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TION VIA PROBING DIFFUSION CAPACITY
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Figure 1: Dichotomous image segmentation results using our DiffDIS.

ABSTRACT

In the realm of high-resolution (HR), fine-grained image segmentation, the pri-
mary challenge is balancing broad contextual awareness with the precision re-
quired for detailed object delineation, capturing intricate details and the finest
edges of objects. Diffusion models, trained on vast datasets comprising billions of
image-text pairs, such as SD V2.1, have revolutionized text-to-image synthesis by
delivering exceptional quality, fine detail resolution, and strong contextual aware-
ness, making them an attractive solution for high-resolution image segmentation.
To this end, we propose DiffDIS, a diffusion-driven segmentation model that taps
into the potential of the pre-trained U-Net within diffusion models, specifically
designed for high-resolution, fine-grained object segmentation. By leveraging the
robust generalization capabilities and rich, versatile image representation prior of
the SD models, coupled with a task-specific stable one-step denoising approach,
we significantly reduce the inference time while preserving high-fidelity, detailed
generation. Additionally, we introduce an auxiliary edge generation task to not
only enhance the preservation of fine details of the object boundaries, but reconcile
the probabilistic nature of diffusion with the deterministic demands of segmenta-
tion. With these refined strategies in place, DiffDIS serves as a rapid object mask
generation model, specifically optimized for generating detailed binary maps at
high resolutions, while demonstrating impressive accuracy and swift processing.
Experiments on the DIS5K dataset demonstrate the superiority of DiffDIS, achiev-
ing state-of-the-art results through a streamlined inference process. Our code will
be made publicly available.
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1 INTRODUCTION

High-accuracy dichotomous image segmentation (DIS) (Qin et al., 2022) aims to accurately identify
category-agnostic foreground objects within natural scenes, which is fundamental for a wide range of
scene understanding applications, including AR/VR applications (Tian et al., 2022; Qin et al., 2021),
image editing (Goferman et al., 2011), and 3D shape reconstruction (Liu et al., 2021). Different
from existing segmentation tasks, DIS focuses on challenging high-resolution (HR) fine-grained
object segmentation, regardless of their characteristics. These objects often encompass a greater
volume of information and exhibit richer detail, thereby demanding more refined feature selection
and more sophisticated algorithms for segmentation. Current CNN-(Pei et al., 2023; Qin et al., 2022)
and Transformer-based (Xie et al., 2022; Kim et al., 2022; Yu et al., 2024) methods, despite their
robust feature extraction capabilities, often face challenges in balancing receptive field expansion
with detail preservation in high-resolution images (Xie et al., 2022; Yu et al., 2024).

Diffusion probabilistic models (DPMs), by predicting noise variables across the entire image, have
been demonstrated by numerous studies (Ji et al., 2023; Wang et al., 2023) to show promise in
maintaining a global receptive field while more accurately learning the target distribution. More-
over, Stable Diffusion (SD) (Rombach et al., 2022) has emerged as a significant leap forward in the
domain of DPMs. Trained on vast datasets comprising billions of images, it exhibits robust gen-
eralization capabilities and offers a rich, versatile image representation, positioning it as an ideal
candidate for tasks demanding both macroscopic context and microscopic precision. Its power is
further underscored by its significant contributions to fine-grained feature extraction, as evidenced
by recent studies (Ke et al., 2024; Zhang et al., 2024; Zavadski et al., 2024; Hu et al., 2023; Xu et al.,
2024) that have harnessed the SD’s capabilities to capture the subtleties of detail. The advancements
in these methods inspired us that diffusion could be a powerful tool for improving the accuracy and
robustness of high-resolution image segmentation.

However, there are several challenges when leveraging the diffusion model to DIS: On the one hand,
for diffusion models: (1) The inherent high-dimensional, continuous feature space of DPM conflicts
with the discrete nature of binary segmentation, potentially leading to a discrepancy in the predictive
process. (2) Moreover, the diffusion models often suffer from lengthy inference time. Due to the
recurrent nature of diffusion models, it usually takes more than 100 steps for DPM to generate sat-
isfying results (Ke et al., 2024), which further exacerbates the already slow inference speeds of HR
images due to their substantial data volume. (3) There is a fundamental conflict between the stochas-
tic nature of diffusion and the deterministic outcomes required for image perception tasks. On the
other hand, for the DIS task: As image resolution increases, so does the intricacy of the visual infor-
mation and the corresponding computational demands, necessitating more refined feature selection.

