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Abstract001

Large language models (LLMs) have demon-002
strated remarkable proficiency across various003
natural language processing (NLP) tasks. How-004
ever, adapting LLMs to downstream applica-005
tions requires computationally intensive and006
memory-demanding fine-tuning procedures. To007
alleviate these burdens, parameter-efficient fine-008
tuning (PEFT) techniques have emerged as a009
promising approach to tailor LLMs with min-010
imal computational overhead. While PEFT011
methods offer substantial advantages, they do012
not fully address the pervasive issue of bias013
propagation from pre-training data. This work014
introduces Bias-Alleviating Low-Rank Adap-015
tation (BA-LoRA), a novel PEFT method de-016
signed to counteract bias inheritance. BA-017
LoRA incorporates three distinct regularization018
terms: (1) a consistency regularizer, (2) a diver-019
sity regularizer, and (3) a singular value decom-020
position regularizer. These regularizers aim to021
enhance the models’ consistency, diversity, and022
generalization capabilities during fine-tuning.023
We conduct extensive experiments on natural024
language understanding (NLU) and natural lan-025
guage generation (NLG) tasks using prominent026
LLMs such as LLaMA, Mistral, and Gemma.027
The results demonstrate that BA-LoRA outper-028
forms LoRA and its state-of-the-art variants.029
Moreover, the extended experiments demon-030
strate that our method effectively mitigates the031
adverse effects of pre-training bias, leading to032
more reliable and robust model outputs.033

1 Introduction034

The emergence of large language models (LLMs)035

has marked a new era in natural language process-036

ing (NLP). Models such as GPT-4 (OpenAI, 2023),037

Llama (Touvron et al., 2023), Mistral (Jiang et al.,038

2023), and Gemma (Team et al., 2024) have demon-039

strated exceptional performance across a wide ar-040

ray of NLP tasks, including language comprehen-041

sion, generation, and reasoning (Zhao et al., 2023;042

Chang et al., 2024). The remarkable advancements043

of LLMs can be largely attributed to their train- 044

ing on vast datasets (Zhao et al., 2023). As LLMs 045

continue to evolve rapidly, training on extensively 046

scaled web-derived corpora has become standard 047

practice to improve model generalization, thus by- 048

passing the labor-intensive processes of data cura- 049

tion and annotation (Gao et al., 2020; Penedo et al., 050

2023). However, the corresponding increase in data 051

volume has introduced several challenges, such as 052

the presence of imbalanced, duplicated, and cor- 053

rupted information (Parashar et al., 2024; Liu and 054

He, 2024; Chen et al., 2024b; Yang et al., 2023). 055

Recent research has shown that various forms 056

of bias in training data can negatively affect LLM 057

behavior (Dong et al., 2023; Dodge et al., 2021; 058

Longpre et al., 2023; Chen et al., 2024a). For ex- 059

ample, noise within the training data can degrade 060

model generalization (Chen et al., 2024a), while the 061

long-tailed distribution of concepts in web-scale 062

data can cause LLMs to overemphasize overrep- 063

resented topics (Zhu et al., 2024). Furthermore, 064

biases introduced during pre-training can persist 065

even after fine-tuning, potentially compromising 066

model performance and safety in real-world appli- 067

cations (Qi et al., 2023; Bommasani et al., 2021; 068

Mallen et al., 2022; Carlini et al., 2023). 069

This phenomenon, termed “Catastrophic Inheri- 070

tance” by (Chen et al., 2024a), has spurred investi- 071

gations into mitigation strategies. While construct- 072

ing less biased datasets and developing more robust 073

model architectures are prominent approaches (Liu 074

and He, 2024), this study explores an alternative: 075

innovations in fine-tuning. Fine-tuning LLMs is a 076

powerful method for enhancing task-specific per- 077

formance (Han et al., 2024), aligning models with 078

user intent (Ouyang et al., 2022; Xu et al., 2024), 079

and eliciting desired behaviors (Bai et al., 2022; 080

Rafailov et al., 2024). However, fine-tuning large- 081

scale models’ computational and memory demands 082

are substantial (Hu et al., 2021). For instance, 16- 083

bit fine-tuning of a Llama-65B model requires over 084
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780 GB of GPU memory (Dettmers et al., 2024).085

To address these limitations, parameter-efficient086

fine-tuning (PEFT) techniques, such as Low-Rank087

Adaptation (LoRA) (Hu et al., 2021), have gained088

prominence.089

LoRA enables efficient fine-tuning of large pre-090

trained models by approximating parameter up-091

dates using low-rank matrices. Instead of directly092

updating the entire weight matrix W , LoRA intro-093

duces a learnable low-rank adapter ∆W = AB,094

where A ∈ Rm×r and B ∈ Rr×n are low-rank095

matrices with a user-defined rank r ≪ min(m,n).096

This ensures that only A and B are updated dur-097

ing training, while the original weights W remain098

frozen. By initializing A with scaled random099

values and B to zero, LoRA preserves the pre-100

trained model’s initial output at the start of train-101

ing. For an input X , the output is computed as102

Y = X(W +AB), ensuring consistency with the103

original model. This method significantly reduces104

computational costs by limiting the number of train-105

able parameters, making it a practical solution for106

adapting large models (Hu et al., 2021).107

To mitigate the detrimental effects of Catas-108

trophic Inheritance, particularly noise, and im-109

balance, we propose Bias-Alleviating Low-Rank110

Adaptation (BA-LoRA). Building upon Principal111

Singular Values and Singular Vectors Adaptation112

(PiSSA) (Meng et al., 2024), which addresses con-113

vergence issues in standard LoRA, our approach114

incorporates three distinct regularization terms: a115

consistency regularizer, a diversity regularizer, and116

a singular value decomposition (SVD) regularizer.117

The consistency regularizer preserves valuable pre-118

trained knowledge during fine-tuning, while the119

diversity regularizer encourages varied model out-120

puts. The SVD regularizer enhances the generaliza-121

tion capabilities of generative models. Recognizing122

the fundamental differences between Natural Lan-123

guage Understanding (NLU) and Natural Language124

Generation (NLG), such as determinism in NLU125

versus diversity in NLG, we tailor our regulariza-126

tion strategies accordingly.127

To evaluate the efficacy of BA-LoRA, we con-128

duct comprehensive experiments across diverse129

benchmarks, including mathematical reasoning130

(GSM8K (Cobbe et al., 2021) and MATH (Yu et al.,131

2023)), coding (HumanEval (Chen et al., 2021)132

and MBPP (Austin et al., 2021)), natural language133

understanding (GLUE (Wang et al., 2018)), and134

general language evaluation (MT-Bench (Zheng135

et al., 2024)). Our experiments utilize promi-136

nent LLMs such as LLaMA 2-7B (Touvron et al., 137

2023), Mistral-7B (Jiang et al., 2023), and Gemma- 138

7B (Team et al., 2024), as well as encoder-only 139

architectures like RoBERTa-large (Liu et al., 2019) 140

and DeBERTa-v3-base (He et al., 2021b). The re- 141

sults unequivocally demonstrate BA-LoRA’s supe- 142

riority over LoRA and its state-of-the-art variants. 143

Moreover, the extended experiments demonstrate 144

that our method effectively attenuates noise inher- 145

ited from pre-training, leading to more robust and 146

generalizable models. 147

2 Related Works 148

Parameter-efficient fine-tuning (PEFT) tech- 149

niques (Xu et al., 2023b; Han et al., 2024) have 150

gained attention for adapting LLMs to specific 151

tasks with limited hardware resources. They 152

are divided into three main categories. The first 153

category includes adapter-based methods (Houlsby 154

et al., 2019a; Lin et al., 2020; Lei et al., 2023; 155

He et al., 2021a), which add and fine-tune 156

additional layers with fewer parameters to reduce 157

computational costs. The second category is soft 158

prompt tuning (Hambardzumyan et al., 2021; 159

Lester et al., 2021; Li and Liang, 2021a; Liu 160

et al., 2023), which uses learnable soft prompts at 161

the input to adapt the model to tasks. The third 162

category involves low-rank adaptation (LoRA) and 163

its variants (Hu et al., 2021; Zhang et al., 2023a; 164

Dettmers et al., 2024), which incorporate low-rank 165

matrices to approximate weight updates during 166

fine-tuning (Hu et al., 2021). 167

Variants of LoRA enhance its efficiency and per- 168

formance in different ways. AdaLoRA adaptively 169

distributes the parameter budget among weight 170

matrices based on their importance, improving 171

efficiency and performance by pruning unimpor- 172

tant updates and minimizing computational over- 173

head (Zhang et al., 2023b). DoRA increases 174

LoRA’s learning capacity and stability by decom- 175

posing pre-trained weights into magnitude and 176

direction components for fine-tuning (Liu et al., 177

2024). LoHA enhances LoRA by employing 178

Hamiltonian products (Hyeon-Woo et al., 2021). 179

DyLoRA addresses the fixed size and rank opti- 180

mization limitations of LoRA by dynamically train- 181

ing LoRA blocks across varying ranks (Valipour 182

et al., 2022). DeltaLoRA improves the representa- 183

tional capacity of LoRA by updating the model’s 184

original weights using parameters from adapter lay- 185

ers (Zi et al., 2023). PiSSA initializes adapter ma- 186
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trices A and B to approximate the original matrix187

