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Abstract

As LLMs are deployed in knowledge-intensive settings, professionals need confi-
dence that a model’s reasoning matches domain expertise. Current explanation eval-
uations focus on plausibility or internal faithfulness, often overlooking alignment
with expert intuition. We define expert alignment as a key criterion for evaluating
explanations and introduce T-FIX, a benchmark designed to evaluate how well
LLM explanations align with expert judgment across seven knowledge-intensive
fields. Code and data available at https://anonymous.4open.science/r/
FIX-2-BE33/

1 Introduction

LLMs are increasingly used for domain-specific tasks requiring substantial background knowledge —
they will soon assist in operating rooms, observatories, and therapeutic settings. For trust in such
high-stakes uses, users need not only correct answers but also good explanations [1| 2]. What
counts as a “good explanation” depends on the explanation’s target audience (3} 14]]. In specialized
settings, the primary users are domain experts (e.g., doctors, astrophysicists), so explanations must
offer insights that are valuable and interpretable to them.

Most evaluations focus on two dimensions: (1) plausibility—whether the answer follows from the
explanation; and (2) faithfulness—whether it reflects the model’s actual reasoning [SH7]]. These are
necessary but insufficient for knowledge-intensive applications. Experts also need to know whether
the LLLM considered input aspects they deem critical [8].

We propose a third dimension: Expert Alignment—the degree to which an explanation for a given
input and prediction emphasizes criteria a domain expert would prioritize. An LLM may produce
a correct answer with a plausible, faithful explanation yet rely on low-priority features (Figure [T,
undermining trust. Prior work on expert-aligned reasoning via predefined feature groups [9]] suits
traditional, non-generative models. Modern LLMs generate free-form text untethered to such groups,
and no benchmark evaluates expert alignment for these explanations.

To fill this gap, we introduce the T-FIX benchmark: a collection of seven diverse datasets and an
evaluation framework. Designed in collaboration with domain experts, T-FIX assesses the expert
alignment of LLM-generated explanations within each domain. Our contributions are as follows:

* We introduce expert alignment as a desired attribute of LLM-generated explanations and create
T-FIX, the first benchmark designed to evaluate this.

* We release a pipeline to evaluate how well any LLM ‘thinks like an expert,” designed to be easily
extendable to new domains.

* We demonstrate that current LLMs often struggle to generate explanations that align with expert
intuition, highlighting this as a significant area for their future improvement.
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1.00
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EXPLANATION: The patient is at high risk because 0.32
they are 37 years old, have elevated glucose levels, are Explanation X.—ﬂ—l
hypotensive, and seem visibly distressed. Expert Aligned?

Figure 1: Most current evaluations for LLM explanations consider two dimensions: the overall
plausibility and the faithfulness to the reasoning process. However, a crucial third dimension, expert
alignment, asks: Does the LLM reason like a domain expert would? For example, an LLM correctly
predicts sepsis risk with a plausible, faithful explanation, but because the explanation emphasizes
features that clinicians rarely use for sepsis diagnosis, the expert alignment score is low.

* We find that LLMs generally perform better when they reason over multiple expert criteria, yet
modern high-performing LLMs do not appear to rely on expert reasoning.

2 Expert Alignment Criteria

The T-FIX benchmark was built through interdisciplinary collaboration. For each of our seven
domains (Figure[AT), we first identified the expert criteria most relevant to prediction. Experts rely
on domain heuristics, weighting some features more than others. In sepsis classification, for example,
clinicians emphasize advanced age and hypotension over glucose or demeanor. An LLM that attends
to the former is more expert-aligned than one that reaches the same answer via weaker signals. We
define the features experts most highly prioritize for a task as its expert alignment criteria.

Step 1: Surveying the Field. We seed criteria by prompting OpenAl’s 03 model to perform a
literature review. Prompts include the task description, example input—output pairs, and instructions
to propose criteria with reputable citations. This broad synthesis reduces dependence on any single
expert and yields a comprehensive starting list.

Step 2: Iteration with Domain Experts. We then present the list to a domain expert (Figure [AT)) to
(1) remove incorrect or irrelevant items, (2) add missing but important ones, and (3) ensure alignment
with expected peer consensus. The expert refines the list until it accurately reflects field knowledge.

An example criterion for sepsis classification is as follows: Advanced age (>65) markedly
increases susceptibility to rapid sepsis progression and higher mortality. All Deep
Research prompt templates and final expert alignment criteria lists for all domains are available in
our GitHub repository.

3 T-FIX Pipeline

LLM-generated explanations contain a mix of reasoning steps — some aligned with expert judgment,
and others based on irrelevant information. To systematically evaluate such complex explanations, we
first break them down into atomic claims, or standalone “features” that can be individually assessed
for expert alignment. By scoring each feature separately and then aggregating these scores, we can
compute an overall expert alignment score for the full explanation. See Figure 2| for an example of
this multi-step process. We implement all steps using GPT-4o for efficiency.

Stage 1: Atomic Claim Extraction. We adapt claim decomposition prompts [[10} [11] to convert
explanations into decontextualized, verifiable atomic claims, each representing one reasoning feature.
This step ensures that even long, complex explanations are broken into minimal, self-contained units
that can be independently evaluated for expert alignment.

Stage 2: Relevancy Filtering. We then filter claims that do not contribute meaningfully to the
reasoning process. A claim is kept if it is (1) clearly grounded in the input and (2) directly explains
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Figure 2: The T-FIX pipeline. Given an LLM’s free-form explanation, the pipeline first performs
atomic claim extraction, decomposing the explanation into standalone, verifiable claims. Next,
relevancy filtering removes unsupported or irrelevant claims. The remaining claims are scored for
alignment using the established expert alignment criteria. A high score suggests the explanation
reflects reasoning aligned with domain experts (i.e., the LLM “thinks like an expert”), while a low
score indicates it relies on aspects that experts would deem irrelevant.

why the prediction was made rather than restating the answer or adding noise. This step focuses the
evaluation on informative reasoning, with about 72% of claims typically surviving the filter.

Stage 3: Alignment Scoring. Each retained claim is compared against the full set of domain-specific
expert criteria to identify the most relevant match. GPT-4o then assigns a continuous score indicating
how closely the claim overlaps with the chosen criterion: 1 for complete alignment, O for none, and
intermediate values for partial matches (Table[T). This quantification captures not just correctness, but
whether the reasoning reflects what experts would prioritize. For example, the claim The patient is
at risk as they are 72’ fully supports the criterion Advanced age (>65) and scores 1.0, whereas
The patient is at risk as they are 37" scores 0.2. See [A]for our validation study to ensure all
stages work as expected.

Table 1: Interpretation of alignment score ranges used in scoring atomic claims against expert criteria.

Score Meaning

(0, 0.25] The claim references an unrelated or misleading feature, or misinterprets the criterion’s meaning

(0.25,0.5]  The claim loosely refers to the correct concept but lacks key details, thresholds, or uses vague
language

(0.5,0.75] The claim references a relevant feature but only partially reflects the criterion (e.g., omits
thresholds, is overly general, contains noise)

(0.75,1] The claim is specific, directly relevant, and fully captures the meaning and intent of the expert
criterion

Final Aggregation. Claims filtered out or unaligned receive a score of 0, penalizing irrelevant
reasoning. Scores are averaged to yield the explanation’s expert alignment score. All prompts are
provided in Section [Cland our GitHub repository.