Table 1: The restorative capability of VAE.

Metric Fmax
β ↑ Em

ϕ ↑ Sm ↑ M↓
VAE 0.993 0.999 0.985 0.002

Against this backdrop, we propose DiffDIS lever-
aging the following strategies: First, we found
that the Variational Autoencoder (VAE) (Kingma,
2013) has demonstrated the capability to nearly
achieve perfect reconstruction of binary masks
(See Tab. 1) . Therefore, following SD (Rombach
et al., 2022), by mapping the masks through the VAE into the latent space, we can not only effec-
tively leverage the strengths of diffusion models for denoising and refinement within it, but also
significantly reduces the computational cost associated with processing high-accuracy HR image
segmentation. Then, by employing a direct one-step denoising paradigm (See Eqn. 3) and integrat-
ing the pretrained parameters of SD-Turbo (Sauer et al., 2023; Parmar et al., 2024), which feature
a smoother probability curve compared to the standard SD V2.1 parameters, we aim to streamline
the network into an end-to-end model. This approach facilitates one-step denoising while lever-
aging its robust generalization capabilities and preserving the intricate details of high-resolution
objects. Moreover, we introduce a joint predicting strategy for mask and edge, where the edge task
assists in the training phase. This not only enhances the controllability of fine details but mitigates
the misalignment between the generative nature of diffusion models and the determinism required
in perception tasks. Finally, we utilize RGB latent representations as conditions for the diffusion
model and introduce Scale-Wise Conditional Injection to establish multi-granular, long-range, and
profound visual interactions.

In this paper, we successfully trained a one-step SD model that generates high-resolution, high-
quality results in DIS, preserving fine details while accurately segmenting complex structures (See
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Fig. 1) . Generally, our main contributions can be summarized as follows: (1) We propose DiffDIS,
leveraging the powerful prior of diffusion models for the DIS task, elegantly navigating the tra-
ditional struggle to effectively balance the trade-off between receptive field expansion and detail
preservation in traditional discriminative learning-based methods. (2) We transform the recurrent
nature of diffusion models into an end-to-end framework by implementing straightforward one-step
denoising, significantly accelerating the inference speed. (3) We introduce an auxiliary edge gener-
ation task, complemented by an effective interactive module, to achieve a nuanced balance in detail
representation while also enhancing the determinism of the generated masks. (4) We significantly
advance the field forward by outperforming almost all metrics on the DIS benchmark dataset, and
thus establish a new SoTA in this space. Additionally, it boasts an inference speed that is orders of
magnitude faster than traditional multi-step diffusion approaches, without compromising accuracy,
demonstrating the superiority of DiffDIS.

2 RELATED WORKS

2.1 CONVENTIONAL APPROACH TO DEAL WITH DIS WORKS

Dichotomous Image Segmentation (DIS) is formulated as a category-agnostic task that focuses on
accurately segmenting objects with varying structural complexities, independent of their specific
characteristics. It includes high-resolution images of camouflaged (Fan et al., 2020; Le et al., 2019),
salient (Pang et al., 2020; Zhao et al., 2020), and meticulous (Liew et al., 2021; Yang et al., 2020)
objects in various backgrounds. What distinguishes DIS from conventional segmentation tasks is
the demand for highly precise object delineation, including the finest internal details of objects.
Upon introducing the DIS dataset, Qin et al. also presented IS-Net (Qin et al., 2022), a model
specifically crafted to address the DIS challenge, utilizing the U2Net and intermediate supervision
to mitigate overfitting risks. PF-DIS (Zhou et al., 2023) utilized a frequency prior generator and
feature harmonization module to identify fine-grained object boundaries in DIS. UDUN (Pei et al.,
2023) proposed a unite-divide-unite scheme to disentangle the trunk and structure segmentation
for high-accuracy DIS. InSPyReNet (Kim et al., 2022) was constructed to generate HR outputs
with a multi-resolution pyramid blending at the testing stage. Recent approaches have incorporated
multi-granularity cues that harness both global and local information to enhance detail fidelity and
object localization accuracy. BiRefNet (Zheng et al., 2024) employed a bilateral reference strategy,
leveraging patches of the original images at their native scales as internal references and harnessing
gradient priors as external references. Recently, MVANet (Yu et al., 2024) modeled the DIS task as
a multi-view object perception problem, leveraging the complementary localization and refinement
among different views to process HR, fine-detail images. Despite their commendable performance,
existing methods have not effectively balanced the semantic dispersion of HR targets within a limited
receptive field with the loss of high-precision details associated with a larger receptive field when
tackling DIS. Compared to conventional approaches, our utilization of a diffusion architecture has
excelled in achieving high-quality background removal, with fast processing times (0.3-0.4s), and
offers a straightforward integration.

