

000 ZIP-RC: ZERO-OVERHEAD INFERENCE-TIME 001 PREDICTION OF REWARD AND COST FOR ADAPTIVE 002 AND INTERPRETABLE GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Large language models excel at reasoning but lack key aspects of *introspection*,
014 including the ability to anticipate their own success and the computation required
015 to achieve it. Humans use real-time introspection to decide how much effort to
016 invest, when to make multiple attempts, when to stop, and when to signal success
017 or failure. Without this ability, LLMs struggle to make intelligent meta-cognition
018 decisions. Test-time scaling methods such as Best-of-N drive up cost and latency
019 by using a fixed budget of samples regardless of the marginal benefit of each one
020 at any point in generation, and the absence of confidence signals can mislead people,
021 prevent appropriate escalation to better tools, and undermine trustworthiness.
022 Learned verifiers or reward models can provide confidence estimates, but do not
023 enable adaptive inference and add substantial inference cost by requiring extra
024 models or forward passes. We present ZIP-RC, an adaptive inference method that
025 equips models with zero-overhead inference-time predictions of reward and cost.
026 At every token during generation, ZIP-RC reuses reserved or unused logits in the
027 same forward pass as next-token prediction to output a joint distribution over final
028 reward and remaining length—no extra models, architecture change, or inference
029 overhead. This full joint distribution is used to compute a sampling utility which
030 is the linear combination of the expected maximum reward, total compute, and
031 latency of set of samples if generated to completion. During inference, we max-
032 imize this utility with meta-actions that determine which prefix of tokens to con-
033 tinue or initiate sampling from. On mixed-difficulty mathematical benchmarks,
034 ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower
035 average cost, and traces smooth Pareto frontiers between quality, compute, and
036 latency. By providing real-time reward–cost introspection, ZIP-RC allows models
037 to reason adaptively and more efficiently.

038 1 INTRODUCTION

039 The rapid evolution of large language models (LLMs) has enabled unprecedented capabilities in
040 complex tasks ranging from general question-answering to automated coding and mathematical rea-
041 soning (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022). To become truly reliable, however,
042 LLMs must develop a capacity for *introspection*: the ability to assess their own progress and antic-
043 ipate the effort required to succeed. Humans can be introspective and can effectively act upon this
044 information to make better decisions. If a model could predict its future success (reward) *and* the re-
045 sources needed to achieve it (cost), it could allocate compute more effectively, expose likely failure
046 modes before they occur, and provide transparent signals about confidence and anticipated “thinking
047 time.” A key obstacle has been that such introspection typically requires auxiliary mechanisms that
048 add nontrivial computational overhead and complexity.

049 The need for introspection is growing more urgent as reasoning traces continue to lengthen. Recent
050 work shows that scaling *test-time* compute through reasoning often yields larger performance gains
051 than simply increasing model size (Wang et al., 2023b; Yao et al., 2023; Jaech et al., 2024; Snell
052 et al., 2024; Guo et al., 2025). But performance has scaled only logarithmically with additional
053 computation, forcing models to produce ever longer chains of thought—sometimes tens of thousands
054 of tokens today and plausibly orders of magnitude more in the future (Wu et al., 2024). With time

Figure 1: Top left shows how ZIP repurposes reserved or unused logits in the output head of a language model to instantiate auxiliary predictions, such as the grid mapping for the joint reward-cost distribution that ZIP-RC uses. Top right demonstrates how ZIP-RC can provide real-time expected reward and remaining length predictions. Finally, the bottom shows the joint distributions from ZIP-RC and how they indicate optimal sampling strategies. ZIP-RC sampling uses these joint distributions to calculate a sampling utility to autonomously select meta-actions for optimal test-time compute allocation.

as a fundamental limiting resource, a critical question is how to use a fixed wall-clock budget to achieve the highest performance possible.

A promising approach is the canonical test-time scaling method *Best-of-N* (BoN) sampling, which generates N candidates and selects the best using a learned verifier, reward model, or majority vote (Cobbe et al., 2021; Zheng et al., 2023; Kwon et al., 2023; Lightman et al., 2023b; Wang et al., 2023b). While appealing in theory due to its parallelism, BoN is not adaptive: every trajectory is carried to completion regardless of promise. On easy tasks this wastes computation, and on hard tasks it inflates latency, since wall-clock time is governed by the longest generation and both length and total compute grow with N (Leviathan et al., 2023). What is missing is a way for models to anticipate which samples are worth continuing and which should be paused or abandoned, so that parallel effort is concentrated on trajectories most likely to succeed and fastest to complete.

Early-stopping and pruning methods aim to reduce BoN’s inefficiency by terminating unpromising samples mid-generation (Fu et al., 2025; Huang et al., 2025). These approaches are valuable first steps toward adaptivity, but they typically rely on *scalar* signals—such as a confidence score from a classifier—or on simple heuristics. This creates two limitations. First, a scalar cannot capture the central reward–cost trade-off: a low-confidence trajectory may be worthwhile if nearly finished, while a high-confidence one may be impractical if it implies a long, costly continuation. Second, these methods do not quantify the marginal benefit of drawing more samples, which depends on the entire reward distribution rather than its expectation. As a result, such strategies can reduce compute

108 in some cases but often fail to improve wall-clock time, falling short of the broader goal of enabling
 109 models to allocate compute adaptively—expending more effort on difficult queries and less on easy
 110 ones (Manvi et al., 2024; Graves, 2016).

111 We introduce ZIP-RC, an adaptive inference framework that addresses these limitations by training
 112 language models to provide zero-overhead, inference-time predictions of the *joint distribution* over
 113 reward and cost. At each decoding step, unused vocabulary logits parameterize a joint distribution
 114 over final reward and remaining generation length (see fig. 1). Access to the full joint—not just
 115 a scalar—enables order-statistic calculations that quantify the marginal utility of continuing partial
 116 samples or spawning additional samples. For example, when the predicted reward distribution has
 117 high variance, allocating more samples can substantially increase the expected maximum reward.
 118 We maximize a *sampling utility* that explicitly balances accuracy, compute, and latency through a
 119 linear combination of their expectations. The coefficients of the linear combination can be tuned to
 120 the desired balance of reward, compute, and latency. Optimizing this utility produces the behaviors
 121 observed in our experiments: when latency is prioritized, ZIP-RC spawns larger pools of samples
 122 and schedules early pruning to chase an early finisher; when compute is prioritized, it deprioritizes
 123 low-value trajectories aggressively and allocates more samples only when they are likely to pay off.

124 Experiments on mixed-difficulty mathematical benchmarks show that ZIP-RC improves accuracy by
 125 up to 12% over majority voting while using less average cost. By adjusting the utility coefficients, it
 126 traces smooth Pareto frontiers between accuracy, compute, and latency. We contribute a method for
 127 zero-overhead inference-time prediction of the joint distribution of reward and cost which enables
 128 models to be introspective for more interpretable generations and the maximization of a sampling
 129 utility to improve performance with fixed compute and latency.

2 RELATED WORK

132 Improving the efficiency and reliability of LLM reasoning requires both new methods for guiding
 133 generation and principled strategies for allocating computational resources at inference time. Our
 134 work builds on three key areas of research: the use of verifiers for response selection, process-level
 135 rewards for fine-grained feedback, and adaptive inference strategies for efficient computation.

136 **Verifiers and reward models for output selection.** A common approach to enhancing LLM per-
 137 formance is to train an external verifier or reward model (RM) to assess the quality of complete
 138 responses. Such models provide outcome-based feedback, typically assigning a scalar score or
 139 probability of correctness to an entire output sequence. Outcome RMs have been widely used in
 140 reasoning and alignment works, from math problem solving to preference-based fine-tuning (Cobbe
 141 et al., 2021; Yu et al., 2023; Stiennon et al., 2020). They can be integrated during training, as in
 142 reinforcement learning settings (Ouyang et al., 2022; Bai et al., 2022), or applied at inference time
 143 through selection strategies such as Best-of-N sampling (Cobbe et al., 2021; Li et al., 2022). Re-
 144 cent work has explored unifying the generator and verifier, using the model’s own logits for certain
 145 tokens as a proxy for a reward model (Ren et al., 2023). Our work extends this introspective direc-
 146 tion, moving beyond scalar correctness prediction to modeling a joint distribution over the expected
 147 future reward and computational cost at every token.