4 Included Datasets

T-FIX contains seven open-source datasets, spanning the fields of cosmology, psychology, and
medicine. To assess LLM explanations across multiple modalities, we include text, vision, and
time-series datasets. We select these seven datasets due to the availability of domain experts willing
to work with us for these tasks. As running T-FIX requires querying LLMs, many of which follow
a pay-as-you-go API structure, we keep the total size of our benchmark to 700 (100 per dataset)
in order for T-FIX to be accessible to as many researchers as possible. We select a subset of 100
examples from the test set of each open-source dataset in T-FIX, and balance this sampling across
classes when possible. We provide an overview of the included open-source datasets in Figure [AT]
See Section |D|for additional details about the motivation, task, and prompting procedures.
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Figure 3: Shannon Entropy of expert alignment criteria for GPT-40. For each prompting baseline, we
show coverage of each domain’s explanations across all expert criteria — a high value indicates the
LLM considers many criteria across examples, while a low value indicates the LLM focuses on the
same criteria repeatedly.

5 Experiments and Analysis

We evaluate leading LLMs on T-FIX to measure expert-aligned reasoning in domain tasks. For each
dataset, we generate explanations using four prompting baselines:

1. Vanilla: Explain with the answer, no added structure.

2. Chain-of-Thought: Step-by-step intermediate reasoning.

3. Socratic: Self-questioning to surface uncertainty and assumptions.

4. Subquestion Decomposition: Solve simpler subproblems, then synthesize.

Domain-specific prompts appear in Section|[D} templates in Figure Results for GPT-40, GPT-o01,
Gemini-2.0-Flash, and Claude—3.5-SonneE| are reported in Table

Coverage of Expert Criteria. Beyond the proportion of expert-aligned claims (§3), we study
coverage: how many expert criteria are invoked across explanations within a domain. Because
high-quality answers typically reference only 3-5 criteria, we assess coverage at the dataset level.
Figure 3|shows Shannon entropy of criteria covered by GPT-40. Lower-performing domains (e.g.,
Cholecystectomy, Supernova) exhibit lower entropy (repeated focus on a few criteria), whereas
well-performing domains (e.g., Politeness, Sepsis) show more uniform coverage. This suggests that
broader, more even use of expert criteria associates with better performance, pointing to training
or prompting strategies that encourage diversified expert reasoning.

Expert Alignment vs. Accuracy. We examine whether better answers correspond to stronger expert
alignment. The Pearson correlations between alignment (Table[A5) and accuracy (Table[A3), averaged
across models, are shown in Figure[A2] Some higher-performing domains (e.g., Cholecystectomy,
Emotion) show positive correlations, but overall the relationship is weak. The evidence indicates
that today’s high-accuracy LLMs often do not rely on expert reasoning. Future work should test
whether explicitly aligning to expert criteria—yvia objectives or prompts—can improve downstream
accuracy as well as explanation quality.

6 Conclusion

We introduce T-FIX, the first benchmark designed to evaluate LLM explanations for expert alignment
across seven knowledge-intensive domains. Our analysis reveals that today’s models struggle to
generate explanations that experts would rely on, highlighting a critical area for improvement.

Future work may include exploring instruction-tuning LLMs to generate explanations with strong
expert alignment, extending T-FIX to additional domains, and Human-Computer Interaction studies
exploring how expert-aligned explanations affect real-world decision-making by practitioners.

'We select models with vision support and sufficient context for time-series inputs; all accessed May 2025.
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Figure Al: Overview of datasets and domains in T-FIX. We evaluate LLM expert alignment across
seven diverse domains, spanning cosmology, psychology, and medicine. For each dataset, we
highlight the motivating task, input—output format, representative example, and the expert responsible
for validating alignment criteria. The final row summarizes the expert alignment criteria used for
scoring explanations in each domain. The column colors reflect dataset modality: blue indicates
vision, yellow indicates language, and pink indicates time-series.

A Pipeline Validation

Given our pipeline relies on multiple curated GPT-4o0 prompts, we want to ensure that the extracted
and filtered claims are accurate, and that the final alignment scores match domain expert intuition. To
validate the outputs at each stage, we conduct an annotation study for 35 examples (5 per domain).
This includes 295 extracted claims and 211 aligned claims. We recruit a total of six annotators, with
two annotators per exampl

2Annotators are PhD students who study machine learning at an American university and are previously
familiar with evaluating LLM outputs for given criteria.
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Table Al: Evaluating top LLMs on T-FIX. We report the average expert alignment score across all
examples in the dataset. Corresponding accuracies are in Table[A3]and baseline prompting strategies
are described in Section

Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholec Cardiac Sepsis
GPT-4o0
Vanilla 0.421 0.877 0.629 0.597 0.295 0.533  0.545
CoT 0.390 0.859 0.625 0.639 0.338 0.564  0.532
Socratic 0.412 0.859 0.596 0.612 0.369 0.569  0.539
SubQ Decomp 0.354 0.881 0.596 0.531 0.358 0.519  0.563
ol
Vanilla 0.616 0.778 0.615 0.609 0.443 0.501 0.515
CoT 0.595 0.766 0.620 0.658 0.473 0.481 0.552
Socratic 0.503 0.782 0.555 0.467 0.456 0.449  0.578
SubQ Decomp 0.491 0.805 0.536 0.545 0.409 0.473  0.576
Gemini-2.0-Flash
Vanilla 0.515 0.811 0.618 0.600 0.407 0.529  0.566
CoT 0.507 0.815 0.569 0.566 0.376 0.553  0.578
Socratic 0.281 0.815 0.559 0.554 0.394 0.475  0.581
SubQ Decomp 0.405 0.789 0.566 0.520 0.393 0.494  0.584
Claude-3.5-Sonnet
Vanilla 0.710 0.761 0.634 0.642 0.264 0.565 0.611
CoT 0.688 0.776 0.639 0.622 0.286 0.538  0.584
Socratic 0.698 0.764 0.590 0.580 0.292 0.549  0.592
SubQ Decomp 0.628 0.754 0.631 0.617 0.271 0.555 0.584
Expert Alignment vs Accuracy _
Mass Maps 0.058 0.09 0.072 0.078 I
-0.3 Ho
Supernova 0.0026 0.00053 0.027 0.03 g
l»]
Politeness -0.006 -0.0063 -0.041 -0.0038 -0.2 §
Emotion 0.13 0.04 0.046 0.095 o1 g
-01 S
Cholecystectomy 0 0 0 ‘3
Q
Cardiac -0.12 -0.11 -0.11 -0.076 00 =
=
Sepsis -0.00074 0.0015 -0.017 -0.021 I_ 01
Chain-of- Socratic SubQ Vanilla
Thought Prompting Decomp

Figure A2: Expert-Alignment vs. Accuracy Correlation Heatmap, averaged across GPT-4o, ol,
Gemini-2.0-Flash, and Claude-3.5-Sonnet. Red indicates positive correlation, blue is negative, gray
is no correlation.

Validating atomic claim extraction. Annotators receive the original explanation and its extracted
atomic claims from Stage 1. They classify each extraction as: (A) Perfect — all claims correctly
extracted, (B) Partially accurate — 1-3 claims missing or incorrect, or (C) Incorrect — 3+ claims
missing or incorrect. We convert these labels to accuracy scores: A = 1.0, B = 0.5, C = 0.0.