W through singular value decomposition, lead-188

ing to faster convergence and improved perfor-189

mance (Meng et al., 2024). While many LoRA vari-190

ants focus on accelerating convergence or reduc-191

ing memory consumption, our BA-LoRA method192

uniquely addresses the core challenge of Catas-193

trophic Inheritance in LLM fine-tuning.194

3 Method195

3.1 Principal Singular Values and Singular196

Vectors Adaptation (PiSSA)197

As a variant of LoRA, PiSSA addresses the con-198

vergence speed challenge by retaining the core199

LoRA architecture while innovating in initializa-200

tion. Specifically, PiSSA leverages the principal201

components of the original weight matrix, W , to202

initialize the adapter matrices, A and B. The re-203

maining components are encapsulated within a204

residual matrix, W res ∈ Rm×n. The SVD of205

W ∈ Rm×n is expressed as W = USV T , where206

U ∈ Rm×min(m,n) and V ∈ Rn×min(m,n) are or-207

thogonal singular vectors, and S = diag(s) ∈208

Rmin(m,n)×min(m,n) is a diagonal matrix, where209

the operation diag(s) transforms s to S and s ∈210

Rmin(m,n)
≤0 represents the singular values arranged211

in descending order. PiSSA partitions the singu-212

lar values and vectors into principal and residual213

components, denoted as {U[:,:r], S[:r,:r], V[:,:r]} and214

{U[:,r:], S[r:,r:], V[:,r:]}, respectively, where the ma-215

trix slicing notations are the same as those in Py-216

Torch, [: r] denotes the first r dimensions, and217

r signifies the intrinsic rank of W . The principal218

components are then employed to initialize the low-219

rank adapter with A ∈ Rm×r and B ∈ Rr×n:220

A = U[:,:r] S
1/2
[:r,:r] ∈ Rm×r (1)221

B = S
1/2
[:r,:r] V

T
[:,:r] ∈ Rr×n (2)222

The residual matrix W res remains frozen during223

fine-tuning:224

W res = U[:,r:] S[r:,r:] V
T
[:,r:] ∈ Rm×n (3)225

PiSSA preserves the pre-trained model’s full ca-226

pacity at the start of fine-tuning by using W =227

W res +AB. This approach prioritizes training the228

most influential parameters, thereby accelerating229

convergence. Inheriting LoRA’s benefits of reduced230

parameter count and deployment simplicity, PiSSA 231

further leverages efficient SVD computations to 232

expedite the training process. 233

3.2 Bias-Alleviating Low-Rank Adaptation 234

(BA-LoRA) 235

Catastrophic Inheritance encapsulates the chal- 236

lenges posed by biased large-scale training data, 237

which can manifest in LLMs as vulnerabilities and 238

limitations arising from duplicated, noisy, imbal- 239

anced, or unethical samples. These inherited flaws 240

can adversely impact downstream tasks, leading to 241

diminished generalization, degraded performance, 242

security breaches, and biased outputs. To address 243

the specific issues caused by noisy and imbalanced 244

data, we introduce BA-LoRA, a method incorpo- 245

rating three distinct regularization terms: (1) con- 246

sistency regularizer, (2) diversity regularizer, and 247

(3) SVD regularizer. Recognizing the nuanced dif- 248

ferences between NLU and NLG, we have tailored 249

specific variants of each regularizer to optimize 250

performance for respective task domains. 251

3.2.1 Regularizations for NLU Tasks 252

Consistency Regularization. To safeguard valu- 253

able pre-trained knowledge during the fine-tuning 254

process, we introduce a regularization term based 255

on the mean squared error (MSE) loss between nor- 256

malized output logits produced by the pre-trained 257

model, FP , and those generated by the fine-tuned 258

model, FF . This loss function incentivizes the 259

fine-tuned model to retain essential pre-trained in- 260

formation while adapting to downstream task re- 261

quirements. 262

LCR_NLU =

∥∥∥∥ Fp

∥Fp∥2
−

Ff

∥Ff∥2

∥∥∥∥2
2

(4) 263

This objective facilitates the inheritance of criti- 264

cal pre-trained knowledge in Ff after fine-tuning. 265

Diversity Regularization. To address the detri- 266

mental effects of imbalanced data, we introduce 267

a diversity regularizer aimed at eliciting more di- 268

verse representational structures within LLMs and 269

preventing the encoding of semantically similar 270

samples during fine-tuning. Inspired by (Bardes 271

et al., 2021), we employ a covariance loss to min- 272

imize the off-diagonal elements of the covariance 273

matrix of the fine-tuned outputs Ff : 274

LDR_NLU =
1

D

∑
i ̸=j

[C(Ff )]
2
i,j (5) 275
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where D represents the dimensionality of Ff276

and C(Ff ) is the covariance matrix of Ff , which277

is defined as:278

C(Ff ) =
1

M − 1

M∑
i=1

(
fi − f̄

) (
fi − f̄

)T (6)279

where M denotes the number of elements in-280

volved in Ff , fi is the i-th element in Ff , and f̄ is281

the mean value of Ff .282

Singular Value Decomposition Regularization.283

The SVD regularizer is designed to enhance model284

generalizability to mitigate the adverse effects of285

noisy data. Building upon the insight from (Chen286

et al., 2019) that eigenvectors corresponding to the287

largest singular values significantly contribute to288

model generalizability, we propose an SVD regu-289

larizer that maximizes the sum of the top k singular290

values of a batched fine-tuned output matrix:291

LSVDR_NLU = −
∑k

i=1 σi∑D
j=1 σj

(7)292

where k is a hyperparameter, σi denotes the i-th293

singular value of the top k singular values of the294

output matrix, and
∑D

j=1 σj is the sum of all sin-295

gular values obtained from the SVD of the output296

matrix. This decomposition represents the matrix297

as UΣV⊤, where Σ is a diagonal matrix contain-298

ing singular values {σ1, . . . , σD}. This regulariza-299

tion term emphasizes significant components of the300

logit matrix, enhancing the model’s generalizability301

across various downstream tasks.302

3.2.2 Overall Objective Function for NLU303

The overall objective function for NLU tasks is304

formulated as follows:305

LNLU = Ltask_NLU + λ1LCR_NLU

+λ2LDR_NLU + λ3LSVDR_NLU
(8)306

where Ltask_NLU represents the standard cross-307

entropy loss function for the downstream task, and308

λ1, λ2, and λ3 are weighting parameters to balance309

each regularization term.310

3.2.3 Regularizations for NLG Tasks311

Consistency Regularization. To ensure that the312

fine-tuned model retains knowledge from pre-313

training, we utilize the Kullback-Leibler Diver-314

gence (KLD) to measure the divergence between315

the output distributions of the fine-tuned and pre- 316

trained models (Dong et al., 2021). Specifically, 317

we define the consistency regularization loss as: 318

LCR_NLG =
1

T

T∑
t=1

KL(Ppt(yt | y<t, x) ∥

Pft(yt | y<t, x))

(9) 319

where Ppt(yt | y<t, x) and Pft(yt | y<t, x) rep- 320

resent the conditional probability distributions of 321

the pre-trained model and the fine-tuned model, re- 322

spectively. For the current token yt, given the input 323

x and the preceding token sequence y<t. KLD en- 324

courages the model to continuously retain useful 325

pre-training information during the fine-tuning pro- 326

cess, which is crucial for maintaining the style and 327

coherence of the generation task. 328

Diversity Regularization. To enhance the diver- 329

sity of the generated text, we introduce an entropy- 330

based regularization term, inspired by previous 331

work (Gat et al., 2020). This regularization term 332

aims to increase the entropy of the predicted token 333

distributions during fine-tuning, thus encouraging 334

more varied and diverse outputs. 335

LDR_NLG = − 1

T

T∑
t=1

N∑
i=1

Pft(xi|ht) logPft(xi|ht)

