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ABSTRACT

Large language models excel at reasoning but lack key aspects of introspection,
including the ability to anticipate their own success and the computation required
to achieve it. Humans use real-time introspection to decide how much effort to
invest, when to make multiple attempts, when to stop, and when to signal success
or failure. Without this ability, LLMs struggle to make intelligent meta-cognition
decisions. Test-time scaling methods such as Best-of-N drive up cost and latency
by using a fixed budget of samples regardless of the marginal benefit of each one
at any point in generation, and the absence of confidence signals can mislead peo-
ple, prevent appropriate escalation to better tools, and undermine trustworthiness.
Learned verifiers or reward models can provide confidence estimates, but do not
enable adaptive inference and add substantial inference cost by requiring extra
models or forward passes. We present ZIP-RC, an adaptive inference method that
equips models with zero-overhead inference-time predictions of reward and cost.
At every token during generation, ZIP-RC reuses reserved or unused logits in the
same forward pass as next-token prediction to output a joint distribution over final
reward and remaining length—no extra models, architecture change, or inference
overhead. This full joint distribution is used to compute a sampling utility which
is the linear combination of the expected maximum reward, total compute, and
latency of set of samples if generated to completion. During inference, we max-
imize this utility with meta-actions that determine which prefix of tokens to con-
tinue or initiate sampling from. On mixed-difficulty mathematical benchmarks,
ZIP-RC improves accuracy by up to 12% over majority voting at equal or lower
average cost, and traces smooth Pareto frontiers between quality, compute, and
latency. By providing real-time reward–cost introspection, ZIP-RC allows models
to reason adaptively and more efficiently.

1 INTRODUCTION

The rapid evolution of large language models (LLMs) has enabled unprecedented capabilities in
complex tasks ranging from general question-answering to automated coding and mathematical rea-
soning (Brown et al., 2020; Kojima et al., 2022; Wei et al., 2022). To become truly reliable, however,
LLMs must develop a capacity for introspection: the ability to assess their own progress and antic-
ipate the effort required to succeed. Humans can be instrospective and can effectively act upon this
information to make better decisions. If a model could predict its future success (reward) and the re-
sources needed to achieve it (cost), it could allocate compute more effectively, expose likely failure
modes before they occur, and provide transparent signals about confidence and anticipated “thinking
time.” A key obstacle has been that such introspection typically requires auxiliary mechanisms that
add nontrivial computational overhead and complexity.

The need for introspection is growing more urgent as reasoning traces continue to lengthen. Recent
work shows that scaling test-time compute through reasoning often yields larger performance gains
than simply increasing model size (Wang et al., 2023b; Yao et al., 2023; Jaech et al., 2024; Snell
et al., 2024; Guo et al., 2025). But performance has scaled only logarithmically with additional
computation, forcing models to produce ever longer chains of thought—sometimes tens of thousands
of tokens today and plausibly orders of magnitude more in the future (Wu et al., 2024). With time
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Figure 1: Top left shows how ZIP repurposes reserved or unused logits in the output head of a lan-
guage model to instantiate auxiliary predictions, such as the grid mapping for the joint reward-cost
distribution that ZIP-RC uses. Top right demonstrates how ZIP-RC can provide real-time expected
reward and remaining length predictions. Finally, the bottom shows the joint distributions from
ZIP-RC and how they indicate optimal sampling strategies. ZIP-RC sampling uses these joint dis-
tributions to calculate a sampling utility to autonomously select meta-actions for optimal test-time
compute allocation.

as a fundamental limiting resource, a critical question is how to use a fixed wall-clock budget to
achieve the highest performance possible.

A promising approach is the canonical test-time scaling method Best-of-N (BoN) sampling, which
generates N candidates and selects the best using a learned verifier, reward model, or majority vote
(Cobbe et al., 2021; Zheng et al., 2023; Kwon et al., 2023; Lightman et al., 2023b; Wang et al.,
2023b). While appealing in theory due to its parallelism, BoN is not adaptive: every trajectory is
carried to completion regardless of promise. On easy tasks this wastes computation, and on hard
tasks it inflates latency, since wall-clock time is governed by the longest generation and both length
and total compute grow with N (Leviathan et al., 2023). What is missing is a way for models to
anticipate which samples are worth continuing and which should be paused or abandoned, so that
parallel effort is concentrated on trajectories most likely to succeed and fastest to complete.

Early-stopping and pruning methods aim to reduce BoN’s inefficiency by terminating unpromising
samples mid-generation (Fu et al., 2025; Huang et al., 2025). These approaches are valuable first
steps toward adaptivity, but they typically rely on scalar signals—such as a confidence score from
a classifier—or on simple heuristics. This creates two limitations. First, a scalar cannot capture
the central reward–cost trade-off: a low-confidence trajectory may be worthwhile if nearly finished,
while a high-confidence one may be impractical if it implies a long, costly continuation. Second,
these methods do not quantify the marginal benefit of drawing more samples, which depends on the
entire reward distribution rather than its expectation. As a result, such strategies can reduce compute

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

in some cases but often fail to improve wall-clock time, falling short of the broader goal of enabling
models to allocate compute adaptively—expending more effort on difficult queries and less on easy
ones (Manvi et al., 2024; Graves, 2016).

We introduce ZIP-RC, an adaptive inference framework that addresses these limitations by training
language models to provide zero-overhead, inference-time predictions of the joint distribution over
reward and cost. At each decoding step, unused vocabulary logits parameterize a joint distribution
over final reward and remaining generation length (see fig. 1). Access to the full joint—not just
a scalar—enables order-statistic calculations that quantify the marginal utility of continuing partial
samples or spawning additional samples. For example, when the predicted reward distribution has
high variance, allocating more samples can substantially increase the expected maximum reward.
We maximize a sampling utility that explicitly balances accuracy, compute, and latency through a
linear combination of their expectations. The coefficients of the linear combination can be tuned to
the desired balance of reward, compute, and latency. Optimizing this utility produces the behaviors
observed in our experiments: when latency is prioritized, ZIP-RC spawns larger pools of samples
and schedules early pruning to chase an early finisher; when compute is prioritized, it deprioritizes
low-value trajectories aggressively and allocates more samples only when they are likely to pay off.

Experiments on mixed-difficulty mathematical benchmarks show that ZIP-RC improves accuracy by
up to 12% over majority voting while using less average cost. By adjusting the utility coefficients, it
traces smooth Pareto frontiers between accuracy, compute, and latency. We contribute a method for
zero-overhead inference-time prediction of the joint distribution of reward and cost which enables
models to be introspective for more interpretable generations and the maximization of a sampling
utility to improve performance with fixed compute and latency.

