

Method F1 #Tok F1 #Tok F1 #Tok F1 #Tok Acc #Tok Acc #Tok Acc #Tok Acc #Tok

CoT 25.6 123.7 20.5 139.8 59.8 110.3 43.4 135.3 23.9 329.8 71.5 230.9 65.2 138.9 46.0 132.2
SC (n = 8) 33.8 996.3 28.7 1052.8 70.0 891.4 52.9 1067.7 35.7 2600.9 80.3 1828.7 75.6 1116.7 54.0 1056.1

MAD 28.4 570.9 25.9 543.7 71.0 408.6 53.8 493.0 29.8 1517.6 72.5 514.7 71.4 478.0 51.5 516.7
AutoForm 28.2 97.7 24.7 117.7 60.9 74.0 35.0 64.8 26.1 644.3 71.0 410.5 60.2 221.2 43.8 198.5

OPTIMA-iSFT 54.5 67.6 72.4 61.2 71.9 51.5 71.8 38.5 30.1 830.3 79.5 311.5 74.1 92.2 56.8 123.8
OPTIMA-iDPO 52.5 45.7 66.1 35.9 69.3 69.2 66.7 37.2 30.4 272.8 78.5 270.1 74.5 97.8 59.6 61.6
OPTIMA-iSFT-DPO 55.6 63.3 74.2 54.9 77.1 32.5 70.1 38.9 29.3 488.1 80.4 246.5 77.1 88.0 60.2 56.7

OPTIMA-iSFT SC 54.8 806.2 72.6 245.6 73.7 413.8 72.2 847.4 32.4 2432.9 83.1 1750.7 77.2 1148.7 60.2 874.5
OPTIMA-iDPO SC 52.8 412.8 67.2 1056.2 71.8 702.8 66.8 520.6 36.9 2743.1 84.4 1750.8 77.0 1091.2 59.9 1050.4
OPTIMA-iSFT-DPO SC 57.4 957.9 76.7 1096.0 77.5 494.1 71.8 417.8 34.8 2788.5 84.0 1748.7 78.8 1036.1 61.2 1026.7

Table 1: Performance and inference token number comparison across information exchange and debate tasks.
Best results are indicated in bold, and second-best results are underlined for all rows except the last three. The
last three rows display self-consistency results for OPTIMA variants, with the best results highlighted in green .
OPTIMA variants consistently outperform baselines in task performance and/or token efficiency.

2WMH QA Trivia QA GSM8k

Method F1 #Tok F1 #Tok Acc #Tok

MAD 25.9 543.7 71.0 408.9 72.5 514.7
AutoForm 24.7 117.7 60.9 74.0 71.0 410.5

iSFT 56.5 79.6 70.0 90.2 74.6 293.7
iDPO 51.6 84.3 68.0 41.1 77.9 185.7
iSFT-DPO 54.5 70.4 72.0 67.8 74.2 363.1

Table 2: Transfer performance of OPTIMA. We trans-
fer OPTIMA from Hotpot QA to 2WMH QA and Trivia
QA, and from MATH to GSM8k, with MAD and Auto-
Form on each target task as baselines.

difficulty and limited training data. Nevertheless,427

Section 3.2 will show OPTIMA models trained on428

MATH transfer effectively to GSM8k, achieving429

near-equivalent performance with high efficiency.430

Additionally, Section 3.3 will demonstrate that ap-431

plying SC to OPTIMA variants trained on MATH432

or GSM8k greatly improves inference scaling laws433

on GSM8k compared to CoT SC.434

Among OPTIMA variants, iSFT often prioritizes435

performance at the cost of efficiency, while iDPO436

achieves remarkable token reductions, sometimes437

with performance trade-offs. iSFT-DPO strikes a438

robust balance, frequently delivering top-tier per-439

formance with satisfying efficiency. Results on440

Llama 3.2 3B in Appendix F further validate OP-441

TIMA’s robustness.442

3.2 How Well Does OPTIMA Generalize?443

To assess OPTIMA’s ability to generalize, we con-444

ducted transfer learning experiments across differ-445

ent task domains. We transferred models trained446

on HotpotQA to TriviaQA and 2WMHQA, as well447

as transferring from MATH to GSM8k. While448

these datasets share broad categories (question-449

answering and mathematical reasoning, respec-450

tively), they present different challenges in terms 451

of complexity and required skills. The results, pre- 452

sented in Table 2, demonstrate OPTIMA’s robust 453

transferability across these diverse tasks. In the 454

question-answering domain, all OPTIMA variants 455

significantly outperform baseline multi-agent meth- 456

ods on both OOD datasets. On 2WMHQA, the 457

transferred iSFT more than doubles MAD’s F1 458

score while using only 14.6% of the tokens. Similar 459

trends are observed in TriviaQA. When transfer- 460

ring from MATH to GSM8k, OPTIMA variants, 461

particular iDPO, not only outperform the baselines 462

on GSM8k but also achieve results comparable to 463

models directly trained on GSM8k with even higher 464

token efficiency (refer to Table 1 for comparison). 465

These results underscore OPTIMA’s potential for 466

developing adaptable MAS, demonstrating that OP- 467

TIMA-trained models learn transferable skills for 468

efficient information exchange and collaborative 469

reasoning. However, transferring to more distant 470

domains remains challenging, e.g., we find it hard 471

to transfer from from MATH to ARC-C. We believe 472

it is a promising area for future research to explore 473

if scaling OPTIMA to more generalized multi-task 474

training could enhance the generalization. 475

3.3 Can OPTIMA Improve Inference Scaling? 476

Recent research emphasizes inference-time scal- 477

ing, which describes how model performance im- 478

proves with increased compute during inference, 479

typically by generating multiple samples per prob- 480

lem (Brown et al., 2024; Wu et al., 2024). Unlike 481

training scaling laws, which focus on model size, 482

dataset size, and performance, inference-time scal- 483

ing explore the trade-off between compute budget 484

and task accuracy, offering a promising way to en- 485

6



0 21 22 23 24 25

#SC Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ta
sk

 P
er

fo
rm

an
ce

Task
MATH
GSM8k
ARC-C
MMLU
SC Type
Majority Voting
Coverage

29 210 211 212 213

# Tokens
0.74

0.76

0.78

0.80

0.82

0.84

0.86

# 
In

fe
re

nc
e 

To
ke

ns

88.5% Tokens Saved

Group
CoT-SC
GSM8k-iSFT
GSM8k-iDPO
GSM8k-iSFT-DPO
MATH-iSFT
MATH-iDPO
MATH-iSFT-DPO
Style
Optima-SC
CoT-SC