(10) 336

where, Pft(xi|ht) represents the probability as- 337

signed to token xi at time step t, given the model’s 338

hidden state ht. Maximizing entropy at each time 339

step minimizes repetitive outputs and encourages 340

more diverse and enriched text generation. 341

Singular Value Decomposition Regularization 342

To enhance the generalization of generative mod- 343

els while ensuring computational efficiency, we 344

introduce a regularization technique based on ran- 345

domized SVD (Pasand and Bashivan). This method 346

efficiently approximates the dominant singular val- 347

ues of a matrix, significantly reducing the computa- 348

tional and memory costs associated with traditional 349

SVD while preserving key information about the 350

data. 351

LSVDR_NLG = −
∑k

i=1 σ̃i∑D
j=1 σ̃j

(11) 352

Here, σ̃i represents the i-th largest approximated 353

singular value obtained using randomized SVD, 354

and D is the total number of singular values in 355
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the approximation. This regularization maximizes356

the relative contribution of the top k singular val-357

ues, encouraging the model to prioritize the most358

informative patterns in the data.359

3.2.4 Overall Objective Function for NLG360

The objective function for downstream NLG tasks361

is formulated as follows:362

LNLG = Ltask_NLG + λ1LCR_NLG

+λ2LDR_NLG + λ3LSVDR_NLG
(12)363

where Ltask_NLG denotes the standard loss for364

the downstream generative task, and λ1, λ2, and λ3365

are weighting parameters to balance each regular-366

ization term.367

4 Experiments368

This section presents a comprehensive evaluation369

of our proposed BA-LoRA method across a di-370

verse range of NLG and NLU benchmarks. Our371

results unequivocally demonstrate the superiority372

of BA-LoRA over existing LoRA variants. Further-373

more, through rigorous experimentation, we eluci-374

date BA-LoRA’s efficacy in mitigating the adverse375

impacts of noisy data, thereby enhancing model376

robustness and generalizability.377

4.1 Implementation Details378

In our experiments, we adopt the PiSSA (Meng379

et al., 2024) implementation strategy. We380

compute the loss using only the responses381

from the instruction-following dataset, ensuring382

lora_dropout to 0. We utilize the Float32 computa-383

tion type for both the base model and the adapter in384

BA-LoRA. For the NLU tasks, we set the hyperpa-385

rameters as: k = 5, λ1 = 1e−1, λ2 = 4e−2, and386

λ3 = 1e − 2. We set lora_r = lora_alpha = 128387

and use AdamW (Loshchilov and Hutter, 2017) op-388

timizer with a batch size of 128, a learning rate of389

2e− 5, cosine annealing schedules, and a warmup390

ratio of 0.03, without any weight decay. For the391

NLG tasks, the hyperparameters are set as: k = 10,392

λ1 = 1e− 4, λ2 = 3e− 1, and λ3 = 1e− 1. We393

set lora_r as 8 and select lora_alpha in 8, 16. We394

utilize AdamW with a linear learning rate schedule395

to optimize and tune the learning rate (LR) from396

1e − 4, 2e − 4, 3e − 4, 4e − 4, 5e − 4, 6e − 4,397

5e− 5, 3e− 5. Batch sizes (BS) are selected from398

6, 8, 16, 32. Appendix Section B presents the de-399

tailed hyperparameters we utilized on the GLUE400

benchmark. comparison. All experiments were 401

conducted using NVIDIA A40 (48G) GPUs, with 402

results derived from three independent experiments 403

conducted under identical conditions, ensuring con- 404

sistency and robustness by averaging the results to 405

mitigate variability. 406

4.2 Results and Analysis 407

4.2.1 Analysis of the NLG and NLU 408

Performance of BA-LoRA 409

To evaluate BA-LoRA’s effectiveness on NLG 410

tasks, we fine-tuned LLaMA-2-7B, Mistral-7B, and 411

Gemma-7B on the MetaMathQA (Yu et al., 2023) 412

and assessed their mathematical problem-solving 413

capabilities using the GSM8K (Cobbe et al., 2021) 414

and MATH (Yu et al., 2023) validation sets, report- 415

ing Accuracy. Similarly, models were fine-tuned 416

on the CodeFeedback (Zheng et al., 2024) and eval- 417

uated for coding proficiency via HumanEval (Chen 418

et al., 2021) and MBPP (Austin et al., 2021), 419

with PASS@1 metrics reported. To assess con- 420

versational abilities, models were trained on the 421

WizardLM-Evol-Instruct (Xu et al., 2024) and eval- 422

uated on MT-Bench (Zheng et al., 2024), with 423

response quality judged by GPT-4 and first turn 424

scores reported. All experiments utilized 100K data 425

points and a single training epoch for efficiency. 426

Table 1 presents the experimental outcomes, 427

clearly demonstrating BA-LoRA’s superior per- 428

formance compared to baseline methods. For in- 429

stance, BA-LoRA enhanced LLaMA 2-7B, Mistral- 430

7B, and Gemma-7B performance on GSM8K by 431

1.82%, 1.14%, and 0.55%, respectively, compared 432

to PiSSA. HumanEval improvements were 2.03%, 433

1.11%, and 1.26%, while MT-Bench enhancements 434

reached 0.24%, 0.18%, and 0.07%. Notably, BA- 435

LoRA achieved a remarkable 6.92% performance 436

uplift over full parameter fine-tuning on Gemma, 437

utilizing only 2.3% of trainable parameters across 438

five tasks. 439

To assess the effectiveness of BA-LoRA on 440

natural language understanding (NLU) tasks, we 441

conducted experiments on the GLUE bench- 442

mark (Wang et al., 2018), which includes two 443

single-sentence classification tasks (CoLA, SST), 444

five paired-text classification tasks (MNLI, RTE, 445

QQP, MRPC, QNLI), and one text similarity pre- 446

diction task (STS-B). The evaluation metrics com- 447

prise the overall matched and mismatched accu- 448

racy for MNLI, the Matthews correlation coeffi- 449

cient for CoLA, the Pearson correlation coefficient 450
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Table 1: Performance Comparison of Various Models and Methods on NLG Tasks. The best and second-best results
are highlighted in bold and underline.

Models Methods #Params GSM8K MATH HumanEval MBPP MT-Bench Avg

LLaMA-2-7B

Full FT 6738M 49.13±0.21 7.29±0.22 21.20±0.30 35.59±0.25 4.91±0.01 23.62
LoRA 320M 42.47±0.29 5.60±0.35 17.03±0.61 32.77±0.46 4.62±0.11 20.50
PiSSA 320M 52.37±0.52 7.76±0.19 21.55±0.44 33.09±0.57 4.87±0.06 23.93

BA-LoRA 320M 54.53±0.41 9.21±17 23.58±0.25 36.86±0.31 5.11±0.05 25.86

Mistral-7B

Full FT 6738M 69.91±0.25 18.64±0.35 45.31±0.14 51.46±0.13 4.95±0.05 38.05
LoRA 168M 67.68±0.55 19.90±0.25 42.54±0.44 56.85±0.23 4.92±0.07 38.38
PiSSA 168M 72.25±0.64 21.95±0.37 45.37±0.25 61.57±0.44 5.23±0.05 41.27

BA-LoRA 168M 73.17±0.34 22.79±0.56 46.31±0.17 62.77±0.33 5.41±0.06 42.09

Gemma-7B

Full FT 6738M 72.09±0.32 22.71±0.34 47.02±0.27 55.67±0.05 5.40±0.12 40.58
LoRA 200M 74.64±0.58 31.16±0.33 51.64±0.28 63.52±0.65 5.01±0.03 45.19
PiSSA 200M 77.58±0.41 31.47±44 53.22±35 65.49±0.18 5.66±0.05 46.68

BA-LoRA 200M 78.13±0.25 32.25±25 54.44±0.15 66.25±0.33 5.73±0.07 47.36
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Figure 1: Performance Comparison of Full Fine-Tuning, LoRA, PiSSA, and BA-LoRA Across Different Ranks.

