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Abstract

We introduce REASONING GYM ( RG), a library of reasoning environments
for reinforcement learning with verifiable rewards. It provides over 100 data
generators and verifiers spanning multiple domains including algebra, arithmetic,
computation, cognition, geometry, graph theory, logic, and various common games.
Its key innovation is the ability to generate virtually infinite training data with
adjustable complexity, unlike most previous reasoning datasets, which are typically
fixed. This procedural generation approach allows for continuous evaluation across
varying difficulty levels. Our experimental results demonstrate the efficacy of

RG in both evaluating and reinforcement learning of reasoning models.

Rubik’s cube

Question: You see a size 3 Rubik's cube. It is arranged this:

B Y R

B Y W

B Y Y

R R R Y G G O O G Y B W

R R R Y G G O O W G B W

R R Y B B B W O W G B W

O O O

G W Y

G W O

Please provide a solution to solve this cube using Singmaster

notation. Do not combine any steps, for instance, do not

write 'U2', and instead write 'U U'.

──────────────────────────────────────────────────────────────

Answer:

L' D D B' D D R R U' F' U F U U B U' B' R' U U R U' F U U F'

Rush hour

Question:

Move the red car (AA) to the exit on the right.

Specify moves in the format: 'F+1 K+1 M-1 C+3 H+2 ...',

where the letter is the vehicle and +/- number is spaces

to move right/left or down/up. Walls are marked with an 'x'.

Cars cannot move through walls, and walls cannot be moved.

A car oriented vertically can only move up and down,

a car oriented horizontally can only move left and right.

Board:

BB.IKx

CCCIK.

GAAJ..

G.HJDD

..HEEL

.FF.xL

──────────────────────────────────────────────────────────────

Answer:

F-1 G+1 A-1 H-1 E-2 J+2 D-1 L-3 D+1 J-2 E+3 H+2 A+1 J+2 ...

Games

Figlet fonts

Question: What word does this say?

8888ba.88ba 88888888b dP dP .d88888b .d88888b .d888888
88 `8b `8b 88 88 88 88. "' 88. "' d8' 88
88 88 88 a88aaaa 88 88 `Y88888b. `Y88888b. 88aaaaa88a
88 88 88 88 88 88 `8b `8b 88 88
88 88 88 88 88 88 d8' .8P d8' .8P 88 88
dP dP dP 88888888P 88888888P dP Y88888P Y88888P 88 88
──────────────────────────────────────────────────────────────
Answer: MELISSA

1

Binary matrix

Given a square matrix, your job is to find the Manhattan
distance of the nearest 0 for each cell.

The output should be a matrix of the same size as the
input matrix, where each cell contains the distance to
the nearest 0.

0 1 1 0 1 0 1 0 1
0 0 1 1 1 0 1 1 1
1 1 1 1 0 1 0 1 0
0 1 0 1 1 1 1 1 0
1 0 1 0 1 1 1 1 1
1 0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 0 1
1 1 0 0 0 0 1 1 0
0 1 0 1 1 0 1 1 1
──────────────────────────────────────────────────────────────
Answer:
0 1 1 0 1 0 1 0 1
0 0 1 1 1 0 1 1 1
1 1 1 1 0 1 0 1 0
0 1 0 1 1 2 1 1 0
1 0 1 0 1 1 1 2 1
1 0 1 1 1 0 0 1 0
2 1 1 1 1 1 1 0 1
1 1 0 0 0 0 1 1 0
0 1 0 1 1 0 1 2 1

Cognition
Circuit logic

Question: Below is a logic circuit.

A: ─────────────────────┐
B: ───────────────────┐ │
C: ─────────────────┐ │ │
D: ───────────────┐ │ │ │
E: ─────────────┐ │ │ │ │
F: ───────────┐ │ │ │ │ │
G: ─────────┐ │ │ │ │ │ │
H: ───────┐ │ │ │ │ │ │ │
I: ─────┐ │ │ │ │ │ │ │ │
J: ───┐ │ │ │ │ │ │ │ │ │
K: ─┐ │ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ ├─>o─│↑↑
│ │ │ │ │ │ │ │ │ │ ├────│↑↑───┐
│ │ │ │ │ │ │ │ │ ├──────│↑↑ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ ├────│&& │
│ │ │ │ │ │ │ │ │ │ ├─>o─│&&──┐│
│ │ │ │ │ │ │ │ └────────│&& ││
│ │ │ │ │ │ │ │ │ │ ││
│ │ │ │ │ │ │ ├──────────│↑↑ ││
│ │ │ │ │ │ └────────────│↑↑─┐│└───│++
│ │ │ │ │ │ └──────────│↑↑ │└────│++
│ │ │ │ │ │ │ └────│↑↑ └─────│++─── OUT
│ │ │ │ │ │ │ ┌────│++
│ │ │ │ │ ├───────────>o─│⊕⊕ │┌───│++
│ │ │ │ │ │ └──────│⊕⊕──┘│
│ │ │ │ └────────────────│⊕⊕ │
│ │ │ └───────────────>o─│⊕⊕ │
│ │ │ │ │
│ │ └────────────────────│⊕⊕ │
│ └──────────────────────│⊕⊕───┘
└─────────────────────>o─│⊕⊕

└──────────────│⊕⊕

Legend for gates:
&&: AND | ↑↑: NAND | ⊕⊕: XOR | >o: Negate | ++: OR

Given the following input assignments:
A = 0; B = 0; C = 0; D = 1; E = 1; F = 0; G = 1;
H = 1; I = 0; J = 0; K = 0

What is the final output?
──────────────────────────────────────────────────────────────
Answer: 1

Logic

Figure 1: Example RG tasks from three categories.
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1 Introduction

The reasoning abilities of large language models (LLMs) have recently leapt forward, with models
like OpenAI-o1 [49], DeepSeek-R1 [19], and QwQ-32B [72] setting new benchmarks. At the heart of
this progress is Reinforcement Learning with Verifiable Rewards (RLVR) [36, 19], which leverages
outcome-based feedback to unlock open-ended reasoning processes with diverse solution paths.

However, the success of RLVR hinges critically on the availability of high-quality training data.
Current approaches face a fundamental scalability bottleneck [40]: they depend either on expensive
human-curated question-answer pairs [11] or on internet-scraped content [46, 1] that is neither
sustainable nor reliable in the long term [74, 29]. As reasoning models continue to advance, this data
scarcity threatens to become an increasingly severe constraint on further progress.

We address this challenge with REASONING GYM ( RG), a comprehensive library of procedurally
generated [10] reasoning environments designed specifically for RLVR training. Unlike traditional
reasoning benchmarks that provide fixed datasets, RG offers over 100 algorithmically verifiable
tasks that can generate unlimited training instances with controllable difficulty and structural variation.
These environments span diverse reasoning domains: symbolic algebra, discrete algorithms, spatial
geometry, formal logic, pattern recognition, and constraint-based puzzles. Each task is equipped with
verification mechanisms and parameters that enable fine-grained control over problem complexity.

The procedural nature of RG addresses several critical limitations of existing approaches. First,
it eliminates memorization concerns by ensuring that no two generated instances are identical.
Second, it enables dynamic curriculum learning, where task difficulty can be adjusted based on model
performance. Third, it provides unlimited training data, removing the bottleneck imposed by fixed
dataset sizes. Finally, it offers precise experimental control, allowing researchers to isolate specific
reasoning capabilities and study their development systematically.

Our experimental investigation reveals several key insights:

• Zero-shot performance of frontier LLMs is low for many RG tasks, specifically the ones
that represent visual concepts in text format like ARC, cognition, and games categories.

• Increasing task difficulty creates sharp performance cliffs. When transitioning from easy to
hard configurations, performance drops are most severe in algorithmic reasoning (28%), code
generation (62%), and graph problems (30%).

• Larger non-reasoning models often underperform smaller reasoning models. Performance
drops are highest when transitioning from reasoning to non-reasoning models, underlining the
value of reasoning data.

• Curriculum RLVR results in improved final models, with adaptive difficulty progression outper-
forming fixed-difficulty training across reasoning tasks.

• RLVR generalizes across tasks from the same domain, from mathematics to games. We observe
this intra-domain improvement in both tasks the LLM is already competent in, as well as tasks the
pre-RLVRed model fails to solve.

• Signs of cross-domain transfer emerge from RLVR training. A model trained on algorithmic
tasks exhibits substantial improvements in math domains such as algebra and geometry.

• Skills transfer to external benchmarks. RLVR training on RG tasks improves performance
on benchmarks such as MATH [21], GSM8K [11], Big-Bench Hard [70], and MMLU-Pro [79].

We release the complete library, including all task generators, training infrastructure, and experimental
configurations, at https://github.com/open-thought/reasoning-gym/.

2 REASONING GYM ( RG)

Despite rapid progress in language model reasoning, empirical work is bottlenecked by benchmarks
that are either fixed in size, quickly memorized, or too noisy. Therefore, REASONING GYM ( RG)
is motivated by the need for an open-ended playground where models can be pushed past the “dataset
ceiling”, exposed to ever-harder instances, and evaluated with fully automatic, unambiguous rewards
so that genuine reasoning improvements, and not dataset familiarity, drive the next wave of advances.
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Figure 2: Frontier models struggle with challenging RG configurations. Reasoning models like o3-mini
[48] and DeepSeek-R1 [19] tend to outperform non-reasoning models, but the tasks configured with challenging
parameters are still far from being saturated.

Following are the core design principles that underpin RG:

(P1) Algorithmic Verifiability. Every task admits automatic verification and requires no human
judgment. This enables reliable RLVR training while eliminating subjective evaluation.

