Under review as a conference paper at ICLR 2026

ZIP-RC: ZERO-OVERHEAD INFERENCE-TIME
PREDICTION OF REWARD AND COST FOR ADAPTIVE
AND INTERPRETABLE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models excel at reasoning but lack key aspects of introspection,
including the ability to anticipate their own success and the computation required
to achieve it. Humans use real-time introspection to decide how much effort to
invest, when to make multiple attempts, when to stop, and when to signal success
or failure. Without this ability, test-time scaling methods such as Best-of-N drive
up cost and latency by using a fixed budget of samples regardless of the marginal
benefit of each one at any point in generation. Worse, the absence of confidence
signals can mislead people, prevent appropriate escalation to better tools, and un-
dermine trustworthiness. Learned verifiers or reward models can provide such
confidence estimates, but these add substantial inference cost by requiring extra
models or forward passes. We present ZIP-RC, an adaptive inference method that
equips models with zero-overhead inference-time predictions of reward and cost.
At every token during generation, ZIP-RC reuses reserved or unused logits in the
same forward pass as next-token prediction to output a joint distribution over final
reward and remaining length—no extra models, architecture change, or inference
overhead. This full joint distribution is used to compute a sampling utility which
is the linear combination of the expected maximum reward, total compute, and la-
tency of set of samples if generated to completion. During inference, we maximize
this utility with meta-actions that include choosing the number of initial samples,
immediate pruning, and planned future pruning. On mixed-difficulty mathemati-
cal benchmarks, ZIP-RC improves accuracy by up to 12% over majority voting at
equal or lower average cost, and traces smooth Pareto frontiers between quality,
compute, and latency. By providing real-time reward—cost introspection, ZIP-RC
allows models to reason adaptively and more efficiently.

1 INTRODUCTION

The rapid evolution of large language models (LLMs) has enabled unprecedented capabilities in
complex tasks ranging from general question-answering to automated coding and mathematical rea-
soning (Brown et al.,[2020; |Kojima et al., 2022; Wei et al.,|2022)). To become truly reliable, however,
LLMs must develop a capacity for introspection: the ability to assess their own progress and antic-
ipate the effort required to succeed. Humans can be instrospective and can effectively act upon this
information to make better decisions. If a model could predict its future success (reward) and the re-
sources needed to achieve it (cost), it could allocate compute more effectively, expose likely failure
modes before they occur, and provide transparent signals about confidence and anticipated “thinking
time.” A key obstacle has been that such introspection typically requires auxiliary mechanisms that
add nontrivial computational overhead and complexity.

The need for introspection is growing more urgent as reasoning traces continue to lengthen. Recent
work shows that scaling test-time compute through reasoning often yields larger performance gains
than simply increasing model size (Wang et al.| [2023b} [Yao et al.| 2023 Jaech et al., |2024; [Snell
et al.l 2024} |Guo et al.l 2025)). But performance has scaled only logarithmically with additional
computation, forcing models to produce ever longer chains of thought—sometimes tens of thousands
of tokens today and plausibly orders of magnitude more in the future (Wu et al.,|2024). With time
as a fundamental limiting resource, a critical question is how to use a fixed wall-clock budget to
achieve the highest performance possible.

Under review as a conference paper at ICLR 2026

A promising approach is the canonical test-time scaling method Best-of-N (BoN) sampling, which
generates N candidates and selects the best using a learned verifier, reward model, or majority vote
(Cobbe et al., [2021bj [Zheng et al.| 2023} [Kwon et al., 2023} [Lightman et al., [2023b; |Wang et al.,
2023b). While appealing in theory due to its parallelism, BoN is not adaptive: every trajectory is
carried to completion regardless of promise. On easy tasks this wastes computation, and on hard
tasks it inflates latency, since wall-clock time is governed by the longest generation and both length
and total compute grow with N (Leviathan et al., [2023). What is missing is a way for models to
anticipate which samples are worth continuing and which should be abandoned, so that parallel
effort is concentrated on trajectories most likely to succeed and fastest to complete.

Early-stopping and pruning methods aim to reduce BoN’s inefficiency by terminating unpromising
samples mid-generation (Fu et al.l |2025; |[Huang et al., 2025). These approaches are valuable first
steps toward adaptivity, but they typically rely on scalar signals—such as a confidence score from
a classifie—or on simple heuristics. This creates two limitations. First, a scalar cannot capture
the central reward—cost trade-off: a low-confidence trajectory may be worthwhile if nearly finished,
while a high-confidence one may be impractical if it implies a long, costly continuation. Second,
these methods do not quantify the marginal benefit of drawing more initial samples, which depends
on the entire reward distribution rather than its expectation. As a result, such strategies can reduce
compute in some cases but often fail to improve wall-clock time, falling short of the broader goal
of enabling models to allocate compute adaptively—expending more effort on difficult queries and
less on easy ones (Manvi et al.l 2024; \Graves, [2016)).