148 **Process-based rewards for fine-grained feedback.** A limitation of outcome-supervision is its
 149 reliance on a sparse reward signal that makes credit assignment challenging, especially for long rea-
 150 soning chains. Process-based reward models (PRMs) instead score intermediate steps via human
 151 annotation (Lightman et al., 2023b), LLM-as-judge (Zheng et al., 2023), or automated token-level
 152 value estimates. These automated estimates can be generated by propagating final outcome rewards
 153 back to individual tokens (Liu et al., 2024) or through other value estimation techniques (Uesato
 154 et al., 2022; Luo et al., 2024). While most PRMs aim to improve the training signal, our goal is dis-
 155 tinct: we use predictive feedback in real time to guide inference itself. Closest to the calibration side
 156 of this literature, Damani et al. (2025) augment a binary correctness reward with a confidence score
 157 to improve model calibration. Our approach is complementary: rather than training for calibrated
 158 confidence, we predict a joint distribution over future reward and future cost, turning process-level
 159 signals into a direct control knob for utility-aware inference.

160 **Adaptive inference and introspective models.** Our work enables a form of adaptive inference, a
 161 long-standing goal in machine learning (Graves, 2016; Bengio et al., 2015) that has become increas-
 162 ingly critical for large models (Snell et al., 2024). Adaptive methods that use multiple models or
 163 sequential sampling have been explored (Damani et al., 2024; Wang et al., 2024). A more recent

162 direction has involved parallel sampling that includes the pruning of unpromising generation paths.
 163 For instance, recent methods terminate samples based on mid-generation confidence scores (Manvi
 164 et al., 2024; Fu et al., 2025) or prune exploration based on step-wise consistency checks (Aggarwal
 165 et al., 2023). We advance this line of work with a more general formulation: instead of relying on
 166 simple heuristics for pruning, we use our joint reward-cost predictions to explicitly optimize a utility
 167 function. This enables a richer set of meta-actions, such as dynamically resizing the sample pool
 168 and reallocating budget across trajectories. Conceptually, our approach parallels the integration of
 169 value functions with search in reinforcement learning (Silver et al., 2016), where predictive signals
 170 guide exploration. It is also complementary to inference optimization techniques like speculative
 171 decoding (Leviathan et al., 2023), which accelerate generation at the token level. By providing
 172 real-time estimates of success and cost, the predictions from ZIP-RC contribute to a broader vision
 173 of introspective models that report their internal states (Binder et al., 2024; Kadavath et al., 2022),
 174 enhancing efficiency and interpretability.

175 3 PRELIMINARIES

176 **Generation as a token-level MDP.** We formalize text generation as a finite-horizon Markov De-
 177 cision Process (MDP), following Ramamurthy et al. (2022). The MDP is defined by the tuple
 178 $M = (\mathcal{S}, \mathcal{A}, R, P, \gamma, H)$ over a finite vocabulary \mathcal{V} , where \mathcal{S} is the state space, and \mathcal{A} the ac-
 179 tion space, R the reward function, P the transition function, $\gamma \in [0, 1]$ the discount factor, and
 180 H the horizon. Given an input prompt $\mathbf{x} = (x_0, \dots, x_m)$ consisting of tokens in the vocabulary
 181 $x_i \in \mathcal{V}$, the initial state is $s_0 = \mathbf{x}$. At timestep t , the LLM acts as a policy $\pi(a_t | s_t)$ that outputs the
 182 probability distribution over actions $a_t \in \mathcal{V}$. The transition function P deterministically appends
 183 a_t to state s_t , yielding next state $s_{t+1} = (x_0, \dots, x_m, a_0, \dots, a_t)$. The episode terminates when
 184 the model emits an end-of-sequence token $\langle \text{EOS} \rangle$ or the length of the generated sequence reaches
 185 the horizon H . Upon termination at timestep T , the environment returns a terminal reward $R(s_T)$.
 186 The discount factor is defined as $\gamma = 1$ and the value of any state s_t under policy π is the expected
 187 terminal reward from that state onward $V(s_t) = \mathbb{E}_\pi [R(s_T) | s_t]$.

188 **Best-of-N.** Best-of- N (BoN) is an inference-time selection mechanism that decouples generation
 189 from evaluation to improve output quality. Given a prompt \mathbf{x} and a generator policy π , the method
 190 draws N independent and identically distributed (i.i.d.) terminated states $s_T^{(1)}, \dots, s_T^{(N)}$ from the
 191 policy. A learned verifier $\hat{V} : \mathcal{V}^* \rightarrow \mathbb{R}$, typically a reward model, then assigns a scalar score to each
 192 terminated state. The final output is the state with the highest score, selected as
 193

$$s_T^* \in \arg \max_{i \in [N]} \hat{V}(s_T^{(i)}). \quad (1)$$

194 The selection depends only on the relative ordering of scores from $\hat{V}(\cdot)$, ties are broken arbitrarily.
 195

196 4 ZERO-OVERHEAD INFERENCE-TIME PREDICTION OF REWARD & COST

200 We introduce Zero-overhead Inference-time Prediction (ZIP), a method for extracting auxiliary sig-
 201 nals during inference without extra models, architectural changes, or forward passes. ZIP repurposes
 202 the logits of a small set of reserved tokens to parameterize these auxiliary predictions within the same
 203 forward pass that generates the next-token probabilities. We then instantiate ZIP for reward and cost
 204 prediction (ZIP-RC).

205 **Zero-overhead inference-time prediction (ZIP).** Let \mathcal{V} be the vocabulary and $\mathcal{R} \subset \mathcal{V}$ a fixed
 206 contiguous set of *reserved tokens*. At decoding step t , the model produces logits $z_t \in \mathbb{R}^{|\mathcal{V}|}$. ZIP
 207 interprets logits over \mathcal{R} as parameters of an auxiliary predictor (e.g. via a softmax). A rough
 208 visualization of this is shown in the top right of fig. 1. Before sampling, these logits are masked to
 209 remove probability mass:
 210

$$\pi_\theta(a_t | s_t) = \begin{cases} \frac{\exp(z_t[a_t])}{\sum_{v \in \mathcal{V} \setminus \mathcal{R}} \exp(z_t[v])}, & a_t \in \mathcal{V} \setminus \mathcal{R}, \\ 0, & a_t \in \mathcal{R}. \end{cases} \quad (2)$$

211 Thus, each forward pass yields both (i) the decoding distribution on $\mathcal{V} \setminus \mathcal{R}$ and (ii) auxiliary predic-
 212 tions from $z_t[\mathcal{R}]$, incurring **zero additional cost** at inference time.

216 During training, we supervise the auxiliary head via a task-specific loss \mathcal{L}_{aux} applied to $z_t[\mathcal{R}]$ (e.g.,
 217 cross-entropy for categorical targets, Bernoulli NLL for binary targets, MSE for continuous targets),
 218 while regularizing the policy toward a frozen copy of the original policy π :
 219

$$220 \quad \mathcal{L}(s_t) = \mathcal{L}_{\text{aux}}(s_t) + \alpha_{\text{KL}} \text{KL}(\pi_{\theta}(\cdot | s_t) \| \pi(\cdot | s_t)). \quad (3)$$

221 ZIP is agnostic to the prediction target or loss, it simply standardizes how auxiliary predictions are
 222 produced during inference, with zero inference overhead. An alternative that keeps the model frozen
 223 is discussed in appendix A.5.
 224

225 **ZIP-RC: joint reward-cost distribution prediction.** We use ZIP to predict a *joint distribution*
 226 over the (expected) reward and remaining length of a rollout using π starting from any prefix s_t .
 227 Given a stochastic rollout $s_T \sim \pi(\cdot | s_t)$, we can define the random variables
 228

$$229 \quad V_T^{\pi}(s_t) = V(s_T), \quad L_T^{\pi}(s_t) = |s_T| - |s_t|. \quad (4)$$