(P2) Large Solution Spaces. Tasks are designed with expansive solution spaces, rewarding
generalizable strategies above overfitting and mitigating reward hacking.

(P3) Parametric Difficulty Control. Configurable parameters systematically control problem
characteristics, enabling dynamic curricula via precise difficulty adjustment.

To probe reasoning competence across a broad spectrum of skills, we partition RG’s generators
into several high-level categories that mirror the abstractions humans rely on when solving problems:

Mathematical domains: algebra, arithmetic, geometry

Algorithmic thinking: search, optimization, procedures

Logical reasoning: formal proofs, inference rules

Pattern recognition: sequences, visual analogies

Constraint satisfaction: games, puzzles, planning

Figure 1 shows representative examples demonstrating the diversity of reasoning challenges, and
Table 6 outlines the full set of categories alongside the data generators for each. We believe this
taxonomy lets practitioners target specific abilities during training or evaluation while still drawing
from a rich, procedurally generated mix of challenges.

Concretely, within each category we instantiate tasks not as fixed question-answer pairs, but as
generative algorithms whose parameters continuously modulate problem characteristics:

• Difficulty Parameters directly control complexity (node counts for graphs, polynomial degrees
for algebra, word lengths for language tasks).

• Structural Parameters determine fundamental problem properties (dimensionality, constraint
types, proof depth).

• Stylistic Parameters vary presentation without affecting difficulty (variable names, number
formats, problem framing).
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(a) Zero-shot performance of frontier LLMs.
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algebra

algorithmic

arc

arithmetic

code

cognition

games

geometry

graphs

induction

logic

-15.01 -15.86 -19.49 -27.67 -26.64 -18.00 -26.45

-25.57 -27.85 -31.65 -36.28 -27.52 -21.27 -8.80

-22.72 -23.19 -16.20 -25.47 -20.07 -8.63 -4.02

-21.20 -23.01 -25.28 -26.45 -32.34 -21.37 -21.25

-71.93 -61.82 -24.67 -21.50 -37.20 -4.17 0.00

-22.64 -20.88 -19.02 -15.80 -21.23 -2.30 -7.76

-16.60 -17.54 -13.43 -18.08 -12.59 -0.67 -4.30

-33.13 -11.83 -26.15 -38.60 -12.12 -18.38 -46.79

-33.80 -29.60 -30.00 -45.40 -29.00 6.40 -16.40

-9.00 -1.00 -8.00 -7.00 -12.00 -2.00 0.00

-2.93 -5.49 -20.20 -22.70 -12.15 -10.93 -18.16
−100

−75

−50

−25

0

25

50

75

100

∆
score

(%
)

(b) Difficulty Cliff: easy vs. hard tasks.

Figure 3: Model and task difficulty comparison. Left: Zero-shot ability across model types on the hard
configs. Right: Impact of dataset difficulty on per-category accuracy. Section A.3 details the easy and hard
parameter configurations for each dataset.

3 Zero-shot performance of LLMs

We conduct a comprehensive evaluation of state-of-the-art language models on RG tasks, revealing
challenges that persist even for frontier models. Our analysis encompasses both zero-shot capabilities
and the effects of task difficulty scaling. Figures 7 and 8 report the precise scores for every task–model
combination under the easy and hard settings, respectively.

3.1 Model Capabilities Across Reasoning Domains

Figures 2 and 3 present our core findings on model performance across RG tasks. The results reveal
a clear hierarchy among different model classes, with reasoning-optimized systems demonstrating
substantial advantages over general-purpose alternatives.

Reasoning vs. Non-reasoning Models. The performance gap between reasoning-optimized and
general-purpose models is striking and consistent. Models explicitly trained for reasoning, including
o3-mini (63.5%), DeepSeek-R1 (59.5%), and Grok 3 Mini (55.1%), form a distinct leading group
(Figure 3a). In contrast, strong general-purpose systems like Llama 4 Maverick (41.5%), Claude 3.5
Sonnet (40.3%), and Gemma 3 27B (20.3%) achieve substantially lower performance.

This 22% gap between the best reasoning and non-reasoning models represents more than a marginal
improvement; suggesting that RLVR unlocks a step change in capabilities. The consistency of this
advantage across RG’s diverse task categories indicates that reasoning-specific training develops
broadly applicable skills rather than narrow-domain expertise.

Performance Patterns Across Domains. Examining performance by task category reveals interesting
patterns in model capabilities. Mathematical domains (algebra, arithmetic, geometry) show relatively
strong performance across all model types, likely reflecting the emphasis on mathematical reasoning
in recent training regimes. However, tasks requiring visual-spatial reasoning represented in text
format (cognition, games) prove particularly challenging, with even the strongest models achieving
less than 50% accuracy.

Algorithmic tasks present an intermediate challenge, with clear performance differences between
reasoning and non-reasoning models. This suggests that while basic algorithmic thinking is present
in general-purpose models, the systematic problem decomposition required for complex algorithmic
reasoning benefits significantly from specialized training.

3.2 The Difficulty Cliff Phenomenon

One of the most striking findings from our evaluation concerns the dramatic performance degradation
when task difficulty increases. Figure 3b illustrates this phenomenon, showing how performance
changes when transitioning from easy to hard task configurations.

4



Performance degradation is commonly observed uniformly across domains and model families.
For o3-mini, the steepest declines occur in code (−71.9%), graphs (−33.8%), geometry (−33.1%),
and algorithms (−25.6%). DeepSeek-R1 shows a similar pattern, with drops of −61.8%, −29.6%,
−11.8%, and −27.9% on the same categories, respectively. Overall, most model–task pairs exhibit
notable performance declines as difficulty increases.

These results reveal implications that inform future research directions:

Current models have shallow competencies. The dramatic performance drops with increased
difficulty suggest that current reasoning capabilities are more fragile than commonly assumed.
Models may be learning to recognize and apply solution templates rather than developing robust
reasoning strategies, which has also been indicated by concurrent work [85, 89, 78, 62, 41].

Visual-spatial reasoning remains challenging. Spatial reasoning in text-based representations
proves particularly difficult for all models, as has also been shown by previous work [8, 9, 58].

Domain-specific patterns exist. The varying difficulty cliff magnitudes across domains indicate that
reasoning challenges are not uniform. Some domains (like basic arithmetic) may be approaching
saturation, while others (like complex algorithmic reasoning) remain largely unsolved.

4 Skill Transfer and Generalization

A central question in reasoning research concerns whether skills learned on specific tasks transfer
to related problems. RG’s diverse task categories provide an ideal testbed for investigating both
intra-domain transfer (within reasoning categories) [13, 73, 22] and cross-domain transfer (across
different types of reasoning) [37, 90].

In the experiments below, the training reward plots represent the total reward, computed as the sum
of an accuracy component and an auxiliary component that rewards proper output formatting. By
contrast, the evaluation tables report only the accuracy component, rescaled to a percentage in the
range 0− 100%. For transparency, we note that the reported results from the experiments require
approximately 1500 A6000 hours, which we obtained by renting cloud GPUs from Runpod.

4.1 Intra-Domain Transfer

We first investigate whether RLVR training on a subset of tasks within a reasoning domain improves
performance on held-out tasks from the same domain. This tests whether models develop domain-
specific reasoning strategies that generalize beyond the specific tasks they were trained on.

Experimental Design. For each major reasoning category in RG, we trained Qwen2.5-3B-Instruct
[84] using GRPO [63] on a composite of tasks from that category, then evaluated performance on a
held-out task from the same domain. Each experiment involved three independent runs on identical
evaluation sets of 50 problems, providing robust estimates of transfer effects.

Training Dynamics. Figure 4 illustrates the learning dynamics across different reasoning domains.
Most categories exhibit rapid initial improvement, reflecting both format learning and genuine
skill acquisition. The exception is arithmetic, where the base model already demonstrates strong
competency, likely due to extensive mathematical training in its supervised fine-tuning phase. This
ceiling effect provides a useful control, showing that our training improvements reflect genuine
learning rather than artifacts.

0 200 400

0.6

0.8

1.0

Algebra

0 200 400

0.50

0.75

1.00

Algorithmic

0 200 400

0.6

0.8

1.0

1.2

Arithmetic

0 200 400

0.4

0.6

Cognition

0 100 200 300
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R
e
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a
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s

Figure 4: Rewards of Intra-Domain Generalization RL. There is a sharp increase in reward at the start of
training. This is partly attributable to the model quickly learning auxiliary rewards (i.e. formatting) during
training, but it is also reflective of how quickly RLVR improves the model’s ability to solve training tasks.
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Table 1: Intra-Domain Generalization. Acc@3 performance by dataset category. Baseline: Qwen2.5-3B-
Instruct [84]; RG-RLVR: Qwen2.5-3B-Instruct [84] RL-fine-tuned on composite tasks from the particular
category. Bold RG-RLVR scores are higher than Baseline. RLVR consistently improves performance across all
tested categories covering diverse domains.

Algebra Algorithmic Arithmetic Cognition Games
Baseline 5.0 52.3 89.7 40.3 0.0
RG-RLVR 16.7+11.7 59.7+7.4 96.0+6.3 42.3+2.0 3.3+3.3

Transfer Results. Table 1 demonstrates consistent intra-domain transfer across all reasoning cate-
gories. The improvements range from modest gains in domains where the base model already shows
competency (arithmetic: +6.3%, cognition +2.0%) to larger improvements in challenging domains
(algebra: +11.7%, algorithmic +7.4%).

