
Approximating Two-Layer Feedforward Networks
for Efficient Transformers

Anonymous EMNLP submission

Abstract
How to reduce compute and memory require-001
ments of neural networks (NNs) without sacri-002
ficing performance? Many recent works use003
sparse Mixtures of Experts (MoEs) to cre-004
ate resource-efficient large language models005
(LMs). Here we introduce several novel per-006
spectives on MoEs, presenting a general frame-007
work that unifies various methods to approxi-008
mate two-layer NNs (e.g., feedforward blocks009
of Transformers), including product-key mem-010
ories (PKMs). Leveraging insights from this011
framework, we propose methods to improve012
both MoEs and PKMs. Unlike prior work013
that compares MoEs with dense baselines un-014
der the compute-equal condition, our evalu-015
ation condition is parameter-equal, which is016
crucial to properly evaluate LMs. We show017
that our MoEs are competitive with the dense018
Transformer-XL on both the WikiText-103 and019
enwiki8 datasets at two different scales, while020
being much more resource efficient. This021
demonstrates that MoEs are not only relevant to022
extremely large LMs, but to any-scale resource-023
efficient LMs.024

1 Introduction025

Despite impressive results recently achieved by026

large language models (LLMs; Radford et al.027

(2019); Brown et al. (2020); Rae et al. (2021)),028

vast resource requirement remains their obvious029

limitation. In fact, most existing LLMs, such as030

GPT-3 (Brown et al., 2020), cannot be trained, fine-031

tuned or even evaluated without access to enormous032

compute. Many recent works strive to develop033

LLMs that, at least, enable inference with limited034

resources (e.g., on consumer hardware), e.g., by035

building “smaller” yet capable LMs (Touvron et al.,036

2023; Taori et al., 2023; Chiang et al., 2023) or de-037

veloping post-training quantization methods (Zafrir038

et al., 2019; Dettmers et al., 2022). While these039

methods are gaining popularity, a principled solu-040

tion for resource-efficient neural networks (NNs)041

remains elusive.042

One promising approach explored by several re- 043

cent works on extremely-large LMs is the sparse 044

mixture of experts (MoE; Shazeer et al. (2017); 045

Lewis et al. (2021); Lepikhin et al. (2021); Fedus 046

et al. (2022); Clark et al. (2022); Chi et al. (2022)). 047

Unlike their dense counterparts, MoEs only com- 048

pute a subset of their activations (i.e, only a few 049

experts) at each step, offering reduced computation 050

and memory costs. However, MoEs are not yet 051

generally adopted as a generic/to-go approach, per- 052

haps because of certain common beliefs on MoEs: 053

(1) They are hard to train (involving complex en- 054

gineering tricks to prevent collapsing), (2) they 055

are not competitive against their dense counter- 056

parts with the same number of parameters (in fact, 057

prior work focuses on FLOP-equal comparison, 058

“unfairly” comparing MoEs against dense baselines 059

with many fewer trainable parameters), and finally, 060

(3) they are reserved for extremely large models 061

(they are rarely/never considered to further improve 062

the efficiency of “small” models). Indeed, even 063

prior works on MoE-based Transformer LMs only 064

deploy MoEs in a few feedforward blocks; while 065

ideally, all such blocks should benefit from replace- 066

ment by MoEs. Here we challenge these common 067

beliefs, and propose novel perspectives on MoEs. 068

We present MoEs within a unified framework 069

of methods that approximate two-layer feed- 070

forward networks, which includes product-key 071

memories (PKMs; Lample et al. (2019)) and 072

top-k sparsification. This principled view not 073

only allows us to conceptually group and compare 074

MoEs with PKMs, it also provides insights on 075

design choices for improving these methods. Our 076

resulting MoE Transformer variant outperforms 077

our improved PKMs, and performs as well as 078

or even outperforms the dense baseline, while 079

using a fraction of its compute for both training 080

and inference. Importantly, unlike prior work, 081

we compare our MoEs with dense baselines with 082

the same number of total trainable parameters, 083

1

which is crucial for proper evaluation in language084

modeling. We conduct experiments on the standard085

WikiText-103 (at two different model scales) and086

Enwik8 datasets. We demonstrate that MoEs are087

not limited to extremely-large LMs, but useful as a088

generic approach for resource-efficient NNs at any089

scale, and in line with the recent trend of improving090

“smaller” models (Touvron et al., 2023; Taori et al.,091

2023; Chiang et al., 2023). Finally, we release a092

CUDA kernel for our MoE layers which allows for093

achieving faster wall clock time and large memory094

reduction compared to the dense model.1 We will095

open-source all our code upon acceptance.096

2 Background097

Transformers (Vaswani et al., 2017) have two098

main building blocks: the self-attention layer099

(Parikh et al., 2016; Cheng et al., 2016; Bahdanau100

et al., 2015), and the two-layer feedforward, i.e,101

multi-layer perceptron (MLP) block. Acceleration102

and memory reduction of the self-attention is103

rather well explored (see e.g., linear attention104

(Katharopoulos et al., 2020; Choromanski et al.,105

2021; Schmidhuber, 1991; Schlag et al., 2021)),106

and very efficient implementations (Dao et al.,107

2022) are also available. In constrast, resource-108

efficient MLP blocks are still underexplored. This109

is our main focus, and it is of particular relevance110

today, as the proportion of the total parameter111

counts, compute and memory requirements due112

to MLP blocks in Transformers is increasing in113

ever-growing LLMs.114

Let dmodel, dff denote positive integers. Each115

Transformer MLP block consists of one up-116

projection layer with a weight matrix W1 ∈117

Rdff×dmodel where typically dff = 4dmodel, and118

one down-projection layer with parameters W2 ∈119

Rdmodel×dff that projects it back to the original size.120

Non-linearity (typically ReLU) is applied between121

these two layers. That is, an input x ∈ Rdmodel is122

transformed to an output y ∈ Rdmodel as123

u = ReLU (W1x) (1)124

y = W2u (2)125

where u ∈ Rdff , and we omit biases (as well as126

batch and time dimensions) for simplicity.127

Alternatively, this layer can be viewed as a key-128

value memory accessed by attention (Vaswani et al.129

1Since we are not CUDA experts, our implementation still
has much room for further optimization.

(2017)2,Geva et al. (2021)), where keys and values 130

are rows and columns of weight matrices W1 and 131

W2: 132

W1 =

k⊺
1

k⊺
2
...

k⊺
dff

 (3) 133

134

W2 =

 v1 v2 . . . vdff

 (4) 135

where ki ∈ Rdmodel ,vi ∈ Rdmodel for i ∈ {1, ..., dff}. 136

Then, the output is computed as “attention”: 137

y =

dff∑
i=1

viReLU(k
⊺
i x) =

dff∑
i=1

αivi (5) 138

where αi = ReLU(k⊺
i x) ∈ R≥0 are the “attention 139

weights.” Note that αi = u[i] where u[i] ∈ R 140

denotes the i-th component of u ∈ Rdff in Eq. 1. 141

Unlike the standard self-attention, the MLP block 142

uses a ReLU activation function (instead of the 143

softmax) without scaling. 144

It has been observed that, in practice, only a few 145

of the factors k⊺
i x are positive (Li et al., 2023; Shen 146

et al., 2023), making the first layer’s output, i.e., u, 147

sparse. Concretely, Shen et al. (2023) report that in 148

a Transformer with dmodel = 256 and dff = 1024, 149

10% of the channels account for 90% of the total 150

activation mass. We confirm this trend in our 151

own preliminary study. Fig. 1 shows the average 152

number of non-zero units in u of size dff = 2053 153

in our 47M parameter dense model trained on 154

WikiText-103 (we refer to App. A.2 for more de- 155

tails). The number is below 200 for all layers. This 156

suggests that the MLP block can be approximated 157

without a significant performance loss. 158

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer

0

200

400

A
ct

iv
e

ch
an

ne
ls

Figure 1: Number of active channels in u in our dense
47M parameter model on WikiText-103. Standard devi-
ation over all tokens of the test and validation set.

2See the appendix “Two feedforward Layers = Attention
over Parameter” in their paper version “arXiv:1706.03762v3.”