We introduce ZIP-RC, an adaptive inference framework that addresses these limitations by pro-
viding zero-overhead, inference-time predictions of the joint distribution over reward and cost. At
each decoding step, unused vocabulary logits parameterize a joint distribution over final reward and
remaining generation length. Access to the full joint—not just a scalar—enables order-statistic cal-
culations that quantify the marginal utility of meta-actions such as pruning or spawning additional
samples. For example, when the predicted reward distribution has high entropy, allocating more
samples can substantially increase the expected maximum reward. We maximize a sampling utility
that explicitly balances accuracy, compute, and latency through a linear combination of their ex-
pectations. The coefficient « controls the emphasis on compute versus latency, while 5 trades off
reward against cost. Optimizing this utility produces the behaviors observed in our experiments:
when latency is prioritized, ZIP-RC spawns larger initial pools and schedules early pruning to chase
an early finisher; when compute is prioritized, it prunes low-value trajectories aggressively and al-
locates more samples only when they are likely to pay off (see Figure ?7?).

Experiments on mixed-difficulty mathematical benchmarks show that ZIP-RC improves accuracy by
up to 12% over majority voting while using less average cost. By adjusting the utility coefficients, it
traces smooth Pareto frontiers between accuracy, compute, and latency. We contribute a method for
zero-overhead inference-time prediction of the joint distribution of reward and cost which enables
models to be introspective for more interpretable generations and the maximization of a sampling
utility to improve performance with fixed compute and latency.

2 RELATED WORK

Improving the efficiency and reliability of LLM reasoning requires both new methods for guiding
generation and principled strategies for allocating computational resources at inference time. Our
work builds on three key areas of research: the use of verifiers for response selection, process-level
rewards for fine-grained feedback, and adaptive inference strategies for efficient computation.

Verifiers and reward models for output selection. A common approach to enhancing LLM per-
formance is to train an external verifier or reward model (RM) to assess the quality of complete
responses. Such models provide outcome-based feedback, typically assigning a scalar score or
probability of correctness to an entire output sequence. Outcome RMs have been widely used in
reasoning and alignment works, from math problem solving to preference-based fine-tuning (Cobbe
et al., 2021b; [Yu et al.| 2023} [Stiennon et al., 2020). They can be integrated during training, as in
reinforcement learning settings (Ouyang et al., [2022} Bai et al., 2022), or applied at inference time
through selection strategies such as Best-of-N sampling (Cobbe et al.| 2021b; L1 et al} [2022). Re-
cent work has explored unifying the generator and verifier, using the model’s own logits for certain
tokens as a proxy for a reward model (Ren et al.,|2023)). Our work extends this introspective direc-

Under review as a conference paper at ICLR 2026

tion, moving beyond scalar correctness prediction to modeling a joint distribution over the expected
future reward and computational cost at every token.

Process-based rewards for fine-grained feedback. A limitation of outcome-supervision is its
reliance on a sparse reward signal that makes credit assignment challenging, especially for long rea-
soning chains. Process-based reward models (PRMs) instead score intermediate steps via human
annotation (Lightman et al. [2023b)), LLM-as-judge (Zheng et al.l [2023)), or automated token-level
value estimates. These automated estimates can be generated by propagating final outcome rewards
back to individual tokens (Liu et al., 2024) or through other value estimation techniques (Uesato
et al.|[2022; Luo et al., [2024). While most PRMs aim to improve the training signal, our goal is dis-
tinct: we use predictive feedback in real time to guide inference itself. Closest to the calibration side
of this literature, |Damani et al.|(2025) augment a binary correctness reward with a confidence score
to improve model calibration. Our approach is complementary: rather than training for calibrated
confidence, we predict a joint distribution over future reward and future cost, turning process-level
signals into a direct control knob for utility-aware inference.

Adaptive inference and introspective models. Our work enables a form of adaptive inference, a
long-standing goal in machine learning (Graves| 2016; Bengio et al.,|2015)) that has become increas-
ingly critical for large models (Snell et al.,2024). This direction has recently been explored through
methods that prune unpromising generation paths. For instance, recent methods terminate samples
based on mid-generation confidence scores(Manvi et al., [2024} |[Fu et al., 2025) or prune exploration
based on step-wise consistency checks (Aggarwal et al., [2023). We advance this line of work with
a more general formulation: instead of relying on simple heuristics for pruning, we use our joint
reward-cost predictions to explicitly optimize a utility function. This enables a richer set of meta-
actions, such as dynamically resizing the sample pool and reallocating budget across trajectories.
Conceptually, our approach parallels the integration of value functions with search in reinforcement
learning (Silver et al., |2016), where predictive signals guide exploration. It is also complementary
to inference optimization techniques like speculative decoding (Leviathan et al., 2023)), which ac-
celerate generation at the token level. By providing real-time estimates of success and cost, the
predictions from ZIP-RC contribute to a broader vision of introspective models that report their
internal states (Binder et al., 2024; |Kadavath et al.| |2022), enhancing efficiency and interpretability.