Particularly striking is the Games category, where the base model achieves zero accuracy but develops
measurable capability (3.3%) after RLVR training. This suggests that domain-specific training can
bootstrap entirely new reasoning capabilities, not merely refine existing ones. The consistency of
improvements across diverse difficulty levels indicates that RLVR develops robust domain-specific
strategies rather than task-specific solutions.

4.2 Cross-Domain Transfer

More surprising than intra-domain transfer is the possibility that reasoning skills learned in one
domain might benefit performance in entirely different domains. This would suggest that RLVR
instills general reasoning capabilities that transcend specific problem types. Such transfer is critical
because it indicates whether models develop fundamental reasoning primitives versus domain-specific
heuristics. Demonstrating cross-domain transfer would validate that procedurally generated training
data can develop broadly applicable reasoning skills rather than narrow task-specific competencies.

Training Protocol. We train separate instances of Qwen2.5-3B-Instruct [84] on individual RG
categories, then evaluate their performance on held-out tasks from different domains. This design
isolates the effects of cross-domain transfer by ensuring that models never see data from the evaluation
domains during training. Each cross-domain evaluation involves three independent runs to ensure
robust estimates.

Training Dynamics Across Domains. Figure 5 reveals distinct learning patterns across reasoning
domains. While most categories show sustained improvement throughout training, the Games
category plateaus early, suggesting fundamental challenges in learning visual-spatial reasoning from
text representations. This pattern provides insight into which reasoning skills are most amenable to
current RLVR approaches.
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Figure 5: Rewards of Cross-Domain Generalization RL. Rewards initially spike due to learning the format
reward (worth 0.2, with an accuracy reward worth 1.0). The model is then able to learn in all cases, but the
differing trajectories and final reward values illustrate that some task categories are more challenging than others.
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Table 2: Cross-Domain Generalization. Acc@3 performance by dataset category. Baseline: Qwen2.5-3B-
Instruct [84]. RG-X: Qwen2.5-3B-Instruct [84] RL-fine-tuned on category X tasks. Bold RG-X scores are higher
than Baseline. RLVR leads to notable performance improvements across domains.

Test Dataset Baseline RG-Algebra RG-Algorithmic RG-Logic RG-Games

Algebra 23.83 — 52.89+29.1 — 45.61+21.8

Algorithmic 13.49 20.68+7.2 — 16.43+2.9 —
ARC 6.49 4.18-2.3 — — 4.26-2.2

Arithmetic 29.56 46.14+16.6 45.17+15.6 — —
Cognition 11.62 — — 24.94+13.3 24.71+13.1

Games 8.40 9.23+0.8 — 7.64-0.8 —
Geometry 0.83 — 23.17+22.3 — 6.83+6.0

Graphs 19.81 — — 28.86+9.1 22.49+2.7

Cross-Domain Transfer Results. Table 2 reveals remarkable patterns of Cross-Domain transfer that
exceed our initial expectations. Several key findings emerge:

• Algorithmic training transfers broadly: Models trained on algorithmic tasks show substantial
improvements in algebra (+29.1%) and geometry (+22.3%), suggesting that procedural reasoning
skills generalize across mathematical domains.

• Logic training enhances pattern recognition: Training on logic tasks improves performance
in cognition (+13.3%) and graph reasoning (+9.1%), indicating shared underlying reasoning
mechanisms.

• Games training shows selective transfer: Despite poor in-domain performance, games-trained
models improve on algebra (+21.8%) and cognition (+13.1%), suggesting that constraint satisfac-
tion skills transfer to other domains.

These results provide strong evidence that RLVR training develops transferable reasoning capabilities
that extend far beyond the specific domains where training occurs.

4.3 Transfer to External Benchmarks

The ultimate test of RG’s utility lies in whether skills developed through training on procedurally
generated tasks transfer to established reasoning benchmarks. We investigate this by training models
on algorithmic and mathematical RG categories, and then evaluating performance widely-used
benchmarks for reasoning and understanding. In particular we use GSM8K [11], MATH [21] and
Big-Bench Hard [70] for evaluating mathematical and logical reasoning; and MMLU-Pro [79] for
advanced knowledge across academic and professional domains.

Experimental Protocol. The RG-Math model is Qwen2.5-3B-Instruct [84] trained for 800 GRPO
[63] steps on a composite of algebra, arithmetic, and geometry tasks from RG. The RG-
Algorithmic model is the same checkpoint from Section 4.2 (Cross-Domain Transfer). All evalu-
ations were performed with the Language Model Evaluation Harness [15] to ensure standardized
comparison.[84].

Table 3: External Generalization on GSM8K [11], MATH [21], and Big-Bench Hard [70]. Baseline:
Qwen2.5-3B-Instruct [84]; RG-Math: Qwen2.5-3B-Instruct RL-fine-tuned on composite math tasks. Bold
RG-X scores are higher than Baseline. RLVR on RG data leads to improvements across the challenging set of
established benchmarks.

Model GSM8K [11]
8-shot, CoT

MATH [21]
0-shot, CoT

Big-Bench Hard [70]
3-shot, CoT

Score Std Error Score Std Error Score Std Error

Baseline 76.2 1.17 48.5 0.68 8.68 0.30
RG-Math 76.7+0.5 1.16 58.2+9.7 0.66 16.34+7.66 0.40
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Table 4: External generalization on tasks from MMLU-Pro [79]. Baseline: Qwen2.5-3B-Instruct [84]; RG-X:
Qwen2.5-3B-Instruct [84] RL-fine-tuned on category X tasks. Bold RG-X scores are higher than Baseline. Both
RLVR on RG data lead to general improvements, with higher gains observed from the RG-Math model.

Task Baseline RG-Algorithmic RG-Math
Score Std Error Score Std Error Score Std Error

Math 54.63 1.35 53.89-0.74 1.36 60.25+5.62 1.33
Computer Science 37.80 2.40 40.73+2.93 2.43 42.20+4.40 1.47
Physics 38.49 1.35 39.26+0.77 1.36 44.19+5.70 1.38
Engineering 28.28 1.45 31.48+3.20 1.49 31.17+2.89 1.49
Economics 50.59 1.72 53.44+2.85 1.72 53.55+2.96 1.72
Business 51.58 1.78 53.36+1.78 1.78 54.12+2.54 1.78
Psychology 50.75 1.77 55.01+4.26 1.76 56.77+6.02 1.75
Biology 56.90 1.85 59.00+2.10 1.84 61.09+4.19 1.82

External Transfer Results. Our experimental results demonstrate that RG training produces
meaningful improvements on established benchmarks, validating the real-world applicability of our
approach. Table 3 shows that our RG-Math model achieves substantial gains on MATH [21] (+9.7%)
and Big-Bench Hard [70] (+7.7%), and more marginal gains on GSM8K [11] (+0.5%). Moreover,
Table 4 shows that both our RG-Math and RG-Algorithmic models significantly outperform their
respective baselines over several tasks from MMLU-Pro [79]. The cross-benchmark consistency
confirms RG develops transferable reasoning skills, not task-specific pattern matching.

5 Curriculum RLVR

Curriculum learning and related approaches [3, 23, 47, 27, 52] aim to organize the training distribution
such that the learner first masters simpler instances before being exposed to progressively harder
variations of a task. Ideally, such approaches result in superior task performance or faster convergence
during training. In this section, we evaluate a simple form of curriculum learning during RLVR by
continually increasing an RG task’s complexity.

Experimental Setup. We train Qwen2.5-3B-Instruct [84] using GRPO [63] under two conditions:
(1) curriculum learning, starting with the easiest level and progressively increasing the difficulty
when performance exceeds 70% over 20 training steps, and (2) fixed difficulty, sampling uniformly
from all difficulty levels. We train both models for a single epoch. For each environment, we evaluate
the curriculum and non curriculum models on 50 holdout examples from each difficulty level.
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Figure 6: Rewards for the Curriculum Learning experiments. Reward dynamics between curriculum and
non-curriculum training regimes. A vertical black line denotes a difficulty increase in curriculum training (no
bars appear for Count Primes as the model never advanced past the initial level). Task difficulty increases are
often proceeded by a sharp drop in reward. The curriculum model encounters increasingly difficult examples,
while the non-curriculum version samples the full difficulty distribution.
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Table 5: Curriculum learning. Baseline: Qwen2.5-3B-Instruct [84]; Non-Curriculum: Qwen2.5-3B-Instruct
[84] trained on all levels concurrently; Curriculum: Qwen2.5-3B-Instruct [84] trained with an adjustable
curriculum. The curriculum approach generally achieves superior performance across difficulty levels.

Level Baseline Non-Curriculum Curriculum
Spell Backwards (Level = Word Length)

4 12.00 30.00 70.67 +40.67

6 3.33 10.67 30.00 +19.33

8 0.00 1.13 3.37 +2.24

10 0.00 0.01 0.01 +0.00

Mini Sudoku (Level = # Empty Cells)

4-6 1.13 54.00 56.00 +2.00

6-8 0.00 25.33 28.00 +2.67

8-10 0.00 6.67 20.00 +13.33

10-12 0.00 1.13 5.33 +4.20

Count Primes (Level = Number Range)

100-500 12.00 4.00 30.67 +26.67

100-1000 3.33 5.03 12.67 +7.64

100-5000 1.33 0.00 3.03 +3.03

Training Dynamics. Figure 6 compares the training dynamics of the curriculum and non-curriculum
training setups. For the Spell Backward environment, increases in difficulty level are followed by a
sharp drop in reward. The curriculum model’s lower terminal reward reflects its exclusive exposure
to maximum difficulty examples, while the non-curriculum model samples across the full difficulty
distribution. In the Mini Sudoku experiment we notice that performance rises rapidly at the beginning
and the model accelerates through the difficulty levels, reaching the highest level by step 72. Despite
not surpassing the first difficulty level, in the Count Primes environment the curriculum approach
decisively outperforms its counterpart.

