
Defending Pre-trained Language Models as Few-shot
Learners against Backdoor Attacks

Zhaohan Xi1∗ Tianyu Du2∗ Changjiang Li1,3 Ren Pang1 Shouling Ji2
Jinghui Chen1 Fenglong Ma1 Ting Wang1,3

1Pennsylvania State University 2Zhejiang University 3Stony Brook University
{zhaohan.xi, rbp5354, jzc5917, fenglong}@psu.edu

{zjradty, sji}@zju.edu.cn
{changjli, twang}@cs.stonybrook.edu

Abstract

Pre-trained language models (PLMs) have demonstrated remarkable performance
as few-shot learners. However, their security risks under such settings are largely
unexplored. In this work, we conduct a pilot study showing that PLMs as few-
shot learners are highly vulnerable to backdoor attacks while existing defenses
are inadequate due to the unique challenges of few-shot scenarios. To address
such challenges, we advocate MDP, a novel lightweight, pluggable, and effective
defense for PLMs as few-shot learners. Specifically, MDP leverages the gap
between the masking-sensitivity of poisoned and clean samples: with reference to
the limited few-shot data as distributional anchors, it compares the representations
of given samples under varying masking and identifies poisoned samples as ones
with significant variations. We show analytically that MDP creates an interesting
dilemma for the attacker to choose between attack effectiveness and detection
evasiveness. The empirical evaluation using benchmark datasets and representative
attacks validates the efficacy of MDP. Code available at https://github.com/z
haohan-xi/PLM-prompt-defense.

1 Introduction

The prompt-based learning paradigm is revolutionizing the ways of using pre-trained language
models (PLMs) [7, 27, 28, 1] in various NLP tasks. Unlike the conventional fine-tuning paradigm
that requires re-training the PLM, the prompt-based paradigm reformulates the downstream task as a
masked language modeling problem and uses proper prompts to coax the model to produce textual
outputs [17]. For example, to analyze the sentiment of a movie review, one may append the prompt
“the movie is ___” to the given review and guide the model to predict the missing sentiment word
(e.g., “terrible” or “great”). Recent work shows that with proper prompting, even moderate-sized
PLMs can be adapted as performant few-shot learners when training data is limited [9].

In contrast to its increasing popularity, the security implications of this prompt-based paradigm are
largely under-explored. Recent work [8, 34, 2] shows that similar to their fine-tuned counterparts,
prompt-based PLMs are susceptible to textual backdoor attacks, in which misclassification rules
are injected into PLMs, only to be activated by poisoned samples containing “triggers” (e.g., the
rare word of “cr”). However, how to effectively mitigate such threats, especially under the few-shot
setting, remains an open challenge.

In this work, we conduct a pilot study showing that few-shot scenarios entail unique challenges
for defending against textual backdoor attacks, including scarce training data, intricate interactions
with prompts, and limited computational capacity. For instance, many existing defenses [3, 24, 36]
designed for the fine-tuning paradigm require reliable statistical estimates of the downstream datasets

∗Equal contribution.
37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/zhaohan-xi/PLM-prompt-defense
https://github.com/zhaohan-xi/PLM-prompt-defense

and therefore perform poorly under the few-shot setting. Thus, it necessitates developing effective
defenses tailored to the setting of few-shot learning.

Towards this end, we advocate MDP (masking-differential prompting), an effective, lightweight, and
pluggable backdoor defense for PLMs as few-shot learners. At a high-level, MDP leverages the key
observation that compared with clean samples, poisoned samples often show higher sensitivity to
random masking: if its trigger is (partially) masked, the language modeling probability of a poisoned
sample tends to vary greatly. Therefore, with reference to the limited few-shot data as “distributional
anchors”, MDP compares the representations of given samples under varying masking and identifies
poisoned samples as ones with significant variations. To boost its effectiveness, MDP (optionally)
optimizes the prompt to further improve the masking-invariance of clean samples.

To validate its effectiveness, we empirically evaluate MDP using benchmark datasets and represen-
tative attacks. The results show that MDP effectively defends PLMs against various attacks under
the few-shot setting, with little impact on their performance in downstream tasks. Moreover, we
show analytically that MDP creates an interesting dilemma for the attacker to choose between attack
effectiveness and detection evasiveness.

To summarize, this work makes the following contributions.

• To our best knowledge, this is the first work on defending PLMs as few-shot learners against
backdoor attacks. We reveal that the few-shot setting entails unique challenges while existing
defenses for the fine-tuning paradigm are not easily retrofitted to its specificities.

• We propose MDP, a novel defense tailored to the few-shot setting. Leveraging the gap between the
masking sensitivity of clean and poisoned samples and utilizing the few-shot data to effectively
estimate such sensitivity, MDP detects poisoned samples with high accuracy at inference time.

• Using benchmark datasets and representative attacks, we empirically validate that MDP outper-
forms baseline defenses by large margins while causing little impact on the performance of LMs in
downstream tasks.

2 Related Work

We survey the literature relevant to this work in the categories of few-shot learning, PLM prompting,
and textual backdoor attacks and defenses.

Few-shot learning [32] enables pre-trained models to generalize to new tasks using only a few
(labeled) samples. In the NLP domain, typical few-shot learning methods include meta-learning [40],
intermediate training [38, 39], and semi-supervised learning [20, 33]. Recently, prompt-based learn-
ing [23] receives increasing attention since the introduction of GPT-3 [1], which demonstrates re-
markable few-shot performance by using natural-language prompts and task demonstrations to
contextualize inputs [17, 9, 41, 13, 18].

PLM prompting treats downstream tasks as masked language modeling problems and leverages
prompts to guide PLMs to produce textual outputs [23]. With proper prompting, even moderate-sized
PLMs function as performant few-shot learners [9]. While manually designing prompts requires
domain expertise and is often sub-optimal [1, 23], recent work explores generating prompts automati-
cally [13, 18, 16, 44]. For instance, P-Tuning [17] and DART [41] define prompts as pseudo-tokens
and optimize prompts in the continuous space, achieving state-of-the-art performance.

Textual backdoor attacks extend the attacks proposed in the computer vision domain [11, 5, 22] to
NLP tasks. By polluting training data or modifying model parameters (e.g., embeddings), the attacks
inject misclassification rules into language models, which are activated at inference by poisoned
samples containing “triggers” such as rare words [12, 35, 42, 43, 37], natural sentences [6, 4], and
specific patterns [26, 21]).

Textual backdoor defenses aim to defend LMs against backdoor attacks. For instance, based on
the observation that trigger words tend to dominate poisoned samples, STRIP [10] detects poisoned
samples at run-time as ones with stable predictions under perturbation. As trigger words often
increase the perplexity of poisoned samples, ONION [24] identifies poisoned samples by inspecting
the perplexity changes of given samples under word deletion. RAP [36] leverages the difference

2

Training

Backdoored PLM

Poisoned Sample Misclassification

PLM

Few-shot Data

<latexit sha1_base64="T4DF/jqOPqOnSG/s8NMvfGHG2f8=">AAACfXicbZFNb9NAEIY35quErxaOXCySShyQZVeFcqyAA8cikbaia1Xr8aRZZT/M7rjEsvw7uMLP4tfAOokESRlppVczz4zenSkqJT2l6a9BdOv2nbv3du4PHzx89PjJ7t7TU29rBzgBq6w7L4RHJQ1OSJLC88qh0IXCs2L+vq+fXaPz0prP1FSYa3Fl5FSCoJDKx1wLmoFQ7YdufLk7SpN0GfFNka3FiK3j5HJv8IWXFmqNhkAJ7y+ytKK8FY4kKOyGvPZYCZiLK7wI0giNPm+Xrrt4P2TKeGpdeIbiZfbfjlZo7xtdBLI36Tdqi9WQbb4H/8sXepP1pIVrXLnlkaZv81aaqiY0sLI4rVVMNu6XF5fSIZBqghDgZPhlDDPhBFBY8ZAb/AZWa2HKlgNIB13L5+hMmrzGBb+GsCZ0LZ8VdtGOuQ8TKvLUKOQ9PO66v3Q3DNfItnd/U5weJNmb5PDTwej43fouO+w5e8FesowdsWP2kZ2wCQP2lX1nP9jPwe9oP3oVJSs0Gqx7nrGNiI7+AA2oxcc=</latexit>D
Prompt-based
Fine-tuning

<latexit sha1_base64="IFhjMpYlxCeqPA5aQeGt43njViQ=">AAACc3icbZFLa9tAEMfX6it1X0l6zEXEKvRSI4W+jiG59JjSOgnNmrAajezF+xC7o9RC6CP0mn62fpDeu35Aa6cDC39mfjPM/ievlPSUpr960b37Dx4+2nncf/L02fMXu3v7597WDnAEVll3mQuPShockSSFl5VDoXOFF/nsdFG/uEHnpTVfqalwrMXEyFKCoJD6kpTJ9e4gHabLiO+KbC0GbB1n13u9b7ywUGs0BEp4f5WlFY1b4UiCwq7Pa4+VgJmY4FWQRmj043a5axe/CpkiLq0Lz1C8zP7b0QrtfaPzQGpBU79Rm6+GbPML8L98rjdZT1q4xhVbO1L5cdxKU9WEBlYrlrWKycYLy+JCOgRSTRACnAy/jGEqnAAKxva5we9gtRamaDmAdNC1fIbOpMN3OOc3EGxC1/Jpbudtwn2YUJGnRiFfwEnX/aW7frhGtu39XXF+NMzeD99+Phocn6zvssMO2CF7zTL2gR2zT+yMjRiwCfvBbtnP3u/oIDqMkhUa9dY9L9lGRG/+AC48wVc=</latexit>

f

Inference

Attacker

<latexit sha1_base64="jTq00DgrQDU/ZLSOWh99zJG0ABY=">AAACBHicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivYB7Sh3Ewn7ZDJJMxMhBC6de9Wf8GduPU//AM/w2mbhW09cOFwzr3ce4+fcKa043xbK6tr6xubpa3y9s7u3n7l4LCl4lQS2iQxj2XHR0U5E7Spmea0k0iKkc9p2w/vJn77iUrFYvGos4R6EQ4FCxhBbaR20O8RJkm/UnVqzhT2MnELUoUCjX7lpzeISRpRoQlHpbquk2gvR6kZ4XRc7qWKJkhCHNKuoQIjqrx8eu7YPjXKwA5iaUpoe6r+ncgxUiqLfNMZoR6pRW8i/ud1Ux3ceDkTSaqpILNFQcptHduT3+0Bk5RonhmCRDJzq01GKJFok9DcFp+HKCVm47KJxl0MYpm0zmvuVe3y4aJavy1CKsExnMAZuHANdbiHBjSBQAgv8Apv1rP1bn1Yn7PWFauYOYI5WF+/DQ6Y3w==</latexit>

f�

Prompt-based LM

Backdoor
Injection

User

Figure 1: Threat model of NLP backdoor attacks: the attacker injects a backdoor into the PLM f ; the victim
user adapts f as a few-shot learner in the downstream task; the attacker activates the backdoor via feeding f
with poisoned samples.

between the robustness of clean and poisoned samples to crafted perturbation and injects extra triggers
into given samples to detect poisoned samples.