for STS-B, and accuracy for the remaining tasks.451

We used the DeBERTa-v3-base model (He et al.,452

2021b) and compared BA-LoRA against ten base-453

line methods, including Full Fine-Tuning (Full FT),454

BitFit (Zaken et al., 2021), HAdapter (Houlsby455

et al., 2019b), PAdapter (Pfeiffer et al., 2020),456

LoRA (Hu et al., 2021), LoHA (Hyeon-Woo et al.,457

2021), DoRA (Liu et al., 2024), AdaLoRA (Zhang458

et al., 2023a), and PiSSA (Meng et al., 2024).459

Table 2 presents the results of DeBERTa-v3-base460

across eight tasks, demonstrating the consistent su-461

periority of BA-LoRA over all baselines. On av-462

erage, BA-LoRA outperforms PiSSA and LoRA463

by 0.44% and 1.35%, respectively. These results464

underscore the effectiveness of BA-LoRA in en-465

hancing the performance of NLU models.466

A comparative analysis of Tables 1 and 2 re-467

veals BA-LoRA’s consistent performance advan-468

tages across both NLG and NLU tasks. This indi-469

cates BA-LoRA’s proficiency in augmenting both470

generative and comprehension capabilities for lan-471

guage models. By incorporating consistency, di-472

versity, and SVD regularization, BA-LoRA effec-473

tively mitigates the adverse effects of Catastrophic474

Inheritance, fostering consistent, diverse, and gen-475

eralized model outputs. Furthermore, BA-LoRA’s 476

modest computational requirements render it suit- 477

able for efficient fine-tuning of LLMs with limited 478

resources. 479

4.3 Evaluating the Performance of Different 480

Ranks 481

We compare the performance of BA-LoRA, LoRA, 482

and PiSSA at different ranks using LLaMA-2-7B 483

and Mistral-7B-v0.1 models. Each method is fine- 484

tuned for one epoch on the MetaMathQA-100K 485

dataset with ranks ranging from 1 to 128 and eval- 486

uated on the GSM8K and MATH. As Figure 1 487

shows, BA-LoRA consistently outperforms LoRA 488

and PiSSA across all rank settings and datasets. As 489

the rank increases, the performance of BA-LoRA 490

and PiSSA surpasses full parameter fine-tuning. 491

However, BA-LoRA performs better, especially on 492

Mistral-7B-v0.1. 493

4.3.1 Analysis on mitigate noisy data 494

This study aims to evaluate BA-LoRA’s efficacy 495

in mitigating the detrimental effects of noise in- 496

herent in large-scale pre-training data on down- 497

stream tasks. Given the ubiquitous presence of 498

noise in human-annotated datasets, its influence on 499
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Table 2: Performance comparison of different baseline methods on NLU tasks. The best and second-best results are
highlighted in bold and underline.

Methods #Params MNLI SST-2 MRPC CoLA QNLI QQP RTE SST-B Avg

Full FT 184M 90.34±0.18 96.33±0.11 89.95±1.07 71.43±0.72 94.24±0.10 92.11±0.28 83.75±1.81 91.04±0.48 88.86
BitFit 0.1M 89.54±0.29 94.68±0.11 87.95±1.33 67.31±0.49 92.45±0.17 88.72±0.45 79.12±0.39 91.63±0.37 86.43
HAdapter 1.22M 90.23±0.07 95.38±0.06 89.97±0.27 68.73±0.27 94.31±0.29 91.99±0.28 84.76±0.39 91.58±0.13 88.37
PAdapter 1.18M 90.42±0.36 95.49±0.10 89.71±0.35 69.04±0.10 94.38±0.26 92.15±0.43 85.53±0.18 91.69±0.13 88.55
LoRA 1.33M 90.71±0.16 94.79±0.16 89.85±0.21 70.05±0.34 93.94±0.09 92.07±0.48 85.43±0.09 91.67±0.29 88.56
LoHA 1.33M 90.74±0.32 94.92±0.47 90.43±0.48 70.63±0.10 93.95±0.28 92.05±0.09 86.41±0.10 91.72±0.28 88.86
DoRA 1.27M 90.48±0.10 95.85±0.08 91.04±0.15 71.03±0.18 94.21±0.37 92.34±0.16 86.19±0.25 91.92±0.38 89.13
AdaLoRA 1.27M 90.87±0.08 96.18±0.43 90.81±0.40 71.64±0.12 94.68±0.46 92.37±0.35 87.78±0.36 91.97±0.43 89.53
PiSSA 1.33M 90.47±0.44 95.81±0.45 91.48±0.49 72.27±0.29 94.41±0.41 92.21±0.26 87.14±0.08 91.93±0.25 89.47
BA-LoRA 1.33M 90.92±0.38 96.25±0.09 91.83±0.25 72.79±0.42 94.84±0.26 92.59±0.18 87.87±0.31 92.15±0.08 89.91

pre-training is unavoidable. To comprehensively500

assess the impact of noisy pre-training data, we em-501

ploy both ID and OOD evaluation using the GLUE502

and GLUE-x benchmarks, respectively. BERT-503

L (Devlin et al., 2018), pre-trained on BooksCor-504

pus (Zhu et al., 2015) and English Wikipedia, and505

GPT-2-XL (Radford et al., 2019), pre-trained on506

the noisy WebText dataset derived from Common507

Crawl, serve as our models.508

As detailed in Tables 3 and 4, BA-LoRA con-509

sistently outperforms LoRA across all tasks, un-510

derscoring its superior generalization capabilities.511

Specifically, BA-LoRA achieves average perfor-512

mance improvements of 2.03% and 2.47% for513

BERT-L and GPT-2-XL, respectively, on the GLUE514

benchmark. Similarly, on GLUE-x, BA-LoRA sur-515

passes LoRA by 1.61% and 1.90% for BERT-L and516

GPT-2-XL, respectively. These results substanti-517

ate the effectiveness of our proposed regularization518

terms in mitigating the negative impacts of noise in519

pre-training and enhancing model robustness.520

4.3.2 Analysis on Mitigating Imbalanced Data521

This experiment evaluates the effectiveness of BA-522

LoRA in addressing imbalanced data. Specifically,523

using the MNLI task of the GLUE benchmark,524

LoRA, and BA-LoRA are applied to fine-tune the525

BERT-L and GPT-2-XL models, respectively. The526

hidden layer features of the last training step are ex-527

tracted and visualized using t-SNE (Van der Maaten528

and Hinton, 2008) technology for comparison.529

As shown in Figure 2, the models fine-tuned530

with standard LoRA in sub-figures (a) and (c) have531

low discrimination between categories and obvi-532

ous category mixing. In contrast, the models fine-533

tuned with BA-LoRA in sub-figures (b) and (d)534

have clearer category separation, especially the re-535

sults of BERT-L, which have higher intra-category536

clustering and clearer boundaries. These analyses537
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(c) GPT-2-XL, LoRA
20 10 0 10 20 30

15

10

5

0

5

10

15

20 Entailment
Neutral
Contradiction

(d) GPT-2-XL, BA-LoRA

Figure 2: t-SNE Visualizations Comparing Last Hidden
Layer Features of BERT-L and GPT-2-XL Fine-Tuned
with LoRA and BA-LoRA on the MNLI task of GLUE.

show that BA-LoRA can effectively alleviate the 538

impact of imbalanced data in pre-training. 539

4.4 Ablation Study 540

This ablation study evaluates the impact of reg- 541

ularization terms in BA-LoRA on model perfor- 542

mance for both NLG and NLU tasks, with results 543

visualized in Figure 3. For NLG tasks, three mod- 544

els (LLaMA-2-7B, Mistral-7B, and Gemma-7B) 545

were evaluated on the GSM8K and MATH us- 546

ing the regularization terms LCR_NLG, LDR_NLG, 547

and LSVDR_NLG. The absence of regularization 548

(w/o Reg) consistently resulted in the lowest per- 549

formance. Introducing individual terms led to 550

varying improvements: LCR_NLG provided bal- 551

anced gains, LDR_NLG showed stronger effects for 552

Gemma-7B, and the combination of all three terms 553

in BA-LoRA achieved the highest performance. 554

For NLU tasks, DeBERTa-v3-base was evalu- 555
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Table 3: ID Performance Comparison of BERT-L and GPT-2-XL Using LoRA and BA-LoRA Methods on GLUE
Benchmark. The best outcome is highlighted in bold.

Model Methods MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

BERT-L
LoRA 87.24±0.46 93.19±0.25 90.10±0.42 64.73±0.16 93.13±0.55 90.94±0.11 73.14±0.51 90.63±0.18 85.39
BA-LoRA 89.72±0.35 94.85±0.12 92.23±0.18 65.49±0.37 95.48±0.20 91.72±0.19 75.77±0.34 91.71±0.10 87.12

GPT-2-XL
LoRA 85.28±0.39 95.38±0.46 86.17±0.31 50.63±0.54 89.42±0.06 88.56±0.24 72.29±0.36 89.27±0.16 82.13
BA-LoRA 88.14±0.28 96.52±0.38 89.23±0.19 52.76±0.26 91.26±0.11 89.95±0.37 74.57±0.22 90.83±0.07 84.16

Table 4: OOD Performance Comparison of BERT-L and GPT-2-XL Using LoRA and BA-LoRA Methods on
GLUE-x Benchmark. The best outcome is highlighted in bold.