3 PRELIMINARIES

Generation as a token-level MDP. We formalize text generation as a finite-horizon Markov De-
cision Process (MDP), following Ramamurthy et al.| (2022). The MDP is defined by the tuple
M = (S, A, R, P,v, H) over a finite vocabulary V, where S is the state space, and A the action
space, R the reward function, P the transition function, v € [0, 1] the discount factor, and H the
horizon. Given an input prompt x = (zg, . .., Z,,) consisting of tokens in the vocabulary z; € V,
the initial state is so = x. At timestep ¢, the LLM acts as a policy 7(a¢|s;) that outputs the probabil-
ity distribution over actions a; € V. The transition function P deterministically appends a; to state
s¢, yielding next state s;11 = (xg,...,%m, a0, ---,a:). The episode terminates when the model
emits an end-of-sequence token <EOS> or the length of the generated sequence reaches the horizon
H. Upon termination at timestep /, the environment returns a terminal reward R(sy,) € [0, 1], where
we bound the reward without loss of generality. We define the value of any state s; under policy 7 as

the expected discounted terminal reward from that state onward V™ (s;) = E, [Zf:t 'yh*tR(sh,)} .

Best-of-IN. Best-of-V (BoN) is an inference-time selection mechanism that decouples generation
from evaluation to improve output quality. Given a prompt x and a generator policy 7, the method
draws N independent and identically distributed (i.i.d.) completions Y1) ..., Y (™) from the pol-
icy. A learned verifier v sequences — R, typically a reward model, then assigns a scalar score to
each complete sequence. The final output is the completion with the highest score, selected as

Y0 st i* €arg max V(Y(i)).
i€{1,...,N}

The selection depends only on the relative ordering of scores from V() ties are broken arbitrarily.

4 ZERO-OVERHEAD INFERENCE-TIME PREDICTION OF REWARD AND COST

ZIP-RC equips LLMs with prediction of auxiliary signals at inference time that allows them to
optimize inference-time search for output quality and computation cost, and adapt the sampling

Under review as a conference paper at ICLR 2026

strategy depending on input. The core is a lightweight mechanism, ZIP, that lets the model produce
auxiliary predictions in the same forward pass as next-token prediction, yielding zero overhead
relative to generating tokens without ZIP predictions. We realize ZIP by mapping a set of reserved
vocabulary positions to the auxiliary prediction head; their logits are read every step and are masked
from sampling, so decoding is unchanged and no extra passes or parameters are required.

4.1 ZIP AND ZIP-RC

Zero-overhead inference-time prediction (ZIP). Let)V be the vocabulary and R C V a set of
reserved positions. At step t, the model outputs logits over V. ZIP interprets the slice on R as
parameters of an auxiliary predictor and applies any task-appropriate loss Ly, on that slice (e.g.,
MSE for scalars, sigmoid NLL for Bernoulli, cross-entropy for categorical). The reserved logits are
excluded from next-token sampling. To ensure this auxiliary task does not affect the model’s gen-
erative capabilities, we add a KL divergence term that penalizes deviations from a frozen reference
policy e on the non-reserved vocabulary:

L= »Caux + aky, KL(WH(| V\R) || ,/Tref(' | V\R))

ZIP is agnostic to what is predicted and which loss is used; it only standardizes how predictions are
produced at token time with zero overhead.

Z1P of reward and cost (ZIP-RC). We instantiate ZIP so that the reserved slice parameterizes a
joint distribution over (i) an estimated value of the eventual completion and (ii) the remaining tokens
to completion. We use a discrete grid
. B, _ . B _ _
{vi = iAv}i2y < {{; = exp(jAL) =1 Av = % Al = A

»—17 Br—-1?

giving fine resolution at short lengths and coverage at long lengths. Let Py (b, £) denote the joint table
for sample s at prefix s;; we read it by applying a softmax over the reserved slice that is reshaped to
B, x Br. From rollouts (x,y,r), we obtain for each prefix a value label V (x,y) (from a critic or
separate value model) and a tokens-to-go label; with bin indices (i*, j*) we train with cross-entropy
on the joint:

Loy = —log Ps(i*, 7%),

optionally combined with the policy-preservation KL above.