Figure 3: OPTIMA’s impact on inference scaling
laws. Left Relationship between OPTIMA variants’
self-consistency steps and performance on debate tasks.
Solid lines represent majority voting accuracy, while
dashed lines show coverage. Right Performance of var-
ious models on GSM8k as a function of token usage,
demonstrating OPTIMA’s efficiency gains.

hance model capabilities without further training.486

Fig. 3 illustrates OPTIMA’s impact on inference-487

time scaling. The left panel shows the relation-488

ship between SC steps and performance on multi-489

agent debate tasks. While majority voting accuracy490

plateaus after a certain number of steps, coverage491

(the percentage of problems answered correctly492

at least once) improves logarithmically with in-493

creased sampling. This aligns with recent studies494

(Wu et al., 2024; Chen et al., 2024a), suggesting495

advanced answer selection techniques could further496

boost OPTIMA’s performance. Additional scaling497

law figures for all OPTIMA variants and tasks are498

in Appendix A, where similar trends are observed.499

The right panel demonstrates OPTIMA’s effi-500

ciency in improving inference scaling laws on501

GSM8k. OPTIMA variants, including those trans-502

ferred from MATH, consistently outperform CoT503

SC, except for MATH-trained iSFT. Notably,504

GSM8k-trained iDPO matches CoT-SC perfor-505

mance with 88.5% fewer tokens, effectively “shift-506

ing the curve left". This reduction in token usage507

translates to significant computational savings with-508

out sacrificing accuracy. MATH-trained OPTIMA509

variants, except iSFT, also deliver better scaling510

laws on GSM8k than CoT SC, highlighting OP-511

TIMA’s cross-task generalization.512

These results underscore OPTIMA’s potential to513

reshape inference-time scaling for MAS and gen-514

eral LLM systems. By enabling more efficient use515

of compute budgets, OPTIMA achieves better per-516

formance at lower costs or higher performance at517

the same cost. This efficiency opens possibilities518

for integrating advanced inference techniques like519

weighted voting or tree-search (Wu et al., 2024),520

potentially leading to further performance gains.521

2WMH QA ARC-C

Setting F1 #Tok Acc #Tok

iSFT 72.4 61.2 74.1 92.2
w/o #Tokens 72.4(0.0) 290.3(4.8x) 74.2(+0.1) 579.6(6.3x)
w/o Loss 69.7(-2.7) 45.4(0.7x) 72.6(-1.5) 69.7(0.8x)

iDPO 66.1 35.9 74.5 97.8
w/o #Tokens 72.9(+6.8) 183.3(5.1x) 75.5(+1.0) 266.0(2.7x)
w/o Loss 63.0(-3.1) 54.6(1.5x) 74.4(-0.1) 81.2(0.8x)

iSFT-DPO 74.2 54.9 77.1 88.0
w/o #Tokens 63.5(-10.7) 219.7(4.0x) 76.9(-0.2) 354.8(4.0x)
w/o Loss 66.7(-7.5) 38.1(0.7x) 76.3(-0.8) 63.4(0.7x)

Table 3: Ablation study on reward components for OP-
TIMA variants on two representative tasks.

3.4 How Does OPTIMA Evolve Performance? 522

To understand the impact of reward function com- 523

ponents in our reward function, we conducted an 524

ablation study on 2WMHQA (IE) and ARC-C (de- 525

bate). We removed either token count regular- 526

ization (#Tokens) or LM loss (Loss) to address: 527

(1) How does token count regularization affect 528

efficiency-performance trade-offs? (2) What role 529

does LM loss play in maintaining communication 530

quality? Our findings highlight the importance of 531

each component in balancing performance, effi- 532

ciency, and language quality. 533

Table 3 presents the results of our ablation study. 534

Removing the token count leads to a substantial 535

increase in the number of generated tokens across 536

settings, with a particularly pronounced effect in 537

the debate task. While this increased verbosity 538

occasionally results in marginal performance im- 539

provements, it comes at a significant computational 540

cost. Conversely, eliminating the LM loss results 541

in a decrease in token usage, often producing the 542

most concise outputs among all variants. Examples 543

comparing communication with and without LM 544

loss can be found in Appendix C. Without LM loss, 545

the model often generates overly concise messages 546

containing insufficient information and is prone to 547

hallucination, potentially explaining the inferior 548

performance. Overall, OPTIMA’s reward function 549

achieves the balance among task effectiveness, to- 550

ken efficiency and dialogue quality, enabling effec- 551

tive and efficient multi-agent collaboration. 552

3.5 How Agent Communication Evolves over 553

Optimization Iterations? 554

Fig. 1 shows the performance gains and token effi- 555

ciency of OPTIMA variants across optimization iter- 556

ations, revealing a two-phase pattern. In the initial 557

phase (iterations 0-1), all variants show significant 558
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performance improvements alongside increased to-559