2 RELATED WORK

Improving the efficiency and reliability of LLM reasoning requires both new methods for guiding
generation and principled strategies for allocating computational resources at inference time. Our
work builds on three key areas of research: the use of verifiers for response selection, process-level
rewards for fine-grained feedback, and adaptive inference strategies for efficient computation.

Verifiers and reward models for output selection. A common approach to enhancing LLM per-
formance is to train an external verifier or reward model (RM) to assess the quality of complete
responses. Such models provide outcome-based feedback, typically assigning a scalar score or
probability of correctness to an entire output sequence. Outcome RMs have been widely used in
reasoning and alignment works, from math problem solving to preference-based fine-tuning (Cobbe
et al., 2021; Yu et al., 2023; Stiennon et al., 2020). They can be integrated during training, as in
reinforcement learning settings (Ouyang et al., 2022; Bai et al., 2022), or applied at inference time
through selection strategies such as Best-of-N sampling (Cobbe et al., 2021; Li et al., 2022). Re-
cent work has explored unifying the generator and verifier, using the model’s own logits for certain
tokens as a proxy for a reward model (Ren et al., 2023). Our work extends this introspective direc-
tion, moving beyond scalar correctness prediction to modeling a joint distribution over the expected
future reward and computational cost at every token.

Process-based rewards for fine-grained feedback. A limitation of outcome-supervision is its
reliance on a sparse reward signal that makes credit assignment challenging, especially for long rea-
soning chains. Process-based reward models (PRMs) instead score intermediate steps via human
annotation (Lightman et al., 2023b), LLM-as-judge (Zheng et al., 2023), or automated token-level
value estimates. These automated estimates can be generated by propagating final outcome rewards
back to individual tokens (Liu et al., 2024) or through other value estimation techniques (Uesato
et al., 2022; Luo et al., 2024). While most PRMs aim to improve the training signal, our goal is dis-
tinct: we use predictive feedback in real time to guide inference itself. Closest to the calibration side
of this literature, Damani et al. (2025) augment a binary correctness reward with a confidence score
to improve model calibration. Our approach is complementary: rather than training for calibrated
confidence, we predict a joint distribution over future reward and future cost, turning process-level
signals into a direct control knob for utility-aware inference.

Adaptive inference and introspective models. Our work enables a form of adaptive inference, a
long-standing goal in machine learning (Graves, 2016; Bengio et al., 2015) that has become increas-
ingly critical for large models (Snell et al., 2024). Adaptive methods that use multiple models or
sequential sampling have been explored (Damani et al., 2024; Wang et al., 2024). A more recent
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direction has involved parallel sampling that includes the pruning of unpromising generation paths.
For instance, recent methods terminate samples based on mid-generation confidence scores(Manvi
et al., 2024; Fu et al., 2025) or prune exploration based on step-wise consistency checks (Aggarwal
et al., 2023). We advance this line of work with a more general formulation: instead of relying on
simple heuristics for pruning, we use our joint reward-cost predictions to explicitly optimize a utility
function. This enables a richer set of meta-actions, such as dynamically resizing the sample pool
and reallocating budget across trajectories. Conceptually, our approach parallels the integration of
value functions with search in reinforcement learning (Silver et al., 2016), where predictive signals
guide exploration. It is also complementary to inference optimization techniques like speculative
decoding (Leviathan et al., 2023), which accelerate generation at the token level. By providing
real-time estimates of success and cost, the predictions from ZIP-RC contribute to a broader vision
of introspective models that report their internal states (Binder et al., 2024; Kadavath et al., 2022),
enhancing efficiency and interpretability.

3 PRELIMINARIES

Generation as a token-level MDP. We formalize text generation as a finite-horizon Markov De-
cision Process (MDP), following Ramamurthy et al. (2022). The MDP is defined by the tuple
M = (S,A, R, P, γ,H) over a finite vocabulary V , where S is the state space, and A the ac-
tion space, R the reward function, P the transition function, γ ∈ [0, 1] the discount factor, and
H the horizon. Given an input prompt x = (x0, . . . , xm) consisting of tokens in the vocabulary
xi ∈ V , the initial state is s0 = x. At timestep t, the LLM acts as a policy π(at|st) that outputs the
probability distribution over actions at ∈ V . The transition function P deterministically appends
at to state st, yielding next state st+1 = (x0, . . . , xm, a0, . . . , at). The episode terminates when
the model emits an end-of-sequence token <EOS> or the length of the generated sequence reaches
the horizon H . Upon termination at timestep T , the environment returns a terminal reward R(sT ).
The discount factor is defined as γ = 1 and the value of any state st under policy π is the expected
terminal reward from that state onward V (st) = Eπ [R(sT ) | st].

Best-of-N. Best-of-N (BoN) is an inference-time selection mechanism that decouples generation
from evaluation to improve output quality. Given a prompt x and a generator policy π, the method
draws N independent and identically distributed (i.i.d.) terminated states s

(1)
T , . . . , s

(N)
T from the

policy. A learned verifier V̂ : V∗ → R, typically a reward model, then assigns a scalar score to each
terminated state. The final output is the state with the highest score, selected as

s∗T ∈ arg max
i∈[N ]

V̂ (s
(i)
T ) . (1)

The selection depends only on the relative ordering of scores from V̂ (·), ties are broken arbitrarily.

4 ZERO-OVERHEAD INFERENCE-TIME PREDICTION OF REWARD & COST

We introduce Zero-overhead Inference-time Prediction (ZIP), a method for extracting auxiliary sig-
nals during inference without extra models, architectural changes, or forward passes. ZIP repurposes
the logits of a small set of reserved tokens to parameterize these auxiliary predictions within the same
forward pass that generates the next-token probabilities. We then instantiate ZIP for reward and cost
prediction (ZIP-RC).

Zero-overhead inference-time prediction (ZIP). Let V be the vocabulary and R ⊂ V a fixed
contiguous set of reserved tokens. At decoding step t, the model produces logits zt ∈ R|V|. ZIP
interprets logits over R as parameters of an auxiliary predictor (e.g. via a softmax). A rough
visualization of this is shown in the top right of fig. 1. Before sampling, these logits are masked to
remove probability mass:

πθ(at | st) =


exp(zt[at])∑

v∈V\R exp(zt[v])
, at ∈ V \ R,

0, at ∈ R.