Validating relevancy filtering. Annotators review the explanation, extracted claims, and filtered
claims from Stage 2. For each claim, they assess whether: (A) It was correctly kept or filtered, (B) It
was incorrectly kept or filtered, or (C) It is ambiguous or borderline. These are scored as: A = 1.0,
B=0.0,C=0.5.
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Table A2: Pipeline validation: Accuracy averaged across all T-FIX domains and annotator agreement
— Cohen’s « for each stage in our pipeline. Domain-specific statistics are provided in Table[A4]

Pipeline Stage N Accuracy Cohen’s
Claim Extraction 35 0.943 0.717
Relevancy Filtering 295 0.871 0.402
Expert Alignment 211 0.923 0.405

347 Validating expert alignment scoring. Annotators are shown the alignment criteria and the filtered,
s4s  scored claims from Stage 2. We define direction as the alignment score category (high, neutral, low),
s49 and magnitude as the exact score (e.g., 0.1 vs. 0.3 for low alignment).

350 Annotators evaluate each score as: (A) Fully accurate — an expert would agree with the score; correct
351 direction and magnitude, (B) Partially accurate — correct direction, but magnitude off by <0.2, or
352 (C) Incorrect — wrong direction and magnitude off by >0.2. These are scored as: A = 1.0, B = 0.5,
53 C=0.0.

s+ Results & agreement. Table [A2] reports average accuracy at each stage across all seven T-FIX
355 domains, along with Cohen’s « for inter-annotator agreement. The x scores fall in the moderate-to-
356 substantial agreement range, suggesting consistent annotator judgments and supporting the validity
ss7  of our T-FIX pipeline. Domain-specific metrics are shown in Table[A4]

Cosmology Psychology Medicine
Baseline Mass Maps Supernova Politeness Emotion Cholec Cardiac Sepsis
GPT-4o0
Vanilla 0.039* 0.103 0.916* 0.259 0.075* 0.567  0.657
CoT 0.044* 0.093 0.824* 0.286 0.103* 0460 0.714
Socratic 0.044* 0.127 0.829" 0.277 0.115* 0462  0.657
SubQ Decomp 0.049* 0.118 0.837* 0.304 0.115* 0485  0.657
ol
Vanilla 0.044~ 0.170 0.784* 0.304 0.194* 0.656  0.752
CoT 0.045* 0.146 0.818" 0.339 0.177* 0.685  0.750
Socratic 0.042* 0.155 0.793* 0.348 0.155* 0.646  0.755
SubQ Decomp 0.044~ 0.147 0.818" 0.321 0.138" 0.695  0.780
Gemini-2.0-Flash
Vanilla 0.045 0.145 0.831" 0.223 0.253* 0.577  0.654
CoT 0.042* 0.118 0.837* 0.232 0.255* 0.558  0.663
Socratic 0.041~ 0.118 0.809* 0.232 0.159* 0.592  0.661
SubQ Decomp 0.053* 0.109 0.773* 0.241 0.249* 0.562  0.688
Claude-3.5-Sonnet
Vanilla 0.053* 0.127 0.962* 0.241 0.146* 0485  0.709
CoT 0.050" 0.118 1.012* 0.268 0.150* 0.538 0.735
Socratic 0.044* 0.118 0.998" 0.232 0.145% 0.508  0.748
SubQ Decomp 0.050" 0.136 0.990* 0.259 0.149* 0485  0.741

Table A3: Evaluating top LLMs on T-FIX. We report the average performance of the LLM across all
examples in the dataset. We report accuracy for classification tasks, and MSE for regression tasks — a
(*) indicates that the score reported is MSE. Baseline implementations are described in Section[3]

s B Extending T-FIX to a New Domain

359 Though T-FIX covers a wide range of knowledge-intensive settings, it can easily be extended to
360 additional domains.
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367
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369

371
372

373
374

N N Claim Relevance Expert

Domain generated aligned Decomposition Filtering  Alignment Cohen’s
claims  claims Accuracy  Accuracy  Accuracy

Cosmology

Mass Maps 66 48 0.900 0.826 0.979 0.4059
Supernova 74 62 0.950 0.892 0.903 0.4946
Psychology

Politeness 72 58 0.950 0.931 0914 0.6604
Emotion 70 44 1.000 0.929 0.943 0.6233
Medicine

Cholecystectomy 134 92 1.000 0.851 0.902 0.4396
Cardiac 66 52 0.900 0.841 0.962 0.4845
Sepsis 108 66 0.900 0.852 0.894 0.3500

Table A4: Pipeline validation by domain. We report the mean accuracy for each stage of the pipeline
and annotator agreement — Cohen’s .

A key contribution of the T-FIX benchmark is the framework: we create a pipeline to score any
free-form text explanation for expert alignment given a set of expert criteria. Additionally, we iterate
extensively on all our prompt templates to ensure all T-FIX users need to do is input their task-specific
details and perform no additional prompt engineering for good results.

To add a new domain to T-FIX, we advise you to follow these steps:

1. Generate criteria: Use the deep research prompt template shown in Figure[Af]to generate
a list of expert alignment criteria for your domain. Optionally, have a domain expert vet the
generated criteria.

2. Modify prompts: Modify the prompt templates outlined in Figure [A3] Figure and
Figure [A3] with your task description, few-shot examples, and generated expert criteria.

3. Run T-FIX: Plug in your prompts for each stage of the pipeline and run T-FIX on your
dataset!

We encourage you to contact the authors of this work if you need additional assistance setting up
your custom domain.

You will be given a paragraph that explains <task description>. Your task is to <«
decompose this explanation into individual claims that are:

Atomic: Each claim should express only one clear idea or judgment.

Standalone: Each claim should be self-contained and understandable without needing <«
to refer back to the paragraph.

Faithful: The claims must preserve the original meaning, nuance, and tone.

Format your output as a list of claims separated by new lines. Do not include any <+«
additional text or explanations.

Here is an example of how to format your output:
INPUT: [example]
OUTPUT: [examplel

Now decompose the following paragraph into atomic, standalone claims:
INPUT:

Figure A3: Prompt Template for Stage 1: Atomic Claim Extraction
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You will be given [description of input, output, and claim]

A claim is relevant if and only if:

(1) It is supported by the content of the input (i.e., it does not hallucinate or <«
speculate beyond what is said).

(2) It helps explain why <task description>.

Return your answer as:

Relevance: <Yes/No>

Reasoning: <A brief explanation of your judgment, pointing to specific support or «
lack thereof>

Here are some examples:

[Example 1]
[Example 2]
[Example 3]

Now, determine whether the following claim is relevant to the given XXX:
Input:
Output:
Claim:

Figure A4: Prompt Template for Stage 2: Relevancy Filtering

You will be given <task description + expert categories description>

Your task is as follows:

1. Determine which expert category is most aligned with the claim.

2. Rate how strongly the category aligns with the claim on a scale of 0-1 (0 being «
lowest, 1 being highest. Use increments of 0.1).