Why estimated value (and a max). Let V(D |y (V) 1 m(- | x) be completions for a prompt,
and let V be the learned verifier used to select the output in Best-of-N. The selector returns * €
argmax; V(Y®), hence its score is max; V(Y®). The quality term we can control and that
directly predicts the selector’s output is

E[V(Y))] = E[max V(Y®)].

Modeling the joint over (V, tokens-to-go) (rather than realized reward) aligns the sampling objec-
tive with the actual selector, avoids environment/noise variance in R, and—because V(Y (")) are
independent across samples—enables closed-form order-statistic expectations used below.

4.2 ADAPTIVE AND INTERPRETABLE INFERENCE-TIME SEARCH (ZIP-RC SAMPLING)
Sampling utility. For each unfinished sample s € S, let Ps(b,) be its joint over value bins b€ [B,)]

and tokens-to-go bins ¢ € [Br] with representatives @, ;. View (Vj, L) ~ P,. With tradeoffs 3 > 0
and o € [0, 1],

U((PY) =B maxvi| - 6(aB[S st + - Blmaxr]).

se

Compute terms from { P, } via marginals and discrete order statistics. Define

@ (0) =D Pu(b,0), () =) Pu(b,0),
0 b

and CDFs F}*!(b) = 3, ¢ (j), Fi(£) = 32,4 ¢:°(5)- Since decoding is i.i.d. the variables
{(Vs, L) }scs are independent across samples, so

Fi®) = [TEM). E2s0) =[] F0), Fi(0) = FR5(0) = 0.

max max max max

Under review as a conference paper at ICLR 2026

Then
B,
[maxV] Z b FI\;ngx Fr\r,g}x b— 1 [ZL 1 Zztzqu
b=1 o s (=1
E{msast] = Z (FI;O;(X(@ Fyos (€ — 1))
/=1

Heterogeneous samples (e.g., different prompting styles or reasoning depths) are supported; o and
[can be tuned to reflect their compute/latency tradeoffs.

Meta actions (as sets of transforms). Let P = {P;}scs be the current multiset of joints. A meta
action a is a set of per-sample primitives producing @, (P):

* Prune-now: delete P, from P (the sample will not be extended).
* Plan future prune at bin k€ {1, ..., Br—1}:

Ps(bv E)v < K,
TelPs](b,6) = § 1{b = by, £ = H}Z ZPs(b',E’), otherwise,

b >k
where by is the value bin whose representative is closest to 0.

* Branch/backtrack: add a new joint Ps(,p) read from the predictor at a (current or past) prefix:
B,[P] =P U{PP}.
A meta action a is any finite set of such primitives; its effect is
2u(P) = (P\U) U {TulPis€ K} U (P :pen},

for a deletion set U C S (prune-now), a planning set K C S with per-sample plans «(s), and a
(possibly empty) set of branch/backtrack prefixes II.

Maximizing the sampling utility. At regular intervals (e.g., every K tokens), the controller solves

a* € argmax U(®.(P)),)

then applies only the immediate modifications—branching new samples, pruning-now (deletions),
and backtracking—before advancing to the next step. Planned future prunes (k) are not executed;
they provide lookahead to better evaluate immediate choices. For example, if many samples are kept
now, naive latency (max remaining tokens) may look large, but a near-future prune means a few can
finish soon while the rest can be cut early, lowering the effective latency.

5 EXPERIMENTS

Our experiments aim to test the following hypotheses:
(1) ZIP-RC can be trained to estimate value and generation cost with high accuracy.
(2) ZIP-RC can be tuned to balance between output quality, and compute cost and latency,
tracing a Pareto frontier over the quantities over strong inference baselines.
(3) ZIP-RC generalizes across tasks of varying difficulty and across models of varying size.

We will describe and present results that provide positive evidence for each hypothesis individually.

5.1 EXPERIMENTAL SETUP

Models. We use three open models spanning capability and scale: Qwen3-1.7B (Alibaba) in rea-
soning mode (Yang et al.,[2025); LFM2-1.2B Math (Liquid Al), a compact mathematical-reasoning
model (LiquidAlL [2025); and LFM2-350M Math, a smaller variant targeting efficient math rea-
soning. Unless stated otherwise, decoding is identical across methods; ZIP-RC modifies only the
sampling policy at inference-time.

Training data for ZIP-RC and baselines. We construct a mathematical training corpus by com-
bining DeepScaleR (Luo et al. 2025), the MATH training split (Hendrycks et al.l 2021), and the

Under review as a conference paper at ICLR 2026

GSMB&K training split (Cobbe et al |2021a). For each prompt, we generate two on-policy rollouts
per model, yielding roughly 100k rollouts in total. We then label each rollout for correctness against
the ground-truth answer. These labeled rollouts are used to train model-specific ZIP-RC predictors
as well as any learned baselines.