Results and Analysis. Table 5 reveals the benefits of curriculum learning in RG environments.
The curriculum-trained models achieve superior performance to their non-curriculum equivalents in
all environments and difficulty levels. There are instances in each environment where the curriculum
model outperforms the non-curriculum model by significant margins e.g. +40.67% for word length
of 4 on Spell Backwards, +13.33% for 8− 10 empty cells on Mini Sudoku and +26.27% for number
range 100 − 500 in Count Primes. Whilst Table 5 demonstrates the effectiveness of curriculum
learning on RG tasks, its value may be more limited in environments where progression paths are
ambiguous or difficult to formalize.

6 Related Work

Reasoning Benchmarks There are numerous fixed dataset reasoning benchmarks. GSM8K [11],
MATH, [21], OlympiadBench [20] focus on mathematical problem-solving, while BIG-Bench [66]
or GPQA [55] include a diverse set of reasoning tasks. Coding benchmarks remain popular too for
evaluating reasoning models [7, 26, 39, 92, 25].

However, since these benchmarks typically consist of fixed datasets, this can lead to overfitting
[30, 65]. Further, benchmarks consisting of internet-scraped data are often erroneous [16, 53]. Our
procedural generators differ by 1) the ability to create unlimited training examples with controllable
characteristics and 2) exposing the ground-truth data-generating process. More similar to our work
are procedurally generated benchmarks, e.g., in games [64, 24, 75, 33, 77, 51, 61, 87], puzzles
[76, 56, 38, 91] or using generative models [57, 4, 44].
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RLVR Environments Tülu 3 [36] builds its RL corpus by taking prompts whose answers can
be objectively checked (e.g., GSM8K [11], MATH [21]) and granting a positive reward only when
an automatic verifier confirms the model’s answer. DeepSeek-R1 [19] kick-starts RL with a few
thousand manually curated long chain-of-thought examples and then trains on automatically gradable
reasoning tasks scored by rule-based accuracy and language-consistency rewards, growing the dataset
to roughly 600k verified trajectories through rejection sampling.

TextArena [18] consists of 57+ text-based games suitable for both RLVR and evaluating LLMs.
Logic-RL [83] procedurally generate and RLVR on logic puzzles, which generalizes cross-domain
to math competition benchmarks. Similarly, Zhu et al. [91] propose a method for synthesizing
open-ended logic puzzles. Zhao et al. [88] raise concerns similar to ours regarding the scarcity of
high-quality, human-produced examples; however, they address this issue by proposing Absolute
Zero Reasoner, a system that self-evolves its curriculum and uses a code executor to both validate
proposed code reasoning tasks and verify answers. Mattern et al. [45] release the SYNTHETIC-1
reasoning dataset, including 1.4 million high-quality tasks and verifiers. OpenThoughts [71] curates
reasoning datasets across various domains.

Closest to our work are parallel efforts to create libraries of reasoning environments. KORGym [60]
focuses on games, providing over fifty games in textual or visual formats and including multi-turn
interactions. Reasoning Core [35] is a library of procedurally generated RLVR environments across
several formal domains. GEM [42] provides a standardized framework for RL environments targeted
at LLMs and a diverse built-in suite of environments.

7 Discussion and Future Work

There are several limitations to our current approach:

• Some reasoning domains, particularly those requiring extensive domain knowledge or creativity,
are difficult to capture with procedural generators. In particular, procedural generators may struggle
in domains where answers are unstructured, leaving room for alternative RL data [69, 81].

• Verification functions, while comprehensive, may not capture all aspects of solution quality that
humans consider important. There is still an important place for human-centric mechanisms, such
as RL from human feedback [67, 50], and human-gathered RL datasets [2, 34].

• The current RG implementation focuses on single-turn, text-based reasoning and does not yet
include multi-turn [80, 86] or multimodal [6, 60] reasoning tasks. Work on these is valuable to
provide data for enhancing agentic and vision-language models, respectively.

• Our experiments sample data uniformly across every task, assuming independent and identically
distributed data. Future work should examine continual learning settings where data arrives in non-
stationary streams and investigate how regularization [31, 17, 59, 28], model merging [82, 68, 12],
and replay buffers [5, 43, 54] affect the model performance under catastrophic forgetting [14, 32].

8 Conclusion

We have presented REASONING GYM ( RG), a comprehensive library of procedural dataset gen-
erators and algorithmically verifiable reasoning environments for training reasoning models with
reinforcement learning. Providing over 100 tasks across diverse domains including algebra, algo-
rithms, logic, games, and geometry, RG addresses the fundamental data scarcity bottleneck in
reasoning research through unlimited, controllable task generation. Our experimental results demon-
strate that RLVR training on RG tasks produces models with improved reasoning capabilities
that transfer both within and across domains, as well as to established external benchmarks. Beyond
training, RG serves as a rigorous evaluation framework for assessing reasoning capabilities across
difficulty levels without the memorization concerns inherent to fixed benchmarks. By providing
the complete library as an open-source resource, we enable the research community to systemati-
cally explore reasoning development in language models without the constraints of fixed datasets or
expensive human curation.
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Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster,
Jack Parker-Holder, and Tim Rocktäschel. BALROG: Benchmarking agentic LLM and VLM
reasoning on games. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=fp6t3F669F.

[52] Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
In International Conference on Machine Learning, pp. 17473–17498. PMLR, 2022.

[53] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

[54] Ameya Prabhu, Philip Torr, and Puneet Dokania. Gdumb: A simple approach that questions
our progress in continual learning. In The European Conference on Computer Vision (ECCV),
August 2020.

[55] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[56] Yufan Ren, Konstantinos Tertikas, Shalini Maiti, Junlin Han, Tong Zhang, Sabine Süsstrunk,
and Filippos Kokkinos. Vgrp-bench: Visual grid reasoning puzzle benchmark for large vision-
language models, 2025. URL https://arxiv.org/abs/2503.23064.

[57] Sebastian Risi and Julian Togelius. Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence, 2(8):428–436, 2020.

[58] Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein.
Lmact: A benchmark for in-context imitation learning with long multimodal demonstrations,
2025. URL https://arxiv.org/abs/2412.01441.

[59] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress and compress: A scal-
able framework for continual learning. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 4528–4537. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/schwarz18a.html.

15

https://arxiv.org/abs/2412.16720
https://openreview.net/forum?id=fp6t3F669F
https://arxiv.org/abs/2503.23064
https://arxiv.org/abs/2412.01441
https://proceedings.mlr.press/v80/schwarz18a.html


[60] ByteDance Seed, M-A-P, and Beihang University. Korgym: A dynamic game platform for llm
reasoning evaluation, 2025.

[61] Jeffrey Seely, Yuki Imajuku, Tianyu Zhao, Edoardo Cetin, and Llion Jones. Sudoku-bench:
Evaluating creative reasoning with sudoku variants, 2025. URL https://arxiv.org/abs/
2505.16135.

[62] Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Si-
mon Shaolei Du, Nathan Lambert, Sewon Min, Ranjay Krishna, Yulia Tsvetkov,
Hannaneh Hajishirzi, Pang Wei Koh, and Luke Zettlemoyer. Spurious rewards:
Rethinking training signals in rlvr. https://rethink-rlvr.notion.site/
Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f,
2025. Notion Blog.

[63] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

[64] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[65] Shivalika Singh, Yiyang Nan, Alex Wang, Daniel D’Souza, Sayash Kapoor, Ahmet Üstün,
Sanmi Koyejo, Yuntian Deng, Shayne Longpre, Noah A. Smith, Beyza Ermis, Marzieh Fadaee,
and Sara Hooker. The leaderboard illusion, 2025. URL https://arxiv.org/abs/2504.
20879.

[66] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid,
Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al.
Beyond the imitation game: Quantifying and extrapolating the capabilities of language models.
arXiv preprint arXiv:2206.04615, 2022.

[67] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
In Advances in Neural Information Processing Systems, pp. 3008–3021, 2020.

[68] Zafir Stojanovski, Karsten Roth, and Zeynep Akata. Momentum-based weight interpolation
of strong zero-shot models for continual learning. In First Workshop on Interpolation Regu-
larizers and Beyond at NeurIPS 2022, 2022. URL https://openreview.net/forum?id=
XetJ4I78tf.

[69] Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains. arXiv
preprint arXiv:2503.23829, 2025.

[70] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei.
Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

[71] Open Thoughts Team. Open Thoughts, January 2025. URL https://www.open-thoughts.
ai/.

[72] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

[73] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[74] Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius
Hobbhahn. Will we run out of data? limits of llm scaling based on human-generated data. arXiv
preprint arXiv:2211.04325, 2022.

16

https://arxiv.org/abs/2505.16135
https://arxiv.org/abs/2505.16135
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://rethink-rlvr.notion.site/Spurious-Rewards-Rethinking-Training-Signals-in-RLVR-1f4df34dac1880948858f95aeb88872f
https://arxiv.org/abs/2504.20879
https://arxiv.org/abs/2504.20879
https://openreview.net/forum?id=XetJ4I78tf
https://openreview.net/forum?id=XetJ4I78tf
https://www.open-thoughts.ai/
https://www.open-thoughts.ai/
https://qwenlm.github.io/blog/qwq-32b/


[75] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Jun-
young Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

[76] Clinton J. Wang, Dean Lee, Cristina Menghini, Johannes Mols, Jack Doughty, Adam Khoja,
Jayson Lynch, Sean Hendryx, Summer Yue, and Dan Hendrycks. Enigmaeval: A benchmark of
long multimodal reasoning challenges, 2025. URL https://arxiv.org/abs/2502.08859.