(2)

Thus, each forward pass yields both (i) the decoding distribution on V \R and (ii) auxiliary predic-
tions from zt[R], incurring zero additional cost at inference time.
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During training, we supervise the auxiliary head via a task-specific loss Laux applied to zt[R] (e.g.,
cross-entropy for categorical targets, Bernoulli NLL for binary targets, MSE for continuous targets),
while regularizing the policy toward a frozen copy of the original policy π:

L(st) = Laux(st) + αKL KL(πθ(· | st) ∥ π(· | st)) . (3)

ZIP is agnostic to the prediction target or loss, it simply standardizes how auxiliary predictions are
produced during inference, with zero inference overhead. An alternative that keeps the model frozen
is discussed in appendix A.5.

ZIP-RC: joint reward-cost distribution prediction. We use ZIP to predict a joint distribution
over the (expected) reward and remaining length of a rollout using π starting from any prefix st.
Given a stochastic rollout sT ∼ π(· | st), we can define the random variables

V π
T (st) = V (sT ), Lπ

T (st) = |sT | − |st|. (4)

where V (sT ) = E[R(sT ) | sT ] denotes its expected terminal reward (marginalizing environment
noise). In practice, we approximate V (sT ) with a realized V̂ (sT ) from a learned verifier. We
discretize the range of values into BV bins with boundaries {vb}BV +1

b=1 and lengths into BT bins with
boundaries {tℓ}BT+1

ℓ=1 , assigning one reserved token per (b, ℓ) using index in the output vocabulary
V given by ib,ℓ = iR + (b− 1)BT + (ℓ− 1), where iR is the index of the first reserved token. Let
zaux
t (b, ℓ) ≡ zt[rb,ℓ]. The joint distribution is

pθ(b, ℓ | st) =
exp(zaux

t (b, ℓ))∑BV

b′=1

∑BT

ℓ′=1 exp(z
aux
t (b′, ℓ′))

. (5)

A rough visual representation of the grid mapping and examples of this learned distribution is shown
in fig. 1. Given a completed trajectory sT , for each timestep we construct training targets for each
prefix st by computing (b∗, ℓ∗) such that

V̂ (sT ) ∈ [vb∗ , vb∗+1), |sT | − |st| ∈ [tℓ∗ , tℓ∗+1). (6)

Finally, we train with cross-entropy Laux(st) = − log pθ(b
∗, ℓ∗ | st), together with the policy-

preserving KL above. Other practical implementation details are discussed in appendix A.3.

Why expected reward instead of realized reward? It may initially seem unnatural to use an es-
timated value V̂ (sT ) by a trained critic rather than the realized reward. To explain this choice, let
s
(1)
T , . . . , s

(N)
T

i.i.d.∼ πθ(· | s0) be completions for a prompt, and V̂ the estimated value function used in
BoN selection. The chosen index s∗T = argmaxi V̂ (s

(i)
T ) yields score V̂ (s∗T ) = maxi∈[N ] V̂ (s

(i)
T ).

Modeling the distribution of possible terminal values V (sT ) via V̂ (sT ) rather than possible ter-
minal rewards R(sT ): (i) aligns with the actual selection objective, and (ii) admits closed-form
order-statistic expectations since noisy environment rewards from R(sT ) cannot be assumed to be
independent but its expectation V (sT ) can.

ZIP-RC for sample selection and interpretability. Using the learned joint distribution, we can
also compute individual marginal distributions:

qVθ (b | st) =
BT∑
ℓ=1

pθ(b, ℓ | st), qLθ (ℓ | st) =
BV∑
b=1

pθ(b, ℓ | st), (7)

which can be used to estimate the value and the expected remaining tokens to completion

V (st) = E[V π
T (st)] ≈

BV∑
b=1

vb + vb+1

2
qVθ (b | st), E[Lπ

T (st)] ≈
BT∑
ℓ=1

tℓ + tℓ+1

2
qLθ (ℓ | st). (8)

Here, the value estimation can be used for final sample selection and both the value and the expected
remaining tokens to completion act as confidence and “thinking time” signals. A rough visualization
of the interpretable signals is shown in the top right of fig. 1.
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5 TEST-TIME COMPUTE USING ZIP-RC (ZIP-RC SAMPLING)

While large language models are post-trained to maximize the likelihood of high-reward genera-
tions, they remain imperfect policies due to finite data and compute. Low-reward completions are
often sampled even when their deficiencies are apparent—either implicitly through low likelihood
or explicitly via external reward models. Even greedy decoding (temperature 0) does not guar-
antee high-likelihood or high-reward outputs. Thus, one-shot sampling is insufficient for reliably
accomplishing tasks. Test-time methods such as majority voting, BoN, Weighted BoN, and Pass@k
show the alternative: by actively searching across multiple trajectories, they substantially outperform
single-sample decoding. The performance gap highlights that the gain comes from active search.

Existing test-time methods, however, are heuristic and often inefficient. BoN can, in principle,
explore as much as all other approaches with a large enough N , but this is impractical given compute
and latency constraints. While more sophisticated search strategies like beam search try to explore
more efficiently by allowing for intermediate branching and pruning at intervals, one could imagine
removing constraints on search further. Though the goal of test-time search is clear—maximize task
success while minimizing generation cost—prior methods do not achieve this in a principled way.
Our goal is to propose a method that does. In this section, we introduce ZIP-RC sampling, which
leverages predictions from ZIP-RC to explicitly optimize generations for both success and cost. We
provide a high-level overview of the framework here (visually summarized in fig. 1) and provide the
full formalisms and derivations in appendix A.1 and appendix A.2.

Test-time compute as Decision-Making Under a Meta-MDP. We formalize the problem of test-
time compute as decision-making under a high-level meta-MDP, detailed in appendix A.1. The state
of this MDP is the current prefix tree (the set of all partial generations). At each step, the “meta-
action” determines which prefixes in the tree to extend or branch from. Prefixes that are not selected
are effectively paused rather than discarded. The objective is to maximize a meta-reward defined
as the final correctness of the best answer minus the generation cost incurred. Crucially, this cost
function includes both total compute (sum of tokens generated) and latency (depth of the longest
trajectory), balanced by coefficients α and β. This formalism allows us to treat inference not as a
static procedure, but as a dynamic resource allocation problem.

The Sampling Utility. Solving for the optimal policy in this meta-MDP is intractable. Instead, we
approximate the optimal value function using a quantity we call the sampling utility. As derived in
appendix A.2, the sampling utility estimates the value of a specific, interpretable strategy: perform-
ing rollouts from the current set of candidates, but with the capability to pause them at optimized
future horizons. Maximizing this utility allows the controller to explicitly balance the marginal
benefit of adding more samples (higher probability of finding a high-reward answer) against the
marginal cost of computation and time. This sampling utility can be computed tractably using the
joint predictions described in Section 4. Because ZIP-RC predicts the joint distribution of reward
and remaining length, we can compute required order statistics—such as the expected maximum re-
ward of a set of samples or the expected latency given a specific pausing schedule—in closed form.
Note this requires lightweight CPU-based calculations that are negligible compared to the forward
pass of an LLM.