However, most existing defenses are designed for the fine-tuning paradigm. How to mitigate the
threat of textual backdoor attacks for the prompt-based paradigm, especially under the few-shot
setting, remains an open challenge. This work represents a solid initial step to bridge this gap.

3 Background

We present the key concepts and assumptions used throughout the paper.

3.1 Few-shot Prompting

Let Xin = {x1, x2, . . . , xn} be an input sample, in which xi is the i-th token and n is the length of
Xin. In prompt-based learning, Xin is padded with a template T to form a prompt:

Xprompt = [cls]Xin [sep] T [sep] (1)

where T is a task-specific string template containing a masked token:

T = [T1:i] [mask] [Ti+1:m] (2)

The existing methods differ in the definition of the template T . In discrete prompts [23], [Ti] are
selected from the vocabulary V , while in continuous prompts [18], [Ti] are defined as pseudo tokens.

Given Xprompt, the PLM f (parameterized by θ) is guided to output the token distribution of the
masked token pθ([mask]|Xprompt). The probability that Xin belongs to a class y ∈ Y is predicted as:

pθ(y|Xprompt) =
∑
v∈Vy

pθ([mask] = v|Xprompt) (3)

where Vy is the set of label tokens related to y.

Under the few-shot setting, the user has access to a limited training set (e.g., K = 16 samples per
class) and searches for the template T that optimizes the accuracy of f in the downstream task (yet
without modifying θ).

3.2 Threat Model

As illustrated in Figure 1, we consider a malicious model provider as the attacker, who injects a
backdoor into the PLM f◦ and releases the backdoored model f . We focus on the targeted-attack
case in which the backdoor is defined as classifying samples with triggers (“poisoned samples”) to a
target class t desired by the attacker. The victim user downloads f and applies it as a prompt-based
few-shot learner in the downstream task. The attacker activates the backdoor at inference time by

3

<latexit sha1_base64="T4DF/jqOPqOnSG/s8NMvfGHG2f8=">AAACfXicbZFNb9NAEIY35quErxaOXCySShyQZVeFcqyAA8cikbaia1Xr8aRZZT/M7rjEsvw7uMLP4tfAOokESRlppVczz4zenSkqJT2l6a9BdOv2nbv3du4PHzx89PjJ7t7TU29rBzgBq6w7L4RHJQ1OSJLC88qh0IXCs2L+vq+fXaPz0prP1FSYa3Fl5FSCoJDKx1wLmoFQ7YdufLk7SpN0GfFNka3FiK3j5HJv8IWXFmqNhkAJ7y+ytKK8FY4kKOyGvPZYCZiLK7wI0giNPm+Xrrt4P2TKeGpdeIbiZfbfjlZo7xtdBLI36Tdqi9WQbb4H/8sXepP1pIVrXLnlkaZv81aaqiY0sLI4rVVMNu6XF5fSIZBqghDgZPhlDDPhBFBY8ZAb/AZWa2HKlgNIB13L5+hMmrzGBb+GsCZ0LZ8VdtGOuQ8TKvLUKOQ9PO66v3Q3DNfItnd/U5weJNmb5PDTwej43fouO+w5e8FesowdsWP2kZ2wCQP2lX1nP9jPwe9oP3oVJSs0Gqx7nrGNiI7+AA2oxcc=</latexit>D

<latexit sha1_base64="nrAeRwomjSN4xfNaTUwD7EKF01w=">AAACFnicbVC7TsMwFHV4lvIKMDCwWFRIZakSxGusYGEsEn1IbYgc122t2nFkO0hRlP9gZ4VfYEOsrPwBn4HTZqAtR7rS0Tn36t57gohRpR3n21paXlldWy9tlDe3tnd27b39lhKxxKSJBROyEyBFGA1JU1PNSCeSBPGAkXYwvs399hORiorwQScR8TgahnRAMdJG8u3Djt/jSI8kTyMpeKSzx7Tqnma+XXFqzgRwkbgFqYACDd/+6fUFjjkJNWZIqa7rRNpLkdQUM5KVe7EiEcJjNCRdQ0PEifLSyQMZPDFKHw6ENBVqOFH/TqSIK5XwwHTmx6p5Lxf/87qxHlx7KQ2jWJMQTxcNYga1gHkasE8lwZolhiAsqbkV4hGSCGuT2cyWgI2RlCjJyiYadz6IRdI6q7mXtYv780r9pgipBI7AMagCF1yBOrgDDdAEGGTgBbyCN+vZerc+rM9p65JVzByAGVhfv09Pn/w=</latexit>

X
(1)
prompt

<latexit sha1_base64="xxw/90H4b9wNtbdb+U5BtVJX1VE=">AAACFnicbVC7TsMwFHXKq5RXgIGBJaJCKkuVVLzGChbGItGH1IbIcZ3Wqp1YtoMURfkPdlb4BTbEysof8Bk4bQbacqQrHZ1zr+69x+eUSGXb30ZpZXVtfaO8Wdna3tndM/cPOjKKBcJtFNFI9HwoMSUhbiuiKO5xgSHzKe76k9vc7z5hIUkUPqiEY5fBUUgCgqDSkmce9bwBg2osWMpFxLjKHtNa4yzzzKpdt6ewlolTkCoo0PLMn8EwQjHDoUIUStl3bK7cFApFEMVZZRBLzCGawBHuaxpChqWbTh/IrFOtDK0gErpCZU3VvxMpZFImzNed+bFy0cvF/7x+rIJrNyUhjxUO0WxREFNLRVaehjUkAiNFE00gEkTfaqExFBApndncFp9OoBAwySo6GmcxiGXSadSdy/rF/Xm1eVOEVAbH4ATUgAOuQBPcgRZoAwQy8AJewZvxbLwbH8bnrLVkFDOHYA7G1y9Q65/9</latexit>

X
(2)
prompt

<latexit sha1_base64="n1jpbl21YyABk/1bvRTG1Y2Zmt8=">AAACInicbVDLSgMxFM3UV62vqks3wSLUTZkRX8uiLlxWsA9oa7mTZtrQZGZIMsIwnQ/wP9y71V9wJ64EP8DPMH0sbOuBwOGcc7k3xw05U9q2v6zM0vLK6lp2PbexubW9k9/dq6kgkoRWScAD2XBBUc58WtVMc9oIJQXhclp3B9cjv/5IpWKBf6/jkLYF9HzmMQLaSJ18odFpCdB9KZJQBiLU6UNSHI4lAjy5SYfHqUnZJXsMvEicKSmgKSqd/E+rG5BIUF8TDko1HTvU7QSkZoTTNNeKFA2BDKBHm4b6IKhqJ+PPpPjIKF3sBdI8X+Ox+nciAaFULFyTHF2p5r2R+J/XjLR32U6YH0aa+mSyyIs41gEeNYO7TFKieWwIEMnMrZj0QQLRpr+ZLS4fgJQQpzlTjTNfxCKpnZSc89LZ3WmhfDUtKYsO0CEqIgddoDK6RRVURQQ9oRf0it6sZ+vd+rA+J9GMNZ3ZRzOwvn8B+jmlrQ==</latexit>

X
(|D|)
prompt

Few-shot Data

…

<latexit sha1_base64="W0zA5wNs1JEXi//3DwXkImhbLBU=">AAACHnicbVDLSsNAFJ34rPUVdenCYBFclUR8LYtuXFawD2hjmEwn7dCZJMzcCCVk6X+4d6u/4E7c6h/4GU7aCLb1wMC559zLvXP8mDMFtv1lLCwuLa+sltbK6xubW9vmzm5TRYkktEEiHsm2jxXlLKQNYMBpO5YUC5/Tlj+8zv3WA5WKReEdjGLqCtwPWcAIBi155kHb6woMAynSWEYihuz+twaqIPPMil21x7DmiVOQCipQ98zvbi8iiaAhEI6V6jh2DG6KJTDCaVbuJorGmAxxn3Y0DbGgyk3HH8msI630rCCS+oVgjdW/EykWSo2ErzvzI9Wsl4v/eZ0Egks3ZWGcAA3JZFGQcAsiK0/F6jFJCfCRJphIpm+1yABLTEBnN7XF50MsJR5lZR2NMxvEPGmeVJ3z6tntaaV2VYRUQvvoEB0jB12gGrpBddRABD2iZ/SCXo0n4814Nz4mrQtGMbOHpmB8/gB0b6Rv</latexit>

Xtest
prompt

<latexit sha1_base64="W90D2/iH+c5MBcBe/Bx42JBMRTg=">AAACJHicbVDLSsNAFJ34rPVVdekmWAquSiK+lkU3LivYB7Sx3Eyn7dCZJMzcCCHkC/wP9271F9yJCzeu/QynD8G2Hhg495x7uXeOHwmu0XE+raXlldW19dxGfnNre2e3sLdf12GsKKvRUISq6YNmggeshhwFa0aKgfQFa/jD65HfeGBK8zC4wyRinoR+wHucAhqpUyi1B4BpM+u0JeBAyTRSoYwwu/+tkWnMOoWiU3bGsBeJOyVFMkW1U/hud0MaSxYgFaB1y3Ui9FJQyKlgWb4daxYBHUKftQwNQDLtpePvZHbJKF27FyrzArTH6t+JFKTWifRN5+hIPe+NxP+8Voy9Sy/lQRQjC+hkUS8WNob2KBu7yxWjKBJDgCpubrXpABRQNAnObPHFEJSCJMubaNz5IBZJ/aTsnpfPbk+LlatpSDlySI7IMXHJBamQG1IlNULJI3kmL+TVerLerHfrY9K6ZE1nDsgMrK8fxmynPA==</latexit>

