
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ZIP-RC: ZERO-OVERHEAD INFERENCE-TIME
PREDICTION OF REWARD AND COST FOR ADAPTIVE
AND INTERPRETABLE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models excel at reasoning but lack key aspects of introspection,
including the ability to anticipate their own success and the computation required
to achieve it. Humans use real-time introspection to decide how much effort to
invest, when to make multiple attempts, when to stop, and when to signal success
or failure. Without this ability, LLMs struggle to make intelligent meta-cognition
decisions. Test-time scaling methods such as Best-of-N drive up cost and latency
by using a fixed budget of samples regardless of the marginal benefit of each one
at any point in generation, and the absence of confidence signals can mislead peo-
ple, prevent appropriate escalation to better tools, and undermine trustworthiness.
Learned verifiers or reward models can provide confidence estimates, but do not
enable adaptive inference and add substantial inference cost by requiring extra
models or forward passes. We present ZIP-RC, an adaptive inference method that
equips models with zero-overhead inference-time predictions of reward and cost.
At every token during generation, ZIP-RC reuses reserved or unused logits in the
same forward pass as next-token prediction to output a joint distribution over final
reward and remaining length—no extra models, architecture change, or inference
overhead. This full joint distribution is used to compute a sampling utility which
is the linear combination of the expected maximum reward, total compute, and
latency of set of samples if generated to completion. During inference, we max-
imize this utility with meta-actions that determine which prefix of tokens to con-
tinue or initiate sampling from. On mixed-difficulty mathematical benchmarks,
ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower
average cost, and traces smooth Pareto frontiers between quality, compute, and
latency. By providing real-time reward–cost introspection, ZIP-RC allows models
to reason adaptively and more efficiently.

1 INTRODUCTION

The rapid evolution of large language models (LLMs) has enabled unprecedented capabilities in
complex tasks ranging from general question-answering to automated coding and mathematical rea-
soning (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022). To become truly reliable, however,
LLMs must develop a capacity for introspection: the ability to assess their own progress and antic-
ipate the effort required to succeed. Humans can be instrospective and can effectively act upon this
information to make better decisions. If a model could predict its future success (reward) and the re-
sources needed to achieve it (cost), it could allocate compute more effectively, expose likely failure
modes before they occur, and provide transparent signals about confidence and anticipated “thinking
time.” A key obstacle has been that such introspection typically requires auxiliary mechanisms that
add nontrivial computational overhead and complexity.

The need for introspection is growing more urgent as reasoning traces continue to lengthen. Recent
work shows that scaling test-time compute through reasoning often yields larger performance gains
than simply increasing model size (Wang et al., 2023b; Yao et al., 2023; Jaech et al., 2024; Snell
et al., 2024; Guo et al., 2025). But performance has scaled only logarithmically with additional
computation, forcing models to produce ever longer chains of thought—sometimes tens of thousands
of tokens today and plausibly orders of magnitude more in the future (Wu et al., 2024). With time

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

s0

ZI
P

ZI
P-

R
C

Output Head

ZIP Logits (e.g. 64 reserved or unused tokens)

Slice for Auxiliary Prediction

Joint Reward-Cost Distribution
(e.g. 8 by 8 grid)

Language Model

…

…

…

…

P(Correct): High
Tokens left: 8-16k

P(Correct): Medium
Tokens left: 4-8k

P(Correct): Low
Tokens left: 0

P(Correct): Low
Tokens left: 4-8k

P(Correct): Medium
Tokens left: 2-4k

P(Correct): High
Tokens left: 0

Repurposes Unused or Reserved Logits Real-Time Expected Reward and Remaining Length Predictions

High Variance

ZIP-RC
Sampling:

Sample More
(Branch)

Low Variance

ZIP-RC
Sampling:

One Sample is
Enough

Higher Expected
Reward and
Lower Cost

ZIP-RC
Sampling:

Keep Sampling

Lower Expected
Reward and
Higher Cost

ZIP-RC
Sampling:

Pause Sample
(Tentative Prune)

Expected Reward Expected Reward Expected Reward Expected Reward

R
em

ai
ni

ng
 T

ok
en

s

Easy Prompt Harder Prompt

E[Reward] E[Compute] E[Latency]= - -Sampling UtilityZIP-RC Sampling selects Meta-actions maximizing

Grid Mapping + Softmax

Expected Reward

C
os

t

s1 s2

s1 s2 s3

s0

s1 s2

Adaptive Parallel Test-time Compute that Optimizes Performance, Compute, and Latency

State: token prefix (partial generation) Meta-state: prefix tree of all states Meta-action: multiset of prefixes to extend

Figure 1: Top left shows how ZIP repurposes reserved or unused logits in the output head of a lan-
guage model to instantiate auxiliary predictions, such as the grid mapping for the joint reward-cost
distribution that ZIP-RC uses. Top right demonstrates how ZIP-RC can provide real-time expected
reward and remaining length predictions. Finally, the bottom shows the joint distributions from
ZIP-RC and how they indicate optimal sampling strategies. ZIP-RC sampling uses these joint dis-
tributions to calculate a sampling utility to autonomously select meta-actions for optimal test-time
compute allocation.

as a fundamental limiting resource, a critical question is how to use a fixed wall-clock budget to
achieve the highest performance possible.

A promising approach is the canonical test-time scaling method Best-of-N (BoN) sampling, which
generates N candidates and selects the best using a learned verifier, reward model, or majority vote
(Cobbe et al., 2021; Zheng et al., 2023; Kwon et al., 2023; Lightman et al., 2023b; Wang et al.,
2023b). While appealing in theory due to its parallelism, BoN is not adaptive: every trajectory is
carried to completion regardless of promise. On easy tasks this wastes computation, and on hard
tasks it inflates latency, since wall-clock time is governed by the longest generation and both length
and total compute grow with N (Leviathan et al., 2023). What is missing is a way for models to
anticipate which samples are worth continuing and which should be paused or abandoned, so that
parallel effort is concentrated on trajectories most likely to succeed and fastest to complete.

Early-stopping and pruning methods aim to reduce BoN’s inefficiency by terminating unpromising
samples mid-generation (Fu et al., 2025; Huang et al., 2025). These approaches are valuable first
steps toward adaptivity, but they typically rely on scalar signals—such as a confidence score from
a classifier—or on simple heuristics. This creates two limitations. First, a scalar cannot capture
the central reward–cost trade-off: a low-confidence trajectory may be worthwhile if nearly finished,
while a high-confidence one may be impractical if it implies a long, costly continuation. Second,
these methods do not quantify the marginal benefit of drawing more samples, which depends on the
entire reward distribution rather than its expectation. As a result, such strategies can reduce compute

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

in some cases but often fail to improve wall-clock time, falling short of the broader goal of enabling
models to allocate compute adaptively—expending more effort on difficult queries and less on easy
ones (Manvi et al., 2024; Graves, 2016).