230 where $V(s_T) = \mathbb{E}[R(s_T) | s_T]$ denotes its expected terminal reward (marginalizing environment
 231 noise). In practice, we approximate $V(s_T)$ with a realized $\hat{V}(s_T)$ from a learned verifier. We
 232 discretize the range of values into B_V bins with boundaries $\{v_b\}_{b=1}^{B_V+1}$ and lengths into B_T bins with
 233 boundaries $\{t_{\ell}\}_{\ell=1}^{B_T+1}$, assigning one reserved token per (b, ℓ) using index in the output vocabulary
 234 \mathcal{V} given by $i_{b,\ell} = i_{\mathcal{R}} + (b-1)B_T + (\ell-1)$, where $i_{\mathcal{R}}$ is the index of the first reserved token. Let
 235 $z_t^{\text{aux}}(b, \ell) \equiv z_t[r_{b,\ell}]$. The joint distribution is
 236

$$237 \quad p_{\theta}(b, \ell | s_t) = \frac{\exp(z_t^{\text{aux}}(b, \ell))}{\sum_{b'=1}^{B_V} \sum_{\ell'=1}^{B_T} \exp(z_t^{\text{aux}}(b', \ell'))}. \quad (5)$$

240 A rough visual representation of the grid mapping and examples of this learned distribution is shown
 241 in fig. 1. Given a completed trajectory s_T , for each timestep we construct training targets for each
 242 prefix s_t by computing (b^*, ℓ^*) such that
 243

$$244 \quad \hat{V}(s_T) \in [v_{b^*}, v_{b^*+1}), \quad |s_T| - |s_t| \in [t_{\ell^*}, t_{\ell^*+1}). \quad (6)$$

245 Finally, we train with cross-entropy $\mathcal{L}_{\text{aux}}(s_t) = -\log p_{\theta}(b^*, \ell^* | s_t)$, together with the policy-
 246 preserving KL above. Other practical implementation details are discussed in appendix A.3.
 247

248 **Why expected reward instead of realized reward?** It may initially seem unnatural to use an es-
 249 timated value $\hat{V}(s_T)$ by a trained critic rather than the realized reward. To explain this choice, let
 250 $s_T^{(1)}, \dots, s_T^{(N)} \stackrel{\text{i.i.d.}}{\sim} \pi_{\theta}(\cdot | s_0)$ be completions for a prompt, and \hat{V} the estimated value function used in
 251 BoN selection. The chosen index $s_T^* = \arg \max_i \hat{V}(s_T^{(i)})$ yields score $\hat{V}(s_T^*) = \max_{i \in [N]} \hat{V}(s_T^{(i)})$.
 252 Modeling the distribution of possible terminal values $V(s_T)$ via $\hat{V}(s_T)$ rather than possible ter-
 253 minal rewards $R(s_T)$: (i) aligns with the actual selection objective, and (ii) admits closed-form
 254 order-statistic expectations since noisy environment rewards from $R(s_T)$ cannot be assumed to be
 255 independent but its expectation $V(s_T)$ can.
 256

257 **ZIP-RC for sample selection and interpretability.** Using the learned joint distribution, we can
 258 also compute individual marginal distributions:
 259

$$260 \quad q_{\theta}^V(b | s_t) = \sum_{\ell=1}^{B_T} p_{\theta}(b, \ell | s_t), \quad q_{\theta}^L(\ell | s_t) = \sum_{b=1}^{B_V} p_{\theta}(b, \ell | s_t), \quad (7)$$

263 which can be used to estimate the value and the expected remaining tokens to completion
 264

$$265 \quad V(s_t) = \mathbb{E}[V_T^{\pi}(s_t)] \approx \sum_{b=1}^{B_V} \frac{v_b + v_{b+1}}{2} q_{\theta}^V(b | s_t), \quad \mathbb{E}[L_T^{\pi}(s_t)] \approx \sum_{\ell=1}^{B_T} \frac{t_{\ell} + t_{\ell+1}}{2} q_{\theta}^L(\ell | s_t). \quad (8)$$

268 Here, the value estimation can be used for final sample selection and both the value and the expected
 269 remaining tokens to completion act as confidence and “thinking time” signals. A rough visualization
 of the interpretable signals is shown in the top right of fig. 1.

270 5 TEST-TIME COMPUTE USING ZIP-RC (ZIP-RC SAMPLING)
271272 While large language models are post-trained to maximize the likelihood of high-reward genera-
273 tions, they remain imperfect policies due to finite data and compute. Low-reward completions are
274 often sampled even when their deficiencies are apparent—either implicitly through low likelihood
275 or explicitly via external reward models. Even greedy decoding (temperature 0) does not guar-
276 antee high-likelihood or high-reward outputs. Thus, one-shot sampling is insufficient for reliably
277 accomplishing tasks. Test-time methods such as majority voting, BoN, Weighted BoN, and Pass@k
278 show the alternative: by actively searching across multiple trajectories, they substantially outperform
279 single-sample decoding. The performance gap highlights that the gain comes from active *search*.
280281 Existing test-time methods, however, are heuristic and often inefficient. BoN can, in principle,
282 explore as much as all other approaches with a large enough N , but this is impractical given compute
283 and latency constraints. While more sophisticated search strategies like beam search try to explore
284 more efficiently by allowing for intermediate branching and pruning at intervals, one could imagine
285 removing constraints on search further. Though the goal of test-time search is clear—maximize task
286 success while minimizing generation cost—prior methods do not achieve this in a principled way.
287 Our goal is to propose a method that does. In this section, we introduce *ZIP-RC sampling*, which
288 leverages predictions from ZIP-RC to explicitly optimize generations for both success and cost. We
289 provide a high-level overview of the framework here (visually summarized in fig. 1) and provide the
290 full formalisms and derivations in appendix A.1 and appendix A.2.
291292 **Test-time compute as Decision-Making Under a Meta-MDP.** We formalize the problem of test-
293 time compute as decision-making under a high-level *meta-MDP*, detailed in appendix A.1. The state
294 of this MDP is the current prefix tree (the set of all partial generations). At each step, the “meta-
295 action” determines which prefixes in the tree to extend or branch from. Prefixes that are not selected
296 are effectively *paused* rather than discarded. The objective is to maximize a meta-reward defined
297 as the final correctness of the best answer minus the generation cost incurred. Crucially, this cost
298 function includes both *total compute* (sum of tokens generated) and *latency* (depth of the longest
299 trajectory), balanced by coefficients α and β . This formalism allows us to treat inference not as a
300 static procedure, but as a dynamic resource allocation problem.
301302 **The Sampling Utility.** Solving for the optimal policy in this meta-MDP is intractable. Instead, we
303 approximate the optimal value function using a quantity we call the *sampling utility*. As derived in
304 appendix A.2, the sampling utility estimates the value of a specific, interpretable strategy: performing
305 rollouts from the current set of candidates, but with the capability to pause them at optimized
306 future horizons. Maximizing this utility allows the controller to explicitly balance the marginal
307 benefit of adding more samples (higher probability of finding a high-reward answer) against the
308 marginal cost of computation and time. This sampling utility can be computed tractably using the
309 joint predictions described in Section 4. Because ZIP-RC predicts the *joint distribution* of reward
310 and remaining length, we can compute required order statistics—such as the expected maximum re-
311 ward of a set of samples or the expected latency given a specific pausing schedule—in closed form.
312 Note this requires lightweight CPU-based calculations that are negligible compared to the forward
313 pass of an LLM.
314315 **Sampling Loop** At inference time, ZIP-RC sampling operates as a meta-policy. At regular inter-
316 vals, it evaluates the sampling utility of various candidate meta-actions (e.g., pausing weak samples,
317 branching strong ones, or continuing the current set). It selects the action that maximizes this util-
318 ity (as visualized in the bottom panel of fig. 1) and executes it for the next decoding steps. This
319 allows the model to adapt online: if trajectories are projected to be low-value or excessively costly,
320 the system redirects computation elsewhere. We discuss practical implementation details, such as
321 normalizing cost coefficients and reducing the search space, in appendix A.4.
322323 6 EXPERIMENTS
324325 Our experiments aim to test the following hypotheses:
326327 (1) ZIP-RC can accurately predict the joint reward-cost distribution.
328 (2) ZIP-RC sampling can be tuned to balance between output quality, and compute cost and
329 latency, tracing a Pareto frontier over the quantities over strong inference baselines.
330

Figure 2: Predictions and ground truth for the initial joint distributions of 10 questions randomly sampled from the AMC 2023 benchmark and 10 questions from the AIME 2024 benchmark. The ground truth for each prompt was estimated with 256 rollouts from Qwen3-1.7B, and predictions were made using ZIP-RC trained with the same model. This shows that the joint distribution from ZIP-RC is calibrated and relatively accurate in forecasting the outcomes of its own rollouts.