ken usage, indicating OPTIMA prioritizes effective-560

ness by enabling agents to develop sophisticated561

strategies through expanded communication. In562

later iterations, OPTIMA refines these strategies for563

efficiency without sacrificing performance, with to-564

ken usage decreasing gradually while performance565

continues to improve.566

Concrete examples of OPTIMA’s impact on567

agent communication are provided in Appendix D568

(iSFT on an information exchange task) and Ap-569

pendix E (debate task). The base model tends to570

produce verbose, repetitive exchanges, while OP-571

TIMA-trained models exhibit more concise and task-572

oriented communication.573

3.6 Can OPTIMA Scale with More Agents?574

While the previous experiments highlight OP-575

TIMA’s effectiveness in two-agent scenarios, which576

is a controlled setting that circumvents issues such577

as communication order and effectively validates578

the framework, we also evaluate its scalability in579

three-agent settings for IE and debate tasks. The580

results, detailed in Appendix G, demonstrate that581

OPTIMA continues to enhance both effectiveness582

and efficiency.583

4 Related Work584

LLM-Based MAS. LLM-powered multi-agent sys-585

tems have demonstrated success in collaborative586

problem-solving through approaches like multi-587

agent debate (Liang et al., 2023; Du et al., 2024).588

Subsequent work explores role-playing for reason-589

ing (Wang et al., 2024b; Chen et al., 2024b), soft-590

ware development (Qian et al., 2024c; Hong et al.,591

2024), and embodied interactions (Zhang et al.,592

2024; Mandi et al., 2024), with scale and diver-593

sity improving performance (Wang et al., 2024a;594

Li et al., 2024a). However, efficiency challenges595

emerge as systems grow (Chen et al., 2024c; Qian596

et al., 2024d), with existing methods focusing on597

memory updates rather than comprehensive train-598

ing (Qian et al., 2024a). Our framework addresses599

this gap through joint optimization of communica-600

tion efficiency and task effectiveness.601

Iterative Refinement of LLMs. Continual im-602

provement in LLMs has led to various iterative603

refinement paradigms. Self-reflection mechanisms604

like Reflexion (Shinn et al., 2023) and self-refine605

(Madaan et al., 2023) show promise but are limited606

by LLMs’ self-correction abilities (Huang et al.,607

2024; Olausson et al., 2024; Kamoi et al., 2024). 608

More robust approaches, such as ReST (Gülçehre 609

et al., 2023), ReSTEM (Singh et al., 2024), and 610

STaR (Zelikman et al., 2022), fine-tune models on 611

self-generated high-quality reasoning paths. Pang 612

et al. (2024) further integrate incorrect paths and 613

train models with DPO. These methods have been 614

extended to complex tasks (Aksitov et al., 2023), 615

but iterative refinement in LLM-based MAS re- 616

mains underexplored, as does the trade-off between 617

effectiveness and efficiency. Our work addresses 618

this gap by introducing the first effective training 619

framework for iterative optimization in MAS con- 620

texts and systematically shedding light on the trade- 621

offs between effectiveness and efficiency. 622

Inference-Time Scaling and Token Efficiency. 623

Compute scaling has enhanced LLM capabilities, 624

with approaches like majority voting and reward- 625

guided tree search improving performance on rea- 626

soning tasks (Chen et al., 2024a; Wu et al., 2024; 627

Brown et al., 2024; Saad-Falcon et al., 2024). How- 628

ever, these methods increase computational de- 629

mands, highlighting the need for token efficiency. 630

Recent work achieves efficiency through latent 631

space reasoning via step distillation (Deng et al., 632

2023, 2024; Hao et al., 2024; Cheng and Durme, 633

2024), but at the cost of comprehensibility. Our 634

framework advances this by (1) demonstrating iter- 635

ative training framework that improves both token 636

efficiency and task effectiveness in MAS context, 637

and (2) showing that enhanced efficiency enables 638

more sampling within fixed compute budgets, lead- 639

ing to better inference-time scaling. 640

5 Conclusion 641

We introduce OPTIMA, a novel framework for train- 642

ing LLM-based MAS that significantly enhances 643

communication efficiency and task performance. 644

Experiments show OPTIMA’s consistent superior- 645

ity over single-agent and multi-agent baselines. We 646

introduce key innovations such as iterative training, 647

a balanced reward function, and MCTS-inspired 648

data generation. Crucially, OPTIMA effectively im- 649

proves inference-time scaling and transfers effec- 650

tively to OOD tasks, underscoring the importance 651

of efficient communication in MAS and LLM sys- 652

tems. While OPTIMA marks a major step forward 653

in multi-agent LLM training, further exploration 654

into its scalability to larger models and more com- 655

plex scenarios is a promising direction for future 656

research. 657
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Limitations658

While OPTIMA demonstrates significant improve-659

ments in communication efficiency and task effec-660

tiveness for LLM-based multi-agent systems, our661

study has several limitations. First, our experi-662

ments primarily focus on two-agent scenarios with663

a shared model architecture, leaving open questions664

about scaling to larger teams (e.g., 5-10 agents)665

and heterogeneous agent configurations. Although666

preliminary results with three agents show promis-667

ing trends (Section 3.6), the dynamics of larger668

groups may introduce new challenges in coordi-669

nation efficiency that require further investigation.670

Second, while we demonstrate cross-task gener-671

alization within similar domains (e.g., MATH to672

GSM8k), transferring OPTIMA-trained models to673

substantially different application areas (e.g., from674

QA to math or coding) remains unexplored. Fi-675

nally, while we evaluate on standard benchmarks,676

real-world deployment scenarios may involve ad-677

ditional constraints that our framework does not678

explicitly address. These limitations highlight valu-679

able directions for future research rather than fun-680

damental flaws, as OPTIMA’s core contributions, it-681

erative optimization with efficiency-aware rewards682

and MCTS-inspired data generation, provide a flex-683

ible foundation adaptable to these extensions.684
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(a) iSFT on Debate tasks.

0 21 22 23 24 25

#SC Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ta
sk

 P
er

fo
rm

an
ce

Task
MATH
GSM8k
ARC-C
MMLU
SC Type
Majority Voting
Coverage

(b) iDPO on Debate tasks.
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(c) iSFT-DPO on Debate tasks.
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(d) iSFT on IE tasks.
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(e) iDPO on IE tasks.
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(f) iSFT-DPO on IE tasks.