2

3 Approximating 2-layer MLPs159

Here we present a unified view on methods to160

approximate 2-layer MLPs (Sec. 2) that includes161

many existing methods such as MoEs (Sec. 3.3)162

and PKMs (Sec. 3.2).163

Preliminaries. Let ŷ ∈ Rdmodel denote an approx-164

imation of y ∈ Rdmodel in Eq. 5. Let yi ∈ Rdmodel de-165

note yi = αivi for i ∈ {1, ..., dff}. The core idea is166

to approximate the sum in Eq. 5, i.e., y =
∑dff

i=1 yi167

by only keeping a subset S ⊂ {1, ..., dff} of the168

key-value pairs, i.e., ŷ =
∑

i∈S yi. The intu-169

ition of this approximation is as follows. We as-170

sume that a good approximation ŷ of y is the171

one that minimizes their Euclidean distance e =172

||ŷ − y||22 ∈ R, which can now be expressed as173

e = ||
∑

i∈S̄ αivi||22 where S̄ denotes the comple-174

ment of S , i.e., S̄ = {1, ..., dff} \S . Since we have175

e = ||
∑

i∈S̄ αivi||22 ≤
∑

i∈S̄ αi||vi||22 (triangle in-176

equality; where the equality is achieved when vi177

are orthogonal), this upper-bound
∑

i∈S̄ αi||vi||22178

can be minimized if each term ci = αi||vi||22 ∈ R179

are small. If we further assume that all value vec-180

tors vi have the same norm, the crucial factor for181

approximation quality is reduced to the attention182

weights αi. In this context, we also call αi the183

contribution of key-value pair i.184

Let K be a positive integer. The general idea185

of all methods discussed in this work is to keep186

K pairs (ki, vi) whose contribution αi is the high-187

est, and ignore other low-contribution pairs. The188

goal is to find the best mechanism to select such K189

pairs. Here we discuss three variants: Top-K acti-190

vation (Sec. 3.1), Product-Key Memories (PKMs,191

Sec. 3.2), and Mixture of Experts (MoEs, Sec. 3.3).192

3.1 Top-K Activation Function193

The most straightforward implementation of the194

approximation described above is the top-K acti-195

vation function:196

Ex = arg topk(u,K) ⊂ {1, ..., dff} (6)197

ŷ =
∑
i∈Ex

αivi (7)198

Unfortunately this only saves less than half of the199

entire computation: while this allows us to re-200

duce computation of Eq. 2, no computation can201

be saved in Eq. 1 because full computation of u =202

ReLU (W1x) is required for Eq. 6. Going beyond203

this requires to also introduce some approximation204

to Eq. 6 as in PKMs (Sec. 3.2) and MoEs (Sec. 3.3).205

3.2 Product-Key Memories (PKMs) 206

Product-Key memories (Lample et al., 2019) con- 207

sist of replacing W1 ∈ Rdff×dmodel in Eq. 1 by two 208

matrices Wa,Wb ∈ R
√
dff×

dmodel
2 . It slices the in- 209

put vector x ∈ Rdmodel into two halves, xa,xb ∈ 210

R
dmodel

2 , so that x = xa|xb, where | denotes con- 211

catenation. The matrix multiplication is then per- 212

formed on these smaller vectors: ua = Waxa and 213

ub = Wbxb. Then u ∈ Rdff is calculated by com- 214

bining the elements of ua ∈ R
√
dff and ub ∈ R

√
dff 215

in all possible ways (i.e., Cartesian products), simi- 216

larly to the outer product, but using addition instead 217

of multiplication, i.e., for all i ∈ {1, ..., dff}, 218

u[i] = ub[⌊i/
√

dff⌋] + ua[i mod
√

dff] (8) 219

In addition to applying Top-K at the output as in 220

Sec 3.1, here Top-K can also be used to accelerate 221

the operation above. By applying Top-K to ua 222

and ub before combining them to compute u, only 223

the K2 << dff components of u[i] have to be 224

calculated, and they are guaranteed to contain the 225

K biggest components of the full u. 226

In the original formulation (Lample et al., 2019), 227

PKMs use a softmax activation function, taking in- 228

spiration from self-attention (Vaswani et al., 2017). 229

Instead, we’ll show how a non-competing activa- 230

tion function, such as ReLU is a better choice (see 231

Sec. 6.2). 232

3.3 Mixture of Experts (MoE) 233

Let NE , G denote positive integers. MoEs par- 234

tition dff pairs of (ki, vi) (see their definition in 235

Sec. 2) into NE groups of size G each, such that 236

G ·NE = dff. This means that the weight matrices 237

W1 ∈ Rdff×dmodel and W2 ∈ Rdmodel×dff (Eqs. 1-2) 238

are partitioned into matrices W e
1 ∈ R

dff
NE

×dmodel
239

and W e
2 ∈ Rdmodel×

dff
NE for e ∈ {1, ..., NE}, 240

W e
1 =

k⊺
eG+1

k⊺
eG+2

...
k⊺
(e+1)G

 (9) 241

W e
2 =

 veG+1 veG+2 . . . v(e+1)G

(10)

242

The output is computed as: 243

ŷ =
∑
e∈Ex

W e
2 s[e] ReLU(W

e
1x) (11) 244

3

where s[e] ∈ R is the e-th element of vector245

s ∈ RNE computed by an expert scoring func-246

tion sel : Rdmodel → RNE (typically s = sel(x) =247

softmax(W3x) with W3 ∈ RNE×dmodel), and Ex248

denotes a subset of indices {1, ..., NE} result-249

ing from the Top-K operation on s, i.e., Ex =250

arg topk(s,K). Note that in some variants, ad-251

ditional re-normalization is applied after Top-K,252

so that
∑

e∈Ex s[e] = 1, s[e] ≥ 0; we define such253

an operation as norm topk, see its exact defini-254

tion in App. A.1 3. The efficiency of MoEs comes255

from the fact that NE ≪ dff, thus calculating s256

is cheap. Furthermore, G and K are chosen so257

that G ∗K ≪ dff, so the calculation performed by258

experts is less expensive than the dense MLP.259

Given the notation above, it is straightforward to260

see that MoEs can also be viewed as approximating261

2-layer MLPs with a trainable component (i.e., the262

selection function sel to produce s). Similarly to263

Eqs. 5 and 7, Eq. 11 can be expressed as:264

ŷ =
∑
e∈Ex

G∑
i=1

αeG+is[e]veG+i (12)265

where, compared to Eqs. 5 and 7, the “contribution266

scores” of key-value pair i (defined in Sec. 3/Pre-267

liminaries) have an additional factor s[e] of an268

expert group e to which the key-value pair belongs.269

The key challenge of MoEs is to learn an ex-270

pert selection mechanism/function sel above that271

assigns high scores to only a few experts (so that we272

can ignore others without sacrificing performance),273

while avoiding a well-known issue, called expert274

collapsing, where only a few experts are used and275

the rest are never selected. To avoid this, some regu-276

larization is typically applied to the selection score277

sel(x), encouraging more uniform routing of ex-278

perts across the whole batch of tokens. We provide279

a comprehensive review of MoE variants and their280

details in Sec. 4 and our improved version in Sec. 5.281

4 Existing MoE variants282

Several variations of MoEs have been proposed283

with many different details. Here we briefly review284

the most popular and representative ones (e.g., we285

do not cover those that make use of reinforcement286

learning for expert routing) before describing287

our improved version in Sec. 5. We’ll review288

their expert selection function and regularization289

method, and highlight their key characteristics.290

3In the case of the softmax(·) activation function, this is
equivalent to applying Top-K to the logits before softmax.