X̂test
prompt

<latexit sha1_base64="mKqUDCzw4dd0s1yCTaXX8vj2pSM=">AAACGnicbVDLSsNAFJ34rPUVddnNYBFclUR8LYtuXFawD2hjmEwn7dDJg5kbIZQs/A/3bvUX3IlbN/6Bn+GkjWBbD1w4nHMv997jxYIrsKwvY2l5ZXVtvbRR3tza3tk19/ZbKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj69xvPzCpeBTeQRozJyCDkPucEtCSa1Y6bi8gMJTBmIfZ/S8HpiBzzapVsybAi8QuSBUVaLjmd68f0SRgIVBBlOraVgzOmEjgVLCs3EsUiwkdkQHrahqSgClnPHkiw0da6WM/krpCwBP178SYBEqlgac78yPVvJeL/3ndBPxLR38XJ8BCOl3kJwJDhPNEcJ9LRkGkmhAqub4V0yGRhILObWaLJ0ZESpJmZR2NPR/EImmd1Ozz2tntabV+VYRUQhV0iI6RjS5QHd2gBmoiih7RM3pBr8aT8Wa8Gx/T1iWjmDlAMzA+fwDObqJ8</latexit>

Xtest
in

Prompt-based
LM

<latexit sha1_base64="2qkDL6/dIxh0Pz54CC1+eocBkFQ=">AAACGXicbVDLSsNAFJ3UV62vqks3g0Wom5KIr2XRjcsK9gFNLDfTaTt0JgkzEyGE/IYbF/or7sStK//EpdM2C9t64MLhnPvi+BFnStv2t1VYWV1b3yhulra2d3b3yvsHLRXGktAmCXkoOz4oyllAm5ppTjuRpCB8Ttv++Hbit5+oVCwMHnQSUU/AMGADRkAbyXV9kUL2mFad06xXrtg1ewq8TJycVFCORq/84/ZDEgsaaMJBqa5jR9pLQWpGOM1KbqxoBGQMQ9o1NABBlZdOf87wiVH6eBBKU4HGU/XvRApCqUT4plOAHqlFbyL+6/li4bIeXHspC6JY04DMDg9ijnWIJ4HgPpOUaJ4YAkQy8zsmI5BAtIltfjMfg5SQZCUTlbMYzDJpndWcy9rF/XmlfpOHVkRH6BhVkYOuUB3doQZqIoIi9Ixe0Zv1Yr1bH9bnrLVg5TOHaA7W1y9sr6FR</latexit>

a(1)

<latexit sha1_base64="NftRoUNMa2n9NQ8I2PjZjwEBj98=">AAACGXicbVDLTsJAFJ3iC/GFunQzkZjghrTE15LoxiUmgiS0ktthgAkzbTMzNWma/oYbF/or7oxbV/6JSwfoQsCT3OTknPvK8SPOlLbtb6uwsrq2vlHcLG1t7+zulfcP2iqMJaEtEvJQdnxQlLOAtjTTnHYiSUH4nD7445uJ//BEpWJhcK+TiHoChgEbMALaSK7rixSyx7RaP8165Ypds6fAy8TJSQXlaPbKP24/JLGggSYclOo6dqS9FKRmhNOs5MaKRkDGMKRdQwMQVHnp9OcMnxiljwehNBVoPFX/TqQglEqEbzoF6JFa9Cbiv54vFi7rwZWXsiCKNQ3I7PAg5liHeBII7jNJieaJIUAkM79jMgIJRJvY5jfzMUgJSVYyUTmLwSyTdr3mXNTO784qjes8tCI6Qseoihx0iRroFjVRCxEUoWf0it6sF+vd+rA+Z60FK585RHOwvn4BbluhUg==</latexit>

a(2)

<latexit sha1_base64="ljlOSZG2mUSRkYNdkzQBEbXq38k=">AAACJ3icbVDLTgIxFO34RHyhbkzcTCQmuCEzxteSqAuXmMgjgZHcKQUa2s6k7ZiQYfwaNy70V9wZXfoXLu0ACwFP0uTknPvq8UNGlXacL2thcWl5ZTWzll3f2Nzazu3sVlUQSUwqOGCBrPugCKOCVDTVjNRDSYD7jNT8/nXq1x6JVDQQ93oQEo9DV9AOxaCN1MrtN30eQ/IQF4ZNDrqHgcU3yfA4aeXyTtEZwZ4n7oTk0QTlVu6n2Q5wxInQmIFSDdcJtReD1BQzkmSbkSIh4D50ScNQAZwoLx79ILGPjNK2O4E0T2h7pP7tiIErNeC+qUyvVLNeKv7r+Xxms+5cejEVYaSJwOPFnYjZOrDTeOw2lQRrNjAEsKTmdhv3QALWJsTpyawPUsIgyZqo3Nlg5kn1pOieF8/uTvOlq0loGXSADlEBuegCldAtKqMKwugJPaNX9Ga9WO/Wh/U5Ll2wJj17aArW9y+uiqcz</latexit>

a(|D|)

…

<latexit sha1_base64="Yy3F81cYS9jddM9RCufHEeri+EE=">AAACI3icbVC7TsMwFHXKq5RXeGwsERUSU5UgXmMFC2OR6ENqQuW4bmvVdiL7BqlE+RcWBvgVNsTCwH8w4rQdaMuRLB2dc6/v0QljzjS47pdVWFpeWV0rrpc2Nre2d+zdvYaOEkVonUQ8Uq0Qa8qZpHVgwGkrVhSLkNNmOLzJ/eYjVZpF8h5GMQ0E7kvWYwSDkTr2gR+KdJg9+ALDQIkUqIasY5fdijuGs0i8KSmjKWod+8fvRiQRVALhWOu258YQpFgBI5xmJT/RNMZkiPu0bajEguogHafPnGOjdJ1epMyT4IzVvxspFlqPRGgm85B63svFf71QzF2G3lWQMhknQCWZHO4l3IHIyatxukxRAnxkCCaKmewOGWCFCZgCZ3/mQ6wUHmUlU5U3X8wiaZxWvIvK+d1ZuXo9La2IDtEROkEeukRVdItqqI4IekLP6BW9WS/Wu/VhfU5GC9Z0Zx/NwPr+BTt6pf8=</latexit>

ktest

<latexit sha1_base64="fdZKOV/Yww0YijfAwdOrE5Cq3xw=">AAACKXicbVDLSsNAFJ3UV62vqDvdBIvgqiTia1l047KCfUBTy8102g6dScLMjVBCwK9x40J/xZ269SdcOn0sbOuBgcM59zUniAXX6LqfVm5peWV1Lb9e2Njc2t6xd/dqOkoUZVUaiUg1AtBM8JBVkaNgjVgxkIFg9WBwM/Lrj0xpHoX3OIxZS0Iv5F1OAY3Utg/8QKZ+HzAdZNmDLwH7SqbINGZtu+iW3DGcReJNSZFMUWnbP34noolkIVIBWjc9N8ZWCgo5FSwr+IlmMdAB9FjT0BAk0610/IfMOTZKx+lGyrwQnbH6tyMFqfVQBqZydKSe90biv14g5zZj96qV8jBOkIV0sribCAcjZxSQ0+GKURRDQ4Aqbm53aB8UUDQxzk4WA1AKhlnBROXNB7NIaqcl76J0fndWLF9PQ8uTQ3JETohHLkmZ3JIKqRJKnsgzeSVv1ov1bn1YX5PSnDXt2SczsL5/AZnbqMw=</latexit>

k̂test

Anchor Set

<latexit sha1_base64="2nPLyBTMouyF6vlj7pqj5pKKTNk=">AAACGHicbVC7TsMwFHXKq5RXgZElokJiqhLEayywMBaJPqQ2qm5cp7VqO5HtIEVRPoOFAX6FDbGy8SeMOG0G2nIkS0fn3Ot7dPyIUaUd59sqrayurW+UNytb2zu7e9X9g7YKY4lJC4cslF0fFGFUkJammpFuJAlwn5GOP7nL/c4TkYqG4lEnEfE4jAQNKAZtpF6fgx5jYOlNNqjWnLozhb1M3ILUUIHmoPrTH4Y45kRozECpnutE2ktBaooZySr9WJEI8ARGpGeoAE6Ul04jZ/aJUYZ2EErzhLan6t+NFLhSCffNZB5RLXq5+K/n84XLOrj2UiqiWBOBZ4eDmNk6tPM+7CGVBGuWGAJYUpPdxmOQgLVpbf5nNgEpIckqpip3sZhl0j6ru5f1i4fzWuO2KK2MjtAxOkUuukINdI+aqIUwCtEzekVv1ov1bn1Yn7PRklXsHKI5WF+/Y1+hWg==</latexit>A

Language Modeling Distribution

KL Divergence

<latexit sha1_base64="2qkDL6/dIxh0Pz54CC1+eocBkFQ=">AAACGXicbVDLSsNAFJ3UV62vqks3g0Wom5KIr2XRjcsK9gFNLDfTaTt0JgkzEyGE/IYbF/or7sStK//EpdM2C9t64MLhnPvi+BFnStv2t1VYWV1b3yhulra2d3b3yvsHLRXGktAmCXkoOz4oyllAm5ppTjuRpCB8Ttv++Hbit5+oVCwMHnQSUU/AMGADRkAbyXV9kUL2mFad06xXrtg1ewq8TJycVFCORq/84/ZDEgsaaMJBqa5jR9pLQWpGOM1KbqxoBGQMQ9o1NABBlZdOf87wiVH6eBBKU4HGU/XvRApCqUT4plOAHqlFbyL+6/li4bIeXHspC6JY04DMDg9ijnWIJ4HgPpOUaJ4YAkQy8zsmI5BAtIltfjMfg5SQZCUTlbMYzDJpndWcy9rF/XmlfpOHVkRH6BhVkYOuUB3doQZqIoIi9Ixe0Zv1Yr1bH9bnrLVg5TOHaA7W1y9sr6FR</latexit>

a(1)

<latexit sha1_base64="NftRoUNMa2n9NQ8I2PjZjwEBj98=">AAACGXicbVDLTsJAFJ3iC/GFunQzkZjghrTE15LoxiUmgiS0ktthgAkzbTMzNWma/oYbF/or7oxbV/6JSwfoQsCT3OTknPvK8SPOlLbtb6uwsrq2vlHcLG1t7+zulfcP2iqMJaEtEvJQdnxQlLOAtjTTnHYiSUH4nD7445uJ//BEpWJhcK+TiHoChgEbMALaSK7rixSyx7RaP8165Ypds6fAy8TJSQXlaPbKP24/JLGggSYclOo6dqS9FKRmhNOs5MaKRkDGMKRdQwMQVHnp9OcMnxiljwehNBVoPFX/TqQglEqEbzoF6JFa9Cbiv54vFi7rwZWXsiCKNQ3I7PAg5liHeBII7jNJieaJIUAkM79jMgIJRJvY5jfzMUgJSVYyUTmLwSyTdr3mXNTO784qjes8tCI6Qseoihx0iRroFjVRCxEUoWf0it6sF+vd+rA+Z60FK585RHOwvn4BbluhUg==</latexit>

a(2)