[77] Jane X Wang, Michael King, Nicolas Porcel, Zeb Kurth-Nelson, Tina Zhu, Charlie Deck, Peter
Choy, Mary Cassin, Malcolm Reynolds, Francis Song, et al. Alchemy: A benchmark and
analysis toolkit for meta-reinforcement learning agents. arXiv preprint arXiv:2102.02926, 2021.

[78] Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng,
Xuehai He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and
Yelong Shen. Reinforcement learning for reasoning in large language models with one training
example, 2025. URL https://arxiv.org/abs/2504.20571.

[79] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574,
2024.

[80] Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Xing
Jin, Kefan Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, Yiping Lu, Kyunghyun Cho,
Jiajun Wu, Li Fei-Fei, Lijuan Wang, Yejin Choi, and Manling Li. Ragen: Understanding self-
evolution in llm agents via multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073,
2025.

[81] Zongsheng Wang, Kaili Sun, Bowen Wu, Qun Yu, Ying Li, and Baoxun Wang. Raiden-r1: Im-
proving role-awareness of llms via grpo with verifiable reward. arXiv preprint arXiv:2505.10218,
2025.

[82] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and
Ludwig Schmidt. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7959–7971, June 2022.

[83] Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou,
Kai Qiu, Zhirong Wu, and Chong Luo. Logic-rl: Unleashing llm reasoning with rule-based
reinforcement learning, 2025. URL https://arxiv.org/abs/2502.14768.

[84] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[85] Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model?
arXiv preprint arXiv:2504.13837, 2025.

[86] Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong.
Reinforcing multi-turn reasoning in llm agents via turn-level credit assignment. arXiv preprint
arXiv:2505.11821, 2025.

[87] Alex L. Zhang, Thomas L. Griffiths, Karthik R. Narasimhan, and Ofir Press. Videogamebench:
Can vision-language models complete popular video games?, 2025. URL https://arxiv.
org/abs/2505.18134.

[88] Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi
Wang, Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play
reasoning with zero data, 2025. URL https://arxiv.org/abs/2505.03335.

17

https://arxiv.org/abs/2502.08859
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2505.18134
https://arxiv.org/abs/2505.18134
https://arxiv.org/abs/2505.03335


[89] Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to
reason without external rewards, 2025. URL https://arxiv.org/abs/2505.19590.

[90] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
A survey. IEEE transactions on pattern analysis and machine intelligence, 45(4):4396–4415,
2022.

[91] Qin Zhu, Fei Huang, Runyu Peng, Keming Lu, Bowen Yu, Qinyuan Cheng, Xipeng Qiu,
Xuanjing Huang, and Junyang Lin. Autologi: Automated generation of logic puzzles for
evaluating reasoning abilities of large language models, 2025. URL https://arxiv.org/
abs/2502.16906.

[92] Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-
marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7
(c) Did you discuss any potential negative societal impacts of your work? [NA] Work is

limited to new dataset generators for problem-solving tasks with minimal potential for
societal implications

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [NA] No theoretical

results
(b) Did you include complete proofs of all theoretical results? [NA] No theoretical results

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Included in
linked GitHub repository, see Section 1

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Included in linked GitHub repository, see Section 1

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Sections 3, 4

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Mentioned where relevant in the

GitHub URL, see Section 1
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Included as URL, see Section 1
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [NA] No data used/curated from people
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [NA] No data used/curated from people
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [NA] No crowdsourcing or research with human subjects

18

https://arxiv.org/abs/2505.19590
https://arxiv.org/abs/2502.16906
https://arxiv.org/abs/2502.16906


(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [NA] No crowdsourcing or research with human
subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [NA] No crowdsourcing or research with human
subjects

19



A Appendix

A.1 Dataset categories

Table 6: Overview of REASONING GYM Datasets by Category

Category (Count) Datasets (Curriculum: ✓ yes, ✗ no)

Algebra (6)
Symbolic manipulation requiring vari-
able tracking and calculation.

gsm_symbolic ✗, intermediate_integration ✓,
polynomial_equations ✓,
polynomial_multiplication ✓,
simple_equations✓, simple_integration ✓

Algorithms (32)
Applying procedural steps and compu-
tational thinking.

base_conversion ✓, binary_alternation ✓,
chain_sum ✓, count_bits ✓, count_primes ✓,
decimal_chain_sum ✓, game_of_life ✓,
game_of_life_halting ✓, gcd ✓,
group_anagrams ✓, isomorphic_strings ✓,
lcm ✓, letter_counting ✓,
list_functions ✗, manipulate_matrix ✓,
needle_haystack ✓, number_filtering ✓,
number_sorting ✓, palindrome_generation ✓,
palindrome_partitioning ✓,
prime_factorization ✓, products ✓,
ransom_note ✓, rotate_matrix ✓,
spell_backward ✓, spiral_matrix ✓,
string_insertion ✓, string_manipulation ✓,
string_splitting ✓, string_synthesis ✓,
word_sequence_reversal ✓, word_sorting✓

Arithmetic (11)
Mathematical problems testing calcula-
tion and symbolic reasoning.

basic_arithmetic ✓, bitwise_arithmetic ✓,
calendar_arithmetic ✓, complex_arithmetic ✓,
cryptarithm ✓, decimal_arithmetic ✓,
fraction_simplification ✓, leg_counting ✓,
number_format ✓, power_function ✓,
time_intervals✓

Cognition (+ARC) (14)
Identifying and applying transforma-
tions and rules from examples.

acre ✗, aiw ✓, arc_1d ✓, arc_agi ✓,
binary_matrix ✓, boxnet ✓,
color_cube_rotation ✓, emoji_mystery ✓,
family_relationships ✓, figlet_font ✓,
letter_jumble ✓, rearc ✓, self_reference ✓,
sentence_reordering ✓

Code (2)
Understanding code across languages.

bf✓, codeio✓

Games (18)
Puzzles requiring systematic thinking
and constraint satisfaction.

boxnet ✓, countdown ✓, dice ✓, futoshiki ✓,
jugs ✓, knight_swap ✓, mahjong_puzzle ✓,
mini_sudoku ✓, n_queens ✓, puzzle24 ✓,
rubiks_cube ✓, rush_hour ✓, sokoban ✓, sudoku ✓,
tower_of_hanoi ✓, tsumego ✓, word_ladder ✓,
zebra_puzzles✓

Geometry (4)
Spatial reasoning challenges.

advanced_geometry ✓, pool_matrix ✓,
rectangle_count✓, simple_geometry✓

Graphs (6)
Discrete structures and traversal prob-
lems.

course_schedule ✓, graph_color ✓,
largest_island ✓, maze ✓, rotten_oranges ✓,
shortest_path✓

Induction (2)
Sequence induction tasks.

modulo_grid✓, number_sequence✓

Logic (7)
Formal deduction environments.

ab ✓, caesar_cipher ✓, circuit_logic ✓,
knights_knaves ✓, propositional_logic ✓,
quantum_lock✓, syllogism✓
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A.2 Dataset Examples

In this section of the appendix, we present a detailed overview of several representative tasks from
each category included in REASONING GYM. For each task, we describe its structure, complexity
parameters, and provide examples.

A.2.1 complex_arithmetic (Algebra)

Find the solution of an arithmetic operation involving complex numbers.

Default Configuration
min_real = -10
max_real = 10
min_imag = -10
max_imag = 10
operations = ('+', '-', '*', '/')
operations_weights = [0.4, 0.4, 0.1, 0.1]

Example Task
> Question: Subtract the complex numbers: (7.0 - 7.0i) - (-5.0 + 2.0i)

> Answer: 12.0 - 9.0i

> Metadata: {
'source_dataset': 'complex_arithmetic',
'source_index': 2,
'num1': (7.0, -7.0),
'num2': (-5.0, 2.0),
'operation': '-',
'result': (12, -9),
'difficulty': {

'min_real': -10,
'max_real': 10,
'min_imag': -10,
'max_imag': 10,
'operations_weights': [0.4, 0.4, 0.1, 0.1]
}

}

A.2.2 spiral_matrix (Algorithmic)

Print the elements of a matrix in spiral order.

Default Configuration
min_n = 2
max_n = 10

Example Task
> Question: Given a matrix, your job is to generate a list of elements
in spiral order, starting from the top-left element.

The spiral order is clockwise, starting from the top-left corner.
More precisely:
- Start from the top-left corner and move right.
- Move down towards the bottom-right corner.
- Move left towards the bottom-left corner.
- Move up towards the top-right corner.
- Repeat the steps for the inner elements of the matrix until every
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entry is visited.

Your output should be a space-separated list of integers, e.g.
1 2 3 4 5 6

For the matrix below, what is the list of elements in spiral order?
3 1 3
2 4 9
1 0 8

> Answer: 3 1 3 9 8 0 1 2 4

> Metadata: {
'source_dataset': 'spiral_matrix',
'source_index': 0,
'matrix': [[3, 1, 3], [2, 4, 9], [1, 0, 8]],
'solution': [3, 1, 3, 9, 8, 0, 1, 2, 4],
'n': 3,
'difficulty': {'n': (2, 10)}
}

A.2.3 arc_1d (ARC)

Find the solution of a 1D version of an ARC problem.

Default Configuration
min_size = 10
max_size = 30
num_train = 3

Example Task
> Question: Find the common rule that maps an input grid to an output
grid, given the examples below.