Return your answer as:

Category: <category>

Category Alignment Rating: <rating>

Reasoning: <A brief explanation of why you selected the chosen category and why you«
judged the alignment rating as you did.>

Expert categories:
[list of categories and their descriptions]

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Now, determine the category and alignment rating for the following claim:
Claim:

Figure AS: Prompt Template for Stage 3: Alignment Scoring

C Prompts for T-FIX Pipeline

We show the prompts for Stage 1, 2, and 3 in Figure [A3] Figure[A4] and Figure [A3] respectively.
These prompts show a high-level template that was used by all domains. In practice, authors iterated
multiple times on each domain’s prompts, experimenting with the instruction wording and few-shot
examples that yielded the best possible results.
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You are an expert in <domain name>. You have a deep understanding of this subject.
Your task is to behave like an <domain expert> and identify which criteria are <«
important to consider for the following task:

Task description:
Input:
Output:

Here are some examples:
[Example 1]
[Example 2]
[Example 3]

Study these examples and fully understand the task. Now, research the field of <«
domain name> in order to determine a list of criteria that an expert <domain <«
expert> would utilize if they were performing the above task.

Your output should be a list of expert criteria, each 1 sentence long, and <
citations from reputable academic sources to support each criteria. Feel free <«
to have as many expert criteria as you deem necessary. The criteria should be «
clear, succinct and non-overlapping with each other. [Include any domain-<«
specific information about the expert criterial

Figure A6: Deep Research Prompt Template.

VANILLA
In addition to the answer, please provide 3-5 sentences explaining why you gave the<«
answer you did.

CHAIN -0F - THOUGHT

To come up with the correct answer, think step-by-step. You should walk through <«
each step in your reasoning process and explain how you arrived at the answer.<
Describe your step-by-step reasoning in 3-5 sentences. This paragraph will <«
serve as the explanation for your answer.

SOCRATIC

To come up with the correct answer, have a conversation with yourself. Pinpoint <«
what you need to know, ask critical questions, and constantly challenge your <
understanding of the field. Describe this question-and-answer journey in 3-5 <«
sentences. This paragraph will serve as the explanation for your answer.

SUBQUESTION DECOMPOSITION

To come up with the correct answer, determine all of the subquestions you must <
answer . Start with the easiest subquestion, answer it, and then use that +«
subquestion and answer to tackle the next subquestion. Describe your +«
subquestion decomposition and answers in 3-5 sentences. This paragraph will <«
serve as the explanation for your answer.

Figure A7: Baseline Prompting Strategies.

D T-FIX Datasets: Additional Details

D.1 Mass Maps

Task. The goal is to predict two cosmological parameters—2,,, and ocg—from a weak lensing map
(or known as mass maps) [12]]. These parameters characterize the early state of the universe. Weak
lensing maps can be obtained through precise measurement of galaxies [14], but it is not yet
known how to characterize €2,,, and og. There are machine learning models trained to predict €2,
and og [15HI7], as well as interpretable models that attempt to find relations between interpretable
features voids and clusters and Q2,,, and og [18]. We use data from CosmoGrid [19], where inputs are
single-channel, noiseless weak lensing maps of size (66, 66), and outputs are two continuous values
corresponding to €2,,, and og.
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You are an expert cosmologist.
You will be provided with a simulated noisless weak lensing map,

Your task is to analyze the weak lensing map given, identify relevant cosmological <«
structures, and make predictions for Omega_m and sigma_8.
Each weak lensing map contains spatial distribution of matter density in a universe<«
The weak lensing map provided is simulated and noiseless.
Omega_m captures the average energy density of all matter in the universe (relative+
to the total energy density which includes radiation and dark energy).
sigma_8 describes the fluctuation of matter distribution.

When you analyze the weak lensing map image, note that the number is below 0 if it <«
shows up as between gray and blue, and O is gray, and between O and 2.9 is <«
between gray and red, and above 2.9 is yellow. The numbers are in standard <«
deviations of the mass map.

Omega_m’s value can be between 0.1 = 0.5, and sigma_8’s value can be between 0.4 ~
1.4.

Note that the weak lensing map given is a simulated weak lensing map, which can «
have Omega_m and sigma_8 values of all kinds.

[BASELINE_PROMPT]

The provided image is the weak lensing mass map for you to predict the cosmological«
parameters for.
Your response should be 2 lines, formatted as follows (without extra information):
Explanation: <explanation and reasoning, as described above, 3-5 sentences>
Prediction: Omega_m: <prediction for Omega_m, between 0.1 ~ 0.5, based on this weak<«
lensing map>, sigma_8: <prediction for sigma_8, between 0.4 ~ 1.4, based on «
this weak lensing map>

Figure A8: MassMaps Explanation Prompt

Data Selection & Preprocessing. We randomly sampled 100 examples from the MassMaps test
set. To ensure compatibility with LLMs like GPT-40, which operate on a 32x32 patch size, we
upsampled each image by a factor of 11 to preserve spatial detail and avoid patch-level compression.
Instead of raw pixel values, we applied a colormap based on expert-defined intensity thresholds used
to identify key cosmological features such as voids and clusters. Pixel intensities were scaled by
standard deviations to emphasize meaningful variation. We found that larger, visually enhanced
inputs reduced refusal rates from LLMs and encouraged more consistent responses.

Explanation Prompt. Figure [A§|shows the prompt used to generate LLM explanations for predict-
ing €2, and og. We replace [BASELINE_PROMPT] with one of four prompting strategies shown in
Figure[A7] The prompt includes a description of how pixel values are mapped to colors, as well as
the valid ranges for €,,, and og. Without this range, models tend to default to common values (e.g.,
0.3 for ,,,, 0.8 for og), reducing response variability.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

. Lensing Peak (Cluster) Abundance: High peak count — higher os; clumpy halos more common.
. Void Size and Frequency: Large, frequent voids — lower €2,,,; less overall matter.

. Filament Thickness and Sharpness: Thick, sharp filaments track higher os; thin indicates lower.
. Fine-Scale Clumpiness: Fine graininess signifies high os; smooth map implies lower.

. Connectivity of the Cosmic Web: Interconnected web suggests higher (2,,; isolated clumps imply
lower.

6. Density Contrast Extremes: Strong density contrast denotes high og; muted contrast lower.

[ O R S

D.2 Supernova

Task. The objective is to classify astrophysical objects using time-series data comprising obser-
vation times (Modified Julian Dates), wavelengths (filters), flux values, and corresponding flux
uncertainties. We use data from the PLAsTiCC challenge [20], where the model must predict one of
14 astrophysical classes.
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What is the astrophysical classification of the following time series? Here are the«
possible labels you can use: RR-Lyrae (RRL), peculiar type Ia supernova (SNIa+«
-91bg), type Ia supernova (SNIa), superluminous supernova (SLSN-I), type II «
supernova (SNII), microlens-single (mu-Lens-Single), eclipsing binary (EB), M-+
dwarf, kilonova (KN), tidal disruption event (TDE), peculiar type Ia supernova+«
(SNIax), type Ibc supernova (SNIbc), Mira variable, and active galactic «
nuclei (AGN).

Each input is a multivariate time series visualized as a scatter plot image. The x-+
axis represents time, and the y-axis represents the flux measurement value. <
Each point corresponds to an observation at a specific timestamp and <«
wavelength. Different wavelengths are color-coded, and observational <«
uncertainty is shown using vertical error bars.

Even if the classification is uncertain or ambiguous, select the most likely label <«
based on the observed visual patterns and provide a brief explanation that <«
justifies your choice.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:

Label: <astrophysical classification label>

Explanation: <explanation, as described above>

Here is the time series data for you to classify.