<latexit sha1_base64="ljlOSZG2mUSRkYNdkzQBEbXq38k=">AAACJ3icbVDLTgIxFO34RHyhbkzcTCQmuCEzxteSqAuXmMgjgZHcKQUa2s6k7ZiQYfwaNy70V9wZXfoXLu0ACwFP0uTknPvq8UNGlXacL2thcWl5ZTWzll3f2Nzazu3sVlUQSUwqOGCBrPugCKOCVDTVjNRDSYD7jNT8/nXq1x6JVDQQ93oQEo9DV9AOxaCN1MrtN30eQ/IQF4ZNDrqHgcU3yfA4aeXyTtEZwZ4n7oTk0QTlVu6n2Q5wxInQmIFSDdcJtReD1BQzkmSbkSIh4D50ScNQAZwoLx79ILGPjNK2O4E0T2h7pP7tiIErNeC+qUyvVLNeKv7r+Xxms+5cejEVYaSJwOPFnYjZOrDTeOw2lQRrNjAEsKTmdhv3QALWJsTpyawPUsIgyZqo3Nlg5kn1pOieF8/uTvOlq0loGXSADlEBuegCldAtKqMKwugJPaNX9Ga9WO/Wh/U5Ll2wJj17aArW9y+uiqcz</latexit>

a(|D|)

<latexit sha1_base64="Yy3F81cYS9jddM9RCufHEeri+EE=">AAACI3icbVC7TsMwFHXKq5RXeGwsERUSU5UgXmMFC2OR6ENqQuW4bmvVdiL7BqlE+RcWBvgVNsTCwH8w4rQdaMuRLB2dc6/v0QljzjS47pdVWFpeWV0rrpc2Nre2d+zdvYaOEkVonUQ8Uq0Qa8qZpHVgwGkrVhSLkNNmOLzJ/eYjVZpF8h5GMQ0E7kvWYwSDkTr2gR+KdJg9+ALDQIkUqIasY5fdijuGs0i8KSmjKWod+8fvRiQRVALhWOu258YQpFgBI5xmJT/RNMZkiPu0bajEguogHafPnGOjdJ1epMyT4IzVvxspFlqPRGgm85B63svFf71QzF2G3lWQMhknQCWZHO4l3IHIyatxukxRAnxkCCaKmewOGWCFCZgCZ3/mQ6wUHmUlU5U3X8wiaZxWvIvK+d1ZuXo9La2IDtEROkEeukRVdItqqI4IekLP6BW9WS/Wu/VhfU5GC9Z0Zx/NwPr+BTt6pf8=</latexit>

ktest

<latexit sha1_base64="2qkDL6/dIxh0Pz54CC1+eocBkFQ=">AAACGXicbVDLSsNAFJ3UV62vqks3g0Wom5KIr2XRjcsK9gFNLDfTaTt0JgkzEyGE/IYbF/or7sStK//EpdM2C9t64MLhnPvi+BFnStv2t1VYWV1b3yhulra2d3b3yvsHLRXGktAmCXkoOz4oyllAm5ppTjuRpCB8Ttv++Hbit5+oVCwMHnQSUU/AMGADRkAbyXV9kUL2mFad06xXrtg1ewq8TJycVFCORq/84/ZDEgsaaMJBqa5jR9pLQWpGOM1KbqxoBGQMQ9o1NABBlZdOf87wiVH6eBBKU4HGU/XvRApCqUT4plOAHqlFbyL+6/li4bIeXHspC6JY04DMDg9ijnWIJ4HgPpOUaJ4YAkQy8zsmI5BAtIltfjMfg5SQZCUTlbMYzDJpndWcy9rF/XmlfpOHVkRH6BhVkYOuUB3doQZqIoIi9Ixe0Zv1Yr1bH9bnrLVg5TOHaA7W1y9sr6FR</latexit>

a(1)

<latexit sha1_base64="NftRoUNMa2n9NQ8I2PjZjwEBj98=">AAACGXicbVDLTsJAFJ3iC/GFunQzkZjghrTE15LoxiUmgiS0ktthgAkzbTMzNWma/oYbF/or7oxbV/6JSwfoQsCT3OTknPvK8SPOlLbtb6uwsrq2vlHcLG1t7+zulfcP2iqMJaEtEvJQdnxQlLOAtjTTnHYiSUH4nD7445uJ//BEpWJhcK+TiHoChgEbMALaSK7rixSyx7RaP8165Ypds6fAy8TJSQXlaPbKP24/JLGggSYclOo6dqS9FKRmhNOs5MaKRkDGMKRdQwMQVHnp9OcMnxiljwehNBVoPFX/TqQglEqEbzoF6JFa9Cbiv54vFi7rwZWXsiCKNQ3I7PAg5liHeBII7jNJieaJIUAkM79jMgIJRJvY5jfzMUgJSVYyUTmLwSyTdr3mXNTO784qjes8tCI6Qseoihx0iRroFjVRCxEUoWf0it6sF+vd+rA+Z60FK585RHOwvn4BbluhUg==</latexit>

a(2)
<latexit sha1_base64="ljlOSZG2mUSRkYNdkzQBEbXq38k=">AAACJ3icbVDLTgIxFO34RHyhbkzcTCQmuCEzxteSqAuXmMgjgZHcKQUa2s6k7ZiQYfwaNy70V9wZXfoXLu0ACwFP0uTknPvq8UNGlXacL2thcWl5ZTWzll3f2Nzazu3sVlUQSUwqOGCBrPugCKOCVDTVjNRDSYD7jNT8/nXq1x6JVDQQ93oQEo9DV9AOxaCN1MrtN30eQ/IQF4ZNDrqHgcU3yfA4aeXyTtEZwZ4n7oTk0QTlVu6n2Q5wxInQmIFSDdcJtReD1BQzkmSbkSIh4D50ScNQAZwoLx79ILGPjNK2O4E0T2h7pP7tiIErNeC+qUyvVLNeKv7r+Xxms+5cejEVYaSJwOPFnYjZOrDTeOw2lQRrNjAEsKTmdhv3QALWJsTpyawPUsIgyZqo3Nlg5kn1pOieF8/uTvOlq0loGXSADlEBuegCldAtKqMKwugJPaNX9Ga9WO/Wh/U5Ll2wJj17aArW9y+uiqcz</latexit>

a(|D|)

<latexit sha1_base64="fdZKOV/Yww0YijfAwdOrE5Cq3xw=">AAACKXicbVDLSsNAFJ3UV62vqDvdBIvgqiTia1l047KCfUBTy8102g6dScLMjVBCwK9x40J/xZ269SdcOn0sbOuBgcM59zUniAXX6LqfVm5peWV1Lb9e2Njc2t6xd/dqOkoUZVUaiUg1AtBM8JBVkaNgjVgxkIFg9WBwM/Lrj0xpHoX3OIxZS0Iv5F1OAY3Utg/8QKZ+HzAdZNmDLwH7SqbINGZtu+iW3DGcReJNSZFMUWnbP34noolkIVIBWjc9N8ZWCgo5FSwr+IlmMdAB9FjT0BAk0610/IfMOTZKx+lGyrwQnbH6tyMFqfVQBqZydKSe90biv14g5zZj96qV8jBOkIV0sribCAcjZxSQ0+GKURRDQ4Aqbm53aB8UUDQxzk4WA1AKhlnBROXNB7NIaqcl76J0fndWLF9PQ8uTQ3JETohHLkmZ3JIKqRJKnsgzeSVv1ov1bn1YX5PSnDXt2SczsL5/AZnbqMw=</latexit>

k̂test

Representational Change

Detection

<latexit sha1_base64="Fyx9D3ITw+HxFwgQVCdHECd5Q68=">AAACl3icbZHNbhMxEMedLdASvlI4IS4WSaVyiXYr2nKjAgn12EqkjahD5PVOGiv+WNmzJavVPkGfhis8CW+DNwmCpIxk6a+Zn0cz/0lzJT3G8a9WtHXv/oPtnYftR4+fPH3W2X1+4W3hBAyEVdYNU+5BSQMDlKhgmDvgOlVwmc4+NvXLG3BeWvMZyxxGml8bOZGCY0iNO3s9hryg+8Mx0xynTlfS1F//aASP9RvaG3e6cT9eBL0rkpXoklWcjXdbX1hmRaHBoFDc+6skznFUcYdSKKjbrPCQczHj13AVpOEa/Kha7FPTvZDJ6MS68AzSRfbfHxXX3pc6DWQzqF+rzZdNNvkG/C+f6nXWo+audNnGjDh5Nwre5AWCEcsRJ4WiaGljK82kA4GqDIILJ8OWVEy54wKD+W1m4JuwWnOTVUwI6URdsRk4E/cPYc5uRLAJXMWmqZ1XPeZDhxw9lgpYA/fq+i9dt8M1kk3v74qLg35y1H97ftA9+bC6yw55RV6TfZKQY3JCTskZGRBBbsl38oP8jF5G76NP0ekSjVqrPy/IWkTnvwGiOc8U</latexit>

⌧(Xtest
in)

<latexit sha1_base64="82+1EYLSTkCDlnXfxILvpcZHdWk=">AAACrHicbZFNj9MwEIbd8LWUry4cuVi0SF0JRcmKL3GAFVw4LtJ2t6IOleNOWqu2E9mTpVGU/8Kv4QpX/g1OWwTtMpKlVzOPRzPvpIWSDqPoVye4dv3GzVsHt7t37t67/6B3+PDc5aUVMBK5yu045Q6UNDBCiQrGhQWuUwUX6fJDW7+4BOtkbs6wKiDRfG5kJgVHn5r23gyYk3PNhwx5SYfjKdMcF1bX0jRf/mgEh83REX1L2ZxrzSl79o4Opr1+FEbroFdFvBV9so3T6WHnM5vlotRgUCju3CSOCkxqblEKBU2XlQ4KLpZ8DhMvDdfgknq9ZEOf+syMZrn1zyBdZ//9UXPtXKVTT7Zju53aatNkn2/B//Kp3mUdam4rO9ubEbPXiXeqKBGM2IyYlYpiTluv6UxaEKgqL7iw0m9JxYJbLtBfpMsMfBW5t9PMaiaEtKKp2RKsicIXsGKXwtsEtmaLNF/V/ky+Q4EOKwWshQdN85duuv4a8b73V8X5cRi/DJ9/Ou6fvN/e5YA8Jk/IkMTkFTkhH8kpGRFBvpHv5Af5GYTBWTAJkg0adLZ/HpGdCLLfgTPWaA==</latexit>

�(⌧(Xtest
in)) > � ?