2.2 DIFFUSION MODELS FOR DENSE PREDICTION AND EFFICIENT INFERENCE IN
DIFFUSION

With the recent success of diffusion models in generation tasks, there has been a noticeable rise in
interest in incorporating them into dense visual prediction tasks. Several pioneering works attempted
to apply the diffusion model to visual perception tasks, e.g.image segmentation (Amit et al., 2021;
Ji et al., 2023; Wang et al., 2023), matting (Hu et al., 2023; 2024), depth estimation (Ke et al., 2024;
Zhang et al., 2024; Zavadski et al., 2024), edge detection (Ye et al., 2024) et al.. Since the pioneering
work (Amit et al., 2021) introduced diffusion methods to solve image segmentation, several follow-
ups use diffusion to attempt their respective tasks. (Ji et al., 2023) formulated the dense visual
prediction tasks as a general conditional denoising process. (Hu et al., 2023) pioneered the use of
diffusion in matting, decoupling encoder and decoder to stabilize performance with uniform time
intervals. (Hu et al., 2024) ingeniously trained the model to paint on a fixed pure green screen
backdrop. (Ye et al., 2024) utilized a decoupled architecture for faster denoising and an adaptive
Fourier filter to adjust latent features at specific frequencies. In the depth estimation field, several
recent works have leveraged diffusion for high-fidelity, fine-grained generation. (Ke et al., 2024)
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introduced a latent diffusion model based on SD (Rombach et al., 2022), with fine-tuning for depth
estimation, achieving strong performance on natural images. (Zavadski et al., 2024) extracts a rich,
frozen image representation from SD, termed preimage, which is then refined for downstream tasks.
Inspired by their work, we observe that diffusion-generative methods naturally excel at modeling
complex data distributions and generating realistic texture details.

However, traditional multi-step generation models encounter a challenge: the recurrent structure
of diffusion models often necessitates over 100 steps to produce satisfactory outputs. In response,
various proposals have emerged to expedite the inference process. Distillation-based methods have
demonstrated remarkable speedups by optimizing the original diffusion model’s weights with en-
hanced schedulers or architectures. (Luo et al., 2023) achieves a few-step inference in conditional
image generation through self-consistency enforcement. SD-Turbo (Sauer et al., 2023) employs
Adversarial Diffusion Distillation (ADD), utilizing a pre-trained SD model to denoise images and
calculate adversarial and distillation losses, facilitating rapid, high-quality generation. Recently,
GenPercept (Xu et al., 2024) presents a novel perspective on the diffusion process as an interpola-
tion between RGB images and perceptual targets, effectively harnessing the pre-trained U-Net for
various downstream image understanding tasks. Given that SD-Turbo refines both high-frequency
and low-frequency information through distillation (Sauer et al., 2023), by harnessing its efficient
prior for image generation, we can sustain competitive performance in a single-step denoising sce-
nario while achieving high-fidelity, fine-grained mask generation.

3 PRELIMINARIES

Diffusion probabilistic models (Ho et al., 2020) have emerged as highly successful approaches for
generating images by modeling the inverse process of a diffusion process from Gaussian noise. It
defines a Markovian chain of diffusion forward process q(xt|x0) by gradually adding noise to input
data x0 :

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (1)

where ϵ is a pure Gaussian noise map. As t increases, ᾱt gradually decreases, leading xt to approx-
imate the Gaussian noise. By predicting the noise, the loss can be written as:

L (ϵθ) =

T∑
t=1

Ex0∼q(x0),ϵ∼N (0,I)

[∥∥ϵθ (√ᾱtx0 +
√
1− ᾱtϵ

)
− ϵ

∥∥2
2

]
, (2)

During the reverse process in DDPM (Ho et al., 2020), given a random sampled Gaussian noise
xT ∼ N (0, I), we utilize a Gaussian distribution pθ(xt+1 | xt) to approximate the true posterior
distribution, whose mean is estimated by the neural network, and the variance, denoted as σ2

t , is
derived from the noise schedule. To this end, we can repeat the following denoising process for
t ∈ {T, T − 1, . . . , 1} to predict final denoised result x0.