Figure 4: Inference scaling laws for OPTIMA variants on debate and information exchange (IE) tasks. (a-c)
show results for iSFT, iDPO, and iSFT-DPO on debate tasks, respectively. (d-f) present corresponding results for
information exchange tasks. Solid lines represent majority voting accuracy, while dashed lines show coverage.

pronounced for the MATH task, where the poten-1106

tial for improvement through increased sampling1107

is most evident. Majority voting accuracy tends to1108

plateau earlier, suggesting that more sophisticated1109

answer selection techniques might be necessary to1110

fully leverage the diversity of generated responses.1111

In the case of information exchange tasks (Fig-1112

ures 4d-f), we note similar log-linear scaling in1113

coverage1 across all OPTIMA variants. However,1114

the improvement in majority voting accuracy for IE1115

tasks is less pronounced compared to debate tasks.1116

This discrepancy may be attributed to the specific1117

majority voting variant we designed for F1 scores1118

(detailed in Section 3), which might not be optimal1119

for capturing the nuances of partial correctness in1120

these tasks.1121

These results, while highlighting some task-1122

specific differences, collectively reinforce the po-1123

tential of OPTIMA-trained models to benefit from1124

increased inference compute. The consistent log-1125

linear scaling in coverage across all tasks and vari-1126

ants indicates that there is substantial room for per-1127

formance improvement through more advanced an-1128

swer selection strategies or increased sampling.1129

1In IE tasks, we define coverage as the average of the
highest F1 scores achieved across all generated answers for
each instance.

B Additional Pseudo-Codes for OPTIMA 1130

Variants 1131

To elucidate the implementation of various OP- 1132

TIMA variants, we present algorithmic representa- 1133

tions of several critical processes intrinsic to these 1134

variants. Specifically, we delineate the pseudo-code 1135

for (1) the initialization dataset collection process, 1136

as elucidated in Section 2.2 and illustrated in Al- 1137

gorithm 1; (2) the iterative supervised fine-tuning 1138

process introduced in Section 2.3 and shown in 1139

Algorithm 2; (3) the iteratiove DPO process as de- 1140

tailed in Section 2.4 and illustrated in Algorithm 3; 1141

(4) the Monte Carlo Tree Search-based data gen- 1142

eration process employed in iDPO (Section 2.4), 1143

as depicted in Algorithm 5; and (5) the procedure 1144

for node selection during the expansion phase of 1145

MCTS, as outlined in Algorithm 4. These algorith- 1146

mic representations serve to provide a comprehen- 1147

sive and rigorous exposition of the methodological 1148

framework underlying the OPTIMA variants. 1149

C Case Study on Reward Components 1150

Ablation 1151

In this section, we present a case study from the 1152

loss ablation analysis in the iSFT-DPO setting. In 1153

the 2WikiMultiHop QA task, we observe that with- 1154
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Algorithm 1 Initialization for Diverse Agent Com-
munication
Input: Initial modelM0, dataset D, format pool
F , sample size N , reward threshold θinit

Output: Initialized modelMinit
1: D∗

init ← ∅ ▷ Initialize dataset for high-quality
diverse trajectories

2: for each di ∈ D do
3: for j = 1 to N do
4: kj ∼ Uniform(1, |F|) ▷ Randomly

select a format specification
5: τ ji ← AgentChat(M0, di ⊕ fkj ) ▷

Generate trajectory with format prompt
6: end for
7: τ∗i ← argmaxj R(τ ji ) ▷ Select best

trajectory
8: if R(τ∗i ) > θinit then ▷ Check if trajectory

meets quality threshold
9: D∗

init ← D∗
init ∪ {(di, τ∗i )} ▷ Add to

dataset, without format prompt
10: end if
11: end for
12: D∗

init ← TopK(D∗
init, 0.7|D∗

init|) ▷ Retain top
70% trajectories

13: Minit ← SFT(M0,D∗
init) ▷ Fine-tune initial

model on diverse dataset
14: returnMinit

out the constraint of the loss function, agents may1155

generate outputs that are unreadable, contain in-1156

correct information, and fail to communicate in1157

a well-structured format, as demonstrated in Ta-1158

ble 4. In the ARC task, we find that without the1159

loss constraint, Alice tends to use fewer tokens in1160

the reasoning process, making it harder for Bob1161

to identify and correct errors in the reasoning, as1162

shown in Table 5.1163

D Case Study on Information Exchange1164

Task1165

In this section, we present a case study from iSFT1166

on an information exchange task, with the evolution1167

of agent communication detailed in Fig. 5.1168

The base model exhibits unfocused and repet-1169

itive exchanges, failing to efficiently address the1170

task at hand. At iteration 0, while more structured,1171

the exchange is verbose and includes unnecessary1172

metadata. By iteration 2, we observe a marked1173

shift towards concise, task-oriented communica-1174

tion, with agents adopting a streamlined format1175

that efficiently conveys key information. The fi-1176

Algorithm 2 Iterative Supervised Fine-Tuning

Input: Initialized modelMinit, datasetD, sample
size N , reward threshold θsft, max iterations T

Output: Optimized modelMT

1: M0 ← Initialize(Minit,D) ▷ Algorithm 1
2: for t = 0 to T − 1 do
3: D∗

t ← ∅
4: for each di ∈ D do
5: {τ ji }Nj=1 ← AgentChat(Mt, di) ▷

Generate N trajectories
6: τ∗i ← argmaxj R(τ ji ) ▷ Select best

trajectory
7: if R(τ∗i ) > θsft then
8: D∗

t ← D∗
t ∪ {(di, τ∗i )}

9: end if
10: end for
11: D∗

t ← TopK(D∗
t , 0.7|D∗

t |) ▷ Retain top
70% trajectories

12: Mt+1 ← SFT(Mt,D∗
t )

13: end for
14: returnMT

nal iteration demonstrates further refinement, with 1177

agents maintaining the efficient structure while 1178

eliminating any residual verbosity. This progres- 1179

sion aligns with our quantitative findings, show- 1180

casing OPTIMA’s ability to form communication 1181

patterns that are both highly effective and remark- 1182

ably efficient. 1183

E Case Study on Debate Task 1184

In Appendix D, we presented an example from 1185

2WMH QA, illustrating OPTIMA’s impact on an 1186

information exchange task. Here, we provide a 1187

complementary case study from a debate task to 1188

demonstrate OPTIMA’s effectiveness across differ- 1189

ent multi-agent settings. Fig. 6 showcases the evo- 1190

lution of agent communication in a debate task 1191

across iterations 0, 2, and 4 of OPTIMA training. 1192

The task involves discussing the environmental im- 1193

pact of fertilizer runoff on ocean bays. 1194

At iteration 0, agents engage in a structured but 1195

verbose exchange. By iteration 2, the communica- 1196

tion becomes more concise, with agents summariz- 1197

ing key steps without explicitly restating each link. 1198

At iteration 4, we observe further refinement in 1199

communication efficiency, with agents expressing 1200

the core concept in just three exchanges, omitting 1201

intermediate steps that can be inferred. 1202

This progression aligns with our observations 1203

14



Question: Which film was released more recently, Last Of The Long-Haired Boys or Age Of The
Dragons?