We introduce ZIP-RC, an adaptive inference framework that addresses these limitations by training
language models to provide zero-overhead, inference-time predictions of the joint distribution over
reward and cost. At each decoding step, unused vocabulary logits parameterize a joint distribution
over final reward and remaining generation length (see fig. 1). Access to the full joint—not just
a scalar—enables order-statistic calculations that quantify the marginal utility of continuing partial
samples or spawning additional samples. For example, when the predicted reward distribution has
high variance, allocating more samples can substantially increase the expected maximum reward.
We maximize a sampling utility that explicitly balances accuracy, compute, and latency through a
linear combination of their expectations. The coefficients of the linear combination can be tuned to
the desired balance of reward, compute, and latency. Optimizing this utility produces the behaviors
observed in our experiments: when latency is prioritized, ZIP-RC spawns larger pools of samples
and schedules early pruning to chase an early finisher; when compute is prioritized, it deprioritizes
low-value trajectories aggressively and allocates more samples only when they are likely to pay off.

Experiments on mixed-difficulty mathematical benchmarks show that ZIP-RC improves accuracy by
up to 12% over majority voting while using less average cost. By adjusting the utility coefficients, it
traces smooth Pareto frontiers between accuracy, compute, and latency. We contribute a method for
zero-overhead inference-time prediction of the joint distribution of reward and cost which enables
models to be introspective for more interpretable generations and the maximization of a sampling
utility to improve performance with fixed compute and latency.

2 RELATED WORK

Improving the efficiency and reliability of LLM reasoning requires both new methods for guiding
generation and principled strategies for allocating computational resources at inference time. Our
work builds on three key areas of research: the use of verifiers for response selection, process-level
rewards for fine-grained feedback, and adaptive inference strategies for efficient computation.

Verifiers and reward models for output selection. A common approach to enhancing LLM per-
formance is to train an external verifier or reward model (RM) to assess the quality of complete
responses. Such models provide outcome-based feedback, typically assigning a scalar score or
probability of correctness to an entire output sequence. Outcome RMs have been widely used in
reasoning and alignment works, from math problem solving to preference-based fine-tuning (Cobbe
et al., 2021; Yu et al., 2023; Stiennon et al., 2020). They can be integrated during training, as in
reinforcement learning settings (Ouyang et al., 2022; Bai et al., 2022), or applied at inference time
through selection strategies such as Best-of-N sampling (Cobbe et al., 2021; Li et al., 2022). Re-
cent work has explored unifying the generator and verifier, using the model’s own logits for certain
tokens as a proxy for a reward model (Ren et al., 2023). Our work extends this introspective direc-
tion, moving beyond scalar correctness prediction to modeling a joint distribution over the expected
future reward and computational cost at every token.

Process-based rewards for fine-grained feedback. A limitation of outcome-supervision is its
reliance on a sparse reward signal that makes credit assignment challenging, especially for long rea-
soning chains. Process-based reward models (PRMs) instead score intermediate steps via human
annotation (Lightman et al., 2023b), LLM-as-judge (Zheng et al., 2023), or automated token-level
value estimates. These automated estimates can be generated by propagating final outcome rewards
back to individual tokens (Liu et al., 2024) or through other value estimation techniques (Uesato
et al., 2022; Luo et al., 2024). While most PRMs aim to improve the training signal, our goal is dis-
tinct: we use predictive feedback in real time to guide inference itself. Closest to the calibration side
of this literature, Damani et al. (2025) augment a binary correctness reward with a confidence score
to improve model calibration. Our approach is complementary: rather than training for calibrated
confidence, we predict a joint distribution over future reward and future cost, turning process-level
signals into a direct control knob for utility-aware inference.

Adaptive inference and introspective models. Our work enables a form of adaptive inference, a
long-standing goal in machine learning (Graves, 2016; Bengio et al., 2015) that has become increas-
ingly critical for large models (Snell et al., 2024). Adaptive methods that use multiple models or
sequential sampling have been explored (Damani et al., 2024; Wang et al., 2024). A more recent

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

direction has involved parallel sampling that includes the pruning of unpromising generation paths.
For instance, recent methods terminate samples based on mid-generation confidence scores(Manvi
et al., 2024; Fu et al., 2025) or prune exploration based on step-wise consistency checks (Aggarwal
et al., 2023). We advance this line of work with a more general formulation: instead of relying on
simple heuristics for pruning, we use our joint reward-cost predictions to explicitly optimize a utility
function. This enables a richer set of meta-actions, such as dynamically resizing the sample pool
and reallocating budget across trajectories. Conceptually, our approach parallels the integration of
value functions with search in reinforcement learning (Silver et al., 2016), where predictive signals
guide exploration. It is also complementary to inference optimization techniques like speculative
decoding (Leviathan et al., 2023), which accelerate generation at the token level. By providing
real-time estimates of success and cost, the predictions from ZIP-RC contribute to a broader vision
of introspective models that report their internal states (Binder et al., 2024; Kadavath et al., 2022),
enhancing efficiency and interpretability.

3 PRELIMINARIES

Generation as a token-level MDP. We formalize text generation as a finite-horizon Markov De-
cision Process (MDP), following Ramamurthy et al. (2022). The MDP is defined by the tuple
M = (S,A, R, P, γ,H) over a finite vocabulary V , where S is the state space, and A the ac-
tion space, R the reward function, P the transition function, γ ∈ [0, 1] the discount factor, and
H the horizon. Given an input prompt x = (x0, . . . , xm) consisting of tokens in the vocabulary
xi ∈ V , the initial state is s0 = x. At timestep t, the LLM acts as a policy π(at|st) that outputs the
probability distribution over actions at ∈ V . The transition function P deterministically appends
at to state st, yielding next state st+1 = (x0, . . . , xm, a0, . . . , at). The episode terminates when
the model emits an end-of-sequence token <EOS> or the length of the generated sequence reaches
the horizon H . Upon termination at timestep T , the environment returns a terminal reward R(sT).
The discount factor is defined as γ = 1 and the value of any state st under policy π is the expected
terminal reward from that state onward V (st) = Eπ [R(sT) | st].

Best-of-N. Best-of-N (BoN) is an inference-time selection mechanism that decouples generation
from evaluation to improve output quality. Given a prompt x and a generator policy π, the method
draws N independent and identically distributed (i.i.d.) terminated states s

(1)
T , . . . , s

(N)
T from the

policy. A learned verifier V̂ : V∗ → R, typically a reward model, then assigns a scalar score to each
terminated state. The final output is the state with the highest score, selected as

s∗T ∈ arg max
i∈[N]

V̂ (s
(i)
T) . (1)

The selection depends only on the relative ordering of scores from V̂ (·), ties are broken arbitrarily.

4 ZERO-OVERHEAD INFERENCE-TIME PREDICTION OF REWARD & COST

We introduce Zero-overhead Inference-time Prediction (ZIP), a method for extracting auxiliary sig-
nals during inference without extra models, architectural changes, or forward passes. ZIP repurposes
the logits of a small set of reserved tokens to parameterize these auxiliary predictions within the same
forward pass that generates the next-token probabilities. We then instantiate ZIP for reward and cost
prediction (ZIP-RC).