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
+ σtϵ, (3)

In the context of our method, during the training phase, instead of randomly selecting t, we initialize
t to its maximum value T , i.e., 999. This initialization enables the network to directly learn the
probability distribution for a single-step denoising process. From Eqn. 3, the one-step denoising
formula can be derived as follows. Since σT is relatively small when T = 999, its impact on the x0

can be considered negligible. The formula is given by:

x̂0 = Denoise (ϵθ(xT , T, cond, dlab), ϵ) =
xT −

√
1− ᾱT ϵθ(xT , T )√

ᾱT
, (4)

where cond represents the conditional input, specifically the image latent, while dlab denotes dis-
criminative labels used to generate batch-discriminative embeddings (See Sec. 4.2 ) . Accordingly,
the training objective of our method can be reformulated as minimizing the expected squared error
between the denoised output and the ground truth latent x0, as expressed by:

min
θ

Et,ϵ,cond ∥x̂0 − x0∥22 , (5)
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Figure 2: Overall framework of DiffDIS. To start with, the inputs are encoded into the latent space. We
concatenate the noisy mask and its corresponding edge latent along the batch dimension, utilizing batch-
discriminative embedding for differentiation. Then, we employ the RGB latent as a conditioning factor through
channel-wise concatenation, along with multi-scale conditional injection into the U-Net encoder layers. The
noise obtained is processed through a direct single-step denoising approach to yield a clean latent prediction.

4 METHOD

4.1 OVERALL ARCHITECTURE

The workflow of DiffDIS is outlined in Alg. 1:
First, the inputs are encoded into the VAE’s latent
space, capturing the essential features in a con-
tinuous, high-dimensional representation. Then,
a denoising model is applied to mitigate noise,
aiming for the best denoising effects to refine the
representations and enhance the clarity of the fea-
tures. We utilize the RGB latent as a conditioning
factor to assist in generating more authentic struc-
tural details for the mask. Meanwhile, we improve
the information flow by multi-tasking to further
boost the accuracy. We concatenate the mask and
edge on a batch basis and apply Batch Discrimi-
native Embedding (Fu et al., 2024) to obtain dis-
tinctive embeddings for each. These embeddings
are then fed into the denoising network together
to help distinguish between mask and edge.

Algorithm 1 Training Process

Input: cond: conditional image latent, m: mask
latent, e: edge latent, dlab: discriminative labels
while not converged do

t = T
ϵ ∼ N (0, I)
demb = BDE(dlab)
mt =

√
ᾱtm+

√
1− ᾱtϵ

et =
√
ᾱte+

√
1− ᾱtϵ

ϵpredm , ϵprede = ϵθ(mt, et, cond, t, demb)

lpredm =
(
mt −

√
1− ᾱt × ϵpredm

)
/
√
ᾱt

lprede =
(
et −

√
1− ᾱt × ϵprede

)
/
√
ᾱt

Perform Gradient descent steps on
∇θLtotal(θ)
end while
return θ

Within the U-Net architecture, specifically in the mid-block where semantic information is most con-
centrated, we strategically integrate an additional attention module called Detail-Balancing Interac-
tive Attention. This module not only enhances the determinism of the generative model’s predictions
(See Fig. 4) but also facilitates a concise yet potent interaction between the high-dimensional noisy
features of masks and edges, as detailed in Section 4.2. Upon acquiring the noise estimated from
the U-Net, we proceed with a direct one-step denoising transition from the high-step noisy latents,
in accordance with the methodology outlined in Eqn. 4. We subsequently utilize the initial mask
and edge latent codes obtained from the VAE for direct supervision of the denoised mask and edge
latent codes. For an illustrative training diagram, refer to Fig. 2.