Example 1:
Input: 0 0 0 2 9 2 3 4 4 0
Output: 2 9 2 3 4 4 0 0 0 0

Example 2:
Input: 0 0 0 0 4 4 2 1 1 0
Output: 0 4 4 2 1 1 0 0 0 0

Example 3:
Input: 0 0 0 7 9 4 9 1 0 0
Output: 7 9 4 9 1 0 0 0 0 0

Below is a test input grid. Predict the corresponding output grid by
applying the rule you found. Describe how you derived the rule and
your overall reasoning process in detail before you submit your answer.
Your final answer should be just the test output grid itself.

Input:
0 0 0 0 0 1 5 0 0 0

> Answer: 0 0 1 5 0 0 0 0 0 0

> Metadata: {
'source_dataset': 'arc_1d',
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'source_index': 0,
'task_name': 'move_3pix_colorful_left',
'train_examples': [

{'input': [0, 0, 0, 2, 9, 2, 3, 4, 4, 0],
'output': [2, 9, 2, 3, 4, 4, 0, 0, 0, 0]},
{'input': [0, 0, 0, 0, 4, 4, 2, 1, 1, 0],
'output': [0, 4, 4, 2, 1, 1, 0, 0, 0, 0]},
{'input': [0, 0, 0, 7, 9, 4, 9, 1, 0, 0],
'output': [7, 9, 4, 9, 1, 0, 0, 0, 0, 0]}],

'test_example': {
'input': [0, 0, 0, 0, 0, 1, 5, 0, 0, 0],
'output': [0, 0, 1, 5, 0, 0, 0, 0, 0, 0]},

'difficulty': {'size': (10, 30)}
}

A.2.4 prime_factorization (Arithmetic)

Factorize a given number down to its primes.

Default Configuration

min_value = 2
max_value = 1000

Example Task

> Question: Find the prime factorization of 656.
Write the factors separated by ×
(Example: for 12 the answer would be: 2 × 2 × 3)

> Answer: 2 × 2 × 2 × 2 × 41

> Metadata: {
'source_dataset': 'prime_factorization',
'source_index': 0,
'number': 656,
'factors': [2, 2, 2, 2, 41],
'difficulty': {'value': (2, 1000)}
}

A.2.5 bf (Code)

Find the solution of a BF (Brainf*ck) program.

Default Configuration

difficulty = 1

Example Task

> Question: This is a BF (Brainf*ck) computer program.
What is the output?

">[-]>[-]<>++++++++++[<+++++++++++>-]<+.-.+++++.--------------.+++++++++
++++++.<"

Respond only with the exact output of the program.

> Answer: onset

> Metadata: {
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'source_dataset': 'bf',
'source_index': 0,
'bfit_code': '\nint main() {\n print("onset");\n}\n',
'bf_program': '>[-]>[-]<>++++++++++[<+++++++++++>-]<+.-.

+++++.--------------.+++++++++++++++.<',
'difficulty': {'difficulty': 1}
}

A.2.6 figlet_font (Cognition)

Read the contents of text written with figlet font.

Default Configuration

static_word = None
static_font = None
min_word_len = 3
max_word_len = 7
space_letters = True

Example Task

> Question: What word does this say?

## ## ###### ## ###### ###### ###### ##
### ### ####### ## ###### ####### ####### #####
####### ## ## ## ## ## ## ##
####### ####### ## ## ##### ##### ## ##
## # ## ## ## ## ## ## ######
## ## ####### ####### ###### ####### ####### ## ##
## ## ###### ###### ###### ###### ###### ## ##

> Answer: MELISSA

> Metadata: {
'source_dataset': 'figlet_font',
'source_index': 1,
'font': 'stealth_',
'space_letters': True,
'difficulty': {'word_len': (3, 7)}
}

A.2.7 mini_sudoku (Games)

Solve a mini (4x4) Sudoku puzzle.

Default Configuration

min_empty = 8
max_empty = 12

Example Task

> Question: In 4x4 Mini Sudoku:
- Each row must contain each number from 1-4 exactly once
- Each column must contain each number 1-4 exactly once
- Each 2x2 subgrid must contain each number 1-4 exactly once

Solve this 4x4 Mini Sudoku puzzle:
4 _ _ _
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_ 3 _ _
_ 1 3 _
_ _ _ _

Format your response as the puzzle above, with spaces separating each
number within a row, and newlines separating rows.

> Answer: 4 2 1 3
1 3 4 2
2 1 3 4
3 4 2 1

> Metadata: {
'source_dataset': 'mini_sudoku',
'source_index': 0,
'puzzle': [

[4, 0, 0, 0],
[0, 3, 0, 0],
[0, 1, 3, 0],
[0, 0, 0, 0]

],
'solution': [

[4, 2, 1, 3],
[1, 3, 4, 2],
[2, 1, 3, 4],
[3, 4, 2, 1]

],
'num_empty': 12,
'difficulty': {'empty': (8, 12)}
}

A.2.8 advanced_geometry (Geometry)

Solve geometry-related problems.

Default Configuration
min_coord = -10
max_coord = 10

Example Task

> Question: For triangle with vertices A=(-1, -6), B=(4, 1), and
C=(-7, 4), determine the orthocenter (intersection of altitudes).
For all geometry problems:
1. Give coordinates in the form (x, y)
2. Round decimal answers to 3 decimal places
3. Use the degree symbol ° for angles
4. Return only the angle, coordinates, or radius as your answer.

> Answer: (0.304, -1.217)

> Metadata: {
'A': (-1, -6),
'B': (4, 1),
'C': (-7, 4),
'ortho': (7/23, -28/23),
'orthocenter_exact': ('7/23', '-28/23'),
'orthocenter_approx': (0.30434782608695654, -1.2173913043478262),
'source_dataset': 'advanced_geometry',
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'source_index': 1,
'task_type': 'orthocenter',
'difficulty': {'min_coord': -10, 'max_coord': 10}
}

A.2.9 shortest_path (Graphs)

Find the shortest path between a start and an end node.

Default Configuration
min_rows = 5
max_rows = 8
min_cols = 5
max_cols = 8
p_blocked = 0.4

Example Task
> Question: Your task is to find the shortest path from the start to
the destination point in a grid.

The grid is represented as a matrix with the following types of cells:
- *: your starting point
- #: your destination point
- O: an open cell
- X: a blocked cell

Therefore, you need to find the shortest path from * to #,
moving only through open cells.

You may only move in four directions: up, down, left, and right.

If there is no path from * to #, simply write "infeasible".

Your output should be a sequence of directions that leads from * to #,
e.g. right right down down up left

Now, find the length of the shortest path from * to # in the
following grid:
O X X X O
O O X X X
O O # O O
* X O O X
O X X O X

> Answer: up right right

> Metadata: {
'source_dataset': 'shortest_path',
'source_index': 0,
'matrix': [

['O', 'X', 'X', 'X', 'O'],
['O', 'O', 'X', 'X', 'X'],
['O', 'O', '#', 'O', 'O'],
['*', 'X', 'O', 'O', 'X'],
['O', 'X', 'X', 'O', 'X']

],
'solution': ['up', 'right', 'right'],
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'difficulty': {'rows': (5, 8), 'cols': (5, 8)}
}

A.2.10 acre (Induction)

Determine whether new combinations of objects will activate a detector using prior observations.

Default Configuration
train = 1

Example Task
> Question: You are a researcher studying causal relationships using
Blicket experiments. In these experiments, certain objects (called
'blickets') have the hidden property of activating a detector,
causing its light to turn on.

Each example shows the results of placing different combinations of
objects on the detector. Each object is described by color, material
and shape. Your task is to determine whether a new combination of
objects will cause the detector to activate.

After observing the previous examples, respond with:
- "on" if you can determine the detector light will turn on
- "off" if you can determine the detector light will stay off
- "undetermined" if there is insufficient evidence to reach a conclusion

Do not use quotation marks in your answer.

Previous experimental results:
yellow rubber cylinder → on
red rubber sphere → off
yellow rubber cylinder, red rubber sphere → on
yellow metal sphere, red metal cylinder, brown rubber cylinder,

purple rubber sphere, yellow rubber cube → on
yellow rubber cube, brown rubber cylinder, purple rubber sphere → off
yellow metal sphere, red metal cylinder → on

New test case:
yellow rubber cylinder

What is the detector light status?

> Answer: on

> Metadata: {
'source_dataset': 'acre',
'source_index': 0
}

A.2.11 knights_knaves (Logic)

Determine which individuals are truth-telling, and which are liars.

Default Configuration
n_people = 2
depth_constraint = 2
width_constraint = 2

Example Task
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> Question: A very special island is inhabited only by sages and fools.
Sages always tell the truth, and fools always lie.
You meet 2 inhabitants: Zoey, and Riley.
Zoey commented, "Riley is a fool".
In Riley's words: "Zoey is a sage or Riley is a sage".
So who is a sage and who is a fool?
(Format your answer like: "Zoey is a sage/fool, and Riley is a sage/fool")

> Answer: Zoey is a fool, and Riley is a sage.