Zero-overhead inference-time prediction (ZIP). Let V be the vocabulary and R ⊂ V a fixed
contiguous set of reserved tokens. At decoding step t, the model produces logits zt ∈ R|V|. ZIP
interprets logits over R as parameters of an auxiliary predictor (e.g. via a softmax). A rough
visualization of this is shown in the top right of fig. 1. Before sampling, these logits are masked to
remove probability mass:

πθ(at | st) =


exp(zt[at])∑

v∈V\R exp(zt[v])
, at ∈ V \ R,

0, at ∈ R.

(2)

Thus, each forward pass yields both (i) the decoding distribution on V \R and (ii) auxiliary predic-
tions from zt[R], incurring zero additional cost at inference time.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

During training, we supervise the auxiliary head via a task-specific loss Laux applied to zt[R] (e.g.,
cross-entropy for categorical targets, Bernoulli NLL for binary targets, MSE for continuous targets),
while regularizing the policy toward a frozen copy of the original policy π:

L(st) = Laux(st) + αKL KL(πθ(· | st) ∥ π(· | st)) . (3)

ZIP is agnostic to the prediction target or loss, it simply standardizes how auxiliary predictions are
produced during inference, with zero inference overhead. An alternative that keeps the model frozen
is discussed in appendix A.5.

ZIP-RC: joint reward-cost distribution prediction. We use ZIP to predict a joint distribution
over the (expected) reward and remaining length of a rollout using π starting from any prefix st.
Given a stochastic rollout sT ∼ π(· | st), we can define the random variables

V π
T (st) = V (sT), Lπ

T (st) = |sT | − |st|. (4)

where V (sT) = E[R(sT) | sT] denotes its expected terminal reward (marginalizing environment
noise). In practice, we approximate V (sT) with a realized V̂ (sT) from a learned verifier. We
discretize the range of values into BV bins with boundaries {vb}BV +1

b=1 and lengths into BT bins with
boundaries {tℓ}BT+1

ℓ=1 , assigning one reserved token per (b, ℓ) using index in the output vocabulary
V given by ib,ℓ = iR + (b− 1)BT + (ℓ− 1), where iR is the index of the first reserved token. Let
zaux
t (b, ℓ) ≡ zt[rb,ℓ]. The joint distribution is

pθ(b, ℓ | st) =
exp(zaux

t (b, ℓ))∑BV

b′=1

∑BT

ℓ′=1 exp(z
aux
t (b′, ℓ′))

. (5)

A rough visual representation of the grid mapping and examples of this learned distribution is shown
in fig. 1. Given a completed trajectory sT , for each timestep we construct training targets for each
prefix st by computing (b∗, ℓ∗) such that

V̂ (sT) ∈ [vb∗ , vb∗+1), |sT | − |st| ∈ [tℓ∗ , tℓ∗+1). (6)

Finally, we train with cross-entropy Laux(st) = − log pθ(b
∗, ℓ∗ | st), together with the policy-

preserving KL above. Other practical implementation details are discussed in appendix A.3.

Why expected reward instead of realized reward? It may initially seem unnatural to use an es-
timated value V̂ (sT) by a trained critic rather than the realized reward. To explain this choice, let
s
(1)
T , . . . , s

(N)
T

i.i.d.∼ πθ(· | s0) be completions for a prompt, and V̂ the estimated value function used in
BoN selection. The chosen index s∗T = argmaxi V̂ (s

(i)
T) yields score V̂ (s∗T) = maxi∈[N] V̂ (s

(i)
T).

Modeling the distribution of possible terminal values V (sT) via V̂ (sT) rather than possible ter-
minal rewards R(sT): (i) aligns with the actual selection objective, and (ii) admits closed-form
order-statistic expectations since noisy environment rewards from R(sT) cannot be assumed to be
independent but its expectation V (sT) can.

ZIP-RC for sample selection and interpretability. Using the learned joint distribution, we can
also compute individual marginal distributions:

qVθ (b | st) =
BT∑
ℓ=1

pθ(b, ℓ | st), qLθ (ℓ | st) =
BV∑
b=1

pθ(b, ℓ | st), (7)

which can be used to estimate the value and the expected remaining tokens to completion

V (st) = E[V π
T (st)] ≈

BV∑
b=1

vb + vb+1

2
qVθ (b | st), E[Lπ

T (st)] ≈
BT∑
ℓ=1

tℓ + tℓ+1

2
qLθ (ℓ | st). (8)

Here, the value estimation can be used for final sample selection and both the value and the expected
remaining tokens to completion act as confidence and “thinking time” signals. A rough visualization
of the interpretable signals is shown in the top right of fig. 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 TEST-TIME COMPUTE USING ZIP-RC (ZIP-RC SAMPLING)

While large language models are post-trained to maximize the likelihood of high-reward genera-
tions, they remain imperfect policies due to finite data and compute. Low-reward completions are
often sampled even when their deficiencies are apparent—either implicitly through low likelihood
or explicitly via external reward models. Even greedy decoding (temperature 0) does not guar-
antee high-likelihood or high-reward outputs. Thus, one-shot sampling is insufficient for reliably
accomplishing tasks. Test-time methods such as majority voting, BoN, Weighted BoN, and Pass@k
show the alternative: by actively searching across multiple trajectories, they substantially outperform
single-sample decoding. The performance gap highlights that the gain comes from active search.

Existing test-time methods, however, are heuristic and often inefficient. BoN can, in principle,
explore as much as all other approaches with a large enough N , but this is impractical given compute
and latency constraints. While more sophisticated search strategies like beam search try to explore
more efficiently by allowing for intermediate branching and pruning at intervals, one could imagine
removing constraints on search further. Though the goal of test-time search is clear—maximize task
success while minimizing generation cost—prior methods do not achieve this in a principled way.
Our goal is to propose a method that does. In this section, we introduce ZIP-RC sampling, which
leverages predictions from ZIP-RC to explicitly optimize generations for both success and cost. We
provide a high-level overview of the framework here (visually summarized in fig. 1) and provide the
full formalisms and derivations in appendix A.1 and appendix A.2.

Test-time compute as Decision-Making Under a Meta-MDP. We formalize the problem of test-
time compute as decision-making under a high-level meta-MDP, detailed in appendix A.1. The state
of this MDP is the current prefix tree (the set of all partial generations). At each step, the “meta-
action” determines which prefixes in the tree to extend or branch from. Prefixes that are not selected
are effectively paused rather than discarded. The objective is to maximize a meta-reward defined
as the final correctness of the best answer minus the generation cost incurred. Crucially, this cost
function includes both total compute (sum of tokens generated) and latency (depth of the longest
trajectory), balanced by coefficients α and β. This formalism allows us to treat inference not as a
static procedure, but as a dynamic resource allocation problem.

The Sampling Utility. Solving for the optimal policy in this meta-MDP is intractable. Instead, we
approximate the optimal value function using a quantity we call the sampling utility. As derived in
appendix A.2, the sampling utility estimates the value of a specific, interpretable strategy: perform-
ing rollouts from the current set of candidates, but with the capability to pause them at optimized
future horizons. Maximizing this utility allows the controller to explicitly balance the marginal
benefit of adding more samples (higher probability of finding a high-reward answer) against the
marginal cost of computation and time. This sampling utility can be computed tractably using the
joint predictions described in Section 4. Because ZIP-RC predicts the joint distribution of reward
and remaining length, we can compute required order statistics—such as the expected maximum re-
ward of a set of samples or the expected latency given a specific pausing schedule—in closed form.
Note this requires lightweight CPU-based calculations that are negligible compared to the forward
pass of an LLM.