Sparsely Gated Mixtures of Experts. Shazeer 291

et al. (2017) have revisited MoEs (Jacobs et al., 292

1991; Ivakhnenko and Lapa, 1965) with the Top-K 293

operation, allowing a reduction in its resource de- 294

mands. Their method is basically the one described 295

in Sec. 3.3 (with re-normalization after Top-K) 296

except that they use a noisy gating function: 297

sel(x) = softmax(298

W3x+N (0, 1) · softplus(W4x)) (13) 299

where W4 ∈ RNE×dmodel , the Gaussian noise term 300

N (0, 1) is element-wise and independent for each 301

channel, and softplus(x) = log(1+ ex). They use 302

the following auxiliary regularization term for load 303

balancing, 304

L = CV

(∑
x∈B

norm topk(sel(x))

)
(14) 305

where CV(x) = µx

σx
is the coefficient of variation 306

and B is the set of all tokens in the batch. 307

Key characteristics: The scores are normalized 308

after the top-K operation (with K > 1), which is 309

equivalent to applying top-K before the softmax. 310

Switch Transformer. Fedus et al. (2022) inte- 311

grate the MoE above into the Transformer to obtain 312

their Switch Transformer. In terms of MoE details, 313

one of Fedus et al. (2022)’s key claims is that top-1 314

routing is enough. Their selection function is sim- 315

ply: sel(x) = softmax(W3x), but they propose 316

a hard load-balancing between experts that run on 317

different hardware accelerators: At most µ |B|
NE

to- 318

kens are allowed to be routed to an expert, where 319

µ ∈ R>0 is the capacity factor (typically between 1 320

and 1.5), defining how many times more tokens can 321

be processed by one expert compared to the ideal 322

case of uniform routing. Each expert is forbidden 323

to process more than this number of tokens. For 324

regularization, the fraction of the tokens f ∈ RNE 325

processed by each expert, and the average selection 326

probability p ∈ RNE for each expert are calculated 327

(K = 1; top-1 is used) as: 328

fi =
1

|B|
∑
x∈B

1{i ∈ arg topk(sel(x),K)} (15) 329

p =
1

|B|
∑
x∈B

sel(x) (16) 330

L = NEf · p (17) 331

where 1 denotes the indicator function (which is 332

equal to 1 if the argument is true, and 0 otherwise), 333

4

and · denotes dot product. Intuitively, this serves334

as an adaptive regularization that penalizes experts335

that are used often with high “weights.” In addition,336

they use dropout with a high drop rate (40%) in337

the experts (but only 10% in the normal layers).338

Furthermore, Fedus et al. (2022) also propose to339

initialize the experts with
√

0.1
G . As we’ll see in340

Sec. 5, we use a modified version of this scheme.341

Note that applying Top-K after softmax encour-342

ages collapsing: if the score of the selected ex-343

pert is increased, the scores of all other experts are344

automatically decreased. This is not the case for345

Shazeer et al. (2017): In their method, only the se-346

lected experts compete with each other, so if their347

presence is beneficial, their score can be increased.348

Key characteristics: Note that Top-1 is applied349

after the softmax without re-normalization.350

BASE layers and S-BASE. Inspired by the rout-351

ing strategy and the hard capacity factor of the352

Switch Transformer, Lewis et al. (2021) propose353

BASE layers. They use top-1 routing and a sigmoid354

activation σ in the selection function:355

sel(x) = σ(W3x) (18)356

Now instead of using arg topk, they solve the fol-357

lowing linear assignment problem to find the index358

ex ∈ {1, ..., NE} of the expert to which each input359

x ∈ B is routed,360

maximize
ex∈{1,...,NE},x∈B

∑
x∈B

sel(x)[ex] (19)361

s.t. ∀i ∈ {1, ..., NE},
∑
x∈B

1{ex == i} =
|B|
NE

362

This guarantees uniform assignment of experts,363

which is efficient for multi-accelerator training.364

The output is computed using Eq. 11 with Ex =365

{ex} (a set with a single element; “top-1”). How-366

ever, at inference time, no such balancing is pos-367

sible because not all tokens of the sequence are368

available at each step; Ex = {argmax (sel(x))} is369

used instead. Lewis et al. (2021) show that, while370

during training, the routing is enforced to be com-371

pletely uniform, during the test time, the distribu-372

tion looks exponential (in fact, this is similar to the373

Switch Transformer but more balanced for BASE).374

The algorithm for solving the linear assignment375

problem (Eq. 19) is difficult to implement effi-376

ciently on modern accelerators. Clark et al. (2022)377

have proposed to use the Sinkhorn algorithm378

(Sinkhorn, 1964; Sinkhorn and Knopp, 1967) in- 379

stead (resulting in a model called Sinkhorn-BASE 380

or S-BASE), to approximate the solution to this 381

problem (note that similar routing is independently 382

discussed by Kool et al. (2021)). They report that 383

this works well, while being simpler to implement. 384

Thus, our reimplementation of BASE is S-BASE 385

using the Sinkhorn algorithm. 386

Key characteristics: During training, Sinkhorn 387

iterations are used on scores to obtain a balanced as- 388

signment. The sigmoid activation is always applied 389

to compute the weighting score. 390

Overall, all load-balancing methods above are 391

rather complex. We propose simpler but effective 392

approach for MoEs in Sec. 5. 393

5 Improving Mixture of Experts 394

Here we present our improved MoE variant, which 395

we call σ-MoE. We conduct thorough ablation stud- 396

ies on our design choices in Sec. 6. 397

σ-MoE Expert Selection Function. Our MoE 398

make use of the top-K operation (unlike BASE). 399

The activation we use on the selection function is 400

sigmoid (as in Eq. 18 of BASE) instead of softmax 401

used in Switch Transformer and Sparsely Gated 402

Mixtures of Experts. This choice is motivated by 403

the view of MoEs as approximate 2-layer MLPs 404

(Sec. 3). In fact, softmax introduces competition 405

between experts. No such competition between 406

channels is used in the regular 2-layer MLP (i.e., 407

there is no constraint on αi in Eq. 5). This suggests 408

that, in principle, no competition is needed between 409

terms in the sum of Eq. 12 in the MoE either, to in- 410

duce sparsity. It is also well known to practitioners 411

that softmax as regular activation negatively affects 412

the trainability of standard MLPs. Therefore, we 413

opt for sigmoid instead of softmax; we experimen- 414

tally confirm that this is indeed a good choice. 415

Additionally, looking at MoEs in this framework 416

gives us hints on combining them with Top-K 417

activation (Sec. 3.1) for further acceleration. We 418

can calculate ue = s[e] ReLU(W e
1 x) (Eq. 11) 419

for the selected experts and perform an additional 420

Top-K to keep the highest units among them and 421

set the rest to zero. We leave this for future work. 422

σ-MoE Initialization. Another design choice 423

guided by the MLP-approximation view of MoEs 424

(Sec. 3) is the initialization scheme for experts. Typ- 425

ically, experts are assumed to be independent, and 426

the standard deviation of the initialization (Glorot 427

5

and Bengio, 2010; He et al., 2015) of W e
2 is calcu-428

lated based on G instead of dff. Our experiments429

in Sec. 6.3 show that this is sub-optimal.430

In contrast, we initialize all weight matrices431

identically to the pre-layernorm dense baselines,432

not taking in account the smaller size of the indi-433

vidual experts, i.e., W e
1 ∼ N (0,

√
2

dmodel·nlayers
) and434

W e
2 ∼ N (0,

√
2

dff·nlayers
) where nlayers denotes the435

number of layers, using dmodel and dff instead of G.436

We also take special care when initializing W3437

of the selection function. We initialize it to a438

normal distribution with the same standard devi-439

ation as W e
1 , but we also ensure that the rows440

of W3 have the same norm. This can be easily441

achieved in practice by initializing the weights to442

W ′
3 ∼ N (0, 1), rescaling its rows to norm 1, and443

then rescaling the whole matrix again to have the444

desired standard deviation. Note that each scalar445

score in s is the dot product of a row of W3 and x.446

This initialization method ensures that only the an-447

gle between x and the rows of W3 initially affects448

the score s, rather than an additional random factor449

resulting from initialization.450

σ-MoE Regularization. As already noted in451

Sec. 4, existing regularization methods for load-452

balancing are complex (e.g., Switch Transformers453

need to deal separately with the actual selection454

distribution and the scores, Sparsely Gated Mixture455

of Experts need noise in the selection function).456

In contrast, we propose to simply maximize the457

entropy of the selection distribution p ∈ RNE cal-458

culated over the entire batch. Let B be the set of459

all tokens in the batch (counting through both the460

batch and time dimensions). We introduce the fol-461

lowing regularization term L:462

p =
1

|B|
∑
x∈B

softmax(W3x) (20)463

L =

NE∑
e=1

p[e] logp[e] (21)464

Furthermore, we propose to randomly drop com-465

plete experts, during training; we refer to this as466

expert dropout. Unlike the standard dropout on the467

activation level, we do not apply rescaling, i.e.,468

sel(x) =

{
σ(Wsx)⊙m if training
σ(Wsx) otherwise

(22)469

where m ∈ {0, 1}NE , m ∼ Bernoulli(1 − δ),470

where δ is the dropout rate, and ⊙ is the element-471