Sampling Loop At inference time, ZIP-RC sampling operates as a meta-policy. At regular inter-
vals, it evaluates the sampling utility of various candidate meta-actions (e.g., pausing weak samples,
branching strong ones, or continuing the current set). It selects the action that maximizes this util-
ity (as visualized in the bottom panel of fig. 1) and executes it for the next decoding steps. This
allows the model to adapt online: if trajectories are projected to be low-value or excessively costly,
the system redirects computation elsewhere. We discuss practical implementation details, such as
normalizing cost coefficients and reducing the search space, in appendix A.4.

6 EXPERIMENTS

Our experiments aim to test the following hypotheses:
(1) ZIP-RC can accurately predict the joint reward-cost distribution.
(2) ZIP-RC sampling can be tuned to balance between output quality, and compute cost and

latency, tracing a Pareto frontier over the quantities over strong inference baselines.
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Figure 2: Predictions and ground truth for the initial joint distributions of 10 questions randomly
sampled from the AMC 2023 benchmark and 10 questions from the AIME 2024 benchmark. The
ground truth for each prompt was estimated with 256 rollouts from Qwen3-1.7B, and predictions
were made using ZIP-RC trained with the same model. This shows that the joint distribution from
ZIP-RC is calibrated and relatively accurate in forecasting the outcomes of its own rollouts.

Beginning (Reward+Cost) End (Reward)

Model Total Variation F1 Score Accuracy Recall (Incorrect)

Qwen3-1.7B 0.46 0.91 0.88 0.82
LFM2-1.2B 0.45 0.91 0.87 0.69
LFM2-350M 0.48 0.80 0.82 0.87

Table 1: Prediction accuracy of ZIP-RC at the beginning and end of generation. At the beginning, no
ground-truth reward or remaining-length label exists due to stochastic decoding, so we evaluate the
joint reward-cost prediction using Total Variation. At the end of generation, the ground-truth reward
is known, allowing us to report F1 score, accuracy, and incorrect-answer recall using a threshold of
0.5.

(3) ZIP-RC sampling is adaptive and generalizes across tasks of varying difficulty and across
models of varying size.

We will describe and present results that provide positive evidence for each hypothesis individually.

6.1 EXPERIMENTAL SETUP

Models. We use three open models spanning capability and scale: Qwen3-1.7B (Alibaba) in rea-
soning mode (Yang et al., 2025); LFM2-1.2B Math (Liquid AI), a compact mathematical-reasoning
model (LiquidAI, 2025); and LFM2-350M Math, a smaller variant targeting efficient math rea-
soning. Unless stated otherwise, decoding is identical across methods; ZIP-RC modifies only the
sampling policy at inference time.

Training data for ZIP-RC and baselines. We construct a mathematical training corpus by com-
bining DeepScaleR (Luo et al., 2025), the MATH training split (Hendrycks et al., 2021), and the
GSM8K training split (Cobbe et al., 2021). For each prompt, we generate two on-policy rollouts per
model, yielding roughly 100k rollouts in total. We then label each rollout for correctness against the
ground-truth answer. These labeled rollouts are used to train model-specific ZIP-RC predictors as
well as any learned baselines.

Baselines. We evaluate against the following baselines that consist of popular sampling strategies
that fall under the parallel sampling paradigm where multiple candidate samples are generated in
parallel and there is some selection method. Other notable paradigms include beam search or self-
refinement. However, we use parallel sampling methods, which are the most commonly used and
reported as they do not suffer from collapsing diversity issues that arise from branching and gen-
erating with similar prefixes or the ballooning latency issues from methods that generate samples
sequentially. We use stronger adaptations of Best-of-N (BoN ), and an ablation of ZIP-RC that
performs pruning without the sampling utility optimization and instead uses the expected reward
directly.:
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Figure 3: Performance of ZIP-RC sampling and baselines across all models and benchmarks. The
top half demonstrates the latency bound setting where α = 0.1, and the bottom half demonstrates the
compute bound setting where α = 1.0. Adjusting β in ZIP-RC sampling allows it to trade generation
cost for higher performance (similar to increasing N in BoN) while adjusting α allows it to adjust
the prioritization of compute and latency. By navigating the Pareto frontier and allocating compute
adaptively, ZIP-RC sampling significantly outperforms majority voting and other baselines.

(1) Majority Voting (MV) (self-consistency), which selects the most frequent final answer,
breaking ties uniformly at random (Wang et al., 2023a). This is an extremely common
method since it does not require any learned verifier.

(2) MV with length-based pruning, which discards very long, potentially looping samples (cut
at 8k tokens). This baseline acts as a sanity check to see if our latency gains only come
from preventing looping samples from generating to the maximum 32k generation length.

(3) Weighted BoN with external RM, which scores each sample with a separate reward model
trained on the same math corpus; because the RM reprocesses the full sequence without KV
cache, FLOPs roughly double relative to generation alone (Li et al., 2023). This baseline
demonstrates strong performance that goes beyond Best-of-N sampling.

(4) Weighted BoN with self-evaluation (GenRM), which replaces the external RM with trained
self-evaluations derived from the generator (Manvi et al., 2024; Zhang et al., 2025; Mahan
et al., 2024). We specifically include this baseline as it is another method that uses less
compute than external reward models for selection.

(5) ZIP-RC with reward-based pruning, which starts with a fixed pool and prunes any trajectory
whose predicted expected reward falls below a threshold using ZIP-RC’s real-time signal.
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Model Method Gen. Cost AIME2024 AMC2023 MATH-500 GSM8K Mixed

Qwen3-1.7B

ZIP-RC sampling 1.43 65.8 90.9 94.1 92.2 92.2
Majority Voting 1.40 53.1 87.9 93.0 91.2 91.0
MV length-prune 1.46 25.1 58.5 84.7 91.6 88.0
Weighted BoN ext. RM 1.43 54.7 86.5 92.6 91.4 91.0
Weighted BoN Self-eval 1.40 59.4 89.1 93.6 91.6 91.6
ZIP-RC reward prune 1.33 43.3 86.0 90.3 89.6 88.9

LFM2-1.2B

ZIP-RC sampling 1.35 60.9 93.5 93.4 83.6 86.0
Majority Voting 1.60 49.6 90.6 91.8 81.4 83.8
MV length-prune 1.70 51.3 89.8 91.6 83.0 84.9
Weighted BoN ext. RM 1.53 50.3 89.0 91.1 79.8 82.5
Weighted BoN Self-eval 1.60 55.1 91.8 92.6 82.5 84.9
ZIP-RC reward prune 1.49 57.5 90.2 92.5 83.8 85.8