Baselines. We evaluate against the following baselines that consist of popular sampling strategies
that fall under the parallel sampling paradigm where multiple candidate samples are generated in
parallel and there is some selection method. Other notable paradigms include beam search or self-
refinement. However, we use parallel sampling methods are the most commonly used and reported
as they do not suffer from collapsing diversity issues that arise from branching and generating with
similar prefixes or the ballooning latency issues from methods that generate samples in series. We
use stronger adaptations of Best-of-N (BoN), and an ablation of ZIP-RC that performs pruning
without the sampling utility optimization and instead uses the expected reward directly.:

(1) Majority Voting (MV) (self-consistency), which selects the most frequent final answer,
breaking ties uniformly at random (Wang et al., [2023a). This is an extremely common
method since it does not require any learned verifier.

(2) MV with length-based pruning, which discards very long, potentially looping samples (cut
at 8k tokens). This baseline acts as a sanity check to see if our latency gains only come
from preventing looping samples from generating to the maximum 32k generation length.

(3) Weighted BoN with external RM, which scores each sample with a separate reward model
trained on the same math corpus; because the RM reprocesses the full sequence without KV
cache, FLOPs roughly double relative to generation alone (L1 et al., [2023)). This baseline
demonstrates strong performance that goes beyond Best-of-N sampling.

(4) Weighted BoN with self-evaluation (GenRM), which replaces the external RM with trained
self-evaluations derived from the generator (Manvi et al., 2024; Zhang et al., 2025; Mahan
et al.l 2024). We specifically include this baseline as it is another method that uses less
compute than external reward models for selection.

(5) ZIP-RC with reward-based pruning, which starts with a fixed pool and prunes any trajectory
whose predicted expected reward falls below a threshold using ZIP-RC’s real-time signal.
This acts as a natural and strong ablation to our sampling utility optimization as it directly
prunes weak samples that have less promise than those with high expected reward.

Benchmarks. We report performance on AIME 2024, AMC 2023, MATH-500 (Lightman et al.,
2023a), and GSMS8K. We additionally evaluate on a Concatenated Mixed-Difficulty Benchmark
formed by concatenating the above, which probes adaptive allocation across difficulties.

Metrics. First and foremost we measure accuracy on each benchmark as it is an obvious and good
measure for performance and high-quality responses. Beyond performance, we measure efficiency
and latency. Normalized compute reports total FLOPs per prompt normalized by the FLOPs of a
single-sample generation for that prompt. We compute FLOPs with the standard 2N rule (propor-
tional to the sum of input and generated tokens) and account for KV caching where applicable.
Normalized best-case latency measures the lower bound on wall-clock time as the maximum num-
ber of sequential forward passes across the candidate set; with unconstrained data-parallel sampling,
latency is governed by the longest trajectory. Generation cost combines these via a linear combina-
tion, GenCost = « - NormCompute + (1 — «) - NormLatency. Unless otherwise specified, we use
a = 0.1, which roughly balances compute and latency in typical parallel regimes (e.g., eight paral-
lel samples often behave like two to three serial generations in practice). For ZIP-RC sampling we
sweep 3, which trades off expected quality against cost in the utility; when reporting matched-cost
comparisons we set 3 = 0.005 and cap the pool at 8 samples for fair comparison to other baselines.

5.2 ACCURACY OF ZIP-RC’S REAL-TIME PREDICTIONS

ZIP provides auxiliary predictions with zero overhead, but for this to be useful they must be reliable.
We first validate whether correctness and length predictions are reasonable. We evaluate on AMC
2023 + AIME 2024, which exhibit nontrivial error rates and diverse reasoning trace lengths. For
correctness, we threshold the predicted probability at 0.5 and report F1, accuracy, and incorrect-
answer recall at three checkpoints (Beginning, Middle, End). For remaining length, we report
normalized mean absolute error (MAE).

Correctness predictions become strong by the middle and end of generation, with F1 near 0.9 on
Qwen3-1.7B and LFM2-1.2B (Table [T). Remaining-length estimates track coarse difficulty: nor-
malized MAE decreases as more context accrues (Table [2). The true joint distribution between the

Under review as a conference paper at ICLR 2026

End Middle Beginning
Model FI ~ Acc Recall | FI ~ Acc Recall | F1 Acc Recall

Qwen3-1.7B 091 088 082 |08 080 074 | 083 0.75 045
LFM2-12B 091 0.87 069 |0.89 085 080 | 0.82 073 035
LFM2-350M 0.80 0.82 087 | 0.76 0.79 0.89 | 0.69 0.70 0.70

Table 1: Correctness prediction at fixed threshold 0.5 on AMC 2023 + AIME 2024. We report F1,
accuracy, and recall on incorrect answers at three points in generation.