Figure A9: Supernova Explanation Prompt

Data Selection & Preprocessing. We sampled 100 examples across the Supernova train, validation,
and test sets, aiming for 7-8 instances per class to mitigate class imbalance. For rare classes with
only one test set instance, we included all available examples from the validation and test sets,
supplementing with training samples to meet the target count. For LLM input, we converted each raw
time series into a multivariate time-series plot: time is on the x-axis, flux on the y-axis, error bars
denote flux uncertainty, and point colors indicate different wavelengths.

Explanation Prompt. Figure[A9]shows the prompt used to generate explanations for classifying
astronomical objects. We replace [BASELINE_PROMPT] with one of four prompting strategies shown
in Figure[A7] The prompt includes a description of the input plot as a multivariate time series and
provides the full list of possible class labels to guide the model’s predictions.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Contiguous non-zero flux: Contiguous non-zero flux segments confirm genuine astrophysical activity
and define the time windows from which transient features should be extracted.

2. Rise-decline rates: Characteristic rise-and-decline rates—such as the fast-rise/slow-fade morphology
of many supernovae—encode energy-release physics and serve as strong class discriminators.

3. Photometric amplitude: Peak-to-trough photometric amplitude separates high-energy explosive
events (multi-magnitude outbursts) from low-amplitude periodic or stochastic variables.

4. Event duration: Total event duration, measured from first detection to return to baseline, distinguishes
short-lived kilonovae and superluminous SNe from longer plateau or AGN variability phases.

5. Periodic light curves: Periodic light curves with stable periods and distinctive Fourier amplitude- and
phase-ratios flag pulsators and eclipsing binaries rather than one-off transients.

6. Secondary maxima: Filter-specific secondary maxima or shoulders in red/near-IR bands—prominent
in SNela—are morphological features absent in most core-collapse SNe.

7. Monotonic flux trends: Locally smooth, monotonic flux trends across one or multiple bands (plateaus,
linear decays) capture physical evolution stages and help distinguish SNII-P, SNII-L, and related
classes.
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D.3 Politeness

Task. Understanding how linguistic styles, like politeness, vary across cultures is necessary for
building better communication, translation, and conversation-focused systems. [21} 22]]. Today’s
LLMs exhibit large amounts of cultural bias [23]], and understanding nuances in cultural differences
can help encourage cultural adaptation in models. We use the holistic politeness dataset from Havaldar
et al. [24], which consists of conversational utterances between editors from Wikipedia talk pages,
annotated by native speakers from four distinct cultures.

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across
classes (rude, slightly rude, neutral, slightly polite, polite) and languages (English, Spanish, Japanese,
Chinese).

What is the politeness of the following utterance on a scale of 1-57 Use the «
following scale:

extremely rude

somewhat rude

neutral

somewhat polite

extremely polite

g W N

[BASELINE_PROMPT]
Your response should be 2 lines, formatted as follows:
Rating: <politeness rating>

Explanation: <explanation, as described above>

Utterance:

Figure A10: Politeness Explanation Prompt

Explanation Prompt. We show the prompt in Figure|[A10] We replace ¢‘[BASELINE_PROMPT]
with one of four prompting strategies shown in Figure|A7|

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

”

1. Honorifics and Formal Address: The presence of respectful or formal address forms (e.g., “sir,
“usted,”) signals politeness by expressing deference to the hearer’s status or social distance.

2. Courteous Politeness Markers: Words such as “please,” “kindly,” or their multilingual variants
soften requests and reflect courteous intent.

3. Gratitude Expressions: Use of expressions like “thank you,” “thanks,” or “I appreciate it” signals
recognition of the other’s contribution and positive face.

4. Apologies and Acknowledgment of Fault: Phrases such as “sorry” or “I apologize” express humility
and repair social breaches, marking a clear politeness strategy.

5. Indirect and Modal Requests: Requests using modal verbs (“could you,” “would you™) or softening
cues like “by the way” reduce imposition and signal respect for the hearer’s autonomy.

” <«

6. Hedging and Tentative Language: Words like “I think,” “maybe,” or “usually” lower assertion
strength and make statements more negotiable, reflecting interpersonal sensitivity.

7. Inclusive Pronouns and Group-Oriented Phrasing: Use of “we,
solidarity and reduces hierarchical distance in requests or critiques.

99 <

our,” or “together” expresses

8. Greeting and Interaction Initiation: Opening with a salutation (‘hi,” “hello”) creates a cooperative
tone and frames the conversation positively.

29 < 29 <

9. Compliments and Praise: Positive evaluations (“‘great,” “awesome,” “neat”) attend to the hearer’s
positive face and foster a friendly environment.

10. Softened Disagreement or Face-Saving Critique: When disagreeing, the use of softeners, partial
agreements, or concern for clarity preserves the hearer’s dignity.

29 <

11. Urgency or Immediacy of Language: Utterances emphasizing emergency or speed (“asap,” “imme-
diately”) can heighten perceived imposition and reduce politeness if not softened.
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12. Avoidance of Profanity or Negative Emotion: The presence of strong negative words or swearing is
a key indicator of rudeness and face threat.

13. Bluntness and Direct Commands: Requests lacking modal verbs or mitigation (“Do this”) are
perceived as less polite due to their imperative structure.

14. Empathy or Emotional Support: Recognizing the hearer’s emotional context or challenges is a
politeness strategy of concern and goodwill.

15. First-Person Subjectivity Markers: Statements that begin with “I think,” “I feel,” or “In my view’
convey humility and subjectivity, reducing imposition.

)

16. Second Person Responsibility or Engagement: Sentences starting with “you” or directly addressing
the hearer can either signal engagement or come across as accusatory, depending on context and tone.

17. Questions as Indirect Strategies: Questions (“what do you think?” or “could you clarify?”’) reduce
imposition by inviting rather than demanding input.

18. Discourse Management with Markers: Use of discourse markers like “so,” “then,” “but” organizes
conversation flow and may help manage face needs in conflict or negotiation.

”

19. Ingroup Language and Informality: Use of group-identifying slang or casual expressions (“mate,
“dude,” “bro”) may foster solidarity or seem disrespectful, depending on relational norms.

D.4 Emotion

Task. Understanding and classifying emotion is important for tasks like therapy, mental health
diagnoses, etc. [25]. Emotion is often expressed implicitly, and understanding such cues can
also aid in building LLM systems that handle implied language understanding well [26]. We use
the GoEmotions dataset from Demszky et al. [27], consisting of Reddit comments that have been
human-annotated for one of 27 emotions (or neutral, if no emotion is present).

Data Selection & Preprocessing. We sample 100 examples from the data, balanced equally across
28 emotion classes, including neutral. We additionally ensure the comment is over 20 characters,
to remove noisy data points and ensure each comment contains enough information for the LLM to
make an accurate classification.

What is the emotion of the following text? Here are the possible labels you could <«
use: admiration, amusement, anger, annoyance, approval, caring, confusion, <
curiosity, desire, disappointment, disapproval, disgust, embarrassment, <«
excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, +«
realization, relief, remorse, sadness, surprise, or neutral.

[BASELINE_PROMPT]

Your response should be 2 lines, formatted as follows:
Label: <emotion label>
Explanation: <explanation, as described above>

Here is the text for you to classify. Please ensure the emotion label is in the <«
given list.
Text:

Figure A11: Emotion Explanation Prompt

Explanation Prompt. We show the prompt in Figure We replace ‘¢[BASELINE_PROMPT]
with one of four prompting strategies shown in Figure

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Valence: Decide if the overall tone is pleasant or unpleasant; positive tones suggest joy or admiration,
negative tones suggest sadness or anger.