Sampling Loop At inference time, ZIP-RC sampling operates as a meta-policy. At regular inter-
vals, it evaluates the sampling utility of various candidate meta-actions (e.g., pausing weak samples,
branching strong ones, or continuing the current set). It selects the action that maximizes this util-
ity (as visualized in the bottom panel of fig. 1) and executes it for the next decoding steps. This
allows the model to adapt online: if trajectories are projected to be low-value or excessively costly,
the system redirects computation elsewhere. We discuss practical implementation details, such as
normalizing cost coefficients and reducing the search space, in appendix A.4.

6 EXPERIMENTS

Our experiments aim to test the following hypotheses:
(1) ZIP-RC can accurately predict the joint reward-cost distribution.
(2) ZIP-RC sampling can be tuned to balance between output quality, and compute cost and

latency, tracing a Pareto frontier over the quantities over strong inference baselines.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Predictions and ground truth for the initial joint distributions of 10 questions randomly
sampled from the AMC 2023 benchmark and 10 questions from the AIME 2024 benchmark. The
ground truth for each prompt was estimated with 256 rollouts from Qwen3-1.7B, and predictions
were made using ZIP-RC trained with the same model. This shows that the joint distribution from
ZIP-RC is calibrated and relatively accurate in forecasting the outcomes of its own rollouts.

Beginning (Reward+Cost) End (Reward)

Model Total Variation F1 Score Accuracy Recall (Incorrect)

Qwen3-1.7B 0.46 0.91 0.88 0.82
LFM2-1.2B 0.45 0.91 0.87 0.69
LFM2-350M 0.48 0.80 0.82 0.87

Table 1: Prediction accuracy of ZIP-RC at the beginning and end of generation. At the beginning, no
ground-truth reward or remaining-length label exists due to stochastic decoding, so we evaluate the
joint reward-cost prediction using Total Variation. At the end of generation, the ground-truth reward
is known, allowing us to report F1 score, accuracy, and incorrect-answer recall using a threshold of
0.5.

(3) ZIP-RC sampling is adaptive and generalizes across tasks of varying difficulty and across
models of varying size.

We will describe and present results that provide positive evidence for each hypothesis individually.

6.1 EXPERIMENTAL SETUP

Models. We use three open models spanning capability and scale: Qwen3-1.7B (Alibaba) in rea-
soning mode (Yang et al., 2025); LFM2-1.2B Math (Liquid AI), a compact mathematical-reasoning
model (LiquidAI, 2025); and LFM2-350M Math, a smaller variant targeting efficient math rea-
soning. Unless stated otherwise, decoding is identical across methods; ZIP-RC modifies only the
sampling policy at inference time.

Training data for ZIP-RC and baselines. We construct a mathematical training corpus by com-
bining DeepScaleR (Luo et al., 2025), the MATH training split (Hendrycks et al., 2021), and the
GSM8K training split (Cobbe et al., 2021). For each prompt, we generate two on-policy rollouts per
model, yielding roughly 100k rollouts in total. We then label each rollout for correctness against the
ground-truth answer. These labeled rollouts are used to train model-specific ZIP-RC predictors as
well as any learned baselines.

Baselines. We evaluate against the following baselines that consist of popular sampling strategies
that fall under the parallel sampling paradigm where multiple candidate samples are generated in
parallel and there is some selection method. Other notable paradigms include beam search or self-
refinement. However, we use parallel sampling methods, which are the most commonly used and
reported as they do not suffer from collapsing diversity issues that arise from branching and gen-
erating with similar prefixes or the ballooning latency issues from methods that generate samples
sequentially. We use stronger adaptations of Best-of-N (BoN), and an ablation of ZIP-RC that
performs pruning without the sampling utility optimization and instead uses the expected reward
directly.:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Performance of ZIP-RC sampling and baselines across all models and benchmarks. The
top half demonstrates the latency bound setting where α = 0.1, and the bottom half demonstrates the
compute bound setting where α = 1.0. Adjusting β in ZIP-RC sampling allows it to trade generation
cost for higher performance (similar to increasing N in BoN) while adjusting α allows it to adjust
the prioritization of compute and latency. By navigating the Pareto frontier and allocating compute
adaptively, ZIP-RC sampling significantly outperforms majority voting and other baselines.

(1) Majority Voting (MV) (self-consistency), which selects the most frequent final answer,
breaking ties uniformly at random (Wang et al., 2023a). This is an extremely common
method since it does not require any learned verifier.

(2) MV with length-based pruning, which discards very long, potentially looping samples (cut
at 8k tokens). This baseline acts as a sanity check to see if our latency gains only come
from preventing looping samples from generating to the maximum 32k generation length.

(3) Weighted BoN with external RM, which scores each sample with a separate reward model
trained on the same math corpus; because the RM reprocesses the full sequence without KV
cache, FLOPs roughly double relative to generation alone (Li et al., 2023). This baseline
demonstrates strong performance that goes beyond Best-of-N sampling.

(4) Weighted BoN with self-evaluation (GenRM), which replaces the external RM with trained
self-evaluations derived from the generator (Manvi et al., 2024; Zhang et al., 2025; Mahan
et al., 2024). We specifically include this baseline as it is another method that uses less
compute than external reward models for selection.

(5) ZIP-RC with reward-based pruning, which starts with a fixed pool and prunes any trajectory
whose predicted expected reward falls below a threshold using ZIP-RC’s real-time signal.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Method Gen. Cost AIME2024 AMC2023 MATH-500 GSM8K Mixed

Qwen3-1.7B

ZIP-RC sampling 1.43 65.8 90.9 94.1 92.2 92.2
Majority Voting 1.40 53.1 87.9 93.0 91.2 91.0
MV length-prune 1.46 25.1 58.5 84.7 91.6 88.0
Weighted BoN ext. RM 1.43 54.7 86.5 92.6 91.4 91.0
Weighted BoN Self-eval 1.40 59.4 89.1 93.6 91.6 91.6
ZIP-RC reward prune 1.33 43.3 86.0 90.3 89.6 88.9

LFM2-1.2B

ZIP-RC sampling 1.35 60.9 93.5 93.4 83.6 86.0
Majority Voting 1.60 49.6 90.6 91.8 81.4 83.8
MV length-prune 1.70 51.3 89.8 91.6 83.0 84.9
Weighted BoN ext. RM 1.53 50.3 89.0 91.1 79.8 82.5
Weighted BoN Self-eval 1.60 55.1 91.8 92.6 82.5 84.9
ZIP-RC reward prune 1.49 57.5 90.2 92.5 83.8 85.8

LFM2-350M

ZIP-RC sampling 1.49 38.8 83.9 86.1 70.1 74.1
Majority Voting 1.70 26.9 74.5 82.7 64.4 68.8
MV length-prune 1.66 28.3 74.8 83.6 66.5 70.6
Weighted BoN ext. RM 1.59 28.5 73.4 81.9 63.2 67.8
Weighted BoN Self-eval 1.70 31.4 77.6 84.4 66.8 71.1
ZIP-RC reward prune 1.27 21.7 69.7 83.2 63.0 67.8

Table 2: Performance and generation cost at α = 0.1 under matched-cost configurations. ZIP-RC
sampling uses β = 0.01 and a maximum of eight samples. MV uses three samples; MV length-
prune uses four; Weighted BoN Self-eval (GenRM) uses three; Weighted BoN with external RM
uses two; and ZIP-RC reward prune uses a 0.4 threshold with eight samples.