LFM2-350M

ZIP-RC sampling 1.49 38.8 83.9 86.1 70.1 74.1
Majority Voting 1.70 26.9 74.5 82.7 64.4 68.8
MV length-prune 1.66 28.3 74.8 83.6 66.5 70.6
Weighted BoN ext. RM 1.59 28.5 73.4 81.9 63.2 67.8
Weighted BoN Self-eval 1.70 31.4 77.6 84.4 66.8 71.1
ZIP-RC reward prune 1.27 21.7 69.7 83.2 63.0 67.8

Table 2: Performance and generation cost at α = 0.1 under matched-cost configurations. ZIP-RC
sampling uses β = 0.01 and a maximum of eight samples. MV uses three samples; MV length-
prune uses four; Weighted BoN Self-eval (GenRM) uses three; Weighted BoN with external RM
uses two; and ZIP-RC reward prune uses a 0.4 threshold with eight samples.

This acts as a natural and strong ablation to our sampling utility optimization as it directly
prunes weak samples that have less promise than those with high expected reward.

Benchmarks. We report performance on AIME 2024, AMC 2023, MATH-500 (Lightman et al.,
2023a), and GSM8K. We additionally evaluate on a Concatenated Mixed-Difficulty Benchmark
formed by concatenating the above, which probes adaptive allocation across difficulties.

Metrics. First and foremost we measure accuracy on each benchmark as it is an obvious and good
measure for performance and high-quality responses. Beyond performance, we measure efficiency
and latency. Normalized compute reports total FLOPs per prompt normalized by the FLOPs of a
single-sample generation for that prompt. We compute FLOPs with the standard 2N rule (propor-
tional to the sum of input and generated tokens) and account for KV caching where applicable.
Normalized best-case latency measures the lower bound on wall-clock time as the maximum num-
ber of sequential forward passes across the candidate set; with unconstrained data-parallel sampling,
latency is governed by the longest trajectory. Generation cost aggregates these via a linear combi-
nation, GenCost = α ·NormCompute+(1−α) ·NormLatency. Unless otherwise specified, we use
α = 0.1, which roughly balances compute and latency in typical parallel regimes (e.g., eight paral-
lel samples often behave like two to three serial generations in practice). For ZIP-RC sampling we
sweep β, which trades off expected quality against cost in the utility; when reporting matched-cost
comparisons we set β = 0.005 and cap the pool at 8 samples for fair comparison to other baselines.

6.2 ACCURACY OF ZIP-RC’S REAL-TIME PREDICTIONS

ZIP provides auxiliary predictions with zero overhead, but for this to be useful they must be reliable.
We first visually validate whether the joint reward-cost distribution predictions from ZIP-RC are
reasonable. To do so, we first obtain ground truth estimates of the joint distributions at the start of
generation on AMC 2023 + AIME 2024, which exhibit nontrivial error rates and diverse reasoning
trace lengths. The ground truth estimates are derived with 256 rollouts from Qwen3-1.7B and the
predictions are made using ZIP-RC trained with the same model. From the 10 random examples
from each benchmark in fig. 2 we can see that the predictions are calibrated and relatively accurate
in forecasting the distribution of outcomes.

To quantitatively validate the accuracy of the predictions, we measure the total variation at the be-
ginning of generation using the same ground truth joint distribution estimates, as well as standard
classification metrics for reward prediction using a threshold of 0.5. As seen in table 1, the total
variations from the ground truth confirm the visual validation that the predicted distributions are rel-
atively close to the ground truth, and the reward prediction at the end of generation further confirms
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this; it demonstrates high accuracy in terms of F1 Score, accuracy, and recall for incorrect answers
(using a threshold of 0.5). Overall, these results indicate that ZIP-RC and ZIP predictions can be
calibrated and accurate despite being done in the same forward pass as next-token prediction.

6.3 TRACING THE QUALITY–COMPUTE–LATENCY FRONTIER

We next test whether maximizing the sampling utility with specific cost coefficients achieves con-
trollable tradeoffs. At each decision point, ZIP-RC evaluates meta-actions that serve three com-
plementary purposes. First, initiating new samples only when necessary and avoiding continuing to
generate low-value trajectories saves compute, which is reflected in the compute bound setting in the
bottom half of fig. 3 (α = 1.0), where ZIP-RC achieves compute savings. Second, penalizing the
continued sampling of long outliers avoids samples that would dominate latency. Third, expanding
the initial pool of samples while planning to use a near-term maximum horizon enables the search
to pursue early finishers without paying the full wall-clock cost of long runs. These mechanisms
together drive the latency savings observed in the top half of fig. 3 (α = 0.0). In both settings β is
successfully used similar to N in BoN in order to increase performance for more generation cost.
Parameters α and β together thus provide simple control knobs over compute–latency emphasis and
quality–cost trade-off.

Across both α regimes, ZIP-RC sampling traces smooth Pareto frontiers that strictly dominate MV
across benchmarks and scales validating that a single utility can jointly improve quality, compute,
and latency. When α = 0.1 (latency-emphasis), it substantially reduces cost, with the largest relative
reduction observed on LFM2-350M (up to roughly 40%). Because we cap at eight samples, the
frontier saturates once pass@8 performance is reached for a given β.

6.4 ADAPTIVE INFERENCE WITH ZIP-RC SAMPLING

Finally, we compare ZIP-RC sampling against all baselines at matched generation cost with α = 0.1
in table 2. Two patterns emerge: (i) at fixed cost, ZIP-RC improves accuracy relative to MV and
weighted BoN baselines; (ii) it allocates more samples to harder instances (AIME/AMC) and to
weaker models, while pruning aggressively on easier problems or stronger models.

At matched cost, ZIP-RC sampling improves accuracy over MV and weighted BoN on all models
and benchmarks. On harder subsets such as AIME 2024, gains reach up to 12% absolute while
using less average cost. The adaptive policy naturally uses more samples when the predicted reward
distribution is high-variance—where the expected benefit of best-of-N is greatest—and conserves
compute when one trajectory is expected to be dominant. This pattern is evident on the mixed-
difficulty benchmark (left-most column in fig. 3) and across model scales: weaker models and
harder tasks receive more samples, leading to higher overall accuracy.

Takeaways. ZIP-RC’s real-time predictions are accurate and reliable enough to enable principled
search during decoding. This yields (i) reliable mid-generation detection of weak or overlong tra-
jectories, (ii) smooth and tunable Pareto frontiers between quality, compute, and latency, and (iii)
adaptive allocation that consistently outperforms fixed-budget Best-of-N at the same or lower cost.