wise product. This prevents the dropped experts 472

from being selected, while not affecting the other 473

ones. We experimentally show that our regulariza- 474

tion method (Eq. 21) and expert dropout (Eq. 22) 475

are both effective despite their simplicity. 476

6 Experiments 477

Our experimental setup is based on Dai et al. 478

(2019)’s Transformer XL with some modifications: 479

we use pre-layer norm and reduce the number of 480

training steps to 100k to reduce the computational 481

budget. Also, to match the parameter counts be- 482

tween the baseline and MoEs, we slightly modify 483

the hyperparameters of the baselines (Dai et al., 484

2019). In fact, our MoE CUDA kernel can only 485

work with dimensions divisible by 4. We round the 486

original sizes up to the next suitable number, e.g., 487

we change dmodel of our 47M-parameter WikiText- 488

103 model from the original 410 to 412. Further- 489

more, since MoEs require extra parameters for the 490

expert selection function, we compensate for these 491

by increasing the dff of the baseline model to match 492

the number of parameters. Our modified baseline 493

model on Enwik8 still has 41M parameters and 494

performs similarly to the original Transformer XL 495

(see Tab. 1). For WikiText-103, we use subword 496

units (Sennrich et al., 2016) using SentencePiece 497

tokenizer (Kudo and Richardson, 2018) instead of 498

the word-level vocabulary, to avoid extra tricks re- 499

quired to reduce the parameter count and compute 500

requirement resulting from the huge vocabulary 501

size. On WikiTest-103, we consider two different 502

model sizes: a 47M-parameter one (denoted by 503

“WT-S” for “small”), and a 262M-parameter one 504

(“WT-B” for “big”). We refer to Enwik8 as “E8” in 505

certain tables. For more details, see Appendix B. 506

For all the methods considered, we use them 507

in every MLP block of the model, which is not a 508

common practice in the literature. Typically, MoE 509

(or other approximation methods) is used only once 510

every nth layer or even only in one layer. This is not 511

satisfactory since our goal is to find a generally ap- 512

plicable method that can accelerate all layers across 513

the whole model. Moreover, this amplifies the dif- 514

ference between different methods, helping better 515

illustrate effects of each of the design choices. 516

6.1 Top-K 517

We first evaluate the Top-K method (Sec. 3.1). 518

This standalone evaluation is important as Top-K 519

is the basis of both the PKM and the MoE 520

6

approximations. Tab. 1 shows the results. We521

observe that not only Top-K in the MLP blocks522

preserves the performance of Transformers, it even523

improves performance. We hypothesize that these524

improvements are due to the reduction in feature525

interference as described by Elhage et al. (2022).526

However, we obviously can not arbitrary reduce K;527

there should be a trade-off between the denoising528

effect and the capacity of the network. Here, the529

optimal value we find is K = 128, independently530

of model size and dataset.531

Table 1: Effects of the top-k activation function on the
perplexity (WikiText-103) and bits/character (Enwik8).

Dataset #params dff K bpc/perplexity

Enwik8 41M 2053 - 1.08
41M 2053 128 1.07
41M 2053 256 1.08
41M 2053 512 1.08

WikiText 103 47M 2053 - 11.81
47M 2053 64 11.86
47M 2053 128 11.74
47M 2053 256 11.74
47M 2053 512 11.68

WikiText 103 262M 4110 - 9.46
262M 4110 128 9.26
262M 4110 256 9.34
262M 4110 512 9.36

6.2 Product-Key Memory (PKM)532

Our view of Sec. 3 suggests using a non-533

competitive activation such as ReLU instead of the534

softmax used in the original PKM (Lample et al.,535

2019). Our experiments confirm the benefits of536

this choice (Tab. 2): the performance of the ReLU537

variants is much closer to the dense baseline (see538

also related findings in Shen et al. (2023)). But539

even the best PKM models underperform the dense540

baselines, indicating the fundamental limitation of541

PKMs. Note that, as stated above, we conduct542

a careful comparison between the approximation543

method (here, PKM) and the dense baseline using544

the same number of parameters. For more results545

and details on PKM, we refer to App. A.3.546

Table 2: Performance of the parameter-matched PKM
models. We provide more results in Appendix/Tab. 5.

Variant Nonlin WT-S WT-B E8

Dense Baseline ReLU 11.81 9.46 1.08

PKM Softmax 13.96 11.10 1.16
ReLU 12.77 9.98 1.11

Table 3: Performance of parameter-batched σ-MoEs on
perplexity (WikiText-103) and bits/character (Enwik8).

Dataset Model #params % FLOPs bpc/ppl

Enwik8 Dense 41M 100.0% 1.08
σ-MoE 41M 25.0% 1.08

WikiText-103 Dense 47M 100.0% 11.81
σ-MoE 47M 25.0% 11.71

WikiText-103 Dense 262M 100.0% 9.46
σ-MoE 262M 12.5% 9.44

6.3 Mixture of Experts (MoE) 547

Here we evaluate our σ-MoE models (Sec. 5). 548

Main results. Tab. 3 shows the main results; our 549

σ-MoE models match the performance of their 550

parameter-equal dense baselines, while achieving 551

significant memory and compute reduction. These 552

models use K = 4 for NE = 16 or NE = 32, 553

which is a “moderate” level of sparsity but already 554

offering significant compute reduction as shown 555

in the column “% FLOPs”; concrete compute and 556

memory reduction is further shown in Fig. 2, (as 557

well as Figs. 6 and 7 in the appendix). Naturally, 558

there is a limit on the minimum sparsity level to 559

preserve good performance of MoEs, which is 560

determined by several factors. First, we empirically 561

find that experts with a group size of G < 128 562

generally degrades performance. Second, our 563

benchmarks with the Top-K operation (Tab. 1) 564

and our ablations (Tab. 8 in the Appendix) show 565

that the minimum number of simultaneously active 566

channels G ·K need to be above a certain critical 567

threshold (usually around 256-512). Finally, we 568

match the number of parameters of the baseline 569

model; this is the last constraint. Under these 570

constraints, we find that the performance of the 571

dense baselines can be matched using 25% of the 572

required FLOPs and memory for activations for our 573

small models, and 12.5% sparsity for the big one 574

(note that FLOPs here do not take into account the 575

linear projection used to select the experts, which 576

is negligible within the range of NE used here). 577

Increasing NE and Impact of Sparsity. The 578

results above demonstrate that our σ-MoEs can 579

be configured to match the desired performance 580

with fewer resources. Here we conduct an extra 581

experiment where we naively increase NE (while 582

keeping K = 4) from 16 to 128. This increases the 583

number of parameters to 238M, while keeping the 584

speed and memory requirements comparable to the 585

original model (column “WT-S*” in Tab. 4). This 586

7

8 32 64 128 256
Number of experts (NE)

0

200
Ti

m
e

(m
s) MLP

MoE

0.0

2.5

M
em

or
y

(G
B

)

MLP
MoE

Figure 2: Execution time and memory usage of a
forward-backward pass of a single MLP and MoE layer.
|B| = 32768, corresponding to a batch size 64 and
sequence length 512, dmodel = 512, K = 4, and
dff = G · NE . Full/dashed lines show the execution
time/memory consumption, respectively. As they are
both linear with similar slopes, they are almost indistin-
guishable. Even our sub-optimal CUDA kernel is faster
starting from 16 experts. Measured on an RTX 3090
with PyTorch 2.01 and CUDA 11.

model achieves a test perplexity of 10.37, which587

is worse than 9.46 of the 262M dense model (see588

Tab. 1). Indeed, even when the parameter count is589

matched, there are other bottlenecks that are cru-590

cial, e.g., here dmodel is much smaller (412 vs 1024).591

We construct another dense baseline by setting ev-592

ery hyperparameter like in the 47M model, except593

dff, which is set to 16480 to match the number of594

parameters of the NE = 128 MoE. This baseline595

achieves a perplexity of 10.03: thus, the gap be-596

tween the scaled-up MoE and its dense counterpart597

still remains significant (10.37 vs 10.03), unlike598

with the MoE with moderate sparsity. This indi-599

cates the importance of controlling MoE sparsity to600

preserve its performance against the dense baseline.601

Comparison to Existing MoEs. We also602

compare our σ-MoE to other MoE variants603

(Sec. 4), namely Switch Transformer (Fedus et al.,604

2022), S-BASE (Clark et al., 2022)4 and the basic605

softmax variant. Tab. 4 shows the results. As606

Switch Transformer and S-BASE select only one607

single expert (K = 1), we increase the expert608

size by a factor of 4 (instead of G = 128 in our609

models, we use G = 512), and we decrease NE610

by the same factor for fair comparison in terms611

of the parameter count. Neither of them uses our612

proposed expert dropout. For Switch Transformer,613

we test a variant with standard dropout in the614

experts (see App. B for details), and a version615

without. We also extend S-BASE to K = 4, which616

is similar to ours, except for the balancing method.617

Even considering all these cases, our σ-MoE618

outperforms Switch Transformer and S-BASE.619

Ablation Studies. Finally we conduct ablation620

4Unlike the original ones, our implementation does not
enforce capacity factor-based hard balancing.