Model	Beginning (Reward+Cost)		End (Reward)		
	Total Variation	F1 Score	Accuracy	Recall (Incorrect)	
Qwen3-1.7B	0.46	0.91	0.88	0.82	
LFM2-1.2B	0.45	0.91	0.87	0.69	
LFM2-350M	0.48	0.80	0.82	0.87	

Table 1: Prediction accuracy of ZIP-RC at the beginning and end of generation. At the beginning, no ground-truth reward or remaining-length label exists due to stochastic decoding, so we evaluate the joint reward-cost prediction using Total Variation. At the end of generation, the ground-truth reward is known, allowing us to report F1 score, accuracy, and incorrect-answer recall using a threshold of 0.5.

(3) ZIP-RC sampling is adaptive and generalizes across tasks of varying difficulty and across models of varying size.

We will describe and present results that provide positive evidence for each hypothesis individually.

6.1 EXPERIMENTAL SETUP

Models. We use three open models spanning capability and scale: *Qwen3-1.7B* (Alibaba) in reasoning mode (Yang et al., 2025); *LFM2-1.2B Math* (Liquid AI), a compact mathematical-reasoning model (LiquidAI, 2025); and *LFM2-350M Math*, a smaller variant targeting efficient math reasoning. Unless stated otherwise, decoding is identical across methods; ZIP-RC modifies only the sampling policy at inference time.

Training data for ZIP-RC and baselines. We construct a mathematical training corpus by combining DeepScaleR (Luo et al., 2025), the MATH training split (Hendrycks et al., 2021), and the GSM8K training split (Cobbe et al., 2021). For each prompt, we generate two on-policy rollouts per model, yielding roughly 100k rollouts in total. We then label each rollout for correctness against the ground-truth answer. These labeled rollouts are used to train model-specific ZIP-RC predictors as well as any learned baselines.

Baselines. We evaluate against the following baselines that consist of popular sampling strategies that fall under the parallel sampling paradigm where multiple candidate samples are generated in parallel and there is some selection method. Other notable paradigms include beam search or self-refinement. However, we use parallel sampling methods, which are the most commonly used and reported as they do not suffer from collapsing diversity issues that arise from branching and generating with similar prefixes or the ballooning latency issues from methods that generate samples sequentially. We use stronger adaptations of Best-of- N (BoN), and an ablation of ZIP-RC that performs pruning without the sampling utility optimization and instead uses the expected reward directly.:

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 3: Performance of ZIP-RC sampling and baselines across all models and benchmarks. The top half demonstrates the latency bound setting where $\alpha = 0.1$, and the bottom half demonstrates the compute bound setting where $\alpha = 1.0$. Adjusting β in ZIP-RC sampling allows it to trade generation cost for higher performance (similar to increasing N in BoN) while adjusting α allows it to adjust the prioritization of compute and latency. By navigating the Pareto frontier and allocating compute adaptively, ZIP-RC sampling significantly outperforms majority voting and other baselines.

- (1) *Majority Voting (MV)* (self-consistency), which selects the most frequent final answer, breaking ties uniformly at random (Wang et al., 2023a). This is an extremely common method since it does not require any learned verifier.
- (2) *MV with length-based pruning*, which discards very long, potentially looping samples (cut at 8k tokens). This baseline acts as a sanity check to see if our latency gains only come from preventing looping samples from generating to the maximum 32k generation length.
- (3) *Weighted BoN with external RM*, which scores each sample with a separate reward model trained on the same math corpus; because the RM reprocesses the full sequence without KV cache, FLOPs roughly double relative to generation alone (Li et al., 2023). This baseline demonstrates strong performance that goes beyond Best-of-N sampling.
- (4) *Weighted BoN with self-evaluation (GenRM)*, which replaces the external RM with trained self-evaluations derived from the generator (Manvi et al., 2024; Zhang et al., 2025; Mahan et al., 2024). We specifically include this baseline as it is another method that uses less compute than external reward models for selection.
- (5) *ZIP-RC with reward-based pruning*, which starts with a fixed pool and prunes any trajectory whose predicted expected reward falls below a threshold using ZIP-RC's real-time signal.

Model	Method	Gen. Cost	AIME2024	AMC2023	MATH-500	GSM8K	Mixed
Qwen3-1.7B	ZIP-RC sampling	1.43	65.8	90.9	94.1	92.2	92.2
	Majority Voting	1.40	53.1	87.9	93.0	91.2	91.0
	MV length-prune	1.46	25.1	58.5	84.7	91.6	88.0
	Weighted BoN ext. RM	1.43	54.7	86.5	92.6	91.4	91.0
	Weighted BoN Self-eval	1.40	59.4	89.1	93.6	91.6	91.6
	ZIP-RC reward prune	1.33	43.3	86.0	90.3	89.6	88.9
LFM2-1.2B	ZIP-RC sampling	1.35	60.9	93.5	93.4	83.6	86.0
	Majority Voting	1.60	49.6	90.6	91.8	81.4	83.8
	MV length-prune	1.70	51.3	89.8	91.6	83.0	84.9
	Weighted BoN ext. RM	1.53	50.3	89.0	91.1	79.8	82.5
	Weighted BoN Self-eval	1.60	55.1	91.8	92.6	82.5	84.9
	ZIP-RC reward prune	1.49	57.5	90.2	92.5	83.8	85.8
LFM2-350M	ZIP-RC sampling	1.49	38.8	83.9	86.1	70.1	74.1
	Majority Voting	1.70	26.9	74.5	82.7	64.4	68.8
	MV length-prune	1.66	28.3	74.8	83.6	66.5	70.6
	Weighted BoN ext. RM	1.59	28.5	73.4	81.9	63.2	67.8
	Weighted BoN Self-eval	1.70	31.4	77.6	84.4	66.8	71.1
	ZIP-RC reward prune	1.27	21.7	69.7	83.2	63.0	67.8

Table 2: Performance and generation cost at $\alpha = 0.1$ under matched-cost configurations. ZIP-RC sampling uses $\beta = 0.01$ and a maximum of eight samples. MV uses three samples; MV length-prune uses four; Weighted BoN Self-eval (GenRM) uses three; Weighted BoN with external RM uses two; and ZIP-RC reward prune uses a 0.4 threshold with eight samples.

This acts as a natural and strong ablation to our sampling utility optimization as it directly prunes weak samples that have less promise than those with high expected reward.

Benchmarks. We report performance on *AIME 2024*, *AMC 2023*, *MATH-500* (Lightman et al., 2023a), and *GSM8K*. We additionally evaluate on a *Concatenated Mixed-Difficulty Benchmark* formed by concatenating the above, which probes adaptive allocation across difficulties.

Metrics. First and foremost we measure accuracy on each benchmark as it is an obvious and good measure for performance and high-quality responses. Beyond performance, we measure efficiency and latency. *Normalized compute* reports total FLOPs per prompt normalized by the FLOPs of a single-sample generation for that prompt. We compute FLOPs with the standard $2N$ rule (proportional to the sum of input and generated tokens) and account for KV caching where applicable. *Normalized best-case latency* measures the lower bound on wall-clock time as the maximum number of sequential forward passes across the candidate set; with unconstrained data-parallel sampling, latency is governed by the longest trajectory. *Generation cost* aggregates these via a linear combination, $\text{GenCost} = \alpha \cdot \text{NormCompute} + (1 - \alpha) \cdot \text{NormLatency}$. Unless otherwise specified, we use $\alpha = 0.1$, which roughly balances compute and latency in typical parallel regimes (e.g., eight parallel samples often behave like two to three serial generations in practice). For ZIP-RC sampling we sweep β , which trades off expected quality against cost in the utility; when reporting matched-cost comparisons we set $\beta = 0.005$ and cap the pool at 8 samples for fair comparison to other baselines.

6.2 ACCURACY OF ZIP-RC’S REAL-TIME PREDICTIONS

ZIP provides auxiliary predictions with zero overhead, but for this to be useful they must be reliable. We first visually validate whether the joint reward-cost distribution predictions from ZIP-RC are reasonable. To do so, we first obtain ground truth estimates of the joint distributions at the start of generation on AMC 2023 + AIME 2024, which exhibit nontrivial error rates and diverse reasoning trace lengths. The ground truth estimates are derived with 256 rollouts from Qwen3-1.7B and the predictions are made using ZIP-RC trained with the same model. From the 10 random examples from each benchmark in fig. 2 we can see that the predictions are calibrated and relatively accurate in forecasting the distribution of outcomes.