PoisonedClean

YN

Figure 2: Overview of MDP: it detects a given sample Xtest
in as poisoned or clean by measuring the variation of

its representational change with respect to a set of distributional anchors A.

feeding f with poisoned samples. To simulate the worst-case scenario for the defenses, we assume
the attacker has access to the downstream dataset and injects the backdoor into the PLM using a
fine-tuning approach. Formally, the attack is formulated as the following optimization objective:

min
θ

E(x,y)∈Dc
ℓ(fθ(x), y) + λE(x̃,t)∈Dp

ℓ(fθ(x̃), t) (4)

where Dc and Dp respectively refer to the clean and poisoning data and ℓ is the loss function (e.g.,
cross-entropy). Intuitively, the first term ensures f functions normally on clean samples, the second
term ensures f classifies poisoned samples to the target class t, and λ is a hyper-parameter to balance
the two objectives.

Compared with prior work [10, 24, 36], we consider a more realistic and challenging setting: as the
defender, the victim user only has limited few-shot data and computational capacity. Further, the user
has no knowledge about the attacker’s training procedure, attack strategy, or trigger definition.

4 MDP

Next, we present MDP, a novel backdoor defense for PLMs as few-shot learners.

4.1 Overview of MDP

At a high level, MDP exploits the observation that compared with clean samples, poisoned samples
often show higher sensitivity to random masking (i.e., randomly selecting and substituting a token
with [mask]). Intuitively, by the design of backdoor attacks, the trigger dominates a poisoned sample
and forces it to be classified to the target class. Thus, if the trigger is (partially) masked, the language
modeling probability of a poisoned sample tends to vary greatly. In comparison, a clean sample is
often less sensitive to random masking. It is therefore feasible to distinguish clean and poisoned
samples by comparing their masking sensitivity.

A naïve approach to measure the masking sensitivity is to compare the model prediction (i.e., “positive”
and “negative”) of a given sample before and after masking, which however fails to capture the
complex variation of the language modeling probability (details in §5.4). Instead, MDP uses the
limited few-shot data as “distributional anchors” and measures the representational change of the
sample under varying masking, as illustrated in Figure 2. To further boost its distinguishing power,
MDP optimizes the prompt to improve the masking-invariance of clean samples. Below we elaborate
on the design and implementation of MDP, with the complete algorithm deferred to §A.

4.2 Modeling Masking Sensitivity

To quantify the representational change of a given sample under masking, we leverage the limited
few-shot data {(X (i)

in , y
(i))} as a set of “distributional anchors”. Specifically, for each X (i)

in , we
generate its prompt X (i)

prompt to query the PLM and obtain the distribution as in Eq. 3:

a(i) = pθ(v|X (i)
prompt) (v ∈ V) (5)

Note that rather than mapping it back to the label space Y , we cache the entire language modeling
distribution as the representation of X (i)

in and consider the data store A = {a(i)} as the anchor set.

4

At run-time, for a given sample X test
in , we construct its prompt X test

prompt and query the model to obtain
its distribution ktest = pθ(v|X test

prompt). We measure the distance between X test
in and the anchors by

the Kullback–Leibler divergence between ktest and each a(i): DKL(k
test∥a(i)). We regard the vector

d(X test
in) = [DKL(k

test∥a(i))] as the coordinates of X test
in with respect to the anchors.

Let X̂ test
in be the masked version of X test

in under random masking. Following the procedure above,
we compute the coordinates of X̂ test

in as d(X̂ test
in). We measure the representational change due to

masking by the difference of d(X̂ test
in) and d(X test

in):

τ(X test
in) = ∆(d(X̂ test

in),d(X test
in)) (6)

Empirically, we find the Kendall rank coefficient as an effective similarity function ∆, which measures
the rank correlation between d(X test

in) and d(X̂ test
in) (i.e., the relative proximity between X test

in and
different anchors) and is insensitive to concrete KL-divergence measures.

We then measure the variation of τ(X test
in) under varying masking to quantify the masking sensitivity

of X test
in and detect it as a poisoned sample if its variation is above a pre-defined threshold γ.

4.3 Amplifying Masking Invariance

Recall that MDP distinguishes clean and poisoned samples based on the gap between their sensitivity
to random masking. To further boost its distinguishing power, we (optionally) optimize the prompt to
improve the masking invariance of clean samples.

Specifically, given few-shot data {(Xin, y)}, let X̂in be the masked version of Xin and X̂prompt and
Xprompt be their prompts. We define the masking-invariant constraint as:

LMI = EXin,mask(·)ℓ(fθ(X̂prompt), fθ(Xprompt)) (7)

where the expectation is taken over the few-shot data Xin and random masking mask(·). Intuitively,
LMI encourages the model to generate similar distributions for a clean sample under varying masking.
Note that LMI is pluggable into any prompt-based learning methods including P-Tuning [17] and
DART [41] to complement other optimization objectives.

4.4 Theoretical Justification

Next, we provide theoretical justification for the effectiveness of MDP. To simplify the analysis, we
assume the following setting: given a binary classification task and a vocabulary of two tokens {+, -},
a sample Xin is classified as 1 if pθ(+|Xin) >

1
2 and 0 otherwise; a poisoned sample Xin (with target

class t = 1) comprises n tokens (including one trigger token); in its masked variant X̂in, one token is
randomly masked; a single anchor X∗

in is used as the reference, with p∗ ≜ pθ(+|X∗
in). Theorem 4.1

reveals that there exists a trade-off between attack effectiveness and detection evasiveness (proof
deferred to §B).

Theorem 4.1. Assume i) the attack is effective – if a non-trigger token is masked, pθ(+|X̂in) ≥ κ+ >
1
2 , and ii) a clean sample is masking-invariant – if the trigger token is masked, pθ(+|X̂in) ≤ κ− < 1

2 ,
and if the detection threshold γ is set on the variation of the representational change of Xin under
random masking, then to evade the detection, it satisfies:

|h(κ+)− h(κ−)| ≤ n√
n− 1

γ (8)

where h(·) is defined as the KL divergence function with respect to p∗:

h(p) ≜ p log
p

p∗
+ (1− p) log

1− p

1− p∗
(9)

Intuitively, for the attack to be effective, κ+ should be large; however, to evade the detection, κ+

is upper-bounded by Eq. 8. Thus, MDP creates an interesting dilemma for the attacker to choose
between attack effectiveness and detection evasiveness. Moreover, if the model is both accurate in
classifying clean samples (i.e., κ− is sufficiently small) and masking-invariant with respect to clean

5

samples (i.e., γ can be set sufficiently small without incurring false positive cases), which makes the
following condition hold:

|h(κ−) + 1 +
1

2
log p∗(1− p∗)| > n√

n− 1
γ, (10)

it is then impossible to launch effective attacks without being detected because κ+ can not satisfy the
two objectives simultaneously (proof in §B).

5 Empirical Evaluation

5.1 Experimental Setting

Datasets. We conduct the evaluation across 5 sentence classification datasets (SST-2, MR, CR, SUBJ,
TREC) widely used to benchmark prompt-based few-shot learning methods [9, 17, 41]. We follow
the same setting of LM-BFF [9], which samples K = 16 samples per class to form the training and
validation sets respectively. The dataset statistics are summarized in Table 1.

Dataset # Classes Avg. Len Train Dev Test
SST-2 2 15.6 words 6.9k 0.9k 1.8k
MR 2 21.0 words 8.0k 0.7k 2.0k
CR 2 20.1 words 1.5k 0.3k 2.0k

SUBJ 2 24.1 words 7.0k 1.0k 2.0k
TREC 6 10.0 words 5.0k 0.5k 0.5k

Table 1. Statistics of the datasets used in the experiments.

Models. A victim model comprises a PLM and a prompt model. We use RoBERTa-large [19] as the
PLM, which is widely used in prompt-based learning [9, 29, 41, 44], and DART [41] as the prompt
model, which achieves state-of-the-art performance under the few-shot setting.

Attacks. We use 5 representative textual backdoor attacks to evaluate MDP and other defenses.

BadNets [11] is originally designed as a backdoor attack in the computer vision domain and extended
to NLP tasks by selecting rare words as triggers [12]. AddSent [6] is similar to BadNets but uses
neutral sentences as triggers to make poisoned samples stealthier. EP [35] perturbs the embeddings
of trigger words rather than modifying the PLM parameters. LWP [15] uses a layer-wise weight
poisoning strategy to only poison the first layers of PLMs with combinatorial triggers. SOS [37]
defines the triggers as the co-occurrence of multiple pre-defined words, which are further inserted
into natural sentences to make the attacks more evasive.

Baseline defenses. As MDP represents the first backdoor defense for the prompt-based paradigm,
we adapt 3 representative defenses designed for the fine-tuning paradigm as the baselines.

Based on the observation that the prediction of a poisoned sample is often dominated by the trigger,
STRIP [10] detects poisoned samples as ones with stable predictions under perturbation. ONION [24]
relies on the hypothesis that the trigger is out of the context of a poisoned sample, and detects
poisoned samples by inspecting the perplexity change under word deletion. RAP [36] leverages
the gap between the robustness of clean and poisoned samples to perturbation and injects crafted
perturbation into given samples to detect poisoned samples. The detailed description of the baselines
is deferred to §C.

5.2 Implementation Details

To simulate a challenging scenario, we assume the attacker has access to the full training sets (cf.
Table 1) and injects backdoors into PLMs by fine-tuning the models. The attack setting (e.g., trigger
definitions) is summarized in §C. We apply MDP and baselines on the backdoored PLMs under the
few-shot, prompt-based learning paradigm; that is, the defender has only access to the few-shot data
(K = 16 samples per class). We apply a grid search over the hyperparameters to select the optimal
setting for each defense.

Following previous studies [10, 36], the attack performance is evaluated using the metrics of i) clean
accuracy (CA), defined as the victim model’s accuracy on clean samples, and ii) attack success rate
(ASR), defined as its accuracy of classifying poisoned samples to the target label desired by the

6

attacker. Intuitively, CA and ASR respectively quantify the model’s performance on the original and
backdoor tasks. Meanwhile, the defense performance is evaluated by the metrics of i) false rejection
rate (FRR), defined as the percentage of clean samples that are mistakenly labeled as poisoned, ii)
false acceptance rate (FAR), defined as the percentage of poisoned samples that are mislabeled as
clean, and iii) the area under the ROC curve (AUC), an aggregate measure of performance across all
possible classification thresholds. All the measures are averaged across five sampled training sets as
in LM-BFF [9].