> Metadata: {
'source_dataset': 'knights_knaves',
'source_index': 0,
'statements': (

('lying', 1), ('or', ('telling-truth', 0), ('telling-truth', 1))
),
'solution': (False, True),
'names': ['Zoey', 'Riley'],
'knight_knave_terms': {

'knight': 'sage',
'knave': 'fool',
'a_knight': 'a sage',
'a_knave': 'a fool',
'Knight': 'Sage',
'Knave': 'Fool'

},
'difficulty': {

'n_people': 2,
'depth_constraint': 2,
'width_constraint': 2}

}

A.3 Zero-Shot Evaluation: Configs

Below are the configuration files used to procedurally generate data for the zero-shot evaluation
benchmarks. Each dataset lists parameters with values for the easy setting, while the hard setting
values are shown in comments.

complex_arithmetic

min_real: -10 # -100
max_real: 10 # 100
min_imag: -10 # -100
max_imag: 10 # 100
operations_weights: [0.4, 0.4, 0.1, 0.1] # [0.25, 0.25, 0.25, 0.25]

intermediate_integration

problem_type_weights: [0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12, 0.12]
# [0, 0, 0, 1, 0, 0, 0, 0]

polynomial_equations

min_degree: 1 # 2
max_degree: 3 # 3
min_terms: 2 # 3
max_terms: 4 # 4

polynomial_multiplication
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min_terms: 2 # 4
max_terms: 4 # 8
min_value: 1 # 10
max_value: 100 # 10000
min_degree: 0 # 1
max_degree: 3 # 4
min_polynomials: 2 # 3
max_polynomials: 3 # 6

simple_equations

min_terms: 2 # 3
max_terms: 4 # 10
min_value: 1 # 10
max_value: 100 # 10000
operators_weights: [0.4, 0.4, 0.2] # [0.35, 0.35, 0.3]

simple_integration

min_terms: 2 # 3
max_terms: 5 # 4

ab
length: 10 # 25

base_conversion

min_base: 2 # 9
max_base: 16 # 18
min_value: 0 # 10000
max_value: 1000 # 100000

binary_alternation

min_n: 10 # 50
max_n: 30 # 500

binary_matrix

p_zero: 0.25 # 0.25
min_n: 3 # 25
max_n: 10 # 50

caesar_cipher

min_rotation: 1 # 15
max_rotation: 25 # 25
min_words: 3 # 15
max_words: 20 # 25

count_primes

min_n: 1 # 10000
max_n: 10000 # 50000

cryptarithm

min_words: 2 # 5
max_words: 3 # 10

game_of_life
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grid_size_x: 10 # 50
grid_size_y: 10 # 50
filled_cells_weights: 0.1 # 0.2
simulation_steps: 1 # 2

game_of_life_halting

grid_size_x: 12 # 50
grid_size_y: 12 # 50
difficulty: 1 # 2
num_oscillators: 5 # 7
max_simulation_steps: 20 # 50

graph_color

min_num_vertices: 10 # 10
max_num_vertices: 10 # 20
num_colors: 3 # 4

group_anagrams

min_anagram_groups: 2 # 10
max_anagram_groups: 10 # 50
min_words_per_group: 2 # 2
max_words_per_group: 5 # 5

isomorphic_strings

min_string_length: 2 # 50
max_string_length: 10 # 100

jugs

num_jugs: 3 # 4
difficulty: 10 # 10

letter_counting

min_words: 5 # 25
max_words: 15 # 50

letter_jumble

min_word_len: 1 # 5
max_word_len: 64 # 30
min_words: 3 # 25
max_words: 20 # 50
min_corruption_level: 0.1 # 0.3
max_corruption_level: 0.9 # 0.6

manipulate_matrix

min_rows: 2 # 25
max_rows: 10 # 50
min_cols: 2 # 25
max_cols: 10 # 50
min_transforms: 1 # 3
max_transforms: 10 # 10

number_filtering
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min_numbers: 3 # 50
max_numbers: 10 # 100
min_decimals: 0 # 2
max_decimals: 4 # 4
min_value: -100.0 # -500
max_value: 100.0 # 500

number_sorting

min_numbers: 3 # 50
max_numbers: 10 # 100
min_decimals: 0 # 2
max_decimals: 2 # 4
min_value: -100.0 # -500
max_value: 100.0 # 500

palindrome_generation

min_length: 3 # 50
max_length: 10 # 100

palindrome_partitioning

min_string_len: 5 # 5
max_string_len: 15 # 15
min_substring_palindrome_len: 1 # 1
max_substring_palindrome_len: 5 # 5

pool_matrix

min_rows: 2 # 25
max_rows: 10 # 50
min_cols: 2 # 25
max_cols: 10 # 50
min_pool_size: 1 # 5
max_pool_size: 3 # 7

ransom_note

min_note_length: 1 # 50
max_note_length: 10 # 100
min_magazine_length: 2 # 100
max_magazine_length: 30 # 500

rotate_matrix

min_n: 2 # 25
max_n: 10 # 50
min_rotations: 0 # 5
max_rotations: 10 # 15

rotten_oranges

min_n: 10 # 25
max_n: 30 # 50

sentence_reordering

min_words_in_sentence: 3 # 20
max_words_in_sentence: 20 # 50

spell_backward
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min_word_len: 3 # 5
max_word_len: 10 # 20

spiral_matrix

min_n: 2 # 25
max_n: 10 # 50

string_insertion

min_string_length: 5 # 50
max_string_length: 20 # 100

string_manipulation

min_string_length: 5 # 50
max_string_length: 20 # 100

string_splitting

min_initial_machines: 0 # 50
max_initial_machines: 5 # 100

string_synthesis

min_initial_blocks: 0 # 50
max_initial_blocks: 5 # 100

word_ladder

min_word_length: 4 # 3
max_word_length: 4 # 5

word_sequence_reversal

min_words: 3 # 25
max_words: 8 # 50

word_sorting

min_words: 3 # 25
max_words: 10 # 50
min_word_length: 3 # 5
max_word_length: 12 # 10

arc_1d

min_size: 10 # 25
max_size: 30 # 50

arc_agi

rotations_weights: [0.25, 0.25, 0.25, 0.25] # [0.15, 0.3, 0.25, 0.3]
mirrors_weights: [0.2, 0.2, 0.2, 0.2, 0.2] # [0.2, 0.2, 0.2, 0.2, 0.2]

rearc

pso_difficulty_weights: [0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14]
# [0, 0, 0, 1, 0, 0, 0]

rng_difficulty_weights: [0.14, 0.14, 0.14, 0.14, 0.14, 0.14, 0.14]
# [0, 0, 0, 1, 0, 0, 0]

basic_arithmetic
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min_terms: 2 # 5
max_terms: 6 # 10
min_digits: 1 # 2
max_digits: 4 # 5

bitwise_arithmetic

difficulty: 2 # 5

calendar_arithmetic

tasks: [
'weekday_offset',
'weekday_of_date',
'weekday_of_date_from_first_date',
'recurring_event_day',
'count_days',
'count_business_days',
'is_leap_year'

]
# [
# 'weekday_of_date',
# 'is_leap_year',
# 'weekday_offset',
# 'count_days',
# 'count_business_days'
# ]
offset_upper_bound: 100 # 200

chain_sum

min_terms: 2 # 5
max_terms: 6 # 8
min_digits: 1 # 4
max_digits: 4 # 6

count_bits

min_n: 1 # 1000000
max_n: 2147483647 # 100000000

decimal_arithmetic

min_num_decimal_places: 3 # 5
max_num_decimal_places: 3 # 8
precision: 12 # 10
min_terms: 2 # 5
max_terms: 6 # 8

decimal_chain_sum

min_terms: 2 # 5
max_terms: 6 # 8
min_digits: 1 # 4
max_digits: 4 # 8
min_decimal_places: 1 # 4
max_decimal_places: 4 # 6

dice
num_dice: 4 # 6
max_dice_size: 20 # 25

fraction_simplification
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min_value: 1 # 100
max_value: 1000 # 1000
min_factor: 1 # 10
max_factor: 100 # 100

gcd

min_numbers: 2 # 3
max_numbers: 2 # 4
min_value: 1 # 1000
max_value: 1000 # 10000

gsm_symbolic

# no parameters to override

lcm
min_numbers: 2 # 3
max_numbers: 2 # 4
min_value: 1 # 1000
max_value: 100 # 10000

leg_counting

min_animals: 3 # 20
max_animals: 10 # 30
min_instances: 1 # 64
max_instances: 15 # 256

number_format

min_num_candidates: 2 # 25
max_num_candidates: 5 # 100
min_n: 1000 # 100000
max_n: 1000000000 # 1000000
max_delta: 10.0 # 0.001

power_function

min_exponent: 0 # 4
max_exponent: 8 # 8

prime_factorization

min_value: 2 # 1000
max_value: 1000 # 5000

products

min_terms: 2 # 4
max_terms: 2 # 8
min_digits: 1 # 4
max_digits: 5 # 8

time_intervals

max_time_difference_seconds: 86400 # 21600
max_date_difference_days: 100 # 30

bf
difficulty: 1 # 2

codeio
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difficulty: -1 # 7

color_cube_rotation

min_rotations: 1 # 10
max_rotations: 3 # 50

figlet_font

min_word_len: 3 # 5
max_word_len: 7 # 10

modulo_grid

size_x: 20 # 40
size_y: 20 # 40
max_holes: 1 # 5
max_divisor: 20 # 7
max_target: 20 # 3

needle_haystack

min_num_statements: 10 # 100
max_num_statements: 100 # 500

number_sequence

min_terms: 4 # 5
max_terms: 8 # 10
min_value: -100 # -500
max_value: 100 # 500
max_complexity: 3 # 3

rectangle_count

max_rectangles: 10 # 15

rubiks_cube

cube_size: 3 # 5
min_scramble_steps: 3 # 25
max_scramble_steps: 10 # 50

countdown
min_numbers: 4 # 3
max_numbers: 6 # 9
min_target: 100 # 100
max_target: 999 # 1000
min_value: 1 # 1
max_value: 100 # 100

emoji_mystery

min_words_in_sentence: 3 # 10
max_words_in_sentence: 35 # 30

futoshiki
min_board_size: 4 # 6
max_board_size: 9 # 7
min_difficulty: 0 # 1
max_difficulty: 3 # 2