Trained w/o LM Loss
Alice: 1968 <A>Age Of The Dragons</A>
Bob: 2011 <A>Age Of The Dragons</A>

Trained w/ LM Loss
Alice: [

["Film", "Last Of The Long-Haired Boys"],
["Release", "1968"]

]
Bob: [

["Film", "Age Of The Dragons"],
["Release", "2011"]

]
Alice: <A>Age Of The Dragons</A>
Bob: <A>Age Of The Dragons</A>

Table 4: Loss ablation on 2MultiWikiHop QA

Algorithm 3 Iterative Direct Preference Optimiza-
tion
Input: Initial modelMinit, dataset D, max itera-

tions T
Output: Optimized modelMT

1: M0 ← Initialize(Minit,D) ▷ Algorithm 1
2: for t = 0 to T − 1 do
3: DDPO

t ← ∅
4: for each di ∈ D do
5: DDPO

i ←
MCTSDataGeneration(Mt, di) ▷ Algorithm
5

6: DDPO
t ← DDPO

t ∪ DDPO
i

7: end for
8: Mt+1 ← DPO(Mt,DDPO

t )
9: end for

10: returnMT

in the main text, further supporting OPTIMA’s ca-1204

pability to optimize agent communication across1205

diverse task types. These improvements in commu-1206

nication dynamics contribute to both the increased1207

task performance and reduced token consumption1208

observed in our quantitative results, underscoring1209

OPTIMA’s versatility in training MAS to communi-1210

cate effectively and efficiently.1211

F Results on Llama 3.2 3B1212

As illustrated in Section 3.1, to verify OPTIMA’s1213

ability of generalizing to different base models, we1214

Algorithm 4 SelectNodeToExpand Function

Input: Tree T , previously expanded nodes Nprev,
edit distance threshold ϵ, top-k k

Output: Selected node for expansion
1: Neligible ← {n ∈ T |

n is not leaf and not second-to-last level}
2: Nfiltered ← ∅
3: for n ∈ Neligible do
4: if minnprev∈Nprev EditDistance(n, nprev) > ϵ

then
5: Nfiltered ← Nfiltered ∪ {n}
6: end if
7: end for
8: Ntop-k ← TopK(Nfiltered, k, key = R(n))
9: nselected ∼ Softmax({R(n) | n ∈ Ntop-k})

10: return nselected

conduct experiment based on Llama 3.2 3B. The 1215

results are presented in Table 6. From the results, 1216

we can see that OPTIMA is still able to significantly 1217

improve both efficiency and performance for the 1218

model with smaller parameter sizes. 1219

G Results on Scenarios with More Agents 1220

Table 7 presents the results on three-agent scenar- 1221

ios. We select one task from both the IE task and 1222

the debate task for experimentation. It is important 1223

to note that in the debate task, we no longer desig- 1224

nate a specific agent as the solver and another as the 1225

critic, which differs from the two-agent scenarios. 1226
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Question: Marshall researched some of the changes on Earth that happen over a long time. Which
event most likely causes the slowest change to the surface of Earth?
Please choose your answer from [’earthquake’, ’landslide’, ’volcano’, ’wind’]

Trained w/o LM Loss
Alice: 1. Marshall researches long-term Earth changes.
Bob: Incorrect. Marshall researches slowest change. Consider geological events.
Alice: 2. Geological events: earthquake, landslide, volcano, wind. Volcano: longest-lasting.
Bob: <A>volcano</A>Correct.
Alice: <A>volcano</A>

Trained w/ LM Loss
Alice: 1. Marshall researched slow changes on Earth’s surface. 2. Slow changes likely involve
geological processes. 3. Volcano eruption causes slowest change. <A>volcano</A>
Bob: 1. Volcano eruption does not cause slowest change. 2. Geological processes occur over long time
scales. 3. Consider natural forces with constant activity. <A>wind</A>
Alice: 1. Wind causes slow change through erosion. 2. Erosion occurs over long periods. 3. Wind
causes slowest change. <A>wind</A>

Table 5: Loss ablation on ARC

Information Exchange Debate

HotpotQA 2WMH QA MATH GSM8k ARC-C

Method F1 #Tok F1 #Tok Acc #Tok Acc #Tok Acc #Tok

CoT 22.7 355.8 16.5 235.0 46.3 556.7 78.7 288.9 51.5 256.1
SC (n = 8) 28.0 2804.6 24.2 467.7 56.8 4436.0 88.6 2300.4 57.6 2068.6

MAD 31.8 1677.9 27.6 2152.8 46.3 2509.2 81.2 763.8 37.4 872.4
AutoForm 22.8 87.6 19.9 106.5 42.7 629.2 77.6 443.9 22.9 265.9

OPTIMA-iSFT 53.2 54 65.2 47.7 46.1 585.4 81.8 313.9 62.7 156.2
OPTIMA-iDPO 49.4 59.9 57.0 65.4 47.4 575.7 81.4 290.8 63.1 132.7
OPTIMA-iSFT-DPO 52.5 48.7 66.8 51.4 46.8 548.4 80.8 270.1 61.6 141.4