Dataset Attack CA (%) ASR (%) STRIP ONION RAP MDP
FRR FAR FRR FAR FRR FAR FRR FAR

SST-2

BadNets 95.06 94.38 7.56 87.44 2.78 9.28 3.11 64.28 5.33 1.77
AddSent 94.45 100.0 2.75 72.56 7.06 26.72 5.61 37.50 4.45 3.53

LWP 93.41 95.53 5.96 89.39 8.28 7.39 0.83 43.77 5.27 4.78
EP 93.63 95.95 1.72 72.06 5.28 12.89 2.72 58.11 5.05 0.73

SOS 91.65 92.41 2.98 87.56 4.06 32.56 1.89 51.28 0.00 0.00

MR

BadNets 89.80 98.30 11.70 72.30 4.80 15.60 2.75 25.35 5.10 5.60
AddSent 89.60 97.50 16.20 60.00 4.65 37.25 9.35 39.70 5.05 10.90

LWP 89.65 96.90 9.35 82.70 1.60 17.45 1.70 52.55 5.25 3.60
EP 89.40 96.60 2.20 88.90 15.35 12.60 6.45 70.60 4.70 3.00

SOS 89.85 97.30 5.20 75.90 0.90 64.10 15.20 58.85 4.85 3.40

CR

BadNets 89.95 92.30 2.85 98.70 5.20 7.45 1.35 43.60 4.95 5.10
AddSent 91.45 95.70 10.10 62.20 4.75 19.50 12.95 48.90 4.80 3.00

LWP 89.75 91.30 1.80 99.10 4.90 27.85 4.05 39.20 5.10 3.50
EP 89.35 97.55 2.20 87.20 10.15 4.40 7.65 45.20 5.35 9.40

SOS 91.45 100.0 2.20 78.20 0.75 37.55 3.40 55.30 0.20 0.00

SUBJ

BadNets 96.05 94.20 5.10 68.85 3.50 16.60 12.40 43.65 5.30 7.90
AddSent 95.90 97.00 2.50 85.50 4.30 34.20 7.30 68.20 4.85 9.00

LWP 96.15 99.10 4.55 98.70 4.65 7.40 1.00 18.60 5.40 10.90
EP 96.70 99.90 4.75 99.10 5.25 4.10 4.70 33.25 4.90 10.30

SOS 94.90 99.60 5.15 75.50 4.90 61.30 0.10 29.10 5.35 4.10

TREC

BadNets 93.00 95.30 4.30 73.76 5.40 54.53 5.55 50.61 4.80 2.49
AddSent 96.60 93.65 5.20 79.28 4.80 36.74 3.55 47.60 3.60 7.18

LWP 94.40 97.24 5.60 99.17 4.60 25.69 1.23 93.09 5.20 4.42
EP 95.80 97.51 4.60 63.81 5.20 11.22 10.43 42.68 4.80 5.25

SOS 91.80 99.45 5.20 68.78 4.40 80.61 14.83 63.71 4.60 4.97
Table 2. Performance of MDP and baseline defesens on 5 datasets, with lower FAR/FRR indicating better
defense performance. The detection threshold is set based on the allowance of 5% FRR on the training set.

5.3 Main Results

We first evaluate the effectiveness of various backdoor attacks under prompt-based fine-tuning, with
results summarized in Table 2. Observe that across all the datasets, most attacks attain both CA and
ASR above 90%, indicating their effectiveness in the downstream and backdoor tasks.

We then compare the performance of MDP and baselines in defending against these attacks. For
each defense, we set the detection threshold (e.g., the variation threshold for MDP) based on the
allowance of 5% FRR on the training set, and report its FAR and FRR on the testing set. In the case of
ONION, following prior work [36], we evaluate different thresholds of perplexity change and select
the threshold that approximately achieves 5% FRR on the training set.

Table 2 summarizes the main results (additional results in §D). Observe that MDP attains the lowest
FARs against all the attacks across all the datasets and outperforms baselines by large margins. In
particular, it achieves near-perfect defenses against the SOS attack on the SST-2 and CR datasets.
The observation confirms the effectiveness of MDP in detecting poisoned samples, which is mainly
attributed to that i) the clean and poisoned samples show discernible sensitivity to random masking
and ii) MDP effectively utilizes the few-shot data as anchors to measure such sensitivity.

In comparison, the baseline defenses are less effective, with FARs over 90% in many cases. This
may be explained by the conflict between the limited few-shot data and the reliance of these defenses
on sufficient training data. Specifically, to measure the prediction stability of a given sample under
perturbation, STRIP randomly replaces a fraction of its words with ones from a training sample

7

0%

10%

20%

30%

40%

FA
R

0.5% 1% 3% 5%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 3: Performance of MDP on SST-2 with dif-
ferent FRR allowances on the training set; baseline
defenses all have FARs above 50% (not shown).

Dataset Attack
BadNets AddSent LWP EP SOS

SST-2
FRR 5.07 5.29 5.39 5.39 5.17
FAR 24.89 58.37 55.50 47.82 73.28

MR
FRR 5.40 5.05 5.45 5.15 4.60
FAR 72.80 74.80 55.00 52.10 80.80

CR
FRR 4.40 5.10 4.80 5.45 5.25
FAR 83.10 75.30 73.80 52.20 56.10

SUBJ
FRR 5.40 4.25 4.60 4.75 5.35
FAR 9.80 67.40 14.90 15.70 37.90

TREC
FRR 5.20 4.90 4.90 4.70 5.20
FAR 75.14 71.55 43.37 70.44 26.52

Table 3: Performance of MDP using prediction variance
as the masking-sensitivity measure.

that have the highest frequency-inverse document frequency (TF-IDF) scores. However, due to the
limited number of training samples, both the substitution words and the estimated TF-IDF scores tend
to be highly biased, which negatively impacts the performance of STRIP. ONION removes outlier
words that cause sharp perplexity changes before inference, which is inherently ineffective against
complex triggers (e.g., natural sentences) [6]. Moreover, the threshold for detecting outlier words
can be significantly biased by the limited training samples under the few-shot setting. RAP trains
a word-based robustness-aware trigger such that inserting this trigger causes significant prediction
changes for clean samples but not for poisoned samples. However, under the few-shot setting, the
optimality of the RAP trigger is largely limited by the available few-shot data, which negatively
affects its detection effectiveness.

5.4 Influential Factors

We conduct additional studies to understand the impact of key factors on MDP. Due to space
limitations, we mainly present the results on SST-2, with other results deferred to §D.

FRR allowance. We adjust the detection threshold corresponding to varying FRR allowance on
the training set. Figure 3 shows that MDP maintains its superior performance under different FRRs
(0.5%, 1%, and 3%). In comparison, the baselines all have FARs above 50% (not shown).

Sensitivity measures. Instead of using the few-shot data as distributional anchors to measure the
masking sensitivity of a given sample X test

in , we use its prediction variance due to masking as the
sensitivity measure. Specifically, given the prediction of X test

in : y = argmaxy′ pθ(y
′|X test

in), we
measure the confidence variance of the masked variant X̂ test

in with respect to y: σ(pθ(y|X̂ test
in)).

Intuitively, a poisoned sample tends to have a larger variance since masking the trigger may cause the
prediction to fluctuate significantly. Following the same setting in §5.3, we set the threshold based on
5% FRR allowance on the training set and evaluate MDP on the testing set. Table 3 shows that using
the alternative sensitivity measure causes the performance of MDP to drop sharply (cf. Table 2). For
instance, its FAR increases by over 50% against LWP. The results confirm our analysis that simple
statistics such as prediction confidence may fail to capture the complex variation of the language
modeling probability due to masking.

Masking-invariance constraints. Recall that the masking-invariant constraint LMI is designed to
improve the masking invariance of clean samples. Here, we evaluate its impact on MDP’s overall
performance. Specifically, we adjust the weight of LMI in the prompt optimization [41] from 0.25 to 4.
For each distinct weight, we set the detection threshold based on 5% FRR allowance on the training
set and report its performance on the testing set. As shown in Figure 4, as the weight of LMI varies,
the FARs of MDP against most attacks first drop and then gradually increase. This observation may
be explained as follows. With an overly small weight, LMI has little effect on improving the masking
invariance of clean samples, while overly emphasizing LMI negatively impacts the classification
accuracy, resulting in higher FARs. It is thus crucial to properly calibrate the weight of LMI to
optimize the performance of MDP.

Few-shot data size. We further evaluate how the few-shot data size (i.e., shots) influences the
performance of MDP. Besides the default shots (K = 16 per class) used in the previous evaluation,
we vary K from 4 to 64 to build the anchor set and evaluate MDP, in which the FRR allowance on

8

0%

10%

20%

30%

40%

FA
R

0.25 0.5 1 2 4
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 4: Performance of MDP on SST-2 under vary-
ing weight of the masking-invariance constraint LMI.

0%

5%

10%

15%

20%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 5: Performance of MDP on SST-2 with varying
size of few-shot data (K samples per class).

the training set is fixed as 5%. Figure 5 reports the performance of MDP under varying shots K.
Observe that its FARs steadily improve as K increases. Intuitively, with a larger anchor set, MDP
quantifies the representational variation of given samples due to random masking more precisely,
leading to more accurate detection. Also, notice that K = 16 is often sufficient for MDP to obtain
satisfactory performance.

Dataset Attack
BadNets AddSent LWP EP SOS

SST-2
FRR 5.27 4.39 5.15 5.11 0.00
FAR 5.09 19.02 18.40 10.08 0.00

MR
FRR 5.45 4.85 5.05 5.15 5.45
FAR 22.60 32.80 24.20 14.50 27.80

CR
FRR 3.80 5.30 5.45 5.15 4.45
FAR 14.40 33.50 20.10 24.40 11.00

SUBJ
FRR 5.40 4.75 5.20 5.00 5.25
FAR 11.70 31.10 12.00 32.40 25.10

TREC
FRR 5.00 4.10 4.50 5.30 4.50
FAR 16.02 37.85 32.60 23.48 26.80

Table 4. Performance of MDP on discrete prompt-based
models (with 5% FRR allowance on the training set).