Model Methods MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

BERT-L
LoRA 85.19±0.24 93.49±0.46 89.93±0.13 63.49±0.22 92.32±0.21 87.73±0.17 73.65±0.25 90.57±0.06 84.55
BA-LoRA 87.91±0.17 94.18±0.85 90.62±0.34 65.81±0.86 93.04±0.25 89.06±0.38 75.41±0.18 91.21±0.47 85.91

GPT-2-XL
LoRA 87.02±0.05 95.11±0.44 86.81±0.11 60.95±0.38 91.77±0.04 87.59±0.07 78.76±0.03 89.25±0.13 84.66
BA-LoRA 89.58±0.08 96.40±0.13 88.18±0.04 63.11±0.14 92.68±0.08 88.62±0.19 81.21±0.48 90.37±0.27 86.27
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Figure 3: Ablation Study of BA-LoRA Regularizations on GSM8K, MATH, and NLU Tasks. Here, “Reg“ denotes
“Regularization“, and “w/o Reg“ indicates “without regularization“. LCR, LDR, and LSVDR represent the applica-
tion of only the corresponding regularization, while “BA-LoRA“ refers to the baseline using all regularizations.

ated on the GLUE benchmark using the correspond-556

ing regularization terms LCR_NLU, LDR_NLU, and557

LSVDR_NLU. The reported results represent the av-558

erage performance across eight tasks in the GLUE559

benchmark: MNLI, SST-2, MRPC, CoLA, QNLI,560

QQP, RTE, and STS-B. As shown in Figure 3, the561

model without regularization achieved the lowest562

average score of 89.47. Each of the three NLU-563

specific regularization terms consistently improved564

performance, with LCR_NLU yielding a signifi-565

cant gain (average score of 89.78). The full BA-566

LoRA model, incorporating all three regularization567

terms, achieved the highest average score of 89.91,568

strongly demonstrating its effectiveness.569

In summary, the ablation results demonstrate570

that the proposed regularization terms significantly571

enhance model performance for both NLG and572

NLU tasks. Each term contributes unique bene-573

fits, and their combination in BA-LoRA consis-574

tently achieves optimal results. This underscores575

the importance of integrating multiple regulariza-576

tion strategies to improve generalization and task-577

specific performance.578

5 Conclusion 579

This paper introduces BA-LoRA, a novel 580

parameter-efficient fine-tuning method designed 581

to mitigate catastrophic inheritance in pre-trained 582

language models. BA-LoRA incorporates three key 583

components: consistency regularization, diversity 584

regularization, and singular value decomposition 585

regularization. These components work in concert 586

to preserve pre-training knowledge, enhance out- 587

put diversity, and improve model generalization. 588

Extensive experiments demonstrate that BA-LoRA 589

consistently outperforms existing baselines on vari- 590

ous NLG and NLU tasks while robust to noisy and 591

imbalanced pre-training data. Furthermore, our ab- 592

lation studies confirm the effectiveness of the three 593

regularization terms both individually and in com- 594

bination. These results highlight the potential of 595

BA-LoRA as a general-purpose fine-tuning method 596

for pre-trained language models and effectively ad- 597

dress the key challenges of deploying these models 598

in real applications. 599
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5.1 Limitations600

While BA-LoRA demonstrates significant improve-601

ments in mitigating catastrophic inheritance and602

enhancing model performance, several limitations603

warrant further investigation. Firstly, our evalu-604

ations primarily focus on English language tasks,605

which may limit the generalizability of our findings606

to other languages and specialized domains. Ad-607

ditionally, the computational overhead introduced608

by the consistency, diversity, and SVD regularizers609

adds complexity to the training process, potentially610

impacting efficiency. Furthermore, the impact of611

BA-LoRA on other forms of bias, such as fair-612

ness and societal stereotypes, remains unexplored.613

Lastly, the selection and weighting of regulariza-614

tion terms in BA-LoRA are fixed across different615

tasks, which may not be optimal for all scenarios.616

References617

AI@Meta. 2024. Llama 3 model card.618

Görkem Algan and Ilkay Ulusoy. 2021. Image clas-619
sification with deep learning in the presence of620
noisy labels: A survey. Knowledge-Based Systems,621
215:106771.622

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten623
Bosma, Henryk Michalewski, David Dohan, Ellen624
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.625
Program synthesis with large language models. arXiv626
preprint arXiv:2108.07732.627

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,628
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei629
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,630
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,631
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,632
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong633
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-634
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,635
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,636
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-637
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang638
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang639
Zhu. 2023. Qwen technical report. arXiv preprint640
arXiv:2309.16609.641

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda642
Askell, Anna Chen, Nova DasSarma, Dawn Drain,643
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.644
2022. Training a helpful and harmless assistant with645
reinforcement learning from human feedback. arXiv646
preprint arXiv:2204.05862.647

Adrien Bardes, Jean Ponce, and Yann LeCun. 2021.648
Vicreg: Variance-invariance-covariance regulariza-649
tion for self-supervised learning. arXiv preprint650
arXiv:2105.04906.651

Solon Barocas and Andrew D Selbst. 2016. Big data’s 652
disparate impact. Calif. L. Rev., 104:671. 653

Abeba Birhane and Vinay Uday Prabhu. 2021. Large 654
image datasets: A pyrrhic win for computer vision? 655
In 2021 IEEE Winter Conference on Applications of 656
Computer Vision (WACV), pages 1536–1546. IEEE. 657

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, 658
Russ Altman, Simran Arora, Sydney von Arx, 659
Michael S Bernstein, Jeannette Bohg, Antoine Bosse- 660
lut, Emma Brunskill, et al. 2021. On the opportuni- 661
ties and risks of foundation models. arXiv preprint 662
arXiv:2108.07258. 663

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, 664
Katherine Lee, Florian Tramer, and Chiyuan Zhang. 665
2022. Quantifying memorization across neural lan- 666
guage models. arXiv preprint arXiv:2202.07646. 667

Nicholas Carlini, Matthew Jagielski, Christopher A 668
Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum 669
Anderson, Andreas Terzis, Kurt Thomas, and Florian 670
Tramèr. 2023. Poisoning web-scale training datasets 671
is practical. arXiv preprint arXiv:2302.10149. 672

Isaac Caswell, Julia Kreutzer, Lisa Wang, Ahsan Wahab, 673
Daan van Esch, Nasanbayar Ulzii-Orshikh, Allahsera 674
Tapo, Nishant Subramani, Artem Sokolov, Claytone 675
Sikasote, et al. 2021. Quality at a glance: An audit 676
of web-crawled multilingual datasets. arXiv e-prints, 677
pages arXiv–2103. 678

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, 679
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, 680
Cunxiang Wang, Yidong Wang, et al. 2024. A sur- 681
vey on evaluation of large language models. ACM 682
Transactions on Intelligent Systems and Technology, 683
15(3):1–45. 684

Hao Chen, Bhiksha Raj, Xing Xie, and Jindong Wang. 685
2024a. On catastrophic inheritance of large founda- 686
tion models. arXiv preprint arXiv:2402.01909. 687

Hao Chen, Jindong Wang, Ankit Shah, Ran Tao, 688
Hongxin Wei, Xing Xie, Masashi Sugiyama, and 689
Bhiksha Raj. 2024b. Understanding and mitigating 690
the label noise in pre-training on downstream tasks. 691
Preprint, arXiv:2309.17002. 692

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 693
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 694
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 695
Greg Brockman, Alex Ray, Raul Puri, Gretchen 696
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 697
try, Pamela Mishkin, Brooke Chan, Scott Gray, 698
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 699
Kaiser, Mohammad Bavarian, Clemens Winter, 700
Philippe Tillet, Felipe Petroski Such, Dave Cum- 701
mings, Matthias Plappert, Fotios Chantzis, Eliza- 702
beth Barnes, Ariel Herbert-Voss, William Hebgen 703
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 704
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 705
William Saunders, Christopher Hesse, Andrew N. 706
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 707
Morikawa, Alec Radford, Matthew Knight, Miles 708

9

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2309.17002
https://arxiv.org/abs/2309.17002
https://arxiv.org/abs/2309.17002


Brundage, Mira Murati, Katie Mayer, Peter Welinder,709
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya710
Sutskever, and Wojciech Zaremba. 2021. Evaluat-711
ing large language models trained on code. Preprint,712
arXiv:2107.03374.713

Xinyang Chen, Sinan Wang, Mingsheng Long, and Jian-714
min Wang. 2019. Transferability vs. discriminability:715
Batch spectral penalization for adversarial domain716
adaptation. In International conference on machine717
learning, pages 1081–1090. PMLR.718

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,719
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias720
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro721
Nakano, Christopher Hesse, and John Schulman.722
2021. Training verifiers to solve math word prob-723
lems. arXiv preprint arXiv:2110.14168.724

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,725
Huazuo Gao, Deli Chen, Jiashi Li, Wangding726
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-727
moe: Towards ultimate expert specialization in728
mixture-of-experts language models. arXiv preprint729
arXiv:2401.06066.730

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and731
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning732
of quantized llms. Advances in Neural Information733
Processing Systems, 36.734

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and735
Kristina Toutanova. 2018. Bert: Pre-training of deep736
bidirectional transformers for language understand-737
ing. arXiv preprint arXiv:1810.04805.738

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei,739
Zonghan Yang, Yusheng Su, Shengding Hu, Yulin740
Chen, Chi-Min Chan, Weize Chen, et al. 2023.741
Parameter-efficient fine-tuning of large-scale pre-742
trained language models. Nature Machine Intelli-743
gence, 5(3):220–235.744