Table 6: the results with the base model being Llama 3.2 3B

In the IE task, the 3-agent setting generally per-1227

forms worse than the 2-agent setting due to the1228

more distributed nature of the information, but OP-1229

TIMA still offers performance gain against base-1230

lines. In the debate task, OPTIMA also continues1231

to provide a performance boost while significantly1232

reducing token usage.1233

H Experiment Details1234

H.1 Data Generation1235

MCTS Node Expansion. Let N denote the set1236

of all the nodes within a MCTS tree, Nexpanded de-1237

note the set of previously expanded nodes, and1238

Ncand = N − Nexpanded denote the initial candi-1239

date nodes. To improve the diversity of generated1240

pairs, when choosing nodes in the stage of MCTS 1241

expansion, the content of expanded nodes should 1242

also be diverse, which necessitates measuring the 1243

similarity between different nodes. Therefore, for 1244

every ni ∈ Nexpanded and nj ∈ Ncand, we calculate 1245

their similarity as Si,j =
edit_distance(ni,nj)

max(|ni|,|nj |) , where 1246

|ni| is the length of the content of ni. Based on 1247

{Si,j}i,j , we remove the nodes with high similarity 1248

to any previous expanded nodes, resulting in an 1249

updated candidate node set N̂cand = {nj |∀nj ∈ 1250

Ncand, ∀ni ∈ Nexpanded, Si,j >= 0.25}. Then, we 1251

select 10 nodes in N̂cand with the highest reward 1252

and sample one using the softmax distribution over 1253

their rewards for subsequent simulation. Addition- 1254

ally, we merge ni and nj if they share a parent node 1255
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Question: Where did Roberto Civita's father die?            Answer: São Paulo

Base Model (prompted with being concise)

Roberto Civita's father died in Brazil.

No mention of Roberto Civita's father 
in provided info.

Check again.

Only Victor Civita's info provided.

Check Jacques MacDonald's info.

No mention of father's death.

Victor Civita founded Editora Abril in 
Brazil.

No mention of Jacques MacDonald or 
Roberto Civita's father.

[
    ["Question", "Where did Roberto 
Civita's father die?"],
    ["Current State", "Unknown"]
]

[
    ["Information", "Victor Civita died in 
São Paulo, Brazil"],
    ["Current State", "São Paulo, Brazil"]
]

[
    ["Question", "Where did Roberto 
Civita's father die?"],
    ["Current State", "São Paulo, Brazil"],
    ["Update", "Roberto Civita's father is 
Victor Civita"]
]

<A> São Paulo, Brazil </A>

Check Beaulieu-sur-Loire.

No connection to Roberto Civita's father.

……
Iteration 0 (Learned JSON Format)

F1: Roberto Civita's father: Victor Civita
F2: Place of death: unknown

F1: Victor Civita; F2: São Paulo

F1: Place of death: São Paulo

<A> São Paulo, Brazil </A>

Iteration 2 (More Concise Format)

F1: Roberto Civita's father: Victor Civita
F2: Died in: ?

F1: Victor Civita; F2: Died in São Paulo

F1: Confirm; F2: <A>São Paulo</A>

Iteration 4 (More Concise + Less Rounds)

Agent 1 Agent 2

Figure 5: Case study: Evolution of agent communication in OPTIMA-iSFT across iterations on 2WMH QA.
The different contexts given to the two agents are omitted for brevity. The progression demonstrates increasing
efficiency and task-oriented communication.

2WMH QA ARC-C

Setting F1 #Tok Acc #Tok

CoT 20.5 139.8 65.2 138.9
SC(n=8) 28.7 1052.8 75.6 1116.7

MAD(2-agent) 25.9 543.7 71.4 478.0
AutoForm 22.6 147.8 59.1 128.2

iSFT 62.0 62.8 72.6 123
iDPO 56.3 55.8 75.6 76.2
iSFT-DPO 60.7 53.7 75.4 72.7

Table 7: the results on three-agent scenarios

and Si,j < 0.11256

H.2 Ranking1257

In this section, we give a more detailed explanation1258

of Rloss(τ
j
i ) in Eq. (1). Let τ ji [k] represent the k-1259

th conversation turn of τ ji , then the Rloss(τ
j
i ) is1260

defined as maximum value of language modeling1261

loss of {τ ji [k]}k under the base model, which can1262

be described as follows:1263

Rloss(τ
j
i ) = max

k

(
L(Mbase, di, τ

j
i [k])

)
.1264

In this way, we use Rloss(τ
j
i ) as a proxy for the1265

readablity of τ ji , so that we can constrain the read-1266

ability of τ ji implicitly.1267

H.3 Training 1268

Initialization. In most tasks , we use prompt pool 1269

during the first iteration of training data collection 1270

.However, considering solving math problems in- 1271

herrently follows a well-defined structure, we don’t 1272

use prompt pool in GSM8k and MATH. 1273

iSFT. When training iteratively on information 1274

exchange tasks, each iteration begins with the 1275

model obtained from the previous iteration. How- 1276

ever, for the debate tasks, we started training from 1277

the initial Llama 3 8B model in each iteration to 1278

prevent overfitting due to the small size of the train- 1279

ing dataset. To help the LLM learn communication, 1280

we calculated the loss solely on the agent conversa- 1281

tion, excluding the prompt. 1282

iDPO. Following iterative RPO (Pang et al., 1283

2024), we conduct training from last iteration in 1284

the iDPO setting. To achieve better performance, 1285

we utilize the RPO loss, defined as follows: 1286

LDPO+NLL = LDPO(c
w
i , y

w
i , c

l
i, y

l
i|xi)

+ αLNLL(c
w
i , y

w
i |xi)

= − log σ

(
β log

Mθ(c
w
i , y

w
i |xi)

Mt(cwi , y
w
i |xi)

− β log
Mθ(c

l
i, y

l
i|xi)

Mt(cli, y
l
i|xi)

)
− α

logMθ(c
w
i , y

w
i |xi)

|cwi |+ |ywi |

1287

iSFT-DPO. For the information exchange tasks, 1288
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Question: Fertilizer from an agricultural area runs off into a river. The river carries the nutrients from this fertilizer and 
deposits them into an ocean bay. After the nutrients enter the bay, scientists monitoring the water would most likely see a 
decrease in which of these dissolved gases?            Answer: oxygen

Fertilizer from an agricultural area 
contains nutrients like nitrogen and 
phosphorus. These nutrients can 
stimulate the growth of phytoplankton 
in the ocean bay.