This acts as a natural and strong ablation to our sampling utility optimization as it directly
prunes weak samples that have less promise than those with high expected reward.

Benchmarks. We report performance on AIME 2024, AMC 2023, MATH-500 (Lightman et al.,
2023a), and GSM8K. We additionally evaluate on a Concatenated Mixed-Difficulty Benchmark
formed by concatenating the above, which probes adaptive allocation across difficulties.

Metrics. First and foremost we measure accuracy on each benchmark as it is an obvious and good
measure for performance and high-quality responses. Beyond performance, we measure efficiency
and latency. Normalized compute reports total FLOPs per prompt normalized by the FLOPs of a
single-sample generation for that prompt. We compute FLOPs with the standard 2N rule (propor-
tional to the sum of input and generated tokens) and account for KV caching where applicable.
Normalized best-case latency measures the lower bound on wall-clock time as the maximum num-
ber of sequential forward passes across the candidate set; with unconstrained data-parallel sampling,
latency is governed by the longest trajectory. Generation cost aggregates these via a linear combi-
nation, GenCost = α ·NormCompute+(1−α) ·NormLatency. Unless otherwise specified, we use
α = 0.1, which roughly balances compute and latency in typical parallel regimes (e.g., eight paral-
lel samples often behave like two to three serial generations in practice). For ZIP-RC sampling we
sweep β, which trades off expected quality against cost in the utility; when reporting matched-cost
comparisons we set β = 0.005 and cap the pool at 8 samples for fair comparison to other baselines.

6.2 ACCURACY OF ZIP-RC’S REAL-TIME PREDICTIONS

ZIP provides auxiliary predictions with zero overhead, but for this to be useful they must be reliable.
We first visually validate whether the joint reward-cost distribution predictions from ZIP-RC are
reasonable. To do so, we first obtain ground truth estimates of the joint distributions at the start of
generation on AMC 2023 + AIME 2024, which exhibit nontrivial error rates and diverse reasoning
trace lengths. The ground truth estimates are derived with 256 rollouts from Qwen3-1.7B and the
predictions are made using ZIP-RC trained with the same model. From the 10 random examples
from each benchmark in fig. 2 we can see that the predictions are calibrated and relatively accurate
in forecasting the distribution of outcomes.

To quantitatively validate the accuracy of the predictions, we measure the total variation at the be-
ginning of generation using the same ground truth joint distribution estimates, as well as standard
classification metrics for reward prediction using a threshold of 0.5. As seen in table 1, the total
variations from the ground truth confirm the visual validation that the predicted distributions are rel-
atively close to the ground truth, and the reward prediction at the end of generation further confirms

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

this; it demonstrates high accuracy in terms of F1 Score, accuracy, and recall for incorrect answers
(using a threshold of 0.5). Overall, these results indicate that ZIP-RC and ZIP predictions can be
calibrated and accurate despite being done in the same forward pass as next-token prediction.

6.3 TRACING THE QUALITY–COMPUTE–LATENCY FRONTIER

We next test whether maximizing the sampling utility with specific cost coefficients achieves con-
trollable tradeoffs. At each decision point, ZIP-RC evaluates meta-actions that serve three com-
plementary purposes. First, initiating new samples only when necessary and avoiding continuing to
generate low-value trajectories saves compute, which is reflected in the compute bound setting in the
bottom half of fig. 3 (α = 1.0), where ZIP-RC achieves compute savings. Second, penalizing the
continued sampling of long outliers avoids samples that would dominate latency. Third, expanding
the initial pool of samples while planning to use a near-term maximum horizon enables the search
to pursue early finishers without paying the full wall-clock cost of long runs. These mechanisms
together drive the latency savings observed in the top half of fig. 3 (α = 0.0). In both settings β is
successfully used similar to N in BoN in order to increase performance for more generation cost.
Parameters α and β together thus provide simple control knobs over compute–latency emphasis and
quality–cost trade-off.

Across both α regimes, ZIP-RC sampling traces smooth Pareto frontiers that strictly dominate MV
across benchmarks and scales validating that a single utility can jointly improve quality, compute,
and latency. When α = 0.1 (latency-emphasis), it substantially reduces cost, with the largest relative
reduction observed on LFM2-350M (up to roughly 40%). Because we cap at eight samples, the
frontier saturates once pass@8 performance is reached for a given β.

6.4 ADAPTIVE INFERENCE WITH ZIP-RC SAMPLING

Finally, we compare ZIP-RC sampling against all baselines at matched generation cost with α = 0.1
in table 2. Two patterns emerge: (i) at fixed cost, ZIP-RC improves accuracy relative to MV and
weighted BoN baselines; (ii) it allocates more samples to harder instances (AIME/AMC) and to
weaker models, while pruning aggressively on easier problems or stronger models.

At matched cost, ZIP-RC sampling improves accuracy over MV and weighted BoN on all models
and benchmarks. On harder subsets such as AIME 2024, gains reach up to 12% absolute while
using less average cost. The adaptive policy naturally uses more samples when the predicted reward
distribution is high-variance—where the expected benefit of best-of-N is greatest—and conserves
compute when one trajectory is expected to be dominant. This pattern is evident on the mixed-
difficulty benchmark (left-most column in fig. 3) and across model scales: weaker models and
harder tasks receive more samples, leading to higher overall accuracy.

Takeaways. ZIP-RC’s real-time predictions are accurate and reliable enough to enable principled
search during decoding. This yields (i) reliable mid-generation detection of weak or overlong tra-
jectories, (ii) smooth and tunable Pareto frontiers between quality, compute, and latency, and (iii)
adaptive allocation that consistently outperforms fixed-budget Best-of-N at the same or lower cost.