Jesse Dodge, Maarten Sap, Ana Marasović, William745
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A Background1144

A.1 Challenges of Bias and Noise in1145

Pre-training Data1146

Bias and noise within pre-training datasets present1147

significant hurdles in constructing dependable1148

machine-learning models. Mislabeled data and im-1149

balanced distributions can lead to models that not1150

only underperform on downstream tasks but also1151

reinforce existing biases in the data (Torralba and1152

Efros, 2011; Barocas and Selbst, 2016; Mehrabi1153

et al., 2021). This issue is especially problem-1154

atic in large-scale datasets, where manual cura-1155

tion is impractical. Consequently, reliance on au-1156

tomated data collection methods may introduce 1157

various inaccuracies and biases (Northcutt et al., 1158

2021; Birhane and Prabhu, 2021). The challenge 1159

becomes even more severe when dealing with real- 1160

world, instance-dependent label noise. Models 1161

trained on such data may inadvertently learn these 1162

inaccuracies, resulting in poor generalization (Fré- 1163

nay and Verleysen, 2013; Song et al., 2022; Algan 1164

and Ulusoy, 2021). Addressing these challenges 1165

is essential for advancing machine learning and 1166

ensuring models are both effective and equitable. 1167

A.2 Mitigating Bias and Noise through 1168

Parameter-Efficient Fine-Tuning Methods 1169

To counteract the adverse effects of bias and noise 1170

in pre-training data, parameter-efficient fine-tuning 1171

methods have emerged as promising solutions. 1172

These approaches aim to adapt pre-trained mod- 1173

els to new tasks with minimal parameter updates, 1174

thereby reducing the risk of overfitting to noisy or 1175

biased data (Houlsby et al., 2019b; Zaken et al., 1176

2021; Lester et al., 2021). Techniques such as in- 1177

tegrating lightweight adaptation modules (Pfeiffer 1178

et al., 2020; Jang et al., 2021), utilizing prefix tun- 1179

ing (Li and Liang, 2021b; Liu et al., 2021), and 1180

employing low-rank adaptations (Hu et al., 2021; 1181

Ding et al., 2023) enable efficient model refinement 1182

while preserving the valuable representations ac- 1183

quired during pre-training. Selectively fine-tuning 1184

specific model components can enhance perfor- 1185

mance on downstream tasks, improve generaliza- 1186

tion, and reduce the influence of noise and bias 1187

(Zaken et al., 2021; Mahabadi et al., 2021; Guo 1188

et al., 2020). This strategy not only results in more 1189

robust models but also contributes to the develop- 1190

ment of fairer AI systems by directly addressing 1191

fundamental data quality issues. 1192

A.3 Examples of noise in pre-training data 1193

Pre-training data typically originates from large- 1194

scale internet sources, which inevitably contain 1195

noise and imbalance. Many advanced pre-trained 1196

models, such as LLaMA-2-7B/13B (Touvron 1197

et al., 2023), Mistral-7B-v0.1 (Jiang et al., 2023), 1198

Gemma-7B (Jiang et al., 2023), and GPT-4 (Ope- 1199

nAI, 2023), are trained using large amounts of unla- 1200

beled internet text data. These datasets are often not 1201

thoroughly cleaned or corrected, leading to train- 1202

ing corpora that include irrelevant or inaccurate 1203

information. Consequently, during the subsequent 1204

fine-tuning phase, models struggle to effectively 1205

filter out these undesirable contents, adversely af- 1206

14



fecting their performance on downstream tasks.1207

Given the noise and imbalance issues present in1208

pre-training data, understanding the specific types1209

of noise is crucial for improving model perfor-1210

mance. Below, we summarize some common ex-1211

amples of noise found in pre-training datasets:1212

Low quality bias1213

Duplicity: The presence of identical or similar1214

content in the data can lead to overfitting and pri-1215

vacy leakage risks (Elazar et al., 2023), (Carlini1216

et al., 2022), (Hernandez et al., 2022). Corrup-1217

tion/noise: Inconsistent or erroneous inputs in the1218

training data can affect model robustness and down-1219

stream task performance (Elazar et al., 2023), (Fan1220

et al., 2024), (Caswell et al., 2021). Contamination:1221

Leakage of the test set into the training set may lead1222

to distorted model evaluation results (Roberts et al.,1223

2023), (Schaeffer, 2023), (Jiang et al., 2024b).1224

Skewed distribution bias1225

Category imbalance: Too few samples of certain1226

categories cause the model to perform poorly in1227

predicting these categories, producing bias (Xu1228

et al., 2023a), (Zhu et al., 2024), (Parashar et al.,1229

2024).1230

Unethical content bias1231

Toxic and harmful content: The training data1232

may contain offensive, biased, or harmful content1233

that may cause the model to generate harmful or1234

inappropriate outputs (Zou et al., 2023), (Sun et al.,1235

2024).1236

B Details of Models and Datasets1237

To evaluate the effectiveness of our approach, we1238

conduct experiments using several prominent lan-1239

guage models and assess their performance on1240

a diverse array of datasets, covering both NLG1241

and NLU tasks. Specifically, for language gen-1242

eration models, we include LLaMA 2-7B (Tou-1243

vron et al., 2023), LLaMA 3-8B (AI@Meta, 2024),1244

Mistral-7B (Jiang et al., 2023), Gemma-7B (Team1245

et al., 2024), and GPT-2-XL (Radford et al.,1246

2019). For language understanding models, we1247

use BERT-Large (BERT-L) (Devlin et al., 2018),1248

and DeBERTa-v3-base (He et al., 2021b). For1249

the datasets, we employ a wide range of tasks1250

in both Natural Language Generation (GSM8K1251

(Cobbe et al., 2021), MATH (Yu et al., 2023), Hu-1252

manEval (Chen et al., 2021), MBPP (Austin et al.,1253

2021), MT-Bench (Zheng et al., 2024)) and Natu-1254

ral Language Understanding. In the latter, we as-1255

sess in-domain (ID) performance using the GLUE1256

benchmark (Wang et al., 2018) and out-of-domain 1257

(OOD) generalization using the GLUE-X bench- 1258

mark (Yang et al., 2022). These datasets span a 1259

broad range of challenges, allowing for a thorough 1260

examination of our method’s generalization capa- 1261

bilities. 1262

B.1 Details of Models 1263

We use a variety of pre-trained language models, 1264

including Meta AI’s LLaMA-2-7B and LLaMA-2- 1265

13B (Touvron et al., 2023) and the latest LLaMA- 1266

3-8B and LLaMA-3-70B (AI@Meta, 2024), which 1267

have good performance in natural language gen- 1268

eration tasks. In addition, we also use Mistral 1269

AI’s Mistral-7B-v0.1 (Jiang et al., 2023) optimized 1270

for medium-sized model efficiency, and Google’s 1271

lightweight open-source model Gemma-7B (Jiang 1272

et al., 2023), which performs well in tasks such 1273

as question-answering summarization and reason- 1274

ing. Alibaba Cloud’s Qwen-1.5-7B (Bai et al., 1275

2023) model also provides strong language under- 1276

standing and generation capabilities, while the 34B 1277

parameter Yi-1.5-34B (Young et al., 2024) is de- 1278

signed for high-level language tasks. DeepSeek- 1279

MoE-16B (Dai et al., 2024) is a model that uses 1280

expert routing to increase capacity without signif- 1281

icantly increasing computational costs. Mixtral- 1282

8x7B-v0.1 (Jiang et al., 2024a) is a Sparse Mixture 1283

of Expert models that efficiently utilizes active pa- 1284

rameters to outperform larger models like Llama 2 1285

70B and GPT-3.5 across several benchmarks. We 1286

also leveraged mature models such as BERT-Large 1287

(Devlin et al., 2018), RoBERTa-large (Liu et al., 1288

2019), DeBERTa-v3-base (He et al., 2021b), and 1289

GPT-2-XL (Radford et al., 2019), which continue 1290

to set standards in natural language processing and 1291

text generation tasks. 1292

Table 5 presents an overview of the pre-trained 1293

language models used in our study. BERT- 1294

Large (BERT-L) and RoBERTa-Large (RoBERTa- 1295

L) are pre-trained on the BooksCorpus and English 1296

Wikipedia datasets using a masked language model- 1297

ing objective. In contrast, GPT-2-XL is pre-trained 1298

on WebText with an autoregressive language mod- 1299

eling objective. Additionally, DeBERTa-v3-base is 1300

trained on a diverse dataset comprising Wikipedia, 1301

BooksCorpus, OpenWebText, CC-News, and Sto- 1302

ries, utilizing a replaced token detection objective 1303

with Gradient Disentangled Embedding Sharing 1304

(GDES). These models span a variety of architec- 1305

tures and pre-training strategies, offering a robust 1306

basis for evaluating the performance of our pro- 1307
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Table 5: Comparison of Pre-trained Data and Methods for Various Language Models.