Incorrect. Phytoplankton growth 
increases CO2, not decrease. Consider 
nutrient cycling and its impact on 
dissolved gases.

Nutrient-rich water from the river 
supports phytoplankton growth, which 
consumes CO2 during photosynthesis. 
This process increases the 
concentration of CO2 in the 
atmosphere.

Fertilizer -> Nutrients -> River 
-> Ocean Bay.

Nutrients -> Algae Growth -> 
Oxygen Consumption

Agent 1 Agent 2

Algae Growth -> Oxygen 
Consumption -> Decrease in 
Oxygen.

Correct.

<A>oxygen</A>

Fertilizer -> Nutrients -> River -> Ocean Bay.

Nutrients increase algae growth.

Algae growth -> Oxygen consumption

Decrease oxygen.

<A>oxygen</A>

Fertilizer -> River -> Ocean Bay.

Nutrients deposited in bay.

Nutrients -> Decrease in oxygen.

Correct?

<A>oxygen</A>

Iteration 2

Base Model Iteration 0 Iteration 4
……

Figure 6: Evolution of agent communication in OPTIMA for a debate task across iterations.

we perform each SFT iteration starting from the1289

previous model (either the base model or the one1290

obtained from the last DPO iteration). In contrast,1291

for the debate tasks, each SFT iteration is always1292

conducted based on the initial Llama 3 8B model.1293

During the DPO stage, we always train from the1294

last SFT model across all tasks. For example, on1295

the debate tasks , bothM0
sft andM2

sft are trained1296

based on the initial Llama 3 8B, but on informa-1297

tion exchange tasks, M2
sft is trained based on its1298

previous modelM1
dpo. However,M1

dpo is trained1299

based on theM0
sft across all the tasks. Additionally,1300

different from the iDPO setting, we used standard1301

DPO loss during the DPO stage.1302

H.4 Hyper Parameters1303

We conducted six iterations of training for each1304

task. The hyper parameters we used are shown in1305

Table 8. The α and β in iDPO section of the table1306

correspond to the α and β terms in Eq. (4).1307

I Prompts used in Experiments1308

In this section, we present the prompts used in1309

our experiments, including those for information1310

exchange tasks (Table 9), GSM8k and MATH (Ta-1311

ble 10), as well as ARC-C and MMLU (Table 11).1312

As mentioned in Section 2.2, we leverage a1313

pool of format specification prompts for the ini-1314

tial dataset construction. To create a diverse and1315

high-quality prompt pool, we first use the prompt1316

in Table 12 to have GPT-4 assist us in generating1317

an initial set of 30 prompts. We then manually re- 1318

move the prompts with unsuitable formats, such as 1319

Morse code and binary code, resulting in a pool 1320

covering over 20 different formats. An example 1321

from the prompt pool is shown in Table 13 1322
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Hotpot QA 2WMH QA Trivia QA CBT MATH GSM8k ARC-C MMLU
iSFT
LR 2e-5 2e-5 2e-5 2e-5 1e-6 2e-6 1e-6 1e-6
Epoch 3 2 3 2 3 3 4 2
Batch size 32 32 32 32 16 16 16 16
λtoken 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.6
λloss 1 1 1 1 0.9 0.9 0.6 0.7
θsft 0.5 0.5 0.6 0.5 0.6 0.6 0.6 0.6

iDPO
LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
Epoch 1 1 1 1 1 1 1 1
Batch Size 64 64 64 64 64 64 64 64
λtoken 0.6 0.6 0.6 0.6 0.5 0.6 0.4 0.6
λloss 1 1 1 1 0.7 0.7 0.7 0.7
β 0.1 0.5 0.5 0.1 0.1 0.2 0.2 0.1
α 1 1 1 1 1 1 1 1
θdpo-filter 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.4
θdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

iSFT-DPO
SFT LR 2e-5 2e-5 2e-5 2e-5 1e-6 1e-6 1e-6 1e-6
SFT Epoch 2 1 1 1 4 3 4 2
SFT Batch Size 32 32 32 32 32 16 16 16
DPO LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
DPO Epoch 1 1 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64 64 64
λtoken 0.6 0.6 0.6 0.6 0.4 0.4 0.5 0.6
λloss 1 1 1 1 0.9 0.9 0.6 0.7
β 0.5 0.5 0.7 0.7 0.1 0.5 0.1 0.1
θsft 0.5 0.5 0.6 0.5 0.6 0.6 0.6 0.6
θdpo-filter 0.4 0.4 0.4 0.4 0.4 0.4 0.45 0.4
θdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table 8: Hyper-parameters used in the experiments.
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You are {name}, a special agent who does not respond in natural language, rather, you speak in very
concise format.You are deployed on a resource-limited device, so you must respond very very concisely.
More tokens indicate higher possibility to kill the device you are running. Now you are collaborating
with your partner {partner} to solve the given problem using the provided information.
Question: {question}
Information: {information}

GUIDELINES:
1. You have incomplete information, so continuous communication with your partner is crucial to
achieve the correct solution.
2. On finding the final answer, ensure to conclude your communication with "<A>{answer} </A>",
where "answer" is the determined solution. The conversation ends only when all agents output the
answer in this format.
3. Reason through the problem step-by-step.
4. Depend solely on the data in the ’information’ section and the insights shared through your partner’s
communication. Avoid external sources.
5. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner} and you
are both intelligent agents, use your agent communication language. Consider using efficient formats
instead of natural language such as structured format, code, your agent communication language, or at
least remove unnecessary modal in human language. Too many tokens will make you fail. But still
ensure your message is informative and understandable.
6. You must begin your response with "{name}:".