To quantitatively validate the accuracy of the predictions, we measure the total variation at the beginning of generation using the same ground truth joint distribution estimates, as well as standard classification metrics for reward prediction using a threshold of 0.5. As seen in table 1, the total variations from the ground truth confirm the visual validation that the predicted distributions are relatively close to the ground truth, and the reward prediction at the end of generation further confirms

486 this; it demonstrates high accuracy in terms of F1 Score, accuracy, and recall for incorrect answers
 487 (using a threshold of 0.5). Overall, these results indicate that ZIP-RC and ZIP predictions can be
 488 calibrated and accurate despite being done in the same forward pass as next-token prediction.
 489

490 6.3 TRACING THE QUALITY–COMPUTE–LATENCY FRONTIER

491 We next test whether maximizing the sampling utility with specific cost coefficients achieves con-
 492 trollable tradeoffs. At each decision point, ZIP-RC evaluates meta-actions that serve three com-
 493plementary purposes. First, initiating new samples only when necessary and avoiding continuing to
 494 generate low-value trajectories saves compute, which is reflected in the compute bound setting in the
 495 bottom half of fig. 3 ($\alpha = 1.0$), where ZIP-RC achieves compute savings. Second, penalizing the
 496 continued sampling of long outliers avoids samples that would dominate latency. Third, expanding
 497 the initial pool of samples while planning to use a near-term maximum horizon enables the search
 498 to pursue early finishers without paying the full wall-clock cost of long runs. These mechanisms
 499 together drive the latency savings observed in the top half of fig. 3 ($\alpha = 0.0$). In both settings β is
 500 successfully used similar to N in BoN in order to increase performance for more generation cost.
 501 Parameters α and β together thus provide simple control knobs over compute–latency emphasis and
 502 quality–cost trade-off.

503 Across both α regimes, ZIP-RC sampling traces smooth Pareto frontiers that strictly dominate MV
 504 across benchmarks and scales validating that a single utility can jointly improve quality, compute,
 505 and latency. When $\alpha = 0.1$ (latency-emphasis), it substantially reduces cost, with the largest relative
 506 reduction observed on LFM2-350M (up to roughly 40%). Because we cap at eight samples, the
 507 frontier saturates once pass@8 performance is reached for a given β .

508 6.4 ADAPTIVE INFERENCE WITH ZIP-RC SAMPLING

509 Finally, we compare ZIP-RC sampling against all baselines at matched generation cost with $\alpha = 0.1$
 510 in table 2. Two patterns emerge: (i) at fixed cost, ZIP-RC improves accuracy relative to MV and
 511 weighted BoN baselines; (ii) it allocates more samples to harder instances (AIME/AMC) and to
 512 weaker models, while pruning aggressively on easier problems or stronger models.

513 At matched cost, ZIP-RC sampling improves accuracy over MV and weighted BoN on all models
 514 and benchmarks. On harder subsets such as AIME 2024, gains reach up to 12% absolute while
 515 using less average cost. The adaptive policy naturally uses more samples when the predicted reward
 516 distribution is high-variance—where the expected benefit of best-of- N is greatest—and conserves
 517 compute when one trajectory is expected to be dominant. This pattern is evident on the mixed-
 518 difficulty benchmark (left-most column in fig. 3) and across model scales: weaker models and
 519 harder tasks receive more samples, leading to higher overall accuracy.

520 **Takeaways.** ZIP-RC’s real-time predictions are accurate and reliable enough to enable principled
 521 search during decoding. This yields (i) reliable mid-generation detection of weak or overlong tra-
 522 jectories, (ii) smooth and tunable Pareto frontiers between quality, compute, and latency, and (iii)
 523 adaptive allocation that consistently outperforms fixed-budget Best-of- N at the same or lower cost.

524 7 CONCLUSION

525 We introduced ZIP-RC, a zero-overhead framework for introspective inference that predicts future
 526 reward and cost by repurposing existing logits. This enables principled, real-time decoding search
 527 during inference, yielding up to 12% absolute accuracy gains over strong Best-of- N baselines at a
 528 lower average cost, while tracing a smooth Pareto frontier between quality, compute, and latency.
 529 These findings open natural extensions, such as applying it to diverse domains and testing fully
 530 dynamic resource allocation across different models and reasoning modes. Ultimately, ZIP-RC
 531 marks a conceptual shift from rigid, heuristic-based scaling to principled, utility-aware inference.
 532 By empowering models to anticipate their success and computational cost, our work is a key step
 533 toward more autonomous, reliable, and efficient LLMs. A limitation of our method is that we
 534 rely on LLMs achieving sufficient diversity of samples during inference; namely, if we double the
 535 number of initial samples, but the new samples are not sufficiently different, then our method and
 536 any similar test-time compute method like BoN is unable to achieve higher performance. We believe
 537 an important direction of future work is investigating how to improve diversity of samples during
 538 inference, potentially by using a mixture of prompts or even models. Overall, we believe ZIP-RC
 539 establishes a strong foundation for the next generation of introspective models and provides a timely,
 540 impactful contribution to adaptive test-time scaling.

540 REFERENCES
541

542 Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-
543 consistency for efficient reasoning and coding with llms. *arXiv preprint arXiv:2305.11860*, 2023.

544 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
545 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
546 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
547 2022.

548 Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
549 in neural networks for faster models. *arXiv preprint arXiv:1511.06297*, 2015.

550 Felix J Binder, James Chua, Tomek Korbak, Henry Sleight, John Hughes, Robert Long, Ethan Perez,
551 Miles Turpin, and Owain Evans. Looking inward: Language models can learn about themselves
552 by introspection. *arXiv preprint arXiv:2410.13787*, 2024.

553 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
554 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
555 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

556 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
557 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
558 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

559 Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
560 to think: Input-adaptive allocation of lm computation, 2024. URL <https://arxiv.org/abs/2410.04707>.

561 Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
562 Andreas. Beyond binary rewards: Training lms to reason about their uncertainty. *arXiv preprint
563 arXiv:2507.16806*, 2025.

564 Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. *arXiv
565 preprint arXiv:2508.15260*, 2025.

566 Alex Graves. Adaptive computation time for recurrent neural networks. *arXiv preprint
567 arXiv:1603.08983*, 2016.

568 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
569 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
570 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

571 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
572 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
573 2021.

574 Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
575 scaling via self-calibration. *arXiv preprint arXiv:2503.00031*, 2025.

576 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
577 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
578 preprint arXiv:2412.16720*, 2024.

579 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
580 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
581 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

582 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
583 language models are zero-shot reasoners. *Advances in neural information processing systems*,
584 35:22199–22213, 2022.

585 Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
586 models. *arXiv preprint arXiv:2303.00001*, 2023.

594 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
 595 decoding. In *International Conference on Machine Learning*, pp. 19274–19286. PMLR, 2023.
 596

597 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
 598 large language models better reasoners with step-aware verifier, 2023. URL <https://arxiv.org/abs/2206.02336>.
 599

600 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
 601 Eccles, James Keeling, Felix Gimeno, Agustín Dal Lago, et al. Competition-level code generation
 602 with alphacode. *Science*, 378(6624):1092–1097, 2022.
 603

604 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 605 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. *arXiv preprint
 606 arXiv:2305.20050*, 2023a.
 607

608 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 609 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
 610 International Conference on Learning Representations*, 2023b.
 611

612 LiquidAI. Introducing lfm2: The fastest on-device foundation mod-
 613 els on the market, 2025. URL <https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models>.
 614

615 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
 616 Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
 617 automated process supervision. *arXiv preprint arXiv:2406.06592*, 2024.
 618

619 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
 620 Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
 621 preview with a 1.5b model by scaling rl. <https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005b2025>. Notion Blog.
 622

623 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 624 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
 625 <https://arxiv.org/abs/2410.12832>.
 626

627 Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
 628 predict if they can do better, even mid-generation. *arXiv preprint arXiv:2410.02725*, 2024.
 629

630 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 631 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 632 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.
 633

634 Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
 635 tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
 636 language processing: Benchmarks, baselines, and building blocks for natural language policy
 637 optimization. *arXiv preprint arXiv:2210.01241*, 2022.
 638

639 Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves
 640 selective generation in large language models. In *Proceedings on*, pp. 49–64. PMLR, 2023.
 641

642 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 643 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 644 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.
 645

646 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 647 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
 648

649 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 650 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 651 in neural information processing systems*, 33:3008–3021, 2020.
 652

648 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 649 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 650 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.