2. Arousal: Gauge how energized the wording is—calm phrasing implies low arousal emotions, intense
phrasing implies high arousal emotions.

3. Emotion Words & Emojis: Look for direct emotion terms or emoticons that explicitly name the
feeling.
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4. Expressive Punctuation: Multiple exclamation marks, ALL-CAPS, or stretched spellings signal
higher emotional intensity.

5. Humor/Laughter Markers: Tokens like “haha,” “lol,” or laughing emojis reliably indicate amuse-
ment.

6. Confusion Phrases: Statements such as “I don’t get it” clearly mark confusion.

.

7. Curiosity Questions: Genuine information-seeking phrases (“I wonder...”, “why is...?”) point to
curiosity.
8. Surprise Exclamations: Reactions of astonishment (“No way!”, “I can’t believe it!”’) denote surprise.
9. Threat/Worry Language: References to danger or fear (“I’'m scared,” “terrifying”) signal fear or
nervousness.
10. Loss or Let-Down Words: Mentions of loss or disappointment cue sadness, disappointment, or grief.
11. Other-Blame Statements: Assigning fault to someone else for a bad outcome suggests anger or
disapproval.
12. Self-Blame & Apologies: Admitting fault and saying “I’m sorry” marks remorse.
13. Aversion Terms: Words like “gross,” “nasty,” or “disgusting” point to disgust.
14. Praise & Compliments: Positive evaluations of someone’s actions show admiration or approval.
15. Gratitude Expressions: Phrases such as “thanks” or “much appreciated” indicate gratitude.
16. Affection & Care Words: Loving or nurturing language (“love this,” “sending hugs”) signals love or
caring.
17. Self-Credit Statements: Boasting about one’s own success (“I nailed it”) signals pride.
18. Relief Indicators: Release phrases like “phew,” “finally over,” or “what a relief” mark relief after
stress ends.

D.5 Laparoscopic Cholecystectomy Surgery.

Task. The task is to identify the safe and unsafe regions for incision. We used the open-source
subset of data from [28]], which consists of surgeon-annotated images taken from video frames
from the M2CAI16 workflow challenge [29] and Cholec80 [30] datasets. This consists of 1015
surgeon-annotated images.

Data Selection & Preprocessing. We selected the first 100 items from the test set where the safe
and unsafe regions were of nontrivial area. Each item has three components: an image of dimensions
640 pixels wide by 360 pixels high, a binary mask of the safe regions of the same dimensions, and a
binary mask of the unsafe regions of the same dimensions.

To convert the task into a form easily solvable by the available APIs, our objective was to have the
LLM output a small list of numbers that identify the safe and unsafe regions. This is achieved by
using square grids of size 40 to discretize each of the safe and unsafe masks, separating them into
144 = (640/40) x (360/40) disjoint regions. One can then use an integer inclusively ranging from 0
to 143 to uniquely identify these patches. The LLM was to then output two lists with numbers from
this range: a “safe list” that denotes its prediction of the safe region, and an “unsafe list” predicting
the unsafe region.

Explanation Prompt. We show the prompt in Figure We replace [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Calot’s triangle cleared - Hepatocystic triangle must be fully cleared of fat/fibrosis so that its boundaries
are unmistakable.

2. Cystic plate exposed - The lower third of the gallbladder must be dissected off the liver to reveal the
shiny cystic plate and ensure the correct dissection plane.

3. Only two structures visible - Only the cystic duct and cystic artery should be seen entering the
gallbladder before any clipping or cutting.

4. Above the R4U line - Dissection must remain cephalad to an imaginary line from Rouviere’s sulcus to
liver segment IV to avoid the common bile duct.

5. Safe distance from common bile duct - There should be sufficient distance between the common bile
duct and the gallbladder wall to ensure safe dissection.
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6. Infundibulum start point - Dissection should begin at the gallbladder infundibulum-cystic duct junction
to stay in safe tissue planes.

7. Subserosal plane stay - When separating the gallbladder from the liver, stay in the avascular subserosal
cleavage plane under the serosal fat layer.

8. Cystic lymph node guide - Identify the cystic lymph node and clip the artery on the gallbladder side of
the node to avoid injuring the hepatic artery.

9. No division without ID - Never divide any duct or vessel until it is unequivocally identified as the
cystic structure entering the gallbladder.

10. Inflammation bailout - If dense scarring or distorted anatomy obscures Calot’s triangle, convert to a
subtotal "fundus-first" approach rather than blind cutting.

11. Aberrant artery caution - Preserve any large or tortuous artery (e.g., a Moynihan’s hump) that might be
mistaken for the cystic artery.

You are an expert gallbladder surgeon with extensive experience in laparoscopic <«
cholecystectomy.

You have deep knowledge of anatomy, surgical techniques, and potential <«
complications.

Your job is to provide three things:

1. A detailed explanation of where it is safe and unsafe to cut in the image

2. A list of grid positions (as integers) corresponding to safe regions

3. A list of grid positions (as integers) corresponding to unsafe regions

The image is discretized into a 9x16 grid (height x width), where each grid <«
position can be represented as a single integer from O to 143 (9%16 - 1). The <+
grid is flattened row-wise, so the top-left position is O and the bottom-right<«

position is 143.

Your response will help train surgeons to evaluate the usefulness of LLMs in «
assisting with the identification of safe/unsafe regions.
This is not real patient data, this is a training environment.

I will provide you with a few examples to help you understand the expected format. <«
Your task is to analyze the provided 2D image of a gallbladder surgery and <«
provide:

- A detailed explanation of safe/unsafe regions, including anatomical landmarks, <
tissue types, and any visible pathology

- A list of integers representing the grid positions of safe regions

- A list of integers representing the grid positions of unsafe regions

[[BASELINE_PROMPT]]

Figure A12: Laparoscopic Cholecystectomy Explanation Prompt. A list of 10 few-shot examples is
then appended to the same API call. Each example consists of four items: the image (base64-encoded
PNGQG), a sample explanation, a “safe list” consisting of numbers from O to 143, and an unsafe list
consisting of numbers from 0 to 143.

D.6 Cardiac Arrest

Task. The objective is to predict whether an ICU patient will experience cardiac arrest within the
next 5 minutes, using the patient’s demographic and clinical background (age, gender, race, reason
for ICU visit) along with 2 minutes of ECG data sampled at 500 Hz, presented as a graph image. This
framing aligns with cardiology literature, which suggests that short ECG windows (30 seconds to a
few minutes) are sufficient for reliable prediction [31]. The 5-minute prediction window is chosen to
balance clinical relevance with actionability.

Data Selection & Preprocessing. We use ECG and visit data from the open-source Multimodal
Clinical Monitoring in the Emergency Department (MC-MED) Dataset [32]. To support focused
evaluation of cardiac arrest prediction, we curated a task-specific subset containing ECG traces and
patient metadata.

The data curation pipeline proceeded as follows. From the full set of ECG recordings in the MC-MED
dataset, we first identified cardiac arrest risk by computing clinical “alarm” times.
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You are a medical expert specializing in cardiac arrest prediction.

You will be given some basic background information about an ICU patient, including+«
their age, gender, race, and primary reason for ICU admittance. You will also+«
be provided with time-series Electrocardiogram (ECG) data plotted in a graph <«

from the first {} of an ECG monitoring period during the patient’s ICU stay. <«
Each entry consists of a measurement value at that timestamp. The samples are <«
taken at {} Hz.