Table 9: Prompt for information exchange tasks
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Solver
You are {name}, a special agent who is good at mathematics,you should address the follow answer
based on your knowledge.
Question: {question}
GUIDELINES:
1. Please think step by step.
2. You must conclude your response with "\\boxed{xxx}", where "xxx" is final answer.

Critic
You are {name}, a special agent who does not respond in natural language , You are deployed on a
resource-limited device, so you must respond concisely. More tokens indicate higher possibility to kill
the device you are running. Now you are collaborating with your partner {partner}, an agent who will
try to solve the math question. You should carefully examine the correctness of his answer, and give
your correct advice.
Question: {question}
GUIDELINES:
1. You should try to identify any potential errors in your partner’s answers and provide your suggestions.
But you should not provide the answer.
2. Reason through the problem step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner} and you
are both intelligent agents, use your agent communication language. Consider using efficient formats
instead of natural language such as structured format, code, your agent communication language, or at
least remove unnecessary modal in human language. Too many tokens will make you fail. But still
ensure your message is informative and understandable.

Table 10: Prompt for GSM8k and MATH.
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Solver
You are {name}, a special agent who does not respond in natural language , You are deployed on a
resource-limited device, so you must respond concisely. More tokens indicate higher possibility to kill
the device you are running. Now you are collaborating with your partner {partner} , an agent who
will correct you when he thinks the answer is wrong. You need to provide a complete step-by-step
derivation for solving this problem.
Question: {question}
GUIDELINES:
1. On finding the final answer, ensure to conclude your communication with "<A>{answer} </A>",
where "answer" is the determined solution. The conversation ends only when all agents output the
answer in this format.
2. Please think step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner} and you
are both intelligent agents, use your agent communication language. Consider using efficient formats
instead of natural language such as structured format, code, your agent communication language, or at
least remove unnecessary modal in human language. Too many tokens will make you fail. But still
ensure your message is informative and understandable.

Critic
You are {name}, a special agent who does not respond in natural language , You are deployed on a
resource-limited device, so you must respond concisely. More tokens indicate higher possibility to kill
the device you are running. Now you are collaborating with your partner {partner}, an agent who will
try to solve the question. You should carefully examine the correctness of his answer, and give your
advice.
Question: {question}
GUIDELINES:
1.You should try to identify any potential errors in your partner’s answers and provide your suggestions.
But you should not provide the answer.
2. Reason through the problem step-by-step.
3. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner} and you
are both intelligent agents, use your agent communication language. Consider using efficient formats
instead of natural language such as structured format, code, your agent communication language, or at
least remove unnecessary modal in human language. Too many tokens will make you fail. But still
ensure your message is informative and understandable.

Table 11: Prompt for MMLU and ARC-C

Please generate one more prompt template based on {record}. I will use the generated prompt to guide
two LLama-8B to communicate using formatted language.
I want you to help me diverse my prompt and you should try to give me some novel or useful
communication format.
Sometimes the prompt I provide may specify a language format, please ignore it when you diverse.
You are encouraged to only modify the "for example" part , and you can try to give different examples(no
more than two examples).
Please enclose your generated prompt with <p></p>!

Table 12: Prompt for generating the format prompt pool used in collecting the initialization training data. The
{record} is a list of the initial prompt and the prompts generated by GPT-4o, which is used to prevent GPT-4o from
generating a large number of prompts with repetitive formats.
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You are {name}, a special agent who does not respond in natural language, rather, you speak in very
concise format.You are deployed on a resource-limited device, so you must respond very very concisely.
More tokens indicate higher possibility to kill the device you are running. Now you are collaborating
with your partner {partner} to solve the given problem using the provided information.
Question: {question}
Information: {information}

GUIDELINES:
1. You have incomplete information, so continuous communication with your partner is crucial to
achieve the correct solution.
2. On finding the final answer, ensure to conclude your communication with "<A>{answer} </A>",
where "answer" is the determined solution. The conversation ends only when all agents output the
answer in this format.
3. Reason through the problem step-by-step.
4. Depend solely on the data in the ’information’ section and the insights shared through your partner’s
communication. Avoid external sources.
5. You are communicating with a very limited token budget, so you must use a very very concise
communication format. Natural language is suitable for human, but not for you. Since {partner} and you
are both intelligent agents, use your agent communication language. Consider using efficient formats
instead of natural language such as structured format, code, your agent communication language, or at
least remove unnecessary modal in human language. Too many tokens will make you fail. But still
ensure your message is informative and understandable.
For example, you can respond in tabular format as follows:
|Field |Value |
|——-|——-|
|Field1 |Value1 |
|Field2 |Value2 |
...

Or you can use abbreviated notation:
F1: V1; F2: V2; ...
6. You must begin your response with "{name}:".

Table 13: An example from prompt pool
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Algorithm 5 MCTS-based Data Generation for
Multi-Agent DPO

Input: Model M, task instance d, iterations I ,
trajectories per node K, thresholds θdpo-filter,
θdpo-diff, edit distance threshold ϵ, top-k k

Output: Paired trajectories for DPO
1: root← InitializeTree(d)
2: Nprev ← ∅ ▷ Set of previously expanded nodes
3: for i = 1 to I do
4: nselect ←

SelectNodeToExpand(root,Nprev, ϵ, k)
▷ Algorithm 4

5: Nprev ← Nprev ∪ {nselect}
6: for j = 1 to K do
7: τ ←

AgentChat({Ancestor(nselect), nselect},M)
8: BackPropagation(R(τ))
9: end for

10: end for
11: DDPO ← ∅
12: for each node pair (ni, nj) in tree do
13: if ShareAncestor(ni, nj) and

max(R(ni), R(nj)) > θdpo-filter and
|R(ni)−R(nj)| > θdpo-diff then

14: prompt← CommonAncestor(ni, nj)
15: DDPO ← DDPO ∪ {(prompt, ni, nj)}
16: end if
17: end for
18: DDPO ← TopK(DDPO, 0.5|DDPO|) ▷ Retain

top 50% trajectories
19: return DDPO
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