651

652 Xinglin Wang, Shaoxiong Feng, Yimei Li, Peiwen Yuan, Yueqi Zhang, Boyuan Pan, Heda Wang,
 653 Yao Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-
 654 efficient reasoning. In *North American Chapter of the Association for Computational Linguistics*,
 655 2024. URL <https://api.semanticscholar.org/CorpusID:271957303>.

656

657 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 658 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
 659 2023a. URL <https://arxiv.org/abs/2203.11171>.

660

661 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
 662 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
 663 models. In *The Eleventh International Conference on Learning Representations*, 2023b.

664

665 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 666 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 667 neural information processing systems*, 35:24824–24837, 2022.

668

669 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 670 An empirical analysis of compute-optimal inference for problem-solving with language models.
 671 *arXiv preprint arXiv:2408.00724*, 2024.

672

673 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 674 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 675 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 676 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 677 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 678 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 679 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 680 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 681 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

682

683 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 684 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 685 vances in neural information processing systems*, 36:11809–11822, 2023.

686

687 Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning
 688 in mathematical reasoning. *arXiv preprint arXiv:2311.09724*, 2023.

689

690 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
 691 Generative verifiers: Reward modeling as next-token prediction, 2025. URL <https://arxiv.org/abs/2408.15240>.

692

693 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 694 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 695 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

696

697

698

699

700

701

702 **A APPENDIX**
703704 **A.1 SAMPLING AS DECISION-MAKING UNDER A META-MDP**
705706 We formalize the problem of test-time search as decision-making under a high-level MDP that we
707 dub a *meta-MDP*. We describe the components of the meta-MDP in detail below:
708709 **Meta-states.** At timestep t , the meta-state is a prefix tree (trie) S_t rooted at the prompt \mathbf{x} . Formally,
710 $S_t = (\mathcal{N}_t, \mathcal{E}_t, r)$ where $\mathcal{E}_t \subseteq \mathcal{N}_t \times \mathcal{V} \times \mathcal{N}_t$ is the set of directed edges (s, a, s') labeled by tokens
711 $a \in \mathcal{V}$, r is the root corresponding to the prompt, and each node $s \in \mathcal{N}_t$ represents the prefix
712 given by the concatenation of the root and the token labels along the path from r to s . Each node
713 also corresponds to a state in the base MDP as it is a sequence of tokens that the base policy has
714 generated. A prefix is finished if its last edge is the special token $\langle \text{EOS} \rangle$, corresponding to the
715 terminal state in the base MDP. Initially, $S_0 = (\{r\}, \emptyset, r)$ where r is the root containing the prompt.
716 Conceptually, the meta-state therefore encodes all prefixes processed or generated by the policy.
717 In practice, the trie only requires space on the order of the total tokens generated to represent all
718 sequences, and their corresponding prefixes can be stored in the KV cache.
719720 **Meta-actions.** At step t , the meta-action selects a finite multiset of prefixes (nodes) $A_t \subseteq \mathbb{M}(\mathcal{N}_t)$
721 to continue sampling from. Multiplicity encodes branching: if prefix s appears r times in A_t , then
722 s is sampled from r times independently. This definition encodes any viable single-token sampling
723 and any strategy one might want to perform. If $s \in A_{t-1}$ but none of its children appear in A_t , this
724 is equivalent to pruning. If $s \in A_t$ already has children, this is equivalent to backtracking.
725726 **Meta-transition function.** Given (S_t, A_t) , for each occurrence of $s \in A_t$ we sample $a \sim \pi(\cdot | s)$
727 and add the edge (s, a, s') and its child s' to the trie, yielding S_{t+1} . For notational simplicity, we treat
728 π as part of the transition dynamics of the meta-MDP so the transition function $P(S_{t+1} | S_t, A_t)$
729 implicitly includes sampling from π . The process terminates at horizon T , corresponding to the
730 maximum allowed search steps.
731732 **Meta-reward function.** At each step we incur a cost $C(S_t, A_t) = \beta(\alpha |\text{supp}(A_t)| + (1 - \alpha))$,
733 where $\text{supp}(A_t)$ is the set of distinct prefixes chosen in A_t (one forward pass per unique prefix)
734 and the second term accounts for step latency. The parameter $\alpha \in [0, 1]$ balances compute versus
735 latency, and $\beta > 0$ sets the trade-off between reward and cost. At the terminal timestep T , one
736 completed generation s_T^* is selected, and the reward is the base MDP reward $R(s_T^*)$. Including this
737 cost term is essential, since otherwise one could trivially maximize reward by always branching.
738739 **Search strategies as meta-policies.** A strategy μ is a policy in this meta-MDP: at each timestep
740 it maps the current prefix tree S_t to a multiset $A_t = \mu(S_t)$ of nodes to expand, and at horizon T
741 selects a finished f^* . BoN corresponds to placing N copies of the root in A_0 and thereafter always
742 expanding every unfinished leaf until completion, finally selecting the highest-scoring candidate.
743 Beam search with width B instead enforces $|A_t| = B$ at all times: at most steps A_t is just the B
744 current leaves, but at pruning intervals of length k it ranks leaves by a score, discards the weakest p ,
745 and duplicates stronger ones so that the frontier is refilled back to B , thereby pruning and branching
746 in a controlled manner before ultimately selecting the best finished prefix at T .
747748 **A.2 COMPUTING AN OPTIMAL ZERO-OVERHEAD SEARCH STRATEGY**
749750 It is clear from our formalism what an optimal search strategy should be: at every timestep t , the
751 optimal strategy μ^* should choose the meta-action that maximizes:
752

753
$$\mu^*(S_t) = \arg \max_{A_t} Q^{\mu^*}(S_t, A_t), \quad (9)$$

754 where we define a *meta* Q-function over the meta-MDP for a strategy μ as,
755

756
$$Q^\mu(S_t, A_t) = \mathbb{E}_\mu \left[R(s_T^*) - \sum_{t'=t}^{T-1} C(S_{t'}, A_{t'}) \mid S_t, A_t \right]. \quad (10)$$

757 However, computing Q^μ for arbitrary strategies μ is often intractable, primarily because we cannot
758 generate on-policy trajectories from μ without incurring too much computational overhead.
759

756 **The sampling utility.** To avoid having to generate rollouts, we consider a class of *predefined*
 757 strategies at any timestep t as follows:
 758

$$759 \quad M_t = \{\mu : \mu(\cdot | S_t) = f(\{\pi(\cdot | s_t)\}_{s_t \in \mathcal{N}_t}) , \forall t' \geq t\} , \quad (11)$$

760 where f denotes any function of the set of next-token distributions for every prefix in the meta-state.
 761 Concretely, M_t consists of all strategies where future meta-actions are determined entirely from
 762 generation behavior at timestep t . This essentially means for $\mu \in M_t$, we can compute its value Q^μ
 763 without explicitly executing μ over future timesteps.

764 For any meta-state and meta-action at timestep t , we define the *sampling utility* to be the value of
 765 some strategy in the aforementioned class of strategies M_t . Because each strategy performs worse
 766 than optimal strategy μ^* due to the imposed constraint, we choose the best-performing strategy in
 767 M_t to act as the tightest possible lower-bound

$$769 \quad \mathcal{U}(S_t, A_t) = \max_{\mu \in M_t} Q^\mu(S_t, A_t) \leq Q^{\mu^*}(S_t, A_t) . \quad (12)$$

771 We show later how this maximization over M_t , as well as computation of Q^μ for $\mu \in M_t$, can
 772 be done tractably using the quantities obtained via ZIP-RC, *without any additional forward passes,*
 773 *auxiliary models, or architectural modifications* beyond standard decoding.