7 CONCLUSION

We introduced ZIP-RC, a zero-overhead framework for introspective inference that predicts future
reward and cost by repurposing existing logits. This enables principled, real-time decoding search
during inference, yielding up to 12% absolute accuracy gains over strong Best-of-N baselines at a
lower average cost, while tracing a smooth Pareto frontier between quality, compute, and latency.
These findings open natural extensions, such as applying it to diverse domains and testing fully
dynamic resource allocation across different models and reasoning modes. Ultimately, ZIP-RC
marks a conceptual shift from rigid, heuristic-based scaling to principled, utility-aware inference.
By empowering models to anticipate their success and computational cost, our work is a key step
toward more autonomous, reliable, and efficient LLMs. A limitation of our method is that we
rely on LLMs achieving sufficient diversity of samples during inference; namely, if we double the
number of initial samples, but the new samples are not sufficiently different, then our method and
any similar test-time compute method like BoN is unable to achieve higher performance. We believe
an important direction of future work is investigating how to improve diversity of samples during
inference, potentially by using a mixture of prompts or even models. Overall, we believe ZIP-RC
establishes a strong foundation for the next generation of introspective models and provides a timely,
impactful contribution to adaptive test-time scaling.
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A APPENDIX

A.1 SAMPLING AS DECISION-MAKING UNDER A META-MDP

We formalize the problem of test-time search as decision-making under a high-level MDP that we
dub a meta-MDP. We describe the components of the meta-MDP in detail below:

Meta-states. At timestep t, the meta-state is a prefix tree (trie) St rooted at the prompt x. Formally,
St = (Nt, Et, r) where Et ⊆ Nt × V × Nt is the set of directed edges (s, a, s′) labeled by tokens
a ∈ V , r is the root corresponding to the prompt, and each node s ∈ Nt represents the prefix
given by the concatenation of the root and the token labels along the path from r to s. Each node
also corresponds to a state in the base MDP as it is a sequence of tokens that the base policy has
generated. A prefix is finished if its last edge is the special token <EOS>, corresponding to the
terminal state in the base MDP. Initially, S0 = ({r}, ∅, r) where r is the root containing the prompt.
Conceptually, the meta-state therefore encodes all prefixes processed or generated by the policy.
In practice, the trie only requires space on the order of the total tokens generated to represent all
sequences, and their corresponding prefixes can be stored in the KV cache.

Meta-actions. At step t, the meta-action selects a finite multiset of prefixes (nodes) At ⊆ M(Nt)
to continue sampling from. Multiplicity encodes branching: if prefix s appears r times in At, then
s is sampled from r times independently. This definition encodes any viable single-token sampling
and any strategy one might want to perform. If s ∈ At−1 but none of its children appear in At, this
is equivalent to pruning. If s ∈ At already has children, this is equivalent to backtracking.

Meta-transition function. Given (St, At), for each occurrence of s ∈ At we sample a ∼ π(· | s)
and add the edge (s, a, s′) and its child s′ to the trie, yielding St+1. For notational simplicity, we treat
π as part of the transition dynamics of the meta-MDP so the transition function P (St+1 | St, At)
implicitly includes sampling from π. The process terminates at horizon T , corresponding to the
maximum allowed search steps.

Meta-reward function. At each step we incur a cost C(St, At) = β
(
α |supp(At)| + (1 − α)

)
,

where supp(At) is the set of distinct prefixes chosen in At (one forward pass per unique prefix)
and the second term accounts for step latency. The parameter α ∈ [0, 1] balances compute versus
latency, and β > 0 sets the trade-off between reward and cost. At the terminal timestep T , one
completed generation s∗T is selected, and the reward is the base MDP reward R(s∗T ). Including this
cost term is essential, since otherwise one could trivially maximize reward by always branching.

Search strategies as meta-policies. A strategy µ is a policy in this meta-MDP: at each timestep
it maps the current prefix tree St to a multiset At = µ(St) of nodes to expand, and at horizon T
selects a finished f∗. BoN corresponds to placing N copies of the root in A0 and thereafter always
expanding every unfinished leaf until completion, finally selecting the highest-scoring candidate.
Beam search with width B instead enforces |At| = B at all times: at most steps At is just the B
current leaves, but at pruning intervals of length k it ranks leaves by a score, discards the weakest p,
and duplicates stronger ones so that the frontier is refilled back to B, thereby pruning and branching
in a controlled manner before ultimately selecting the best finished prefix at T .

A.2 COMPUTING AN OPTIMAL ZERO-OVERHEAD SEARCH STRATEGY

It is clear from our formalism what an optimal search strategy should be: at every timestep t, the
optimal strategy µ∗ should choose the meta-action that maximizes:

µ∗(St) = argmax
At

Qµ∗
(St, At), (9)

where we define a meta Q-function over the meta-MDP for a strategy µ as,

Qµ(St, At) = Eµ

[
R(s∗T )−

T−1∑
t′=t

C(St′ , At′) | St, At

]
. (10)

However, computing Qµ for arbitrary strategies µ is often intractable, primarily because we cannot
generate on-policy trajectories from µ without incurring too much computational overhead.
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The sampling utility. To avoid having to generate rollouts, we consider a class of predefined
strategies at any timestep t as follows:

Mt = {µ : µ(· | St′) = f ({π(· | st)}st∈Nt
) , ∀t′ ≥ t} , (11)

where f denotes any function of the set of next-token distributions for every prefix in the meta-state.
Concretely, Mt consists of all strategies where future meta-actions are determined entirely from
generation behavior at timestep t. This essentially means for µ ∈ Mt, we can compute its value Qµ

without explicitly executing µ over future timesteps.

For any meta-state and meta-action at timestep t, we define the sampling utility to be the value of
some strategy in the aforementioned class of strategies Mt. Because each strategy performs worse
than optimal strategy µ∗ due to the imposed constraint, we choose the best-performing strategy in
Mt to act as the tightest possible lower-bound

U(St, At) = max
µ∈Mt

Qµ(St, At) ≤ Qµ∗
(St, At) . (12)

We show later how this maximization over Mt, as well as computation of Qµ for µ ∈ Mt, can
be done tractably using the quantities obtained via ZIP-RC, without any additional forward passes,
auxiliary models, or architectural modifications beyond standard decoding.