7 CONCLUSION

We introduced ZIP-RC, a zero-overhead framework for introspective inference that predicts future
reward and cost by repurposing existing logits. This enables principled, real-time decoding search
during inference, yielding up to 12% absolute accuracy gains over strong Best-of-N baselines at a
lower average cost, while tracing a smooth Pareto frontier between quality, compute, and latency.
These findings open natural extensions, such as applying it to diverse domains and testing fully
dynamic resource allocation across different models and reasoning modes. Ultimately, ZIP-RC
marks a conceptual shift from rigid, heuristic-based scaling to principled, utility-aware inference.
By empowering models to anticipate their success and computational cost, our work is a key step
toward more autonomous, reliable, and efficient LLMs. A limitation of our method is that we
rely on LLMs achieving sufficient diversity of samples during inference; namely, if we double the
number of initial samples, but the new samples are not sufficiently different, then our method and
any similar test-time compute method like BoN is unable to achieve higher performance. We believe
an important direction of future work is investigating how to improve diversity of samples during
inference, potentially by using a mixture of prompts or even models. Overall, we believe ZIP-RC
establishes a strong foundation for the next generation of introspective models and provides a timely,
impactful contribution to adaptive test-time scaling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Felix J Binder, James Chua, Tomek Korbak, Henry Sleight, John Hughes, Robert Long, Ethan Perez,
Miles Turpin, and Owain Evans. Looking inward: Language models can learn about themselves
by introspection. arXiv preprint arXiv:2410.13787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mehul Damani, Idan Shenfeld, Andi Peng, Andreea Bobu, and Jacob Andreas. Learning how hard
to think: Input-adaptive allocation of lm computation, 2024. URL https://arxiv.org/
abs/2410.04707.

Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
Andreas. Beyond binary rewards: Training lms to reason about their uncertainty. arXiv preprint
arXiv:2507.16806, 2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
els (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

11

https://arxiv.org/abs/2410.04707
https://arxiv.org/abs/2410.04707

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier, 2023. URL https://arxiv.
org/abs/2206.02336.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023a.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023b.

LiquidAI. Introducing lfm2: The fastest on-device foundation mod-
els on the market, 2025. URL https://www.liquid.ai/blog/
liquid-foundation-models-v2-our-second-series-of-generative-ai-models.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025. Notion Blog.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
https://arxiv.org/abs/2410.12832.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves
selective generation in large language models. In Proceedings on, pp. 49–64. PMLR, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008–3021, 2020.

12

https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models
https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2410.12832

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan, Yueqi Zhang, Boyuan Pan, Heda Wang,
Yao Hu, and Kan Li. Make every penny count: Difficulty-adaptive self-consistency for cost-
efficient reasoning. In North American Chapter of the Association for Computational Linguistics,
2024. URL https://api.semanticscholar.org/CorpusID:271957303.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023a. URL https://arxiv.org/abs/2203.11171.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
arXiv preprint arXiv:2408.00724, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning
in mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2025. URL https://arxiv.
org/abs/2408.15240.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595–46623, 2023.

13

https://api.semanticscholar.org/CorpusID:271957303
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SAMPLING AS DECISION-MAKING UNDER A META-MDP

We formalize the problem of test-time search as decision-making under a high-level MDP that we
dub a meta-MDP. We describe the components of the meta-MDP in detail below:

Meta-states. At timestep t, the meta-state is a prefix tree (trie) St rooted at the prompt x. Formally,
St = (Nt, Et, r) where Et ⊆ Nt × V × Nt is the set of directed edges (s, a, s′) labeled by tokens
a ∈ V , r is the root corresponding to the prompt, and each node s ∈ Nt represents the prefix
given by the concatenation of the root and the token labels along the path from r to s. Each node
also corresponds to a state in the base MDP as it is a sequence of tokens that the base policy has
generated. A prefix is finished if its last edge is the special token <EOS>, corresponding to the
terminal state in the base MDP. Initially, S0 = ({r}, ∅, r) where r is the root containing the prompt.
Conceptually, the meta-state therefore encodes all prefixes processed or generated by the policy.
In practice, the trie only requires space on the order of the total tokens generated to represent all
sequences, and their corresponding prefixes can be stored in the KV cache.

Meta-actions. At step t, the meta-action selects a finite multiset of prefixes (nodes) At ⊆ M(Nt)
to continue sampling from. Multiplicity encodes branching: if prefix s appears r times in At, then
s is sampled from r times independently. This definition encodes any viable single-token sampling
and any strategy one might want to perform. If s ∈ At−1 but none of its children appear in At, this
is equivalent to pruning. If s ∈ At already has children, this is equivalent to backtracking.

Meta-transition function. Given (St, At), for each occurrence of s ∈ At we sample a ∼ π(· | s)
and add the edge (s, a, s′) and its child s′ to the trie, yielding St+1. For notational simplicity, we treat
π as part of the transition dynamics of the meta-MDP so the transition function P (St+1 | St, At)
implicitly includes sampling from π. The process terminates at horizon T , corresponding to the
maximum allowed search steps.

Meta-reward function. At each step we incur a cost C(St, At) = β
(
α |supp(At)| + (1 − α)

)
,

where supp(At) is the set of distinct prefixes chosen in At (one forward pass per unique prefix)
and the second term accounts for step latency. The parameter α ∈ [0, 1] balances compute versus
latency, and β > 0 sets the trade-off between reward and cost. At the terminal timestep T , one
completed generation s∗T is selected, and the reward is the base MDP reward R(s∗T). Including this
cost term is essential, since otherwise one could trivially maximize reward by always branching.

Search strategies as meta-policies. A strategy µ is a policy in this meta-MDP: at each timestep
it maps the current prefix tree St to a multiset At = µ(St) of nodes to expand, and at horizon T
selects a finished f∗. BoN corresponds to placing N copies of the root in A0 and thereafter always
expanding every unfinished leaf until completion, finally selecting the highest-scoring candidate.
Beam search with width B instead enforces |At| = B at all times: at most steps At is just the B
current leaves, but at pruning intervals of length k it ranks leaves by a score, discards the weakest p,
and duplicates stronger ones so that the frontier is refilled back to B, thereby pruning and branching
in a controlled manner before ultimately selecting the best finished prefix at T .

A.2 COMPUTING AN OPTIMAL ZERO-OVERHEAD SEARCH STRATEGY

It is clear from our formalism what an optimal search strategy should be: at every timestep t, the
optimal strategy µ∗ should choose the meta-action that maximizes:

µ∗(St) = argmax
At

Qµ∗
(St, At), (9)

where we define a meta Q-function over the meta-MDP for a strategy µ as,

Qµ(St, At) = Eµ

[
R(s∗T)−

T−1∑
t′=t

C(St′ , At′) | St, At

]
. (10)

However, computing Qµ for arbitrary strategies µ is often intractable, primarily because we cannot
generate on-policy trajectories from µ without incurring too much computational overhead.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The sampling utility. To avoid having to generate rollouts, we consider a class of predefined
strategies at any timestep t as follows:

Mt = {µ : µ(· | St′) = f ({π(· | st)}st∈Nt
) , ∀t′ ≥ t} , (11)

where f denotes any function of the set of next-token distributions for every prefix in the meta-state.
Concretely, Mt consists of all strategies where future meta-actions are determined entirely from
generation behavior at timestep t. This essentially means for µ ∈ Mt, we can compute its value Qµ

without explicitly executing µ over future timesteps.

For any meta-state and meta-action at timestep t, we define the sampling utility to be the value of
some strategy in the aforementioned class of strategies Mt. Because each strategy performs worse
than optimal strategy µ∗ due to the imposed constraint, we choose the best-performing strategy in
Mt to act as the tightest possible lower-bound

U(St, At) = max
µ∈Mt

Qµ(St, At) ≤ Qµ∗
(St, At) . (12)

We show later how this maximization over Mt, as well as computation of Qµ for µ ∈ Mt, can
be done tractably using the quantities obtained via ZIP-RC, without any additional forward passes,
auxiliary models, or architectural modifications beyond standard decoding.