Table 4: Ablation studies. WT-S* is obtained by naively
scaling NE in WT-S. More details in Sec. 6.3 & Tab. 8.

Dataset WT-S WT-S* WT-B E8
params. (in M) 47 238 262 41

Switch Transformer 12.27 11.24 9.68 1.08
no dropout 11.88 11.10 9.77 1.10

S-BASE (K=4, G=128) 13.01 10.96 10.50 1.17
K = 1, G = 512 12.32 11.31 9.77 1.32

σ-MoE (K=4, G=128) 11.59 10.37 9.44 1.08
standard dropout 12.01 10.27 9.53 1.08
softmax (renorm.) 11.89 11.27 9.58 1.09
softmax (no renorm.) 12.05 10.54 9.62 1.09
standard init 11.80 10.59 9.67 1.08
no regularization 11.83 10.41 9.51 1.08
K = 8, G = 64 11.63 10.30 9.58 1.08
K = 2, G = 256 11.84 10.44 9.56 1.09
K = 1, G = 512 11.90 10.83 9.58 1.09

studies of individual design choices (Sec. 5). Tab. 4 621

shows the results. Standard dropout instead of ex- 622

pert dropout leads to performance degradation for 623

most of the cases, except the model with NE = 128 624

experts. The softmax-based selection functions 625

(with and without re-re-normalization) consistently 626

perform worse than our sigmoid one. The same is 627

true for the standard initialization ; ours is better. 628

Interestingly, removing all regularization methods 629

degrades performance but does not entail catas- 630

trophic collapse even with NE = 128. We also 631

examine the best (G, K) combinations, given a con- 632

stant number (G ·K) of active pairs ki, vi; we find 633

a high K = 4 works best within this range. Further 634

analysis of our σ-MoE can be found in App. A.4. 635

7 Conclusion 636

Our novel view unifies methods that approximate 637

2-layer MLPs, such as Top-K, Mixture of 638

Experts (MoE) and product-key memory (PKM) 639

methods. While Top-K by itself provides limited 640

performance improvements and speedups, further 641

speedup requires PKM or MoE. A non-competitive 642

activation function inspired by our unified view 643

improves both PKM and MoE. Further novel 644

enhancements of MoEs yield our σ-MoE which out- 645

performs existing MoEs. A σ-MoE with moderate 646

sparsity performs as well as parameter-equal dense 647

baselines while being much more resource-efficient. 648

Our new insights improve the training of language 649

models with limited hardware resources, making 650

language modeling research more accessible. 651

8

Limitations652

Our experiments show that if we naively increase653

the number of experts, the performance gap be-654

tween MoE models and their dense counterparts in-655

creases. This indicates the need for careful control656

of sparsity and hyper-parameters, which remains a657

challenge for MoEs.658

Our CUDA kernel is sub-optimal and I/O659

limited. However, even in its current form, it660

already yields significant performance boosts661

and memory reduction. We expect that an expert662

CUDA programmer could improve the speed of663

our kernel by at least a factor of 2.664

We do not consider load balancing between hard-665

ware accelerators as is done in Switch Transformers666

and S-BASE. Our goal is to make a larger model667

fit a single accelerator, or multiple accelerators in668

the standard data-parallel training. Our preliminary669

experiments suggest that such balancing entails a670

performance hit.671

We could not reproduce the 277M Enwik8672

model of Dai et al. (2019), because we could not673

fit the beaseline model on any of our machines.674

We tried to use rotary positional encodings with675

PyTorch 2.0’s memory-efficient attention to reduce676

it’s memory consumption; however, this resulted677

in a significant performance degradation (even for678

the smaller models).679

Our study focuses on end-to-end trainable680

MoEs. Other MoE methods (Irie et al., 2018; Li681

et al., 2022) that pre-train LMs on disjoint data,682

to recombine them later into a single model, are683

out-of-scope.684

Our study only considers standard Transform-685

ers; however, similar acceleration methods are of686

utmost importance for shared-layer Transformers,687

such as Universal Transformers (Dehghani et al.,688

2019) and NDRs (Csordás et al., 2022). In fact,689

layer sharing dramatically reduces the number of690

parameters. Compensating for this by naively in-691

creasing dmodel or dff results in prohibitively high692

memory overhead and slow execution. In contrast,693

MoEs allow increasing the number of parameters694

without such dramatic drawbacks. We leave shared-695

layer MoEs for future work.696

References697

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-698
gio. 2015. Neural machine translation by jointly699
learning to align and translate. In Int. Conf. on Learn-700
ing Representations (ICLR), San Diego, CA, USA.701

Tom B Brown et al. 2020. Language models are few- 702
shot learners. In Proc. Advances in Neural Informa- 703
tion Processing Systems (NeurIPS), Virtual only. 704

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. 705
Long short-term memory-networks for machine read- 706
ing. In Proc. Conf. on Empirical Methods in Natu- 707
ral Language Processing (EMNLP), pages 551–561, 708
Austin, TX, USA. 709

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, 710
Shuming Ma, Barun Patra, Saksham Singhal, Payal 711
Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and 712
Furu Wei. 2022. On the representation collapse of 713
sparse mixture of experts. In Proc. Advances in Neu- 714
ral Information Processing Systems (NeurIPS), New 715
Orleans, Louisiana, USA. 716

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, 717
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan 718
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion 719
Stoica, and Eric P. Xing. 2023. Vicuna: An open- 720
source chatbot impressing gpt-4 with 90%* chatgpt 721
quality. 722

Krzysztof Marcin Choromanski, Valerii Likhosherstov, 723
David Dohan, Xingyou Song, Andreea Gane, Tamás 724
Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz 725
Mohiuddin, Lukasz Kaiser, David Benjamin Be- 726
langer, Lucy J. Colwell, and Adrian Weller. 2021. 727
Rethinking attention with performers. In Int. Conf. 728
on Learning Representations (ICLR), Virtual only. 729

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur 730
Mensch, Michela Paganini, Jordan Hoffmann, Bog- 731
dan Damoc, Blake A. Hechtman, Trevor Cai, Se- 732
bastian Borgeaud, George van den Driessche, Eliza 733
Rutherford, Tom Hennigan, Matthew J. Johnson, 734
Albin Cassirer, Chris Jones, Elena Buchatskaya, 735
David Budden, Laurent Sifre, Simon Osindero, Oriol 736
Vinyals, Marc’Aurelio Ranzato, Jack W. Rae, Erich 737
Elsen, Koray Kavukcuoglu, and Karen Simonyan. 738
2022. Unified scaling laws for routed language mod- 739
els. In Proc. Int. Conf. on Machine Learning (ICML). 740

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. 741
2022. The neural data router: Adaptive control flow 742
in transformers improves systematic generalization. 743
In Int. Conf. on Learning Representations (ICLR), 744
Virtual only. 745

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Car- 746
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019. 747
Transformer-XL: Attentive language models beyond 748
a fixed-length context. In Proc. Association for Com- 749
putational Linguistics (ACL), pages 2978–2988, Flo- 750
rence, Italy. 751

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, 752
and Christopher Ré. 2022. Flashattention: Fast and 753
memory-efficient exact attention with io-awareness. 754
In Proc. Advances in Neural Information Processing 755
Systems (NeurIPS), New Orleans, Louisiana, USA. 756