Model Pre-trained Data Pre-training Method

BERT-L (Devlin et al., 2018) BooksCorpus and English Wikipedia Masked Language Modeling
RoBERTa-L (Liu et al., 2019) BooksCorpus and English Wikipedia Masked Language Modeling
GPT-2-XL (Radford et al., 2019) WebText Autoregressive Language Modeling
DeBERTa-v3-base (He et al., 2021b) Wikipedia, BooksCorpus, OpenWebText, CC-News, and Stories Replaced Token Detection with GDES

posed approach.1308

B.2 Details of Datasets1309

Table 6 provides an overview of the GLUE bench-1310

mark datasets and their evaluation metrics. The1311

GLUE benchmark comprises a diverse set of natu-1312

ral language understanding tasks, including gram-1313

matical acceptability (CoLA), sentiment analysis1314

(SST-2), paraphrase detection (MRPC and QQP),1315

sentence similarity (STS-B), natural language infer-1316

ence (MNLI, QNLI, and RTE), and coreference res-1317

olution (WNLI). The number of training examples1318

varies significantly across datasets, from as few1319

as 634 in WNLI to as many as 393,000 in MNLI.1320

Tasks involve binary or multi-class classification,1321

with up to five classes in STS-B. Evaluation metrics1322

are tailored to each task, employing accuracy, F11323

score, Matthews correlation coefficient, and Pear-1324

son/Spearman correlation coefficients where ap-1325

propriate. This comprehensive suite serves as a1326

standard benchmark for assessing and comparing1327

the performance of models across a wide array of1328

linguistic challenges.1329

Table 7 summarizes the GLUE-X out-of-domain1330

tasks employed for evaluating transfer performance.1331

The datasets cover a broad spectrum of natural1332

language understanding tasks, including natural1333

language inference (SNLI, HANs, SciTail, MNLI1334

mismatched), sentiment analysis (IMDB), ques-1335

tion answering (NewsQA), semantic relatedness1336

(SICK), and grammatical error detection (Gram-1337

mar Test). Each task involves binary classification,1338

with test sizes ranging from 9,832 samples (MNLI1339

mismatched) to 570,152 samples (SNLI). Accu-1340

racy is the primary evaluation metric across most1341

datasets, except for the Grammar Test, which uses1342

the Matthews correlation coefficient. These diverse1343

tasks provide a comprehensive benchmark for as-1344

sessing the models’ ability to generalize across1345

different domains and tasks.1346

Table 8 summarizes the evaluation metrics1347

for the natural language generation (NLG) tasks.1348

Specifically, we use Accuracy for GSM8K and1349

MATH; Pass@1 for HumanEval and MBPP, in-1350

dicating the percentage of first generated code snip-1351

pets that pass all unit tests; and GPT-4 Evaluation 1352

for MT-Bench, where GPT-4 assesses the quality 1353

of the model’s responses. 1354

B.3 Specific Hyperparameter Settings of 1355

RoBERTa-large and DeBERTa-v3-base 1356

on GLUE 1357

We fine-tuned the RoBERTa-large and DeBERTa- 1358

v3-base models on the GLUE benchmark datasets 1359

using carefully selected hyperparameters tailored 1360

to each task. For RoBERTa-large, we trained on 1361

MNLI and SST-2 for 10 epochs with a batch size 1362

of 32; MNLI employed a learning rate of 1× 10−4, 1363

while SST-2 used 2×10−4, both with LoRA_alpha 1364

set to 16. Smaller datasets such as MRPC, CoLA, 1365

and RTE were trained for 20 epochs with batch 1366

sizes of 16, utilizing higher learning rates rang- 1367

ing from 3 × 10−4 to 6 × 10−4 and LoRA_alpha 1368

values of 8 or 16. For DeBERTa-v3-base, MNLI 1369

was trained for 5 epochs with a batch size of 16, a 1370

learning rate of 5× 10−5, and LoRA_alpha set to 1371

8. Datasets such as SST-2 and MRPC were trained 1372

for 20 epochs with batch sizes of 16 or 32, learn- 1373

ing rates between 3 × 10−5 and 2 × 10−4, and 1374

LoRA_alpha of 8. Notably, RTE was trained for 50 1375

epochs with a batch size of 16, a learning rate of 1376

1× 10−4, and LoRA_alpha of 8. The LoRA_alpha 1377

parameter was set to either 8 or 16, depending on 1378

the model and dataset. In all cases, the LoRA_rank 1379

was set to 8. These hyperparameters were meticu- 1380

lously chosen to suit the specific requirements of 1381

each dataset, ensuring rigorous and optimal train- 1382

ing across tasks such as natural language inference, 1383

sentiment analysis, paraphrase detection, linguistic 1384

acceptability, and semantic textual similarity. 1385

B.4 Specific Hyperparameter Settings of 1386

BERT-L and GPT-2-XL on GLUE and 1387

GLUE-x 1388

To ensure consistent and reliable performance, 1389

the BERT-Large (BERT-L) and GPT-2-XL mod- 1390

els were trained on the GLUE benchmark tasks 1391

using three different random seeds per task over 10 1392

epochs. A hyperparameter search was conducted 1393

over learning rates {2×10−5, 3×10−5, 5×10−5}, 1394
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Table 6: GLUE Benchmark Datasets and Evaluation Metrics

Dataset Task Type Classes Train Examples Metric Description

CoLA Acceptability 2 8.5k Matthews Corr. Grammatical acceptability
SST-2 Sentiment 2 67k Accuracy Sentiment analysis
MRPC Paraphrase 2 3.7k Accuracy/F1 Paraphrase detection
QQP Paraphrase 2 364k Accuracy/F1 Duplicate question detection
STS-B Similarity 5 7k Pearson/Spearman Corr. Sentence similarity
MNLI NLI 3 393k Accuracy Multi-genre NLI
QNLI NLI/QA 2 108k Accuracy QA/NLI converted from SQuAD
RTE NLI 2 2.5k Accuracy Textual entailment
WNLI Coreference 2 634 Accuracy Winograd Schema Challenge

Table 7: Summary of GLUE-X Out-of-Domain Tasks for Transfer Performance Evaluation

Dataset Task Type Classes Train Examples Metric Description

SNLI NLI 2 570k Accuracy Sentence-level inference tasks
IMDB Sentiment 2 50k Accuracy Movie review sentiment analysis
HANs NLI 2 60k Accuracy Adversarial NLI examples to test models
NewsQA QA 2 119k Accuracy QA from news articles
SICK Semantic Relatedness 2 9.8k Accuracy Semantic relatedness and entailment
Grammar Test Grammar Detection 2 304k Matthews Corr. Grammatical error detection
SciTail NLI 2 26.5k Accuracy Science question entailment
MNLI mismatched NLI 2 9.8k Accuracy NLI with mismatched genres

Table 8: Evaluation Metrics for NLG Datasets

Datasets GSM8K MATH HumanEval MBPP MT-Bench

Metric Accuracy Accuracy Pass@1 Pass@1 GPT-4 Evaluation

and a batch size of 32 was chosen to balance com-1395

putational efficiency and memory usage. For fine-1396

tuning, the training schedule was adjusted to 201397

epochs for smaller datasets, while larger datasets1398

such as QNLI, MNLI, and QQP were trained for1399

5 epochs. Learning rates were explored within1400

{2× 10−4, 3× 10−4, 5× 10−4}. The parameters1401

were set with LoRA_rank = 8 and LoRA_alpha =1402

16, with the batch size reduced to 16 due to in-1403

creased model complexity. All other parameters,1404

including max_length, adhered to Hugging Face1405

Transformers guidelines1.1406

Regarding the GLUE-x tasks, BERT-L and GPT-1407

2-XL models trained on GLUE were evaluated1408

without further fine-tuning. GLUE-x encompasses1409

13 out-of-distribution (OOD) tasks, introducing1410

domain shifts. For sentiment analysis, models1411

fine-tuned on SST-2 were evaluated on test sets1412

from IMDB (Maas et al., 2011), Yelp (Zhang et al.,1413

2015), Amazon (Kaushik et al., 2019), and Flip-1414

kart (Vaghani and Thummar, 2023), offering a1415

broader assessment of domain variability and test-1416

ing the robustness beyond SST-2.1417

For t-SNE visualization, we used the MNLI sub-1418

1https://github.com/huggingface/transformers

set from GLUE due to its diverse linguistic styles 1419

and label distributions. Training was limited to one 1420

epoch to expedite the process, while still provid- 1421

ing insights into how well the models differentiate 1422

between classes and sentence structures. 1423

B.5 Model Evaluation Details 1424

For evaluation, we employed publicly available 1425

frameworks. The model’s code generation capabil- 1426

ities were assessed using datasets like HumanEval 1427

and MBPP through the BigCode Evaluation Har- 1428

ness2. Instruction-following performance was eval- 1429

uated using MTBench3. 1430

C More Experiments 1431

C.1 Analysis on Different Sizes and Types of 1432

Models 1433

This experiment compares LoRA, PiSSA, and BA- 1434

LoRA across ten models: LLaMA-2-7/13B (Tou- 1435

vron et al., 2023), LLaMA-3-8B/70B (AI@Meta, 1436

2024), Mistral-7B-v0.1 (Jiang et al., 2023), 1437

Gemma-7B (Jiang et al., 2023), Qwen1.5-7B (Bai 1438

2https://github.com/bigcode-project/
bigcode-evaluation-harness

3https://github.com/lm-sys/FastChat
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Figure 4: Performance Comparison of Different Models on GSM8K and HumanEval Benchmarks.