774 Finally, ZIP-RC sampling is defined as the strategy that maximizes our proposed sampling utility:

$$776 \quad \mu^{\text{ZIP-RC}}(S_t) = \arg \max_{A_t} \mathcal{U}(S_t, A_t) . \quad (13)$$

778 Intuitively, we can derive the following property of our learned strategy:

779 **Theorem A.1.** *At every timestep t , our strategy $\mu^{\text{ZIP-RC}}$ performs better than any predefined strategy*
 780 *$\mu \in M_t$. Namely, for any meta-state S_t , we have*

$$782 \quad Q^{\text{ZIP-RC}}(S_t, \mu^{\text{ZIP-RC}}(S_t)) \geq Q^\mu(S_t, \mu(S_t)) , \forall \mu \in M_t . \quad (14)$$

784 *Proof.* We can prove this via induction on t . Naively, this holds for terminal timestep $t = T$. For
 785 any $\mu \in M_t$, we let $A_t^{\text{ZIP-RC}} = \mu^{\text{ZIP-RC}}(S_t)$ and $A_t^\mu = \mu(S_t)$. Then, we have

$$786 \quad Q^{\text{ZIP-RC}}(S_t, A_t^{\text{ZIP-RC}}) = Q^{\text{ZIP-RC}}(S_{t+1}, A_{t+1}^{\text{ZIP-RC}}) - C(S_t, A_t^{\text{ZIP-RC}}) . \quad (15)$$

788 \square

790 Therefore, ZIP-RC sampling is a powerful test-time search strategy that explicitly optimizes for
 791 reward and generation cost.

793 **Approximating the sampling utility.** To approximate the sampling utility, we aim to answer two
 794 questions: (1) for every meta-state S_t and action A_t , how do we search for a strategy $\mu \in M_t$ that
 795 achieves a high value $Q^\mu(S_t, A_t)$, and (2) how do we compute $Q^\mu(S_t, A_t)$ tractably using only
 796 predictions by ZIP-RC.

797 First, let us consider the naive strategy μ^{Rollouts} of always selecting the unfinished leaf-node descendants
 798 of the prefixes in the current action A_t , or in other words, obtaining *rollouts* or generations
 799 using π starting from each selected prefix. At the end, μ^{Rollouts} selects the generation with the
 800 highest value $V^\pi(s_T)$, similar to BoN. Its meta-MDP state-action value is exactly given by:

$$802 \quad Q^{\text{Rollouts}}(S_t, A_t) = \mathbb{E}_{\mu^{\text{Rollouts}}} \left[R(s_T^*) - \sum_{t'=t}^{T-1} C(S_{t'}, A_{t'}) \mid S_t, A_t \right] \quad (16)$$

$$805 \quad = \mathbb{E} \left[\max_{s \in A_t} V_T^\pi(s) - \beta \left(\alpha \sum_{s \in A_t} L_T^\pi(s) + (1 - \alpha) \max_{s \in A_t} L_T^\pi(s) \right) \right]$$

$$808 \quad = \mathbb{E} \left[\max_{s \in A_t} V_T^\pi(s) \right] - \beta \left(\alpha \sum_{s \in A_t} \mathbb{E}[L_T^\pi(s)] + (1 - \alpha) \mathbb{E} \left[\max_{s \in A_t} L_T^\pi(s) \right] \right) . \quad (17)$$

We can observe that the expression Q^{Rollouts} contains several interpretable quantities. Namely, the expected maximum value quantifies the marginal benefit of branching or pruning; the incremental gain from increasing N is large when the value distribution has high variance, and conversely, the marginal loss of pruning is small under low variance. Furthermore, the expected maximum remaining tokens and the expected total tokens capture the marginal cost of branching; increasing N always increases the expected total remaining tokens and the maximum remaining length, which drives up latency, and pruning will always reduce the cost.

While μ^{Rollouts} has several nice properties, the strategy itself is naive as it assigns maximum cost for every new sample and does not consider that those samples can be pruned in the future. This is exacerbated further by the empirical correlation between the length of reasoning traces and the likelihood that they are incorrect. Being able to “bet” on an early finishing sample that has high reward is crucial. To remedy this problem, we introduce an additional parameter into the meta-value that enables the μ^{Rollouts} strategy to prune each sample in the future at a predefined horizon.

Formally, let $Q^{\text{Rollouts}}(S_t, A_t; \mathcal{H}_t)$ be the value of executing μ^{Rollouts} , with the additional capability that each active prefix $s \in A_t$ will stop generating upon reaching length $h_s \in \mathcal{H}_t$, where \mathcal{H}_t is a set of lengths of size $|A_t|$. We can now define an improved lower bound by maximizing over \mathcal{H}_t :

$$Q^{\text{Rollouts}}(S_t, A_t; \mathcal{H}_t^*) = \max_{\mathcal{H}_t} Q^{\text{Rollouts}}(S_t, A_t; \mathcal{H}_t) \geq Q^{\text{Rollouts}}(S_t, A_t), \quad (18)$$

where it is easy to see that the our new meta-value is monotonically better than the value of the naive μ^{Rollouts} strategy without pruning capabilities. We use this to approximate the sampling utility:

$$\mathcal{U}(S_t, A_t) = Q^{\text{Rollouts}}(S_t, A_t; \mathcal{H}_t^*). \quad (19)$$

Tractable computation of expectations. Next, we show how our sampling utility in Equation 19 can be computed tractably using only predictions by ZIP-RC. Predicting Q^{Rollouts} is straightforward since we can estimate distributions over the value $q_\theta^V(\cdot | s_t)$ and remaining-tokens $q_\theta^L(\cdot | s_t)$ conditioned on each prefix s_t using our previously proposed ZIP-RC. Hence, we can estimate by computing:

$$\mathbb{E}\left[\max_{s \in A_t} V_T^\pi(s)\right] \approx \sum_{b=1}^{B_V} \frac{v_b + v_{b+1}}{2} (F_\theta^{V,\max}(b | A_t) - F_\theta^{V,\max}(b-1 | A_t)), \quad (20)$$

$$\mathbb{E}[L_T^\pi(s)] \approx \sum_{\ell=1}^{B_T} \frac{t_\ell + t_{\ell+1}}{2} q_\theta^L(\ell | s), \quad (21)$$

$$\mathbb{E}\left[\max_{s \in A_t} L_T^\pi(s)\right] \approx \sum_{\ell=1}^{B_T} \frac{t_\ell + t_{\ell+1}}{2} (F_\theta^{L,\max}(\ell | A_t) - F_\theta^{L,\max}(\ell-1 | A_t)), \quad (22)$$

where

$$F_\theta^{V,\max}(b | A_t) = \prod_{s \in A_t} F_\theta^V(b | s), \quad F_\theta^{L,\max}(\ell | A_t) = \prod_{s \in A_t} F_\theta^L(\ell | s), \quad (23)$$

$$F_\theta^V(b | s) = \sum_{j \leq b} q_\theta^V(j | s), \quad F_\theta^L(\ell | s) = \sum_{j \leq \ell} q_\theta^L(j | s). \quad (24)$$

Now, to incorporate the predefined horizons \mathcal{H}_t over all prefixes A_t , we modify the joint distribution $p_\theta(b, \ell | s)$ to a *capped* joint $p_\theta(b, \ell | s; h_s)$ that collapses probability mass beyond the cap h_s into a designated “clipped” state (b_0, h_s) :

$$p_\theta(b, \ell | s; h_s) = \begin{cases} p_\theta(b, \ell | s), & \ell \leq h_s, \\ 1\{b = b_0, \ell = h_s\} \sum_{b'} \sum_{\ell' > h_s} p_\theta(b', \ell' | s), & \ell > h_s. \end{cases} \quad (25)$$

This construction ensures that all probability mass corresponding to continuations exceeding the allowed horizon is reassigned to a truncated state at $\ell = h_s$, while the value component is collapsed to the designated base bin b_0 to reflect the forfeited reward from pruning.

864 From the capped joints, we can recover the corresponding marginal distributions:
 865

$$866 \quad q_{\theta}^V(b \mid s; h_s) = \sum_{\ell=1}^{B_T} p_{\theta}(b, \ell \mid s; h_s), \quad q_{\theta}^L(\ell \mid s; h_s) = \sum_{b=1}^{B_V} p_{\theta}(b, \ell \mid s; h_s). \quad (26)$$

$$867$$

$$868$$

869 These capped marginals directly encode the expected effect of planned pruning on both value and
 870 remaining length for each prefix. Notice that this is only possible by modeling the joint distribution
 871 as ZIP-RC is defined and is not possible with only the two marginal distributions. Thus, we demon-
 872 strate that we are able to compute our sampling utility in Equation 19 using only our zero-overhead
 873 predictions from ZIP-RC.