Finally, ZIP-RC sampling is defined as the strategy that maximizes our proposed sampling utility:

µZIP-RC(St) = argmax
At

U(St, At) . (13)

Intuitively, we can derive the following property of our learned strategy:

Theorem A.1. At every timestep t, our strategy µZIP-RC performs better than any predefined strategy
µ ∈ Mt. Namely, for any meta-state St, we have

QZIP-RC(St, µ
ZIP-RC(St)) ≥ Qµ(St, µ(St)) , ∀µ ∈ Mt . (14)

Proof. We can prove this via induction on t. Naively, this holds for terminal timestep t = T . For
any µ ∈ Mt, we let AZIP-RC

t = µZIP-RC(St) and Aµ
t = µ(St). Then, we have

QZIP-RC(St, A
ZIP-RC
t ) = QZIP-RC(St+1, A

ZIP-RC
t+1 )− C(St, A

ZIP-RC
t ) . (15)

Therefore, ZIP-RC sampling is a powerful test-time search strategy that explicitly optimizes for
reward and generation cost.

Approximating the sampling utility. To approximate the sampling utility, we aim to answer two
questions: (1) for every meta-state St and action At, how do we search for a strategy µ ∈ Mt that
achieves a high value Qµ(St, At), and (2) how do we compute Qµ(St, At) tractably using only
predictions by ZIP-RC.

First, let us consider the naive strategy µRollouts of always selecting the unfinished leaf-node descen-
dants of the prefixes in the current action At, or in other words, obtaining rollouts or generations
using π starting from each selected prefix. At the end, µRollouts selects the generation with the
highest value V π(sT ), similar to BoN. Its meta-MDP state-action value is exactly given by:

QRollouts(St, At) = EµRollouts

[
R(s∗T )−

T−1∑
t′=t

C(St′ , At′) | St, At

]
(16)

= E

[
max
s∈At

V π
T (s)− β

(
α
∑
s∈At

Lπ
T (s) + (1− α)max

s∈At

Lπ
T (s)

)]

= E
[
max
s∈At

V π
T (s)

]
− β

(
α
∑
s∈At

E[Lπ
T (s)] + (1− α)E

[
max
s∈At

Lπ
T (s)

])
. (17)
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We can observe that the expression QRollouts contains several interpretable quantities. Namely, the
expected maximum value quantifies the marginal benefit of branching or pruning; the incremental
gain from increasing N is large when the value distribution has high variance, and conversely, the
marginal loss of pruning is small under low variance. Furthermore, the expected maximum remain-
ing tokens and the expected total tokens capture the marginal cost of branching; increasing N always
increases the expected total remaining tokens and the maximum remaining length, which drives up
latency, and pruning will always reduce the cost.

While µRollouts has several nice properties, the strategy itself is naive as it assigns maximum cost
for every new sample and does not consider that those samples can be pruned in the future. This
is exacerbated further by the empirical correlation between the length of reasoning traces and the
likelihood that they are incorrect. Being able to “bet” on an early finishing sample that has high
reward is crucial. To remedy this problem, we introduce an additional parameter into the meta-value
that enables the µRollouts strategy to prune each sample in the future at a predefined horizon.

Formally, let QRollouts(St, At;Ht) be the value of executing µRollouts, with the additional capability
that each active prefix s ∈ At will stop generating upon reaching length hs ∈ Ht, where Ht is a set
of lengths of size |At|. We can now define an improved lower bound by maximizing over Ht:

QRollouts(St, At;H∗
t ) = max

Ht

QRollouts(St, At;Ht) ≥ QRollouts(St, At) , (18)

where it is easy to see that the our new meta-value is monotonically better than the value of the naive
µRollouts strategy without pruning capabilities. We use this to approximate the sampling utility:

U(St, At) = QRollouts(St, At;H∗
t ) . (19)

Tractable computation of expectations. Next, we show how our sampling utility in Equation 19
can be computed tractably using only predictions by ZIP-RC. Predicting QRollouts is straightfor-
ward since we can estimate distributions over the value qVθ (·|st) and remaining-tokens qLθ (·|st)
conditioned on each prefix st using our previously proposed ZIP-RC. Hence, we can estimate by
computing:

E
[
max
s∈At

V π
T (s)

]
≈

BV∑
b=1

vb + vb+1

2

(
FV,max
θ (b | At)− FV,max

θ (b− 1 | At)
)
, (20)

E[Lπ
T (s)] ≈

BT∑
ℓ=1

tℓ + tℓ+1

2
qLθ (ℓ | s), (21)

E
[
max
s∈At

Lπ
T (s)

]
≈

BT∑
ℓ=1

tℓ + tℓ+1

2

(
FL,max
θ (ℓ | At)− FL,max

θ (ℓ− 1|At)
)
, (22)

where

FV,max
θ (b | At) =

∏
s∈At

FV
θ (b | s), FL,max

θ (ℓ | At) =
∏
s∈At

FL
θ (ℓ | s), (23)

FV
θ (b | s) =

∑
j≤b

qVθ (j | s), FL
θ (ℓ | s) =

∑
j≤ℓ

qLθ (j | s). (24)

Now, to incorporate the predefined horizons Ht over all prefixes At, we modify the joint distribution
pθ(b, ℓ|s) to a capped joint pθ(b, ℓ|s;hs) that collapses probability mass beyond the cap hs into a
designated “clipped” state (b0, hs):

pθ(b, ℓ | s;hs) =


pθ(b, ℓ | s), ℓ ≤ hs,

1{b = b0, ℓ = hs}
∑
b′

∑
ℓ′>hs

pθ(b
′, ℓ′ | s), ℓ > hs .

(25)

This construction ensures that all probability mass corresponding to continuations exceeding the
allowed horizon is reassigned to a truncated state at ℓ = hs, while the value component is collapsed
to the designated base bin b0 to reflect the forfeited reward from pruning.
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From the capped joints, we can recover the corresponding marginal distributions:

qVθ (b | s;hs) =

BT∑
ℓ=1

pθ(b, ℓ | s;hs), qLθ (ℓ | s;hs) =

BV∑
b=1

pθ(b, ℓ | s;hs). (26)

These capped marginals directly encode the expected effect of planned pruning on both value and
remaining length for each prefix. Notice that this is only possible by modeling the joint distribution
as ZIP-RC is defined and is not possible with only the two marginal distributions. Thus, we demon-
strate that we are able to compute our sampling utility in Equation 19 using only our zero-overhead
predictions from ZIP-RC.

Summary. ZIP-RC sampling defines a meta-policy that, at each meta-state St, selects the meta-
action At—a multiset of prefixes to expand for one decoding step—that maximizes the sampling
utility in eq. (19). This utility is the state–action value of the best policy in the predefined strat-
egy class Mt, whose future behavior is fixed. Because ZIP-RC sampling re-optimizes At at every
timestep, it adapts online to the stochastic evolution of the prefix tree: if current trajectories are pro-
jected to be costly or low-value, it can immediately redirect computation elsewhere. As formalized
in eq. (14), this dynamic strategy is guaranteed to perform at least as well as any predefined policy
in Mt.