Prompt types. We further evaluate the impact
of prompt types on MDP. Recall that in discrete
prompts [23], the tokens in the prompt template
are selected from the vocabulary, while in con-
tinuous prompts [18], the tokens are pseudo-
tokens and optimized in a continuous space. Ta-
ble 4 evaluates MDP on discrete prompt-based
models. Compared with continuous prompts
(cf. Table 2), MDP is less effective under dis-
crete prompts. For instance, its FAR against
BadNets on MR increases by 17%. This may
be explained by that continuous prompts entail
larger spaces to better optimize the masking
invariance constraint, suggesting that using dif-
ferentiable, continuous prompts benefits MDP
in defending against backdoor attacks.

PLM Attack CA ASR FRR FAR

BART
BadNets 94.03 98.79 2.85 11.42
AddSent 92.07 99.12 6.82 16.61

GPT-2
BadNets 92.78 91.28 5.60 6.24
AddSent 92.31 91.28 4.05 9.46

Table 5. MDP on alternative PLMs.

PLMs. Besides RoBERTa-large [19], we also consider
alternative PLMs including BART [14] and GPT-2 [27]
as the victim models. Table 5 shows MDP’s performance
on such alternative PLMs against BadNets and AddSent
attacks (with respect to SST-2). Observe that MDP has
comparable performance on BART and GPT-2 to that on
RoBERTa-large, indicating that it generalizes to other
PLMs as well.

Masking rate. Recall that the masking sensitivity influences MDP’s performance (§4.2). Here we
vary the masking rate from 0.1 to 0.4 (with 0.2 as the default). Figure 6 presents MDP’s FAR and
FRR on SST-2 with respect to different attacks. Notably, properly setting the masking rate is critical
for MDP. This can be explained as follows. An overly small masking rate may lower the probability
of “hitting” the triggers, while an overly large masking rate may significantly alter the semantics of
given samples after masking, both making clean and poisoned samples less distinguishable.

5.5 Alternative Scenarios

Thus far we assume that (i) the backdoor is injected into the PLM, (ii) the trigger is defined as
explicit perturbation (e.g., adding words or sentences), and (iii) the attacker is unaware of MDP.
Next, we evaluate MDP in alternative scenarios in which these assumption do not hold, with results
summarized in Table 7.

Alternative threat models. BadPrompt [2] injects the backdoor into the prompt and releases the
end-to-end PLM to the victim user, assuming that the user directly uses the model without further

9

0%

5%

10%

15%

20%

FA
R

10% 20% 30% 40%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 6: MDP on SST-2 with varying masking rate.

Dataset Attack CA ASR FRR FAR

SST-2
BadPrompt 87.50 81.39 7.16 8.28
StyleAttack 92.97 78.67 2.94 24.33

Adaptive Attack 94.04 82.71 6.94 13.78

MR
BadPrompt 84.75 90.10 4.45 6.70
StyleAttack 88.65 84.10 2.95 31.30

Adaptive Attack 89.65 86.45 4.70 9.85

Figure 7: MDP in alternative scenarios.

tuning. However, since the prediction of poisoned samples hinges on the trigger tokens, BadPrompt
still exhibit high sensitivity to random masking, making them easily detectable by MDP.

Invisible triggers. Instead of using explicit perturbation (e.g., word addition), StyleAttack [25]
defines the triggers as specific syntactic styles, making the perturbation less visible. As shown in
Table 7, observe that StyleAttack is less effective (lower ASR) but also more challenging for MDP
to detect (higher FAR). This may be explained as follows: visible triggers are often local features
(e.g., words and sentences), while invisible triggers tend to be global features (e.g., patterns of lexical
choice and syntactic structures). Intuitively, compared with local features, global features are less
sensitive to random masking used by MDP.

Adaptive attacks. We further evaluate MDP against an adaptive attack, in which the attacker is aware
of MDP and optimizes the PLM to evade detection. Recall that MDP detects poisoned samples based
on their masking variance. Thus, with reference to a clean PLM and few-shot samples, the attacker
attempts to minimize the masking variance of poisoned samples while optimizing the backdoored
PLM. Specifically, we add the loss term of masking variance to Eq. 4 (with weight 1.0). Observe
in Table 7 that compared with non-adaptive attacks (cf. Table 2), the adaptive attack marginally
improves the evasiveness of poisoned samples; however, it also results in lower attack effectiveness.
This finding corroborates our theoretical analysis in §4.4: there exists an interesting trade-off between
attack effectiveness and evasiveness with respect to MDP.

6 Limitations

Other NLP tasks. Similar to prior work (e.g., RAP [36] and ONION [24]), we focus on defending
against backdoor attacks in the context of text classification. As backdoor attacks in other tasks (e.g.,
text generation) assume different threat models and attack/defense metrics, we consider extending
MDP to such tasks under the prompt-based, few-shot settings as our ongoing work.

Fewer-shot data. While we evaluate MDP under limited few-shot data (e.g., K as low as 4), in
practice, the available data could be even scarcer (e.g., one- or zero-shot [30, 31]). Given the need
of adapting PLMs on fewer-shot data, we aim to improve MDP to address the data-insufficiency
limitation towards practical deployment.

Invisible triggers. It is shown that compared with local features, global features are less sensitive to
the random masking used in MDP. We consider extending MDP to the setting of invisible backdoor
attacks as our ongoing work. One promising direction is to redefine the random masking operation to
include random syntactic-structure perturbation or random style perturbation.

7 Conclusion

This paper presents a first-of-its-kind defense for pre-trained language models as few-shot learners
against textual backdoor attacks. At a high level, we exploit the gap between the sensitivity of clean
and poisoned samples to random masking and effectively utilize the few-shot learning data to measure
such sensitivity. The evaluation on benchmark datasets shows that our method outperforms baselines
in defending against representative attacks, with little impact on the performance of victim models.
Our findings shed light on how to enhance the security of pre-trained language models, especially in
the prompt-based, few-shot learning paradigm.

10

Acknowledgments and Disclosure of Funding

This material is based upon work supported by the National Science Foundation under Grant No.
1951729, 1953813, 2119331, and 2212323. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language Models
are Few-shot Learners. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[2] Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang, and Xiaojie Yuan. BadPrompt: Backdoor
Attacks on Continuous Prompts. In Proceedings of Advances in Neural Information Processing
Systems (NeurIPS), 2022.

[3] Chuanshuai Chen and Jiazhu Dai. Mitigating Backdoor Attacks in LSTM-based Text Classifi-
cation Systems by Backdoor Keyword Identification. Neurocomputing, 452:253–262, 2021.

[4] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. Badnl: Backdoor
Attacks against NLP Models. In ICML 2021 Workshop on Adversarial Machine Learning,
2021.

[5] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Backdoor Attacks on
Deep Learning Systems Using Data Poisoning. In ArXiv e-prints, 2017.

[6] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A Backdoor Attack against LSTM-based Text
Classification Systems. IEEE Access, 7:138872–138878, 2019.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of Annual
Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL), 2019.

[8] Wei Du, Yichun Zhao, Boqun Li, Gongshen Liu, and Shilin Wang. PPT: Backdoor Attacks
on Pre-trained Models via Poisoned Prompt Tuning. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 2022.

[9] Tianyu Gao, Adam Fisch, and Danqi Chen. Making Pre-trained Language Models Better
Few-shot Learners. In Proceedings of Annual Meeting of the Association for Computational
Linguistics (ACL), 2021.

[10] Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi Zhang, Gongxuan Zhang, Surya Nepal,
Damith C Ranasinghe, and Hyoungshick Kim. Design and Evaluation of a Multi-domain Trojan
Detection Method on Deep Neural Networks. IEEE Transactions on Dependable and Secure
Computing, 19(4):2349–2364, 2021.

[11] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying Vulnerabilities in
the Machine Learning Model Supply Chain. In ArXiv e-prints, 2017.

[12] Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pretrained models.
In Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL),
2020.

[13] Brian Lester, Rami Al-Rfou, and Noah Constant. The Power of Scale for Parameter-Efficient
Prompt Tuning. In Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

11

[14] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising Sequence-to-sequence Pre-training
for Natural Language Generation, Translation, and Comprehension. In ArXiv e-prints, 2019.

[15] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor
Attacks on Pre-trained Models by Layerwise Weight Poisoning. In Proceedings of Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2021.

[16] Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimizing Continuous Prompts for Generation.
In Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL),
2021.

[17] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language
Processing. In ArXiv e-prints, 2021.

[18] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. In ArXiv e-prints, 2021.

[19] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A Robustly Optimized BERT
Pretraining Approach. In ArXiv e-prints, 2019.

[20] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial Training Methods for Semi-
Supervised Text Classification. In Proceedings of International Conference on Learning
Representations (ICLR), 2017.

[21] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. Hidden Trigger Backdoor
Attack on {NLP} Models via Linguistic Style Manipulation. In Proceedings of USENIX
Security Symposium (SEC), 2022.

[22] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorobeychik, Xiapu Luo, Alex
Liu, and Ting Wang. A tale of evil twins: Adversarial inputs versus poisoned models. In
Proceedings of ACM Conference on Computer and Communications (CCS), 2020.

[23] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language Models as Knowledge Bases? In Proceedings of Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2019.

[24] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. ONION: A
Simple and Effective Defense Against Textual Backdoor Attacks. In Proceedings of Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2021.

[25] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind the
style of text! adversarial and backdoor attacks based on text style transfer. In Proceedings of
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2021.

[26] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and
Maosong Sun. Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger. In
Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL), 2021.

[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8):9, 2019.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the Limits of Transfer Learning with a Unified
Text-to-text Transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

[29] Timo Schick and Hinrich Schütze. It’s Not Just Size That Matters: Small Language Models Are
Also Few-Shot Learners. In Proceedings of Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL), 2021.

12

[30] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[31] Wei Wang, Vincent W Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot learning:
Settings, methods, and applications. ACM Transactions on Intelligent Systems and Technology
(TIST), 10(2):1–37, 2019.

[32] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a Few
Examples: A Survey on Few-shot Learning. ACM computing surveys (csur), 53(3):1–34, 2020.

[33] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised Data
Augmentation for Consistency Training. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[34] Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng Gao, and Zhiyuan Liu. Exploring the Universal
Vulnerability of Prompt-based Learning Paradigm. In Proceedings of Annual Meeting of the
Association for Computational Linguistics (ACL), 2022.

[35] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. Be Careful
about Poisoned Word Embeddings: Exploring the Vulnerability of the Embedding Layers in
NLP Models. In Proceedings of Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2021.

[36] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. RAP: Robustness-Aware Perturba-
tions for Defending against Backdoor Attacks on NLP Models. In Proceedings of Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2021.