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,757
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal758
Transformers. In Int. Conf. on Learning Representa-759
tions (ICLR), New Orleans, LA, USA.760

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke761
Zettlemoyer. 2022. Llm.int8(): 8-bit matrix multipli-762
cation for transformers at scale. In Proc. Advances in763
Neural Information Processing Systems (NeurIPS),764
New Orleans, Louisiana, USA.765

Nelson Elhage, Tristan Hume, Catherine Olsson,766
Nicholas Schiefer, Tom Henighan, Shauna Kravec,767
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,768
Carol Chen, Roger Grosse, Sam McCandlish, Jared769
Kaplan, Dario Amodei, Martin Wattenberg, and770
Christopher Olah. 2022. Toy models of superpo-771
sition. Transformer Circuits Thread.772

William Fedus, Barret Zoph, and Noam Shazeer. 2022.773
Switch transformers: Scaling to trillion parameter774
models with simple and efficient sparsity. Journal775
of Machine Learning Research (JMLR), 23(1):5232–776
5270.777

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-778
tionism and cognitive architecture: A critical analysis.779
Cognition, 28(1-2):3–71.780

Mor Geva, Roei Schuster, Jonathan Berant, and Omer781
Levy. 2021. Transformer feed-forward layers are782
key-value memories. In Proc. Conf. on Empirical783
Methods in Natural Language Processing (EMNLP),784
pages 5484–5495, Punta Cana, Dominican Republic.785

Xavier Glorot and Yoshua Bengio. 2010. Understanding786
the difficulty of training deep feedforward neural787
networks. In Proc. Int. Conf. on Artificial Intelligence788
and Statistics (AISTATS), pages 249–256, Sardinia,789
Italy.790

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian791
Sun. 2015. Delving deep into rectifiers: Surpassing792
human-level performance on imagenet classification.793
In Proc. IEEE Int. Conf. on Computer Vision (ICCV),794
pages 1026–1034, Santiago, Chile.795

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia796
Bruni. 2020. Compositionality decomposed: How797
do neural networks generalise? Journal of Artificial798
Intelligence Research, pages 757–795.799

Kazuki Irie, Shankar Kumar, Michael Nirschl, and Hank800
Liao. 2018. RADMM: Recurrent adaptive mixture801
model with applications to domain robust language802
modeling. In Proc. IEEE Int. Conf. on Acoustics,803
Speech and Signal Processing (ICASSP), pages 6079–804
6083, Calgary, Canada.805

Alekseı̆ Grigorievitch Ivakhnenko and Valentin Grig-806
orévich Lapa. 1965. Cybernetic Predicting Devices.807
CCM Information Corporation.808

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan,809
and Geoffrey E. Hinton. 1991. Adaptive mixtures of810
local experts. Neural Compututaion, 3(1):79–87.811

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap- 812
pas, and François Fleuret. 2020. Transformers are 813
rnns: Fast autoregressive transformers with linear 814
attention. In Proc. Int. Conf. on Machine Learning 815
(ICML), volume 119, pages 5156–5165, Virtual Only. 816

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 817
method for stochastic optimization. In Int. Conf. on 818
Learning Representations (ICLR), San Diego, CA, 819
USA. 820

Wouter Kool, Chris J Maddison, and Andriy Mnih. 2021. 821
Unbiased gradient estimation with balanced assign- 822
ments for mixtures of experts. In I (Still) Can’t 823
Believe It’s Not Better Workshop, NeurIPS, Virtual 824
Only. 825

Taku Kudo and John Richardson. 2018. Sentencepiece: 826
A simple and language independent subword tok- 827
enizer and detokenizer for neural text processing. In 828
Proc. Conf. on Empirical Methods in Natural Lan- 829
guage Processing (EMNLP), pages 66–71, Brussels, 830
Belgium. 831

Guillaume Lample, Alexandre Sablayrolles, 832
Marc’Aurelio Ranzato, Ludovic Denoyer, and 833
Hervé Jégou. 2019. Large memory layers with prod- 834
uct keys. In Proc. Advances in Neural Information 835
Processing Systems (NeurIPS), pages 8546–8557, 836
Vancouver, Canada. 837

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, 838
Dehao Chen, Orhan Firat, Yanping Huang, Maxim 839
Krikun, Noam Shazeer, and Zhifeng Chen. 2021. 840
Gshard: Scaling giant models with conditional com- 841
putation and automatic sharding. In Int. Conf. on 842
Learning Representations (ICLR), Virtual only. 843

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman 844
Goyal, and Luke Zettlemoyer. 2021. BASE layers: 845
Simplifying training of large, sparse models. In Proc. 846
Int. Conf. on Machine Learning (ICML), volume 139, 847
pages 6265–6274, Virtual only. 848

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike 849
Lewis, Tim Althoff, Noah A Smith, and Luke Zettle- 850
moyer. 2022. Branch-train-merge: Embarrassingly 851
parallel training of expert language models. Preprint 852
arXiv:2208.03306. 853

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang 854
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, 855
Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar. 856
2023. The lazy neuron phenomenon: On emergence 857
of activation sparsity in transformers. In Int. Conf. on 858
Learning Representations (ICLR), Kigali, Rwanda. 859

Peter Pagin and Dag Westerståhl. 2010. Compositional- 860
ity I: Definitions and variants. Philosophy Compass, 861
5(3):250–264. 862

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and 863
Jakob Uszkoreit. 2016. A decomposable attention 864
model for natural language inference. In Proc. Conf. 865
on Empirical Methods in Natural Language Process- 866
ing (EMNLP), pages 2249–2255, Austin, TX, USA. 867

10

Adam Paszke, Sam Gross, Francisco Massa, Adam868
Lerer, James Bradbury, Gregory Chanan, Trevor869
Killeen, Zeming Lin, Natalia Gimelshein, Luca870
Antiga, Alban Desmaison, Andreas Kopf, Edward871
Yang, Zachary DeVito, Martin Raison, Alykhan Te-872
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,873
Junjie Bai, and Soumith Chintala. 2019. Pytorch:874
An imperative style, high-performance deep learning875
library. In Proc. Advances in Neural Information Pro-876
cessing Systems (NeurIPS), pages 8024–8035, Van-877
couver, Canada.878

Alec Radford, Jeff Wu, Rewon Child, David Luan,879
Dario Amodei, and Ilya Sutskever. 2019. Language880
models are unsupervised multitask learners.881

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie882
Millican, Jordan Hoffmann, H. Francis Song, John883
Aslanides, Sarah Henderson, Roman Ring, Susan-884
nah Young, Eliza Rutherford, Tom Hennigan, Ja-885
cob Menick, Albin Cassirer, Richard Powell, George886
van den Driessche, Lisa Anne Hendricks, Mari-887
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-888
hannes Welbl, Sumanth Dathathri, Saffron Huang,889
Jonathan Uesato, John Mellor, Irina Higgins, Antonia890
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Sid-891
dhant M. Jayakumar, Elena Buchatskaya, David Bud-892
den, Esme Sutherland, Karen Simonyan, Michela Pa-893
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine894
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena895
Gribovskaya, Domenic Donato, Angeliki Lazaridou,896
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-897
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-898
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,899
Daniel Toyama, Cyprien de Masson d’Autume, Yujia900
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,901
Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris902
Jones, James Bradbury, Matthew J. Johnson, Blake A.903
Hechtman, Laura Weidinger, Iason Gabriel, William904
Isaac, Edward Lockhart, Simon Osindero, Laura905
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,906
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-907
ray Kavukcuoglu, and Geoffrey Irving. 2021. Scaling908
language models: Methods, analysis & insights from909
training gopher. Preprint arXiv:2112.11446.910

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber.911
2021. Linear transformers are secretly fast weight912
programmers. In Proc. Int. Conf. on Machine Learn-913
ing (ICML), volume 139, pages 9355–9366, Virtual914
only.915

Jürgen Schmidhuber. 1991. Learning to control fast-916
weight memories: An alternative to recurrent nets.917
Technical Report FKI-147-91, Institut für Informatik,918
Technische Universität München.919