To approximate the sampling utility tractably, we use the value of the best rollouts-with-pruning
strategy QRollouts(St, At;H∗

t ), in which each prefix may continue only up to an optimized (and
possibly distinct) horizon. This value can be computed in closed form using ZIP-RC’s joint reward–
cost predictions. Concretely, for every prefix s ∈ At, we: (i) obtain its predicted joint distribution
pθ(b, ℓ | s); (ii) apply the prefix-specific horizon using the capped construction in eq. (26); and (iii)
compute the expectations of the required order statistics using eq. (22). This yields a fully tractable,
zero-overhead estimate of the sampling utility for any candidate meta-action.

A.3 ZIP-RC IMPLEMENTATION DETAILS

Remaining-token discretization. For the joint ZIP-RC head, we discretize the remaining-length
variable Lπ

T (st) using logarithmic bins. Let {tℓ}BT+1
ℓ=1 denote the bin boundaries, and define bin ℓ as

[tℓ, tℓ+1) with representative value (tℓ + tℓ+1)/2. To obtain fine resolution for short continuations
while keeping BT small, we collapse all very short lengths into a single initial “startup” bin and set
the remaining boundaries to grow as powers of two. This construction preserves precision where it
matters while limiting the number of reserved tokens required for ZIP-RC.

KL weight. In practice, the KL term is a very small component of the total loss because the
policy remains close to the original policy as seen in fig. 4. Accordingly, we use a relatively large
coefficient αKL, typically in the range 10–100.

Figure 4: KL divergence from the original policy during training of ZIP-RC with and without the
KL term. Using αKL = 10 keeps the KL nearly zero throughout training, stabilizing around 0.005.
Without the KL term, the policy eventually changes, emphasizing the importance and effectiveness
of this component of the ZIP objective. We used the same training data as in our main experiments.
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Temporal smoothing. Token-level ZIP-RC predictions can be noisy. At inference time we option-
ally smooth the joint by averaging the last W predictions along the current trajectory: for a prefix st
we set

p̄θ(b, ℓ | st) =
1

W

W−1∑
w=0

pθ(b, ℓ | st−w), (27)

where the sum runs over the previous non-terminal prefixes on the same path. We use p̄θ in place of
pθ when computing the ZIP-RC marginals and the sampling utility.

A.4 ZIP-RC SAMPLING IMPLEMENTATION DETAILS

Normalization of cost term β. Because rollout lengths can differ by orders of magnitude across
prompts, we rescale the cost coefficient β by a per-prompt estimate of the typical total token count.
At decision step t, we use the normalized coefficient

β̃t =
β

B̄t
, where B̄t =

1

|At|
∑
s∈At

(
|s|+ E[Lπ

T (s)]
)
. (28)

Here |s| is the current length of prefix s, and E[Lπ
T (s)] is its predicted remaining tokens from ZIP-

RC. This keeps the reward–cost tradeoff stable across prompts with very short or very long genera-
tions.

Practical reduction of the search space. The full meta-action space over multisets of nodes in
the prefix tree is extremely large, and jointly optimizing per-prefix horizons is combinatorial. In
our implementation we therefore operate within a structured subclass of meta-actions and horizons.
First, at timestep t we restrict candidate meta-actions to multisets over the root and the unfinished
leaves of St with multiplicity only allowed at the root, and further downselect to a small set of
prefixes prioritized by higher predicted value and lower predicted remaining length under ZIP-RC.
Second, when computing the sampling utility we use a single shared horizon ht for all active pre-
fixes, rather than independent horizons per prefix, reducing the search over pruning schedules to
a one-dimensional search over ht. Finally, instead of recomputing µZIP-RC(St) at every token, we
update the meta-action only at fixed intervals and simply continue all currently active prefixes in
between. These design choices substantially reduce the search space while preserving an expressive
and adaptive family of strategies. This represents just one concrete instantiation of our framework;
many other reductions are possible.

A.5 ZIP-RC-LITE

We add an ablation we refer to as ZIP-RC-Lite where we use the ZIP-RC objective described in
eq. (3) with the KL term removed, keeping only the output head of the language model trainable
while freezing the rest of the model. As shown in fig. 5 and table 3, we find that ZIP-RC-Lite is
able to non-trivially predict the joint distribution but unsurprisingly struggles to do so as accurately
as ZIP-RC. Its predictions are poorly calibrated and may not be suitable for interpretability of the
generation process and output. Despite this, we find that ZIP-RC-Lite search provides substantial
gains with respect to baselines in the latency-bound setting with α = 0.1, suggesting that predicting
the expected reward and remaining length to any degree is useful for pruning overly long trajectories
as seen in the first row of fig. 6. However, we do find that ZIP-RC-Lite substantially over-allocates
compute in the compute-bound setting with α = 1.0 due to overestimating the variance of the
expected reward, resulting in poor efficiency as seen in the second row of fig. 6. Overall, while
ZIP-RC is clearly more calibrated and accurate, ZIP-RC-Lite is a compelling alternative if one does
not want to keep the whole model trainable.
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Figure 5: Similar to the demonstration of ZIP-RC’s joint distribution prediction in fig. 2, we vi-
sualize the joint distribution predictions from ZIP-RC-Lite and compare them with ground truth
estimates. While the predictions correlate with the ground truth, ZIP-RC-Lite tends to produce
more similar-looking distributions across prompts and overestimates variance compared to ZIP-RC.

Beginning (Reward+Cost) End (Reward)

Method Total Variation F1 Score Accuracy Recall (Incorrect)

ZIP-RC 0.46 0.91 0.88 0.82
ZIP-RC-Lite 0.63 0.82 0.71 0.12

Table 3: Similar to the evaluation of ZIP-RC in table 1, we show the prediction accuracy of ZIP-
RC-Lite at the beginning and end of generation. The results indicate that ZIP-RC-Lite predicts the
joint distribution non-trivially, but less accurately than ZIP-RC.

Figure 6: Similar to the demonstration of ZIP-RC sampling in fig. 3, we present results with ZIP-
RC-Lite search in green, indicating it is able to provide significant gains, albeit lower than ZIP-RC
sampling, especially in the compute-bound setting. This suggests that predicting the joint reward-
cost distribution to any non-trivial degree is helpful in allocating test-time compute more optimally.
However, the results in the compute-bound setting indicate that ZIP-RC-Lite’s overestimation of
variation in the expected reward distribution results in over-allocation of compute.
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