Model End Middle Beginning
Qwen3-1.7B 0.00 0.39 0.59
LFM2-12B 0.00 0.4l 0.55
LFM2-350M 0.00 045 0.69

Table 2: Normalized mean absolute error (MAE) of expected remaining-length predictions on AMC
2023 + AIME 2024. MAE at End is near zero since all sequences terminate.

expected reward and the remaining tokens will inherently have higher entropy at the beginning of
generation compared to the end. This means that the predictive performance with respect to samples
from that true distribution will be lower.

5.3 TRACING THE QUALITY—COMPUTE-LATENCY FRONTIER

We next test whether optimizing the sampling utility in Eq. (I)) achieves controllable tradeoffs. At
each decision point, ZIP-RC evaluates meta-actions that serve three complementary purposes. First,
pruning low-value trajectories saves compute, which is reflected in the first column of Figures
(aw = 1.0), where ZIP-RC achieves compute savings. Second, penalizing predicted long tails avoids
samples that would dominate latency. Third, expanding the initial pool of samples while planning
near-term prunes enables the model to pursue early finishers without paying the full wall-clock
cost of long runs. These two mechanisms drive the latency savings observed in the last column
(av = 0.0). When we balance compute and latency (o = 0.1), ZIP-RC combines all three behaviors,
tracing frontiers that improve both efficiency dimensions simultaneously. Parameters « and /3 thus
provide simple control knobs over compute—latency emphasis and quality—cost trade-off.

Across all o regimes, ZIP-RC yields consistent gains over MV (Figure[I). When a = 0.0 (latency-
emphasis), it substantially reduces normalized best-case latency, with the largest relative reduction
observed on LFM2-350M (up to 40%). At a = 0.1, ZIP-RC traces smooth Pareto frontiers that
strictly dominate MV across benchmarks and scales (Figure [2)), validating that a single utility can
jointly improve quality, compute, and latency. Because we cap at eight samples, the frontier saturates
once pass @8 performance is reached for a given S.

5.4 ADAPTIVE INFERENCE WITH ZIP-RC SAMPLING

Finally, we compare ZIP-RC against all baselines at matched generation cost near a = 0.1. Two
patterns emerge: (i) at fixed cost, ZIP-RC improves accuracy relative to MV and weighted BoN
baselines; (ii) it allocates more samples to harder instances (AIME/AMC) and to weaker models,
while pruning aggressively on easier problems or stronger models.

At matched cost, ZIP-RC improves accuracy over MV and weighted Bo/N on all models and bench-
marks (Table [3). On harder subsets such as AIME 2024, gains reach up to 12% absolute while
using less average cost. The adaptive policy naturally uses more samples when the predicted reward
distribution is high-entropy—where the expected benefit of best-of-N is greatest—and conserves
compute when one trajectory is already dominant. This pattern is evident on the mixed-difficulty
benchmark (Figure[3) and across model scales: weaker models and harder tasks receive more sam-
ples, leading to higher overall accuracy. The apparent early plateau of ZIP-RC and reward-pruning
variants is expected under the shared cap of eight samples, which bounds their attainable perfor-
mance at roughly strong Best-of-8.

Under review as a conference paper at ICLR 2026

a=0
- P!
.
=
< (]
= o
=
]
n
m
=
™
-
075 1.00 125 150 175 2.00 2.25
L]
[S0
§ .
g
@ c =01
r‘. © L]
- g
= £
L &
08 10 12 14 16 18 20
L
.)
@ o
=
-
m
<
]
3
(=4

10 11 12 13 14
Generation Cost x, = a- normalized compute + (1 —a) - normalized latency

—— Majority Voting @ ZIP-RC sampling w/ 8 samples maximum

Figure 1: Cross-model results on the concatenated benchmark at o € {1.0,0.1,0.0}. Rows corre-
spond to models (Qwen3-1.7B, LFM2-1.2B, LEM2-350M), columns to «. Majority voting is only
shown for reference to better demonstrate the behavior of changing « and /3 in the sampling utility
that our ZIP-RC sampling method uses.

MATH500 AMC2023 AIME2024
85 T
T 375
2 86 8 35.0
=
” 3251
5 "
2 75 30,0 §
n 82
s 275
™
5 8 70 2.0
1.0 15 2.0 25 3.0 1.00 125 150 175 200 225 1.00 125 150 175 200 225
_ y) p0001
o Pk e v

z
< o
= g

5
N E
4 8

b=
£ g
5
o
N
-
m
c
[
H
&

84

1.0 12 14 16 18 20 10 12 14 16 18 20

Generation Cost xo =a - normalized FLOPs + (1 —a)- in-series FLOPs (where a = 0.1)

— Majority Voting —— Best-of-N Weighted w/ external RM (2x compute) ~ «+-- ZIP-RC with reward-based pruning (w/ 8 samples)
----- Majority Voting w/ length-based pruning ~ —— Best-of-N Weighted w/ Self-evaluation/GenRM @ ZIP-RC sampling w/ 8 samples maximum

Figure 2: Performance versus generation cost at & = 0.1 across models (rows) and benchmarks
(columns). ZIP-RC consistently dominates MV at matched cost.