[37] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking Stealthiness of Back-
door Attack against NLP Models. In Proceedings of Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

[38] Wenpeng Yin, Nazneen Fatema Rajani, Dragomir Radev, Richard Socher, and Caiming Xiong.
Universal Natural Language Processing with Limited Annotations: Try Few-shot Textual
Entailment as a Start. In Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2020.

[39] Haiyang Yu, Ningyu Zhang, Shumin Deng, Hongbin Ye, Wei Zhang, and Huajun Chen. Bridg-
ing Text and Knowledge with Multi-Prototype Embedding for Few-Shot Relational Triple
Extraction. In Proceedings of International Conference on Computational Linguistics, 2020.

[40] Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro,
Haoyu Wang, and Bowen Zhou. Diverse Few-Shot Text Classification with Multiple Metrics.
In Proceedings of Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2018.

[41] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang, and
Huajun Chen. Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners. In Proceedings of International Conference on Learning Representations (ICLR),
2021.

[42] Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. Trojaning language models for fun
and profit. In Proceedings of IEEE European Symposium on Security and Privacy (Euro S&P),
2021.

[43] Zhiyuan Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. Neural Network Surgery:
Injecting Data Patterns into Pre-trained Models with Minimal Instance-wise Side Effects. In
Proceedings of Annual Conference of the North American Chapter of the Association for
Computational Linguistics (NAACL), 2021.

[44] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual Probing Is [MASK]: Learning vs.
Learning to Recall. In Proceedings of Annual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL), 2021.

13

A Algorithm of MDP

Algorithm 1: MDP
Input: D: few-shot data; θ: PLM parameters; T : fine-tuned text template; V: vocabulary; γ: threshold;

X test
in : a test sample

Output: X test
in is poisoned or benign

1 A ← ∅;
2 foreach X (i)

in ∈ D do
3 X (i)

prompt ← [cls]X (i)
in [sep] T [sep];

4 add pθ(v|X (i)
prompt) to A where v ∈ V;

5 end
6 X test

prompt ← [cls]X test
in [sep] T [sep];

7 ktest ← pθ(v|X test
prompt);

8 d(X test
in)← [DKL(k

test∥a(i))] where a(i) ∈ A;
9 randomly mask X test

in as X̂ test
in ;

10 compute the coordinates of X̂ test
in as d(X̂ test

in);
11 τ(X test

in)← ∆(d(X̂ test
in),d(X test

in));
12 if τ(X test

in) ≥ γ then
13 return X test

in is poisoned;
14 else
15 return X test

in is benign;
16 end

B Proofs

Proof. (Theorem 4.1) Given a single anchor X∗
in, let k, k̂, and a be the prediction distributions of

Xin, X̂in, and X∗
in respectively. We define the representational change of Xin due to masking as:

τ(Xin) ≜ DKL(k̂∥a)−DKL(k∥a) (11)

As Xin comprises n tokens, there are n variants of X̂in, one with the trigger token masked and the
rest with a non-trigger token masked. Let X̂ (0)

in and X̂ (i)
in (1 ≤ i ≤ n− 1) denote the two parts.

Let p∗ ≜ pθ(+|X∗
in). As X∗

in is a clean sample, p∗ < κ− (negative) or p∗ > κ+ (positive). Thus, for
p ∈ [κ−, κ+], the KL divergence function

h(p) ≜ p log
p

p∗
+ (1− p) log

1− p

1− p∗
(12)

increases (or decreases) monotonically with p. According to the assumption, pθ(+|X̂ (0)
in) ≤ κ− and

pθ(+|X̂ (i)
in) ≥ κ+ (1 ≤ i ≤ n− 1). To minimize the variation of the representational change of X̂in,

pθ(+|X̂ (i)
in) (0 ≤ i ≤ n − 1) should be close to each other. It thus follows that pθ(+|X̂ (0)

in) = κ−

and pθ(+|X̂ (i)
in) = κ+ (1 ≤ i ≤ n − 1). It can be derived that the minimum variation of the

representational change of Xin is given by:

σ(τ(Xin)) ≥
√
n− 1

n
|h(κ+)− h(κ−)| (13)

To evade the detection, σ(τ(Xin)) ≤ γ, which completes the proof.

Proof. (Corollary) Recall that the function h(p) monotonically increases (or decreases) with p ∈
[κ−, κ+]. Thus, for given κ−, it follows:

|h(κ−)− h(κ+)|

>|h(κ−)− h(
1

2
)|

=|h(κ−) + 1 +
1

2
log p∗(1− p∗)|

(14)

Thus, if |h(κ−) + 1 + 1
2 log p

∗(1− p∗)| > n√
n−1

γ, there is no κ+ > 1
2 that satisfies Eq. 13.

14

C Implementation Details

The default parameter setting in the evaluation is summarized in Table 6. The setting of baseline
defenses mainly follows prior work [36]. For STRIP, we set the number of copies and replacement
rate as 5 and 0.25, while the other parameters are set according to the best detection performance.
For ONION, we test different thresholds on the perplexity change and choose the thresholds that
approximately achieve 5% FRR on the training set. Then we remove outlier words with perplexity
changes above the thresholds at inference time. For RAP, we bound the change of output probability
as [−0.3,−0.1]. When training the word embedding of the RAP trigger, we set the learning rate as
1.0e-2. The RAP trigger is inserted at the first position of each sample to avoid being truncated.

Computational Resources
Model parameters 355 million

Computational budget
30 min (training & attack)
60 min (testing & detection)

Models and Training
PLM RoBERTa-large

Prompt model DART
Max sequence length 128

Embedding dimension 1,024
Batch size 8 (train), 32 (test)

Learning rate 2.0e-5
Optimizer Adam

Prompt-tuning epochs 20
Shots K 16 per class

Attacks
Attack training epochs 10

Poisoning rate 10%
Target class 0

BadNets trigger {“cf”, “mn”, “bb”, “tq”}
AddSent trigger “I watch this 3D movie”

LWP trigger {“cf”, “bb”, “ak”, “mn”}
EP trigger {“cf”}

SOS-train trigger {“friends”, “weekend”, “store”}
SOS-test trigger “I have bought it from a store

with my friends last weekend”
Triggers 1 per sample

MDP
Masking rate 0.2

Trials 50
Weight of LLM 1.0

Baseline Defenses
STRIP - # Copies 5

STRIP - Replacement rate 0.25
RAP - Trigger “mb”

RAP - Training LR 1.0e-2
RAP - Prob. change bound [-0.3, -0.1]

Table 6. Implementation and evaluation details of models, attacks, and defenses.

D Additional Results

The AUC scores of MDP and baseline methods are summarized in Table 7. The performance of MDP
with respect to different FRR allowances on the training set, varying weights of LMI, and varying
sizes of few-shot data is shown in Figure 8 to Figure 19.

15

Dataset Attack STRIP ONION RAP MDP

SST-2

BadNets 0.66 0.64 0.53 0.99
AddSent 0.51 0.54 0.52 0.99

LWP 0.60 0.72 0.83 0.98
EP 0.84 0.67 0.56 1.00

SOS 0.82 0.61 0.51 1.00

MR

BadNets 0.57 0.63 0.60 0.98
AddSent 0.56 0.58 0.60 0.96

LWP 0.60 0.72 0.51 0.98
EP 0.53 0.66 0.54 0.99

SOS 0.76 0.52 0.52 0.97

CR

BadNets 0.83 0.68 0.59 0.99
AddSent 0.76 0.52 0.52 0.99

LWP 0.71 0.67 0.62 0.97
EP 0.88 0.63 0.58 0.96

SOS 0.71 0.55 0.53 1.00

SUBJ

BadNets 0.57 0.69 0.62 0.95
AddSent 0.64 0.60 0.56 0.99

LWP 0.68 0.73 0.58 0.96
EP 0.64 0.65 0.51 0.96

SOS 0.87 0.56 0.56 0.97

TREC

BadNets 0.62 0.64 0.56 0.99
AddSent 0.60 0.62 0.58 0.97

LWP 0.58 0.73 0.66 0.99
EP 0.82 0.72 0.65 0.98

SOS 0.75 0.73 0.56 0.98
Table 7. Performance (AUC) of MDP and baseline defenses.

0%

10%

20%

30%

40%

FA
R

0.5% 1% 3% 5%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 8: Performance of MDP on MR with different
FRR allowances on the training set.

0%

10%

20%

30%

40%

FA
R

0.5% 1% 3% 5%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 9: Performance of MDP on CR with different
FRR allowances on the training set.

0%

15%

30%

45%

60%

FA
R

0.5% 1% 3% 5%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 10: Performance of MDP on SUBJ with differ-
ent FRR allowances on the training set.

0%

15%

30%

45%

60%

FA
R

0.5% 1% 3% 5%
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 11: Performance of MDP on TREC with dif-
ferent FRR allowances on the training set.

16

0%

10%

20%

30%

40%

FA
R

0.25 0.5 1 2 4
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 12: Performance of MDP on MR under the
varying weight of the masking-invariance constraint
LMI.

0%

10%

20%

30%

40%

FA
R

0.25 0.5 1 2 4
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 13: Performance of MDP on CR under the
varying weight of the masking-invariance constraint
LMI.

0%

10%

20%

30%

40%

FA
R

0.25 0.5 1 2 4
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 14: Performance of MDP on SUBJ under the
varying weight of the masking-invariance constraint
LMI.

0%

10%

20%

30%

40%

FA
R

0.25 0.5 1 2 4
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 15: Performance of MDP on TREC under the
varying weight of the masking-invariance constraint
LMI.

0%

10%

20%

30%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 16: Performance of MDP on MR with varying
size of few-shot data (K samples per class).

0%

15%

30%

45%

60%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 17: Performance of MDP on CR with varying
size of few-shot data (K samples per class).

0%

10%

20%

30%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 18: Performance of MDP on SUBJ with vary-
ing size of few-shot data (K samples per class).

0%

10%

20%

30%

40%

50%

FA
R

4 8 16 32 64
0%

5%

10%

FR
R

BadNets

AddSent

LWP

EP

SOS

Figure 19: Performance of MDP on TREC with vary-
ing size of few-shot data (K samples per class).

17

	Introduction
	Related Work
	Background
	Few-shot Prompting
	Threat Model

	MDP
	Overview of MDP
	Modeling Masking Sensitivity
	Amplifying Masking Invariance
	Theoretical Justification

	Empirical Evaluation
	Experimental Setting
	Implementation Details
	Main Results
	Influential Factors
	Alternative Scenarios

	Limitations
	Conclusion
	Algorithm of MDP
	Proofs
	Implementation Details
	Additional Results