Finally, ZIP-RC sampling is defined as the strategy that maximizes our proposed sampling utility:

µZIP-RC(St) = argmax
At

U(St, At) . (13)

Intuitively, we can derive the following property of our learned strategy:

Theorem A.1. At every timestep t, our strategy µZIP-RC performs better than any predefined strategy
µ ∈ Mt. Namely, for any meta-state St, we have

QZIP-RC(St, µ
ZIP-RC(St)) ≥ Qµ(St, µ(St)) , ∀µ ∈ Mt . (14)

Proof. We can prove this via induction on t. Naively, this holds for terminal timestep t = T . For
any µ ∈ Mt, we let AZIP-RC

t = µZIP-RC(St) and Aµ
t = µ(St). Then, we have

QZIP-RC(St, A
ZIP-RC
t) = QZIP-RC(St+1, A

ZIP-RC
t+1)− C(St, A

ZIP-RC
t) . (15)

Therefore, ZIP-RC sampling is a powerful test-time search strategy that explicitly optimizes for
reward and generation cost.

Approximating the sampling utility. To approximate the sampling utility, we aim to answer two
questions: (1) for every meta-state St and action At, how do we search for a strategy µ ∈ Mt that
achieves a high value Qµ(St, At), and (2) how do we compute Qµ(St, At) tractably using only
predictions by ZIP-RC.

First, let us consider the naive strategy µRollouts of always selecting the unfinished leaf-node descen-
dants of the prefixes in the current action At, or in other words, obtaining rollouts or generations
using π starting from each selected prefix. At the end, µRollouts selects the generation with the
highest value V π(sT), similar to BoN. Its meta-MDP state-action value is exactly given by:

QRollouts(St, At) = EµRollouts

[
R(s∗T)−

T−1∑
t′=t

C(St′ , At′) | St, At

]
(16)

= E

[
max
s∈At

V π
T (s)− β

(
α
∑
s∈At

Lπ
T (s) + (1− α)max

s∈At

Lπ
T (s)

)]

= E
[
max
s∈At

V π
T (s)

]
− β

(
α
∑
s∈At

E[Lπ
T (s)] + (1− α)E

[
max
s∈At

Lπ
T (s)

])
. (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We can observe that the expression QRollouts contains several interpretable quantities. Namely, the
expected maximum value quantifies the marginal benefit of branching or pruning; the incremental
gain from increasing N is large when the value distribution has high variance, and conversely, the
marginal loss of pruning is small under low variance. Furthermore, the expected maximum remain-
ing tokens and the expected total tokens capture the marginal cost of branching; increasing N always
increases the expected total remaining tokens and the maximum remaining length, which drives up
latency, and pruning will always reduce the cost.

While µRollouts has several nice properties, the strategy itself is naive as it assigns maximum cost
for every new sample and does not consider that those samples can be pruned in the future. This
is exacerbated further by the empirical correlation between the length of reasoning traces and the
likelihood that they are incorrect. Being able to “bet” on an early finishing sample that has high
reward is crucial. To remedy this problem, we introduce an additional parameter into the meta-value
that enables the µRollouts strategy to prune each sample in the future at a predefined horizon.

Formally, let QRollouts(St, At;Ht) be the value of executing µRollouts, with the additional capability
that each active prefix s ∈ At will stop generating upon reaching length hs ∈ Ht, where Ht is a set
of lengths of size |At|. We can now define an improved lower bound by maximizing over Ht:

QRollouts(St, At;H∗
t) = max

Ht

QRollouts(St, At;Ht) ≥ QRollouts(St, At) , (18)

where it is easy to see that the our new meta-value is monotonically better than the value of the naive
µRollouts strategy without pruning capabilities. We use this to approximate the sampling utility:

U(St, At) = QRollouts(St, At;H∗
t) . (19)

Tractable computation of expectations. Next, we show how our sampling utility in Equation 19
can be computed tractably using only predictions by ZIP-RC. Predicting QRollouts is straightfor-
ward since we can estimate distributions over the value qVθ (·|st) and remaining-tokens qLθ (·|st)
conditioned on each prefix st using our previously proposed ZIP-RC. Hence, we can estimate by
computing:

E
[
max
s∈At

V π
T (s)

]
≈

BV∑
b=1

vb + vb+1

2

(
FV,max
θ (b | At)− FV,max

θ (b− 1 | At)
)
, (20)

E[Lπ
T (s)] ≈

BT∑
ℓ=1

tℓ + tℓ+1

2
qLθ (ℓ | s), (21)

E
[
max
s∈At

Lπ
T (s)

]
≈

BT∑
ℓ=1

tℓ + tℓ+1

2

(
FL,max
θ (ℓ | At)− FL,max

θ (ℓ− 1|At)
)
, (22)

where

FV,max
θ (b | At) =

∏
s∈At

FV
θ (b | s), FL,max

θ (ℓ | At) =
∏
s∈At

FL
θ (ℓ | s), (23)

FV
θ (b | s) =

∑
j≤b

qVθ (j | s), FL
θ (ℓ | s) =

∑
j≤ℓ

qLθ (j | s). (24)

Now, to incorporate the predefined horizons Ht over all prefixes At, we modify the joint distribution
pθ(b, ℓ|s) to a capped joint pθ(b, ℓ|s;hs) that collapses probability mass beyond the cap hs into a
designated “clipped” state (b0, hs):

pθ(b, ℓ | s;hs) =


pθ(b, ℓ | s), ℓ ≤ hs,

1{b = b0, ℓ = hs}
∑
b′

∑
ℓ′>hs

pθ(b
′, ℓ′ | s), ℓ > hs .

(25)

This construction ensures that all probability mass corresponding to continuations exceeding the
allowed horizon is reassigned to a truncated state at ℓ = hs, while the value component is collapsed
to the designated base bin b0 to reflect the forfeited reward from pruning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

From the capped joints, we can recover the corresponding marginal distributions:

qVθ (b | s;hs) =

BT∑
ℓ=1

pθ(b, ℓ | s;hs), qLθ (ℓ | s;hs) =

BV∑
b=1

pθ(b, ℓ | s;hs). (26)

These capped marginals directly encode the expected effect of planned pruning on both value and
remaining length for each prefix. Notice that this is only possible by modeling the joint distribution
as ZIP-RC is defined and is not possible with only the two marginal distributions. Thus, we demon-
strate that we are able to compute our sampling utility in Equation 19 using only our zero-overhead
predictions from ZIP-RC.

Summary. ZIP-RC sampling defines a meta-policy that, at each meta-state St, selects the meta-
action At—a multiset of prefixes to expand for one decoding step—that maximizes the sampling
utility in eq. (19). This utility is the state–action value of the best policy in the predefined strat-
egy class Mt, whose future behavior is fixed. Because ZIP-RC sampling re-optimizes At at every
timestep, it adapts online to the stochastic evolution of the prefix tree: if current trajectories are pro-
jected to be costly or low-value, it can immediately redirect computation elsewhere. As formalized
in eq. (14), this dynamic strategy is guaranteed to perform at least as well as any predefined policy
in Mt.