Takeaways. ZIP-RC’s real-time predictions enable principled inference-time control of sampling.
This yields (i) reliable mid-generation detection of weak or overlong trajectories, (ii) smooth and
tunable Pareto frontiers between quality, compute, and latency, and (iii) adaptive allocation that
consistently outperforms fixed-budget Best-of- N at the same or lower cost.

Under review as a conference paper at ICLR 2026

AIME2024 + AMC2023 + MATH500 + GSM8K
LFM 350M MATH LFM 1.2B MATH Qwen3 1.7B
=0.001

87
86
85
84
83
82
81

Performance

1.0 15 2.0 25 1.0 15 2.0 25 1.0 12 14 16 18 2.0
Generation Cost xo =a - normalized compute + (1 —a)- normalized latency (where a = 0.1)

—— Majority Voting —— Best-of-N Weighted w/ external RM (2x compute) -+ ZIP-RC with reward-based pruning (w/ 8 samples)
----- Majority Voting w/ length-based pruning Best-of-N Weighted w/ Self-evaluation/GenRM ® ZIP-RC sampling w/ 8 samples maximum

Figure 3: Concatenated benchmark at o = 0.1: ZIP-RC sampling achieves higher accuracy at lower
or equal generation cost across all models.

Model Method Gen. Cost | AIME2024 AMC2023 MATH-500 GSM8K | Concat
ZIP-RC Sampling 1.49 38.0 823 853 700 | 730
Majority Voting 170 26.9 745 8.7 644 | 688
MYV length-prune 1.66 28.3 74.8 83.6 66.5 70.6
LEM2-350M \yciohted BoN ext. RM 1.59 285 73.4 819 632 | 678
Weighted BoN Self-eval 1.70 31.4 776 844 668 | 711
ZIP-RC reward prune 1.27 21.7 69.7 83.2 63.0 67.8
ZIP-RC Sampling 122 61.0 93.8 933 837 | 861
Majority Voting 1.60 49.6 90.6 918 814 | 838
MYV length-prune 1.70 51.3 89.8 91.6 83.0 84.9
LFM2-1.2B \yeiohted BoN ext. RM 1.53 50.3 89.0 91.1 798 | 825
Weighted BoN Self-eval 1.60 55.1 91.8 92.6 82.5 84.9
ZIP-RC reward prune ~ 1.49 575 90.2 925 838 | 858
ZIP-RC Sampling 1.30 652 88.9 941 914 | 918
Majority Voting 1.40 53.1 87.9 930 912 | 910
Owens. 175 MV length-prune 1.46 25.1 58.5 847 916 | 880
B Weighted BoN ext. RM 1.43 547 86.5 926 914 | 910
Weighted BoN Self-eval ~ 1.40 59.4 89.1 936 916 | 916
ZIP-RC reward prune 133 43 86.0 903 89.6 | 889

Table 3: Performance and generation cost at & = 0.1 under matched-cost configurations. ZIP-RC
sampling uses 8 = 0.005, maximum of eight samples. MV uses three samples; MV length-prune
uses four; Weighted BoN Self-eval (GenRM) uses three; Weighted Bo/N with external RM uses
two; ZIP reward prune uses a 0.4 threshold with eight samples.

6 CONCLUSION

We introduced ZIP-RC, a zero-overhead framework for introspective inference that predicts future
reward and cost by repurposing existing logits. This enables principled, real-time control over gener-
ation, yielding up to 12% absolute accuracy gains over strong Best-of-N baselines at a lower average
cost, while tracing a smooth Pareto frontier between quality, compute, and latency. These findings
open natural extensions, such as applying it to diverse domains and testing fully dynamic resource al-
location across different models and reasoning modes. Ultimately, ZIP-RC marks a conceptual shift
from rigid, heuristic-based scaling to principled, utility-aware inference. By empowering models to
anticipate their success and computational cost, our work is a key step toward more autonomous,
reliable, and efficient LLMs. A limitation of our method is that our improvements rely on being
able to leverage a higher number of initial samples than sampling approaches like BoN that are non-
adaptive and do not prune. However, this means we rely on LLMs achieving sufficient diversity of
samples during inference; namely, if we double the number of initial samples, but the new samples
are not sufficiently different, then our method is unable to achieve higher performance. We believe
an important direction of future work is investigating how to improve diversity of samples during
inference, potentially via using a mixture of prompts or even models. Overall, we believe ZIP-RC
establishes a strong foundation for the next generation of introspective models and provides a timely,
impactful contribution to adaptive test-time scaling.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

In our work, we evaluate on existing public benchmarks for mathematical reasoning, whose datasets
can be found online. We also describe in detail the implementation of our method in both Section 4]
and Appendix[A.T] including hyperparameter configurations used, so a reader is able to reimplement
our method from scratch using this paper. Furthermore, for the camera-ready submission, we plan
to open-source the code we used to conduct our empirical evaluations.