874 **Summary.** ZIP-RC sampling defines a meta-policy that, at each meta-state S_t , selects the meta-
 875 action A_t —a multiset of prefixes to expand for one decoding step—that maximizes the *sampling*
 876 utility in eq. (19). This utility is the state-action value of the best policy in the predefined strat-
 877 egy class M_t , whose future behavior is fixed. Because ZIP-RC sampling re-optimizes A_t at every
 878 timestep, it adapts online to the stochastic evolution of the prefix tree: if current trajectories are
 879 projected to be costly or low-value, it can immediately redirect computation elsewhere. As formalized
 880 in eq. (14), this dynamic strategy is guaranteed to perform at least as well as any predefined policy
 881 in M_t .

882 To approximate the sampling utility tractably, we use the value of the best rollouts-with-pruning
 883 strategy $Q^{\text{Rollouts}}(S_t, A_t; \mathcal{H}_t^*)$, in which each prefix may continue only up to an optimized (and
 884 possibly distinct) horizon. This value can be computed in closed form using ZIP-RC’s joint reward-
 885 cost predictions. Concretely, for every prefix $s \in A_t$, we: (i) obtain its predicted joint distribution
 886 $p_{\theta}(b, \ell \mid s)$; (ii) apply the prefix-specific horizon using the capped construction in eq. (26); and (iii)
 887 compute the expectations of the required order statistics using eq. (22). This yields a fully tractable,
 888 zero-overhead estimate of the sampling utility for any candidate meta-action.

890 A.3 ZIP-RC IMPLEMENTATION DETAILS

891 **Remaining-token discretization.** For the joint ZIP-RC head, we discretize the remaining-length
 892 variable $L_T^{\pi}(s_t)$ using logarithmic bins. Let $\{t_{\ell}\}_{\ell=1}^{B_T+1}$ denote the bin boundaries, and define bin ℓ as
 893 $[t_{\ell}, t_{\ell+1})$ with representative value $(t_{\ell} + t_{\ell+1})/2$. To obtain fine resolution for short continuations
 894 while keeping B_T small, we collapse all very short lengths into a single initial “startup” bin and set
 895 the remaining boundaries to grow as powers of two. This construction preserves precision where it
 896 matters while limiting the number of reserved tokens required for ZIP-RC.

897 **KL weight.** In practice, the KL term is a very small component of the total loss because the
 898 policy remains close to the original policy as seen in fig. 4. Accordingly, we use a relatively large
 899 coefficient α_{KL} , typically in the range 10–100.

915 Figure 4: KL divergence from the original policy during training of ZIP-RC with and without the
 916 KL term. Using $\alpha_{\text{KL}} = 10$ keeps the KL nearly zero throughout training, stabilizing around 0.005.
 917 Without the KL term, the policy eventually changes, emphasizing the importance and effectiveness
 918 of this component of the ZIP objective. We used the same training data as in our main experiments.

918 **Temporal smoothing.** Token-level ZIP-RC predictions can be noisy. At inference time we option-
 919 ally smooth the joint by averaging the last W predictions along the current trajectory: for a prefix s_t
 920 we set

$$921 \quad 922 \quad 923 \quad \bar{p}_\theta(b, \ell \mid s_t) = \frac{1}{W} \sum_{w=0}^{W-1} p_\theta(b, \ell \mid s_{t-w}), \quad (27)$$

924 where the sum runs over the previous non-terminal prefixes on the same path. We use \bar{p}_θ in place of
 925 p_θ when computing the ZIP-RC marginals and the sampling utility.

926 A.4 ZIP-RC SAMPLING IMPLEMENTATION DETAILS

927 **Normalization of cost term β .** Because rollout lengths can differ by orders of magnitude across
 928 prompts, we rescale the cost coefficient β by a per-prompt estimate of the typical total token count.
 929 At decision step t , we use the normalized coefficient

$$930 \quad 931 \quad 932 \quad \tilde{\beta}_t = \frac{\beta}{\bar{B}_t}, \quad \text{where} \quad \bar{B}_t = \frac{1}{|A_t|} \sum_{s \in A_t} (|s| + \mathbb{E}[L_T^\pi(s)]). \quad (28)$$

933 Here $|s|$ is the current length of prefix s , and $\mathbb{E}[L_T^\pi(s)]$ is its predicted remaining tokens from ZIP-
 934 RC. This keeps the reward–cost tradeoff stable across prompts with very short or very long genera-
 935 tions.

936 **Practical reduction of the search space.** The full meta-action space over multisets of nodes in
 937 the prefix tree is extremely large, and jointly optimizing per-prefix horizons is combinatorial. In
 938 our implementation we therefore operate within a structured subclass of meta-actions and horizons.
 939 First, at timestep t we restrict candidate meta-actions to multisets over the root and the unfinished
 940 leaves of S_t with multiplicity only allowed at the root, and further downselect to a small set of
 941 prefixes prioritized by higher predicted value and lower predicted remaining length under ZIP-RC.
 942 Second, when computing the sampling utility we use a single shared horizon h_t for all active pre-
 943 fixes, rather than independent horizons per prefix, reducing the search over pruning schedules to
 944 a one-dimensional search over h_t . Finally, instead of recomputing $\mu^{\text{ZIP-RC}}(S_t)$ at every token, we
 945 update the meta-action only at fixed intervals and simply continue all currently active prefixes in
 946 between. These design choices substantially reduce the search space while preserving an expressive
 947 and adaptive family of strategies. This represents just one concrete instantiation of our framework;
 948 many other reductions are possible.

949 A.5 ZIP-RC-LITE

950 We add an ablation we refer to as ZIP-RC-Lite where we use the ZIP-RC objective described in
 951 eq. (3) with the KL term removed, keeping only the output head of the language model trainable
 952 while freezing the rest of the model. As shown in fig. 5 and table 3, we find that ZIP-RC-Lite is
 953 able to non-trivially predict the joint distribution but unsurprisingly struggles to do so as accurately
 954 as ZIP-RC. Its predictions are poorly calibrated and may not be suitable for interpretability of the
 955 generation process and output. Despite this, we find that ZIP-RC-Lite search provides substantial
 956 gains with respect to baselines in the latency-bound setting with $\alpha = 0.1$, suggesting that predicting
 957 the expected reward and remaining length to any degree is useful for pruning overly long trajectories
 958 as seen in the first row of fig. 6. However, we do find that ZIP-RC-Lite substantially over-allocates
 959 compute in the compute-bound setting with $\alpha = 1.0$ due to overestimating the variance of the
 960 expected reward, resulting in poor efficiency as seen in the second row of fig. 6. Overall, while
 961 ZIP-RC is clearly more calibrated and accurate, ZIP-RC-Lite is a compelling alternative if one does
 962 not want to keep the whole model trainable.

963
 964
 965
 966
 967
 968
 969
 970
 971

Figure 5: Similar to the demonstration of ZIP-RC’s joint distribution prediction in fig. 2, we visualize the joint distribution predictions from ZIP-RC-Lite and compare them with ground truth estimates. While the predictions correlate with the ground truth, ZIP-RC-Lite tends to produce more similar-looking distributions across prompts and overestimates variance compared to ZIP-RC.

Method	Beginning (Reward+Cost)		End (Reward)		
	Total Variation	F1 Score	Accuracy	Recall (Incorrect)	
ZIP-RC	0.46	0.91	0.88	0.82	
ZIP-RC-Lite	0.63	0.82	0.71	0.12	

Table 3: Similar to the evaluation of ZIP-RC in table 1, we show the prediction accuracy of ZIP-RC-Lite at the beginning and end of generation. The results indicate that ZIP-RC-Lite predicts the joint distribution non-trivially, but less accurately than ZIP-RC.

Figure 6: Similar to the demonstration of ZIP-RC sampling in fig. 3, we present results with ZIP-RC-Lite search in green, indicating it is able to provide significant gains, albeit lower than ZIP-RC sampling, especially in the compute-bound setting. This suggests that predicting the joint reward-cost distribution to any non-trivial degree is helpful in allocating test-time compute more optimally. However, the results in the compute-bound setting indicate that ZIP-RC-Lite’s overestimation of variation in the expected reward distribution results in over-allocation of compute.