Rico Sennrich, Barry Haddow, and Alexandra Birch.920
2016. Neural machine translation of rare words with921
subword units. In Proc. Association for Computa-922
tional Linguistics (ACL), pages 1715–1725, Berlin,923
Germany.924

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,925
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff926

Dean. 2017. Outrageously large neural networks: 927
The sparsely-gated mixture-of-experts layer. In Int. 928
Conf. on Learning Representations (ICLR), Toulon, 929
France. 930

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui 931
Wang, and Jiang Bian. 2023. A study on relu and 932
softmax in transformer. Preprint arXiv:2302.06461. 933

Richard Sinkhorn. 1964. A relationship between arbi- 934
trary positive matrices and doubly stochastic matri- 935
ces. The annals of mathematical statistics, 35(2):876– 936
879. 937

Richard Sinkhorn and Paul Knopp. 1967. Concerning 938
nonnegative matrices and doubly stochastic matrices. 939
Pacific Journal of Mathematics, 21(2):343–348. 940

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann 941
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, 942
and Tatsunori B. Hashimoto. 2023. Stanford alpaca: 943
An instruction-following llama model. https:// 944
github.com/tatsu-lab/stanford_alpaca. 945

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 946
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 947
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 948
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard 949
Grave, and Guillaume Lample. 2023. Llama: Open 950
and efficient foundation language models. Preprint 951
arXiv:2302.13971. 952

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 953
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 954
Kaiser, and Illia Polosukhin. 2017. Attention is all 955
you need. In Proc. Advances in Neural Information 956
Processing Systems (NIPS), pages 5998–6008, Long 957
Beach, CA, USA. 958

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe 959
Wasserblat. 2019. Q8BERT: quantized 8bit BERT. 960
In Workshop on Energy Efficient Machine Learn- 961
ing and Cognitive Computing - NeurIPS, Vancouver, 962
Canada. 963

A Further details and analyses 964

A.1 Definition of normalised Top-K 965

Using the setting of Sec. 3.3, we define the normal- 966

ized top-K operation as follows: 967

Ex = arg topk(s,K) (23) 968

topk(s)[i] =

{
s[i] if i ∈ Ex
0 otherwise

(24) 969

norm topk(s) =
topk(s)∑
i topk(s)[i]

(25) 970

A.2 Measuring the Number of Active 971

Channels in u 972

In order to explore whether a (ki - vi) sparsity- 973

based approach is feasible, we measure the number 974

11

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

of nonzero entries in the up-projected vector u in975

our baseline models (which, because of the ReLU976

activation function, is the same as the positive en-977

tries). We show the results of our 47M model in Fig.978

1. Note that dff = 2053 (See Tab. 6) for the same979

model, which means that on average only 1-10% of980

the channels are active. We show the same analysis981

for the 262M model in Fig. 3. Interestingly, the982

counts remain the same, even though dff = 4110983

for this model. The 41M parameter model on En-984

wik8 shows a stark difference in the distribution985

of the channels between layers; see Fig. 4. This986

suggests that the key factor determining the count987

distribution is the dataset, and the size of the model988

plays only a secondary role. Fortunately, the spar-989

sity is very high for all models considered.990

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layer

0

200

400

A
ct

iv
e

ch
an

ne
ls

Figure 3: Number of active channels in u in our dense
262M parameter model on Wikitext-103. dff = 4110
for this model, so the sparsity is below ∼ 5%. Standard
deviation over all tokens of the test and validation set.

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0

100

200

300

A
ct

iv
e

ch
an

ne
ls

Figure 4: Number of active channels in u in our dense
41M parameter model on Enwik8. dff = 2053 for this
model, thus the sparsity is below ∼ 15%. Standard
deviation over all tokens of the test and validation set.

A.3 More Details and Results on PKM991

Our PKM (Sec. 3.2) is based on Lample et al.992

(2019) with the following basic modifications.993

First, we do not use batch normalization (BN). As994

Lample et al. (2019) shows that BN is only benefi-995

cial for models with a very large memory size, we996

remove it as it simplifies inference where the effec-997

tive batch size varies over time. Also, we directly998

divide the input vectors into two sub-keys without999

an additional projection. Finally, unlike Lample1000

et al. (2019), we use the same learning rate for all 1001

parts of the network. 1002

In addition to the parameter-equal comparison 1003

of Sec. 6.2, there is another possibly “fair” way of 1004

setting the size of the PKM-based model: match 1005

the number of values (this would result in fewer pa- 1006

rameters because of the key approximation), even 1007

though Elhage et al. (2022) suggest that the keys 1008

typically play a vital role, and reducing their capac- 1009

ity will cause a performance loss. See Tab. 5 for 1010

the corresponding results. Note that, for Enwik8 1011

and Wikitext-103 small, the parameter-equal set- 1012

ting increases the number of sub-keys from 46 to 1013

62 (2116 vs. 3844 values). This helps significantly. 1014

A.4 Further Analyses of Our σ-MoE 1015

We also examine the best (G, K) given a constant 1016

number (G·K) of active pairs ki, vi. In this setting, 1017

reducing K by a factor of m (K ′ = K
m) involves 1018

increasing G (G′ = mG), which, for a constant 1019

number of parameters, reduces NE to N ′
E = NE

m . 1020

The results can be seen in the 2nd block of Tab. 8. 1021

We find that a higher K is beneficial. Given this, we 1022

ask the question how the selection distribution of 1023

the models with K > 1 is different from selecting 1024

the same experts together and acting as a larger 1025

expert. Are these models combining experts in 1026

more meaningful ways? To test this, we measure 1027

the distribution of experts that are used together 1028

on Wikitext-103 with our 47M MoE model with 1029

K = 4. The result can be seen in Fig. 5: the 1030

network combines experts in a rich way, further 1031

supporting the use of K > 1. Note that, it remains 1032

an open question whether such “compositions” may 1033

help the generalization and compositional behavior 1034

of the network (Fodor and Pylyshyn, 1988; Pagin 1035

and Westerståhl, 2010; Hupkes et al., 2020). 1036

A.5 More on Resource Efficiency 1037

For execution time and memory usage, both the 1038

dense MLP and the MoE layers are linear in dmodel 1039

(Fig. 7), the MLP is linear in dff, and MoE is linear 1040

in G (Fig. 6) and K. For the same number of 1041

parameters (except for the selection network, which 1042

is negligible), dmodel = G ·NE . However, both the 1043

memory usage and the execution time of the MoE 1044

are almost independent of NE , except for a small 1045

linear factor due to the selection network (see Fig. 1046

2). Figures 2, 6 and 7 shows the actual measured 1047

execution time and memory usage on a RTX 3090 1048

GPU. 1049

12

Table 5: The performance of the PKM model variants. Both value-count and parameter-matched variants are shown.
Additionally, we show the effect of the initialization inspired by our unified view, which is marginal for PKMs.

Variant Setting Nonlinearity WT-S WT-M E8

Dense Baseline ReLU 11.81 9.46 1.08

PKM value-count Softmax 14.11 11.29 1.20
PKM value-count ReLU 13.32 10.16 1.12
PKM # total params. Softmax 13.96 11.10 1.16
PKM # total params. ReLU 12.77 9.98 1.11

PKM + init # total params. ReLU 12.75 9.96 1.11

1 5 9 13
Expert (used with)

1

5

9

13

E
xp

er
t(

ta
rg

et
)

0.00

0.05

0.10

0.15

0.20

Figure 5: Expert co-occurrence in a σ-MoE model with
NE = 16 experts and K = 4. Each row shows the
distribution of experts used together with the one corre-
sponding to the row. Measured on the validation set of
Wikitext-103 in the 3rd layer of our 47M σ-MoE model.
The other layers and models behave qualitatively the
same.