et al., 2023), Yi-1.5-34B (Young et al., 2024) and1439

Mixture-of-Experts (MoE (Shazeer et al., 2017))1440

models: DeepSeek-MoE-16B (Dai et al., 2024)1441

and Mixtral-8x7B-v0.1 (Jiang et al., 2024a). These1442

models were fine-tuned on the MetaMathQA-100K1443

and CodeFeedback-100K datasets and evaluated1444

on the GSM8K and HumanEval benchmarks. As1445

depicted in Figure 4, BA-LoRA consistently sur-1446

passes LoRA and PiSSA across all models and1447

tasks, underscoring its superior ability to enhance1448

model generalization.1449

C.2 Impact of Regularization on LoRA1450

Variants Performance1451

In this experiment, we evaluated the impact of the1452

regularization terms on multiple LoRA variants1453

using the LLaMA-2-7B. Table 9 shows the perfor-1454

mance comparison of LoRA, DoRA, PiSSA, and1455

BA-LoRA with and without regularization terms,1456

where “Reg” refers to the three regularization terms1457

designed for each NLG task.1458

The experimental results indicate that incorpo-1459

rating regularization terms into LoRA and DoRA1460

architectures significantly enhances performance1461

across all evaluated tasks. This finding demon-1462

strates that regularization techniques are broadly1463

effective when applied to different LoRA variants.1464

Furthermore, BA-LoRA, which integrates PiSSA1465

with regularization, achieves the best performance1466

across various tasks and substantially improves the1467

model’s generalization capabilities.1468

C.3 t-SNE Visualizations of Feature Evolution 1469

during the Fine-tuning with LoRA and 1470

BA-LoRA 1471

This section provides more detailed t-SNE visu- 1472

alization results to compare the feature evolution 1473

during fine-tuning of LoRA and BA-LoRA. 1474

Figure 5 shows that during LoRA fine-tuning of 1475

BERT-L, the feature separation is slow, with the 1476

class distributions remaining scattered and over- 1477

lapping even towards the end. In contrast, Figure 1478

6 demonstrates that with BA-LoRA fine-tuning, 1479

class separation begins earlier and is much clearer, 1480

ultimately forming a distinct “Y” shape with well- 1481

defined class boundaries. 1482

Similarly, Figure 7 shows that during LoRA fine- 1483

tuning of GPT-2 XL, the feature clusters remain 1484

scattered and overlapping throughout the train- 1485

ing, with only minimal separation between classes 1486

by the final steps. In contrast, Figure 8 demon- 1487

strates that BA-LoRA fine-tuning results in much 1488

clearer and more distinct class separation, with 1489

well-defined boundaries emerging earlier in the 1490

training process and becoming more pronounced 1491

over time. 1492

D More Discussions 1493

Here, we offer further insights into our work. 1494

D.1 Computational Cost Analysis 1495

Parameter-efficient fine-tuning (PEFT) methods 1496

are designed to minimize computational overhead 1497

while maintaining competitive performance rela- 1498

tive to full fine-tuning. While PEFT methods are 1499

computationally efficient overall, specific compo- 1500

nents can introduce additional demands that war- 1501

rant careful consideration. For instance, consis- 1502
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Table 9: Effect of regularization term in different LoRA variants. The best and second-best results are highlighted in
bold and underline.

Methods #Params GSM8K MATH HumanEval MBPP MT-Bench Avg

Full FT 6738M 49.13±0.21 7.29±0.22 21.20±0.30 35.59±0.25 4.91±0.01 23.62
LoRA 320M 42.47±0.29 5.60±0.35 17.03±0.61 32.77±0.46 4.62±0.11 20.50
LoRA + Reg 320M 51.91±0.30 8.63±0.38 21.11±0.03 33.85±0.16 4.75±0.35 23.83
DoRA 321M 42.12±0.16 6.28±0.19 16.97±0.08 22.07±0.38 4.53±0.47 18.41
PiSSA 320M 52.37±0.52 7.76±0.19 21.55±0.44 33.09±0.57 4.87±0.06 23.93
DoRA + Reg 321M 52.80±0.38 8.05±0.07 21.94±0.14 34.61±0.12 5.02±0.10 24.48
BA-LoRA 320M 54.53±0.41 9.21±17 23.58±0.25 36.86±0.31 5.11±0.05 25.86
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Figure 5: t-SNE Visualization of Feature Evolution during LoRA Fine-Tuning of BERT-L.

tency regularization often necessitates an additional1503

forward pass during training, leading to increased1504

activation storage requirements. Similarly, oper-1505

ations like singular value decomposition (SVD)1506

present scalability challenges for large matrices, as1507

traditional SVD relies on eigenvalue computations1508

that are computationally intensive and inherently1509

CPU-bound. These factors highlight the impor-1510

tance of scalability, especially for high-dimensional1511

models like LLaMA, where even relatively small1512

matrices (e.g., 4096 × 4096) demand substantial1513

processing time.1514

To address these challenges, we introduce a ran- 1515

domized SVD approach, which achieves signifi- 1516

cant computational savings while preserving suf- 1517

ficient accuracy. Randomized SVD leverages ran- 1518

dom projections to approximate the dominant sin- 1519

gular values and vectors, enabling faster compu- 1520

tation and enhanced scalability for large matrices. 1521

This optimization ensures that computational de- 1522

mands remain manageable, even for models with 1523

high-dimensional weight matrices, thereby support- 1524

ing scalability across diverse architectures. 1525

To assess the practical implications of our ap- 1526
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Figure 6: t-SNE Visualization of Feature Evolution during BA-LoRA Fine-Tuning of BERT-L.

proach, we conducted experiments measuring the1527

average training time and memory usage across1528

multiple runs. Specifically, we fine-tuned the1529

DeBERTa-v3-base model on the full GLUE bench-1530

mark using an NVIDIA A40 GPU. The results for1531

three PEFT methods—LoRA, PiSSA, and our pro-1532

posed BA-LoRA—are summarized below:1533

• LoRA: Averaged 14.45 hours of training time1534

with an average memory usage of 6.3 GB.1535

• PiSSA: Averaged 12.07 hours of training time1536

with an average memory usage of 6.5 GB.1537

• BA-LoRA: Averaged 15.82 hours of training1538

time with an average memory usage of 7.11539

GB.1540

Although BA-LoRA incurs marginally higher1541

computational costs compared to LoRA and PiSSA,1542

these increases stem primarily from its advanced1543

regularization mechanisms, including the innova-1544

tive use of randomized SVD. Crucially, these mech-1545

anisms effectively mitigate the catastrophic forget-1546

ting problem, resulting in substantial performance1547

improvements. Considering the trade-off between1548

computational overhead and model performance, 1549

the additional costs of BA-LoRA are both man- 1550

ageable and well-justified, especially in scenarios 1551

where achieving superior accuracy is paramount. 1552

D.2 Future works 1553

Future research should extend assessments of BA- 1554

LoRA to multilingual settings and specialized do- 1555

mains to ensure broader applicability. Exploring 1556

optimization techniques could help reduce the com- 1557

putational overhead introduced by the regularizers, 1558

balancing performance gains with efficiency. Inves- 1559

tigating the impact of BA-LoRA on other forms of 1560

bias, including fairness and societal stereotypes, is 1561

crucial for developing more equitable models. Ad- 1562

ditionally, refining the selection and weighting of 1563

regularization terms—possibly through automated 1564

or dynamic adjustment methods—could enhance 1565

adaptability across different tasks and models. Test- 1566

ing the scalability of BA-LoRA on larger models 1567

with hundreds of billions of parameters and ex- 1568

ploring its integration with other bias mitigation 1569

strategies may yield synergistic effects and further 1570

improve model robustness. 1571
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Figure 7: t-SNE Visualization of Feature Evolution during LoRA Fine-Tuning of GPT-2-XL.
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Figure 8: t-SNE Visualization of Feature Evolution during BA-LoRA Fine-Tuning of GPT-2-XL.
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