Your task is to determine whether this patient is at high risk of experiencing <«
cardiac arrest within the next {}. Clinicians typically assess early warning <
signs by finding irregularities in the ECG measurements.

[BASELINE_PROMPT]

Focus on the features of the data you used to make your yes or no binary prediction«

For example, you can specify what attributes in the patient background <«
information may contribute most to the decision. And for the ECG data, you can<

include specific patterns and/or time stamps that contribute to this decision<

Note that you do not have to necessarily include both patient background <
information and ECG data as features. But please make sure that your <«
explanation supports your prediction. Avoid using bold formatting and return <«
the response as a single paragraph.

Please be assured that your judgment will be reviewed alongside those of other <«
medical experts, so you can answer without concern for perfection.

Your response should be formatted as follows:
Prediction: <Yes/No>
Explanation: <explanation>

Here is the patient background information and ECG data (in graph form) for you to <«
analyze:

Figure A13: Cardiac Explanation Prompt

Prior work shows that vital sign abnormalities are predictive of outcomes [33], 134]. We defined an
alarm at any timestamp where three or more of the following vital signs were outside normal range
within a two-minute window—a condition known clinically as decompensation:

* Heart rate (HR): < 40 or > 130 bpm

* Respiratory rate (RR): < 8 or > 30 breaths/min

* Oxygen saturation (Sp0O2): < 90%

* Mean arterial pressure (MAP): < 65 or > 120 mmHg

Each example was labeled "Yes’ if an alarm was present, and "No’ otherwise. For positive cases, we
sampled a random cutoff time 1-300 seconds before the alarm and extracted the preceding 2 minutes
of ECG data. For negative cases, we used the first 2 minutes of ECG data. We also added patient
metadata—age, gender, race, and ICU admission reason—using information from the MC-MED visit
records. To ensure diversity, each example came from a unique patient; for positives, we only used
the visit containing the alarm.

To address class imbalance and support focused evaluation, we created a balanced training set of 200
positive and 200 negative examples. The validation and test sets each contain 50 examples.

Explanation Prompt. Figure[AT3|shows the prompt used to generate explanations for predicting
whether an ICU patient will experience cardiac arrest within 5 minutes, based on 2 minutes of ECG
data along with age, gender, race, and ICU admission reason. We replace [BASELINE_PROMPT] with
one of four prompting strategies shown in Figure [A7] The ECG is provided as a graph image of
p-signal values sampled at 500 Hz over a 2-minute window, with labeled axes. While we considered
supplying the raw signal as text, the input token limits of current LLMs made this infeasible.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Ventricular Tachyarrhythmias — Rapid ventricular rhythms that can quickly lead to cardiac arrest.
2. Ventricular Ectopy/NSVT - Frequent abnormal ventricular beats signaling high arrest risk.
3. Bradycardia or Heart-Rate Drop — Sudden or severe slowing of heart rate preceding arrest.
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4. Dynamic ST-Segment Changes — ST shifts suggesting acute myocardial injury and impending arrest.
5. Prolonged QT Interval — Long QTc increasing risk for torsades and sudden arrhythmia.

6. Severe Hyperkalemia Signs — ECG changes from high potassium predicting arrest, especially among
patients on dialysis / end stage renal disease.

7. Advanced Age — Older age strongly correlates with higher arrest likelihood.
8. Male Sex — Males have a higher overall risk of cardiac arrest.
9. Underlying Cardiac Disease — Preexisting heart disease increases arrest susceptibility.

10. Critical Illness (Sepsis/Shock) — Severe infections or shock states elevate arrest risk through systemic
instability.

What is the sepsis risk prediction for the following time series? Here are the +«
possible labels you can use: Yes (the patient is at high risk of developing «°
sepsis within 12 hours) or No (the patient is not at high risk of developing <
sepsis within 12 hours).

The time series consists of Electronic Health Record (EHR) data collected during «
the first 2 hours of the patient’s emergency department (ED) admission. Each «
entry includes a timestamp, the name of a measurement or medication, and its <«
corresponding value.

[BASELINE_PROMPT]
Your response should be 2 lines, formatted as follows:
Label: <prediction label>

Explanation: <explanation, as described above>

Here is the text for you to classify.

Figure A14: Sepsis Explanation Prompt

D.7 Sepsis

Task. The goal is to predict whether an emergency department (ED) patient is at high risk of
developing sepsis within 12 hours, using Electronic Health Record (EHR) data collected during the
first 2 hours of their visit. Each input is a time series of records containing a timestamp, the name of
a physiological measurement or medication, and its value.

Data Selection & Preprocessing. We used data from the publicly available MC-MED dataset [32]
and curated a task-specific subset for sepsis prediction.

To label a patient as high risk for sepsis, we followed standard clinical definitions requiring three
conditions: (1) evidence of infection, indicated by either a blood culture being drawn or at least
two hours of antibiotic administration; (2) signs of organ dysfunction, defined by a SOFA score
>2 within 48 hours of suspected infection, based on abnormalities in respiratory, coagulation, liver,
cardiovascular, neurological, or renal function; and (3) presence of fever, with a recorded temperature
>38.0°C (100.4°F). Patients meeting all three criteria were labeled as high risk. Labels were validated
with a Sepsis clinician.

Due to class imbalance (10% positive), we created a balanced evaluation set of 100 samples (50
positive, 50 negative) drawn from the validation and test splits.

Explanation Prompt. Figure[AT4]shows the prompt used to generate LLM explanations for sepsis
risk prediction. We substitute [BASELINE_PROMPT] with one of four prompting strategies shown
in Figure[A7] The prompt includes a description of the EHR input format: each time-series record
consists of a timestamp, a measurement or medication name, and its value.

Expert Criteria. The expert-validated criteria for expert alignment calculation are listed below:

1. Elderly Susceptibility (Age >65 years): Advanced age (>65 years) markedly increases susceptibility
to rapid sepsis progression and higher mortality after infection.
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2. SIRS Positivity (>2 Criteria): Presence of >2 SIRS criteria—temperature >38°C or <36°C,
heart rate >90 bpm, respiratory rate >20/min or PaCO, <32 mmHg, or WBC >12,000/uL or
<4,000/pL—identifies systemic inflammation consistent with early sepsis.

3. High qSOFA Score (>2): A qSOFA score >2 (respiratory rate >22/min, systolic BP <100 mmHg,
or altered mentation) flags high risk of sepsis-related organ dysfunction and mortality.

4. Elevated NEWS Score (>5 points): A National Early Warning Score (NEWS) of >5-7 derived from
deranged vitals predicts imminent clinical deterioration compatible with sepsis.

5. Elevated Serum Lactate (>2 mmol/L): Serum lactate >2 mmol/L within the first 2 hours signals
tissue hypoperfusion and markedly elevates sepsis mortality risk.

6. Elevated Shock Index (>1.0): Shock index (heart rate < systolic BP) >1.0—or a rise >0.3 from
baseline—denotes haemodynamic instability and a high probability of severe sepsis.

7. Sepsis-Associated Hypotension (SBP <90 mmHg or MAP <70 mmHg, or >40 mmHg drop):
Sepsis-associated hypotension, defined as SBP <90 mmHg, MAP <70 mmHg, or a >40 mmHg drop
from baseline, indicates progression toward septic shock.