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, et al. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with llms. arXiv preprint arXiv:2305.11860, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation
in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

Felix J Binder, James Chua, Tomek Korbak, Henry Sleight, John Hughes, Robert Long, Ethan Perez,
Miles Turpin, and Owain Evans. Looking inward: Language models can learn about themselves
by introspection. arXiv preprint arXiv:2410.13787, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021b.

Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
Andreas. Beyond binary rewards: Training Ims to reason about their uncertainty. arXiv preprint
arXiv:2507.16806, 2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

10

Under review as a conference paper at ICLR 2026

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
els (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
large language models better reasoners with step-aware verifier, 2023. URL https://arxiv.
org/abs/2206.02336.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023a.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023b.

LiquidAlL Introducing Ifm2: The fastest on-device foundation mod-
els on the market, 2025. URL |https://www.liquid.ai/blog/
ligquid-foundation-models-v2-our—-second-series—-of-generative—-ai-models.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li,
Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. arXiv preprint arXiv:2406.06592, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-
preview with a 1.5b model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-0Ol-Preview-with—-a-1-5B-Model-by-Scaling—-RL-19681902c1468005k
2025. Notion Blog.

Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
Jan-Philipp Frinken, Chelsea Finn, and Alon Albalak. Generative reward models, 2024. URL
https://arxiv.org/abs/2410.12832.

Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive inference-time compute: Llms can
predict if they can do better, even mid-generation. arXiv preprint arXiv:2410.02725, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Jie Ren, Yao Zhao, Tu Vu, Peter J Liu, and Balaji Lakshminarayanan. Self-evaluation improves
selective generation in large language models. In Proceedings on, pp. 49-64. PMLR, 2023.

11

https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models
https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2410.12832

Under review as a conference paper at ICLR 2026

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484—489, 2016.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008-3021, 2020.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023a. URL https://arxiv.org/abs/2203.11171l

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Yangzhen Wu, Zhiqging Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
arXiv preprint arXiv:2408.00724, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning
in mathematical reasoning. arXiv preprint arXiv:2311.09724, 2023.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction, 2025. URL https://arxiv.
org/abs/2408.15240.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

12

https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ZIP-RC IMPLEMENTATION DETAILS

Temporal smoothing. Token-level predictions can be noisy; we optionally average the most re-

cent W joints:
=
P _— (t—w)
Py = w Z Py ’

w=0

and use P, in place of P, during scoring.

Normalization for compute and latency terms. To avoid prompt-to-prompt drift when token
scales differ, we normalize the compute and latency components in by a per-prompt single-
sample token scale. At a decision step, let the current observed tokens for sample s be ¢2°%, and let
E[L,] be its expected tokens-to-go from P,. We estimate a reference denominator as the mean over

samples in the group:
1
D= — Z (t‘;"w + IE[LS]).
|S| ses

When scoring candidates, we replace the raw terms by their normalized forms, e.g.,

oK} L] — 0‘%: (1—Q)E{m§ust} — (1—a) W

This keeps the controller’s tradeoffs stable across tasks with very different token budgets.
Reducing action space. The full meta-action space is exponential ((’)(B}S‘)). We use a tractable

family per step: choose a subset U C S to prune-now (delete) and one shared future-prune bin
k€ {1,...,Br—1} applied via 7, to all remaining unfinished samples; branching/backtracking

only at the first step. This yields O(2!°! Br) candidates (with By = O(log H)). We further restrict
to unions of top-a by low E[L,] and top-b by high E[V],

Sa,p = TopTok(a) U TopVal(b),

giving O(|S|? Br) evaluations per decision step.

13

	Introduction
	Related Work
	Preliminaries
	Zero-Overhead Inference-time Prediction of Reward and Cost
	ZIP and ZIP-RC
	Adaptive and Interpretable Inference-Time Search (ZIP-RC Sampling)

	Experiments
	Experimental Setup
	Accuracy of ZIP-RC’s real-time predictions
	Tracing the quality–compute–latency frontier
	Adaptive inference with ZIP-RC sampling

	Conclusion
	Appendix
	ZIP-RC Implementation Details