knight_swap
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min_nodes: 6 # 6
max_nodes: 9 # 8
min_pieces: 2 # 3
max_pieces: 2 # 4
min_steps: 4 # 1
max_steps: 20 # 20

mahjong_puzzle

min_num_rounds: 10 # 50
max_num_rounds: 50 # 100

maze
min_grid_size: 5 # 25
max_grid_size: 10 # 50
min_dist: 5 # 10
max_dist: 10 # 15

mini_sudoku
min_empty: 8 # 6
max_empty: 12 # 10

n_queens

n: 8 # 8
min_remove: 1 # 4
max_remove: 7 # 6

puzzle24

min_value: 1 # 1
max_value: 10 # 6

rush_hour
min_moves: 1 # 25
max_moves: 50 # 50

sokoban
min_w: 6 # 10
max_w: 10 # 15
min_h: 6 # 10
max_h: 10 # 15

sudoku
min_empty: 30 # 30
max_empty: 50 # 50

tower_of_hanoi
min_disks: 3 # 5
max_disks: 7 # 10
min_pegs: 3 # 3
max_pegs: 4 # 4

tsumego

min_board_size: 9 # 5
max_board_size: 13 # 15
max_stones: 15 # 10

advanced_geometry
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min_coord: -10 # -100
max_coord: 10 # 100

simple_geometry

min_sides: 3 # 10
max_sides: 6 # 15

course_schedule

min_num_courses: 5 # 25
max_num_courses: 10 # 50
min_num_prerequisites: 1 # 3
max_num_prerequisites: 2 # 4
min_cycle_length: 3 # 3
max_cycle_length: 5 # 4

family_relationships

min_family_size: 4 # 5
max_family_size: 8 # 9

largest_island

min_rows: 5 # 25
max_rows: 10 # 50
min_cols: 5 # 25
max_cols: 10 # 50
min_num_islands: 0 # 5
max_num_islands: 5 # 10
min_island_size: 0 # 5
max_island_size: 10 # 20

quantum_lock

difficulty: 10 # 5

shortest_path

min_rows: 5 # 25
max_rows: 8 # 50
min_cols: 5 # 25
max_cols: 8 # 50

acre
# no parameters to override

list_functions

# no parameters to override

aiw

task_type_weights: [0.33, 0.33, 0.33] # [0.5, 0.25, 0.25]
max_entities: 6 # 10

circuit_logic

min_terms: 3 # 10
max_terms: 5 # 20
min_inputs: 2 # 4
max_inputs: 4 # 8

knights_knaves

37



n_people: 2 # 3
depth_constraint: 2 # 3
width_constraint: 2 # 3

propositional_logic

min_vars: 2 # 4
max_vars: 4 # 8
min_statements: 2 # 4
max_statements: 4 # 8
min_complexity: 1 # 2
max_complexity: 3 # 4

self_reference

difficulty: 5 # 5

syllogism

allow_all: True # True
allow_no: True # True
allow_some: True # False
allow_some_not: True # False

zebra_puzzles

num_people: 4 # 5
num_characteristics: 4 # 5
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A.4 Zero-Shot Evaluation: Per-dataset performance on Easy settings

complex arithmetic
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Figure 7: Per-task reasoning accuracy on easy settings. Top reasoning models (e.g., o3-mini, DeepSeek-R1)
achieve consistently high accuracy across the majority of easy tasks, whereas leading non-reasoning baselines
(e.g., Llama 4 Maverick, Claude 3.5 Sonnet) still underperform on a substantial fraction of the benchmark.
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A.5 Zero-Shot Evaluation: Per-dataset performance on Hard settings
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Figure 8: Per-task reasoning accuracy on hard settings. Performance quickly drops beyond basic skills,
and even the top model (o3-mini) falters on long-horizon puzzles such as rush_hour, rubiks_cube and
rotten_oranges, underscoring the benchmark’s value for probing advanced reasoning.
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A.6 Training Approach

Here we briefly describe the approach taken to training models with RLVR. Full training code and con-
figurations are available in our open-source repository at https://github.com/open-thought/reasoning-
gym.

We use the verl open-source library for most training runs including all intra-domain and inter-domain
generalization experiments, as well as curriculum learning experiments. Training runs are conducted
using a 4xA6000 GPU node on Runpod.

For the Qwen2.5-3B-Instruct-RG-Math model trained as part of external generalization experiments,
we use separate training code which is also included and documented in the training section of our
repository, under the qwen-math subdirectory.

Below we show an example of a verl training config with custom REASONING GYM modifications.
We omit two sections, reward_model and critic, which are required by verl but have no effect on the
training when using GRPO due to the lack of reward and critic models.

Example Training Config for verl

reasoning_gym:
dataset_size: 20000
developer_prompt: DeepSeekZero
datasets:

ab:
weight: 1

base_conversion:
weight: 1

binary_alternation:
weight: 1
config:

p_solvable: 0.9
binary_matrix:

weight: 1
config:

min_n: 2
max_n: 6

caesar_cipher:
weight: 1
config:

max_words: 10
cryptarithm:

weight: 1
isomorphic_strings:

weight: 1
config:

max_string_length: 8
jugs:

weight: 1
config:

difficulty: 6
rotate_matrix:

weight: 1
config:

min_n: 2
max_n: 6

string_manipulation:
weight: 1
config:

max_string_length: 15
max_num_rules: 6

curriculum:
enabled: False
schedule:
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automatic: True
update_steps: 30 # automatic curriculum updating after 50 steps

last_k: 20
success_threshold: 0.70
failure_threshold: 0.10
curricula:

spell_backward:
attribute_levels:

word_len: 0
reward:

use_accuracy: True
secondary_rewards:
- name: format

scaling_factor: 0.2
kwargs:

preappend_thinking_token: False
- name: length

scaling_factor: 0.2

data:
tokenizer: null
train_files: train.parquet # unused due to RG procedural dataset generators
val_files: test.parquet # unused due to RG procedural dataset generators
prompt_key: prompt
max_prompt_length: 4096
max_response_length: 2048
train_batch_size: 32
val_batch_size: 64
return_raw_chat: True
return_raw_input_ids: True

actor_rollout_ref:
hybrid_engine: True
model:

path: Qwen/Qwen2.5-3B-Instruct
external_lib: null
override_config: { }
enable_gradient_checkpointing: True
use_remove_padding: True

actor:
strategy: fsdp # This is for backward-compatibility
ppo_mini_batch_size: 16
ppo_micro_batch_size: null # will be deprecated, use

ppo_micro_batch_size_per_gpu↪→
ppo_micro_batch_size_per_gpu: 8
use_dynamic_bsz: False
ppo_max_token_len_per_gpu: 49152 # n * ${data.max_prompt_length} +

${data.max_response_length}↪→
grad_clip: 1.0
clip_ratio: 0.2
entropy_coeff: 0.001
use_kl_loss: True # True for GRPO
kl_loss_coef: 0.001 # for grpo
kl_loss_type: low_var_kl # for grpo
ppo_epochs: 1
shuffle: False
ulysses_sequence_parallel_size: 1 # sp size
optim:

lr: 1e-6
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
min_lr_ratio: null # only useful for warmup with cosine
warmup_style: constant # select from constant/cosine
total_training_steps: 500 # must be override by program

fsdp_config:
wrap_policy:

# transformer_layer_cls_to_wrap: None
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min_num_params: 0
param_offload: False
optimizer_offload: False
fsdp_size: -1

ref:
fsdp_config:

param_offload: True
wrap_policy:

# transformer_layer_cls_to_wrap: None
min_num_params: 0

log_prob_micro_batch_size: null # will be deprecated, use
log_prob_micro_batch_size_per_gpu↪→

log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu:

${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}↪→
ulysses_sequence_parallel_size:

${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size↪→
rollout:

name: vllm
temperature: 1.0
top_k: -1 # 0 for hf rollout, -1 for vllm rollout
top_p: 1
prompt_length: ${data.max_prompt_length} # not use for opensource
response_length: ${data.max_response_length}
# for vllm rollout
dtype: bfloat16 # should align with FSDP
gpu_memory_utilization: 0.7
ignore_eos: False
enforce_eager: True
free_cache_engine: True
load_format: dummy_dtensor
tensor_model_parallel_size: 4
max_num_batched_tokens: 12288
max_num_seqs: 1024
log_prob_micro_batch_size: null # will be deprecated, use

log_prob_micro_batch_size_per_gpu↪→
log_prob_micro_batch_size_per_gpu: 160
log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
log_prob_max_token_len_per_gpu:

${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}↪→
disable_log_stats: True
enable_chunked_prefill: True # could get higher throughput
# for hf rollout
do_sample: True
use_fire_sampling: False
max_model_len: 12288
# number of responses (i.e. num sample times)
n: 8 # > 1 for grpo
val_kwargs:

do_sample: True

algorithm:
gamma: 1.0
lam: 1.0
adv_estimator: grpo
kl_penalty: kl # how to estimate kl divergence
kl_ctrl:

type: fixed
kl_coef: 0.001

verbose: True

trainer:
balance_batch: True
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total_epochs: 1
total_training_steps: 500
project_name: inter-domain-generalisation
experiment_name: inter_reasoning_algorithmic_qwen_3b_composite
logger: [ 'console', 'wandb' ]
val_generations_to_log_to_wandb: 0
nnodes: 1
n_gpus_per_node: 4
save_freq: 100
# auto: find the last ckpt to resume. If can't find, start from scratch
resume_mode: auto # or auto or resume_path if
resume_from_path: False
test_freq: 100
critic_warmup: 0
default_hdfs_dir: null
remove_previous_ckpt_in_save: False
del_local_ckpt_after_load: False
default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
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