8. SOFA Score Increase (>2 points): An increase of >2 points in any SOFA component—e.g.,
Pa02/Fi0s <300, platelets <100x10°/L, bilirubin >2 mg/dL, creatinine >2 mg/dL, or GCS
<12—confirms new organ dysfunction and high sepsis risk.

9. Early Antibiotic/Culture Orders (within 2 hours): Administration of broad-spectrum antibiotics or
drawing of blood cultures within the first 2 hours signifies clinician suspicion of serious infection and
should anchor sepsis risk assessment.

E Related Work

Evaluating LLM Explanations. Common explanation methods for LLMs include feature attribution
(e.g., LIME, SHAP [35.136]]), counterfactuals, and self-generated explanations [37}138]. Some models
are also trained to produce human-readable justifications [39]]. To assess explanation quality and
utility, recent work highlights criteria such as faithfulness (alignment with the model’s reasoning)
and plausibility (how convincing it is to humans) [40} 15, |6]]. Human studies show mixed outcomes:
explanations sometimes aid understanding [41}42]], but can also offer little value or cause over-trust
[43]. A promising alternative is to use LLMs as automatic judges of explanation quality [44] 45]],
providing a scalable substitute for expensive human evaluation; we adopt this approach in T-FIX.

Domain & Expert Alignment Concept-based models constrain parts of the network to predict high-
level, human-defined concepts, enabling incorporation of domain knowledge into final predictions
[46]. Extensions of concept bottlenecks and related methods aim to align latent representations with
semantically meaningful features [47-49], potentially grouped for expert interpretability [9]. In NLP,
integrating human knowledge has included collecting human-written explanation datasets to train
models [39]] and using learned explanations to guide predictions [50]. To our knowledge, no prior
work explicitly evaluates text explanations for expert alignment like T-FIX.

F Limitations

As with any LLM-based system, the quality of the outputs is dependent on the input prompt. T-FIX is
no exception — though we spend a significant amount of time analyzing outputs and prompt iterating,
we do a finite amount of prompt iteration. There is a chance our benchmark could be marginally
improved with additional prompt iteration. We hope the issue of prompt dependency diminishes with
future models that are more robust and less susceptible to tiny prompt ablations.

While our evaluation pipeline currently uses GPT-40 for scoring, it is model-agnostic by design, and
we encourage future work to apply or adapt the pipeline with other LLMs to improve robustness and
reduce evaluator-model entanglement.

For pipeline validation, we conduct a user study where we annotate 35 examples. Though the
annotation results on this subset suggest our pipeline is accurate, this work could have benefited from
a larger and more robust annotation study. Future work should also involve domain experts vetting
the pipeline in addition to recruited annotators.

In addition, we only have one expert to validate the expert alignment criteria for each domain. Though
our usage of a deep research LLM minimizes over-reliance on a single domain expert, multiple
experts would have been better to create the expert criteria. We were constrained by domain experts
eager and available to collaborate with us.
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Our experiments focus on a set of four models and four prompting strategies, and including additional
models and strategies could provide a more comprehensive set of baseline results. Though many
other high-performing LLMs and prompting techniques exist as of May 2025, we are conscious of
budget and the environmental impact of running multiple experiments using T-FIX.

G Ethical Considerations

Using LLMs in the domains we describe in T-FIX, especially those relating to medicine, poses a
unique set of risks and challenges. We do not advocate that LLMs should replace domain experts in
these tasks; rather, T-FIX should serve as a step towards experts being able to use LLMs in a reliable
and trustworthy way.

Additionally, LLMs are constantly changing, especially those that are company-owned and not
open-source. This poses potential issues relating to the reproducibility of our baseline results as time
progresses and advances are made.

Lastly, nearly all LLMs contain biases — some harmful — that may propagate up in a system built off
of these models. All users of T-FIX must be conscious of this risk.
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Domain

Claim

Score (Category)

Reasoning

Cosmology

Mass Maps

Supernova

[Good] The prominence of red and
yellow suggests a universe with sig-
nificant matter fluctuations.

[Bad] The mix of colors, with sig-
nificant gray areas but noticeable
reds and yellows, suggests a moder-
ate Omega_m.

[Good] A prominent peak followed
by a gradual decline in flux is char-
acteristic of a type la supernova
light curve.

[Bad] The variability does not dis-
play a clear periodicity.

0.9 (Density Contrast
Extremes)

0.3 (Connectivity of the
Cosmic Web)

1.0 (Rise—decline rates)

Aligns well with the Density Con-
trast Extremes category, describing pro-
nounced contrasts between dense and
void regions, signaling high sigma_8.

Discusses both underdense and over-
dense regions, but doesn’t specifically
discuss connectivity or the degree of
fragmentation or interconnection of the
network.

Describes a classic feature of type la su-
pernovae, perfectly aligning with expert
criteria on rise-and-decline rates.

Contradicts key characteristics of peri-
odic light curves; highlights absence of
periodic behavior.

Psychology

Politeness

Emotion

[Good] The use of the phrase
“seems defective” introduces uncer-
tainty and avoids definitiveness.

[Bad] The utterance is a straight-
forward description of information
from a biology textbook.

[Good] This choice of description
is likely intended to evoke a reac-
tion of fear or caution.

[Bad] The text conveys an objective
statement.

0.1  (Periodic light
curves)

0.9 (hedging & tentative
language)

0.2 (First-Person Sub-
Jjectivity Markers)

0.9 (Threat/Worry Lan-
guage)

0.0 (Valence)

The phrase utilizes tentative language
and is a clear example of hedging to
reduce the assertive strength of a state-
ment.

Weakly aligns as it describes objective
reporting without the personal tone cen-
tral to first-person subjectivity.

The claim centers around evoking fear
or caution, which directly maps to this
category.

The claim highlights an absence of emo-
tional content, which does not align with
the Valence category or any other expert
emotion categories.

Medicine

Cholecys-
tectomy

Cardiac

Sepsis

[Good] The fat and fibrous tissue
overlying Calot’s triangle has been
fully excised, exposing only two
tubular structures.

[Bad] The cystic plate is not visible
due to dense adhesions, making the
gallbladder-liver plane indistinct.
[Good] The irregularity in the ECG
could indicate a dangerous arrhyth-
mia, such as ventricular tachycardia
or fibrillation.

[Bad] A skin lesion of the scalp is
a condition not directly related to
cardiac function.

[Good] Fever and high heart rate
are potential signs of sepsis.

[Bad] The patient’s lab results show
an increased platelet count.

High (Complete Trian-
gle Clearance)

Low (Cystic Plate Visi-
bility)

0.9 (Ventricular Tach-
yarrhythmias)

0.2 (Critical Illness —
Sepsis/Shock)

1.0 (SIRS Positivity)

0.2 (SOFA Score In-
crease)

Precisely describes complete clearance
of Calot’s triangle, perfectly matching
expert criteria.

Describes failure to visualize the cystic
plate, opposite of the criterion, leading
to low alignment.

Directly references hallmark arrhyth-
mias like ventricular tachycardia/fibril-
lation, key indicators in the category.

Potential weak connection if interpreted
as infection, but lacks explicit signs of
sepsis/shock.

References two SIRS criteria; strong and
direct alignment with early sepsis identi-
fication guidelines.

SOFA score focuses on low platelet
counts; increased count contradicts the
criterion.

Table AS: Expert-aligned claims (good and bad) across all T-FIX domains, with corresponding
alignment scores and provided reasoning.
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