B Implementation details1050

We train all of our models for 100k steps with co-1051

sine learning rate decay, starting from the initial1052

learning rate of 0.00025 and decaying to 0. We use1053

the Adam optimizer (Kingma and Ba, 2015) with1054

default PyTorch parameters (Paszke et al., 2019).1055

We use gradient clipping with a max gradient norm1056

of 0.25. We show the other hyperparameters of1057

our dense models in Tab. 6. We train our models1058

with an XL memory of the same size as the context1059

size. However, following Dai et al. (2019), we eval-1060

uate the models using a longer memory. Unlike1061

the hyperparameter-tuned memory sizes in Trans-1062

former XL, we use 4 times the context size (this1063

approximates the size of the memory by Dai et al.1064

(2019), while being simple).1065

The hyperparameters of the MoE models match1066

those of their dense counterparts with the same1067

number of parameters, except for the MoE-specific1068

ones, which are shown in Tab. 7. δ denotes the1069

expert dropout and γ denotes the regularization1070

64 256 512 1024
Expert size (G)

0

100

200

300

Ti
m

e
(m

s)

MLP
MoE

0

2

4

M
em

or
y

(G
B

)MLP
MoE

Figure 6: Measured execution time and memory us-
age of a forward-backward pass of a single MLP and
MoE layer. |B| = 32768, corresponding to the realistic
scenario of a batch size 64 and sequence length 512,
dmodel = 512, K = 4, NE = 32 and dff = G · NE .
Full lines show the execution time, and dashed ones
the memory consumption. Because they are both linear
with similar slopes, they are almost indistinguishable.
Even with our suboptimal CUDA kernel, the wall-clock
time is faster starting from 16 experts.

strength used for the loss L (See Eq. 21). For the 1071

non-MoE layers, the same dropout is used as for 1072

the baselines. For Switch Transformers, we use 1073

γ = 0.01 with regularization of the form presented 1074

in Eq. 17, following Fedus et al. (2022). The other 1075

variants, including S-BASE, use the regularizer 1076

proposed by us (Eq. 21). 1077

Our small PKM models use 46 subkeys resulting 1078

in 462 = 2116 values for the dff-matched case 1079

and 62 subkeys (3844 values) for the parameter- 1080

matched case. The PKM equivalent of the 262M 1081

parameter model on Wikitext-103 has 64 subkeys 1082

(4096 values) for the dff-matched and 89 subkeys 1083

(7921 values) for the parameter-matched case. The 1084

PKM models do not use dropout in the PKM layers, 1085

and have 4 heads. 1086

B.1 A Few Words on the CUDA Kernel 1087

We call the key operation for our MoE layers con- 1088

ditional vector-matrix multiplication, or CVMM, 1089

and we define it as follows. Given a batch of vec- 1090

tors, V ∈ RN×M , where N is the batch size and 1091

M is the number of channels, a set of K matri- 1092

13

Table 6: Hyperparameters of dense baselines and their MoE counterparts. For the MoE-specific hyperparameters,
please refer to Tab. 7.

Dataset #params dmodel dff nlayers nheads head size context size batch size dropout lr warmup

Wikitext-103 47M 412 2053 16 10 41 256 64 0.1 -
Wikitext-103 238M 412 16480 16 10 41 256 64 0.1 -
Wikitext-103 262M 1024 4110 18 16 64 512 64 0.2 4000
Enwik8 41M 512 2053 12 8 64 512 32 0.1 -

Table 7: MoE-specific hyperparameters for different model variants. γ denotes the scaler for the load balancing
term in the loss and δ is the probability of the expert dropout. The standard, transformer-specific hyperparameters
are the same as for the baselines. Please refer to Tab. 6.

Dataset #params dmodel NE G K δ γ

Wikitext-103 47M 412 16 128 4 - 0.001
Wikitext-103 237M 412 128 128 4 0.05 0.001
Wikitext-103 262M 1024 32 128 4 0.2 0.001
Enwik8 41M 512 16 128 4 0.05 0.0001

128 512 1024 2048
dmodel

0

50

100

150

Ti
m

e
(m

s)

MLP
MoE

0.2

0.4

0.6

M
em

or
y

(G
B

)MLP
MoE

Figure 7: Measured execution time and memory us-
age of a forward-backward pass of a single MLP and
MoE layer. |B| = 32768, corresponding to the real-
istic scenario of a batch size 64 and sequence length
512, K = 4, NE = 32, G = 128 and dff = G · NE .
Full lines show the execution time, and dashed ones
the memory consumption. Even with our suboptimal
CUDA kernel, the wall-clock time is faster starting from
16 experts.

ces M ∈ RK×M×L and selection indices S ∈1093

{0, ...,K − 1}N , CVMM(V ,S,M) ∈ RN×L is:1094

CVMM(V ,S,M)[n, l] = (26)1095

M−1∑
m=0

V [n,m]M [S[n],m, l]1096

Our CUDA kernel is based on the blog post1097

developing a matrix multiplication kernel by Si-1098

mon Boehm (https://siboehm.com/articles/1099

22/CUDA-MMM). However, there are major differ-1100

ences: unlike standard matrix multiplication, in our1101

case, different matrices could be used for different1102

batch elements of the input. In order to be able1103

to reuse matrices fetched from the global memory1104

of the GPU, we first do a preprocessing step: we1105

sort the selection indices, and obtain a reordering1106

vector. This gives us an ordering of the input and1107

output batch elements, such that the consecutive 1108

indices are multiplied by the same matrix with high 1109

probability. Fortunately, multiple channels have to 1110

be fetched/written out at once, so this reordering 1111

has minimal overhead. Our kernel has an addi- 1112

tional grid dimension compared to standard ma- 1113

trix multiplication, iterating over the matrix index, 1114

k ∈ {0, ...,K − 1}. We find that skipping matrices 1115

that do not have any corresponding inputs has min- 1116

imal overhead. To avoid checking all elements of 1117

the reordering vector, we precompute their offsets. 1118

Our kernel uses shared memory and register 1119

caching; however, it does not use asynchronous 1120

loads, which makes it I/O bound. It also does not 1121

support tensor cores and mixed precision. The 1122

pre-processing step uses the radix sort from the 1123

CUB library. However, computing the offsets re- 1124

quires counting the number of vectors assigned to 1125

a single matrix. This information, as well as the 1126

offset, which is their sum, are freely available as 1127

sub-results that the radix sort computes anyways; 1128

however, we found no way of extracting it from 1129

the CUB implementation. We estimate that by 1130

implementing a more efficient preprocessing step, 1131

asynchronous loads, and tensor core support, our 1132

kernel can be further accelerated by a factor of two. 1133

B.2 Additional Results on MoEs 1134

Additional results of different MoE variants with 1135

more model details are shown in Tab. 8. We repeat 1136

the entries from Tab. 4 for easier comparison. 1137

14

https://siboehm.com/articles/22/CUDA-MMM
https://siboehm.com/articles/22/CUDA-MMM
https://siboehm.com/articles/22/CUDA-MMM

Table 8: Detailed ablation results. WT-S* is obtained by naively scaling NE in WT-S. More details in Sec. 6.3. We
do not evaluate all versions of the 262M Wikitext-103 model due to its long training time. However, we aim to
include what we believe are the most interesting variants. γ = 0 means no regularization applied to the selection
scores (See Eq. 21), δ = 0 denotes no expert dropout.

Variant WT-S WT-S* WT-B E8
dmodel 412 412 1024 512
params 47M 237M 262M 41M

G K

σ-MoE (ours) 128 4 11.59 10.37 9.44 1.08
standard dropout 128 4 12.01 10.27 9.53 1.08
softmax (after top-k) 128 4 11.89 11.27 9.58 1.09
softmax (before top-k) 128 4 12.05 10.54 9.62 1.09
standard init 128 4 11.80 10.59 9.67 1.08
no reg (γ = 0, δ = 0) 128 4 11.83 10.41 9.51 1.08
K = 8, G = 64 64 8 11.63 10.30 9.58 1.08
K = 2, G = 256 256 2 11.84 10.44 9.56 1.09
K = 1, G = 512 512 1 11.90 10.83 9.58 1.09
N ′

E = 2NE , G = 64 64 4 11.81 10.53 - 1.08
K = 1 128 1 12.26 11.30 - 1.09
K = 2 128 2 11.90 10.66 - 1.09
K = 8 128 8 11.58 10.22 - 1.08

Switch, K = 1, G = 512 512 1 12.27 11.24 9.68 1.08
no dropout 512 1 11.88 11.10 9.77 1.10
K = 4, G = 128 128 4 12.05 11.37 - 1.10
K = 1, G = 128 128 1 12.61 11.89 - 1.11

no dropout 128 1 12.35 11.78 - 1.10

S-BASE, K = 4, G = 128 128 4 13.01 10.96 10.50 1.17
K = 1, G = 512 512 1 12.32 11.31 9.77 1.32

15