To approximate the sampling utility tractably, we use the value of the best rollouts-with-pruning
strategy QRollouts(St, At;H∗

t), in which each prefix may continue only up to an optimized (and
possibly distinct) horizon. This value can be computed in closed form using ZIP-RC’s joint reward–
cost predictions. Concretely, for every prefix s ∈ At, we: (i) obtain its predicted joint distribution
pθ(b, ℓ | s); (ii) apply the prefix-specific horizon using the capped construction in eq. (26); and (iii)
compute the expectations of the required order statistics using eq. (22). This yields a fully tractable,
zero-overhead estimate of the sampling utility for any candidate meta-action.

A.3 ZIP-RC IMPLEMENTATION DETAILS

Remaining-token discretization. For the joint ZIP-RC head, we discretize the remaining-length
variable Lπ

T (st) using logarithmic bins. Let {tℓ}BT+1
ℓ=1 denote the bin boundaries, and define bin ℓ as

[tℓ, tℓ+1) with representative value (tℓ + tℓ+1)/2. To obtain fine resolution for short continuations
while keeping BT small, we collapse all very short lengths into a single initial “startup” bin and set
the remaining boundaries to grow as powers of two. This construction preserves precision where it
matters while limiting the number of reserved tokens required for ZIP-RC.

KL weight. In practice, the KL term is a very small component of the total loss because the
policy remains close to the original policy as seen in fig. 4. Accordingly, we use a relatively large
coefficient αKL, typically in the range 10–100.

Figure 4: KL divergence from the original policy during training of ZIP-RC with and without the
KL term. Using αKL = 10 keeps the KL nearly zero throughout training, stabilizing around 0.005.
Without the KL term, the policy eventually changes, emphasizing the importance and effectiveness
of this component of the ZIP objective. We used the same training data as in our main experiments.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Temporal smoothing. Token-level ZIP-RC predictions can be noisy. At inference time we option-
ally smooth the joint by averaging the last W predictions along the current trajectory: for a prefix st
we set

p̄θ(b, ℓ | st) =
1

W

W−1∑
w=0

pθ(b, ℓ | st−w), (27)

where the sum runs over the previous non-terminal prefixes on the same path. We use p̄θ in place of
pθ when computing the ZIP-RC marginals and the sampling utility.

A.4 ZIP-RC SAMPLING IMPLEMENTATION DETAILS

Normalization of cost term β. Because rollout lengths can differ by orders of magnitude across
prompts, we rescale the cost coefficient β by a per-prompt estimate of the typical total token count.
At decision step t, we use the normalized coefficient

β̃t =
β

B̄t
, where B̄t =

1

|At|
∑
s∈At

(
|s|+ E[Lπ

T (s)]
)
. (28)

Here |s| is the current length of prefix s, and E[Lπ
T (s)] is its predicted remaining tokens from ZIP-

RC. This keeps the reward–cost tradeoff stable across prompts with very short or very long genera-
tions.

Practical reduction of the search space. The full meta-action space over multisets of nodes in
the prefix tree is extremely large, and jointly optimizing per-prefix horizons is combinatorial. In
our implementation we therefore operate within a structured subclass of meta-actions and horizons.
First, at timestep t we restrict candidate meta-actions to multisets over the root and the unfinished
leaves of St with multiplicity only allowed at the root, and further downselect to a small set of
prefixes prioritized by higher predicted value and lower predicted remaining length under ZIP-RC.
Second, when computing the sampling utility we use a single shared horizon ht for all active pre-
fixes, rather than independent horizons per prefix, reducing the search over pruning schedules to
a one-dimensional search over ht. Finally, instead of recomputing µZIP-RC(St) at every token, we
update the meta-action only at fixed intervals and simply continue all currently active prefixes in
between. These design choices substantially reduce the search space while preserving an expressive
and adaptive family of strategies. This represents just one concrete instantiation of our framework;
many other reductions are possible.

A.5 ZIP-RC-LITE

We add an ablation we refer to as ZIP-RC-Lite where we use the ZIP-RC objective described in
eq. (3) with the KL term removed, keeping only the output head of the language model trainable
while freezing the rest of the model. As shown in fig. 5 and table 3, we find that ZIP-RC-Lite is
able to non-trivially predict the joint distribution but unsurprisingly struggles to do so as accurately
as ZIP-RC. Its predictions are poorly calibrated and may not be suitable for interpretability of the
generation process and output. Despite this, we find that ZIP-RC-Lite search provides substantial
gains with respect to baselines in the latency-bound setting with α = 0.1, suggesting that predicting
the expected reward and remaining length to any degree is useful for pruning overly long trajectories
as seen in the first row of fig. 6. However, we do find that ZIP-RC-Lite substantially over-allocates
compute in the compute-bound setting with α = 1.0 due to overestimating the variance of the
expected reward, resulting in poor efficiency as seen in the second row of fig. 6. Overall, while
ZIP-RC is clearly more calibrated and accurate, ZIP-RC-Lite is a compelling alternative if one does
not want to keep the whole model trainable.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: Similar to the demonstration of ZIP-RC’s joint distribution prediction in fig. 2, we vi-
sualize the joint distribution predictions from ZIP-RC-Lite and compare them with ground truth
estimates. While the predictions correlate with the ground truth, ZIP-RC-Lite tends to produce
more similar-looking distributions across prompts and overestimates variance compared to ZIP-RC.

Beginning (Reward+Cost) End (Reward)

Method Total Variation F1 Score Accuracy Recall (Incorrect)

ZIP-RC 0.46 0.91 0.88 0.82
ZIP-RC-Lite 0.63 0.82 0.71 0.12

Table 3: Similar to the evaluation of ZIP-RC in table 1, we show the prediction accuracy of ZIP-
RC-Lite at the beginning and end of generation. The results indicate that ZIP-RC-Lite predicts the
joint distribution non-trivially, but less accurately than ZIP-RC.

Figure 6: Similar to the demonstration of ZIP-RC sampling in fig. 3, we present results with ZIP-
RC-Lite search in green, indicating it is able to provide significant gains, albeit lower than ZIP-RC
sampling, especially in the compute-bound setting. This suggests that predicting the joint reward-
cost distribution to any non-trivial degree is helpful in allocating test-time compute more optimally.
However, the results in the compute-bound setting indicate that ZIP-RC-Lite’s overestimation of
variation in the expected reward distribution results in over-allocation of compute.

19

	Introduction
	Related Work
	Preliminaries
	Zero-Overhead Inference-time Prediction of Reward & Cost
	Test-time Compute using ZIP-RC (ZIP-RC sampling)
	Experiments
	Experimental Setup
	Accuracy of ZIP-RC’s real-time predictions
	Tracing the quality–compute–latency frontier
	Adaptive inference with ZIP-RC sampling

	Conclusion
	Appendix
	Sampling as Decision-Making Under a Meta-MDP
	Computing an Optimal Zero-overhead Search Strategy
	ZIP-RC Implementation Details
	ZIP-RC Sampling Implementation Details
	ZIP-RC-Lite