4.2 EDGE-ASSISTED TRAINING STRATEGY

In high-resolution tasks, the complexity and detail richness make it tough to capture fine features.
Furthermore, for diffusion-based architectures, accurately depicting detailed features during few-
step generation poses a challenge, especially as details may be overlooked during denoising in the
latent space, which is often reduced to 1

8 the size of the input. Some studies (Pei et al., 2023;
Chen et al., 2023; Cheng et al., 2020) have indicated that incorporating additional edge constraints
improves the boundary segmentation performance of masks. Given these considerations, we pro-
pose an integrated and streamlined network architecture that concurrently predicts noise for both the
mask and edge, leveraging auxiliary edge information to constrain the network. These dual predic-
tion streams operate within the same network structure and share parameters, with batch discrimi-
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Figure 3: The structure of Batch-Discriminative Embedding (BDE) and the Detail-Balancing Interactive At-
tention (DBIA) .

Base +Edge +Edge+DBIA GT Img

Figure 4: Visualizing the reduction of diffusion process stochasticity through edge integration. With the
addition of the edge auxiliary prediction task, the controllability and alignment of the generated mask have
been enhanced, particularly in the areas highlighted by red boxes. The introduction of DBIA improves the
sharpness and quality of the generated details.

native embedding applied to distinguish between them effectively. Within the U-Net architecture,
specifically in the mid-block where semantic information is most concentrated, we incorporate a
task-specific enhancement by upgrading the original attention module to a Detail-Balancing Inter-
active Attention. This mechanism aligns the attention regions of both the mask and edge streams,
facilitating more efficient interaction and complementarity between the two.

Batch-Discriminative Embedding Inspired by (Fu et al., 2024; Long et al., 2024), we incorporate
additional discriminative labels , i.e., dlab, within batches to enable a single stable diffusion model
to generate multiple types of outputs simultaneously, ensuring seamless domain processing without
mutual interference. Specifically, the dlab is first represented in binary form and then encoded using
positional encoding (Mildenhall et al., 2021). After passing through a learnable projection head,
the resulting batch-discriminative embeddings are combined with the time embeddings through an
element-wise addition. The combined embeddings are then fed into the ResBlocks, enhancing the
model’s capacity to produce batch-specific outputs. The process is illustrated in Fig. 3

Detail-Balancing Interactive Attention To ensure the continuity and alignment of mask and edge,
as well as to harmonize their semantic cues and attentioned areas, we introduce Detail-Balancing
Interactive Attention (DBIA) , which includes, similar to traditional architectures, a self-attention
module and a vanilla cross-attention module, along with our newly designed Mutual Cross-Domain
Attention mechanism. DBIA is designed to facilitate a simple yet effective exchange of information
between the two domains, with the ultimate goal of generating outputs that are well-aligned in terms
of both edge details and semantic content.

Specifically, we initialize the Mutual Cross-Domain Attention module with the parameters of the
self-attention module, and project the mask and edge features to produce the query (Qm), key (Km),
and value (Vm) matrices for the mask, and correspondingly for the edge (Qe, Ke, Ve), then, we
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Algorithm 2 Sampling Process
Input: cond: conditional image latent, d lab:

discriminative labels
mT , eT ∼ N (0, I)
demb = BDE(dlab)
ϵpredm , ϵprede = ϵθ(mT , eT , cond, T, demb)

lpredm =
(
mT −

√
1− ᾱT × ϵpredm

)
/
√
ᾱT

mpred = VAE(Scale(lpredm))
return mpred

Figure 5: Inference procedure of our DiffDIS.

perform mutual scaled dot-product attention between these two sets, utilizing the query features
to effectively query the corresponding key and value features from the alternative domain. The
formulation is as follows:

Attentionm = softmax
(
QmKT

e√
dk

)
Ve, Attentione = softmax

(
QeK

T
m√

dk

)
Vm (6)

This method ensures a direct and efficient exchange of information between two domains, fostering
a robust interaction that enhances the overall feature representation.

Our method differs from the approach of (Fu et al., 2024) in how we handle feature interaction.
In their work, the keys (K) and values (V) from different domains are concatenated into a unified
representation, and cross-attention is performed by applying the queries (Q) from each domain
to the concatenated K and V. Our method surpasses theirs by enabling direct, targeted attention
operations that facilitate a more nuanced interaction between mask and edge features, leading to
better discrimination and alignment without the dilution of information (See in Tab. 5) .

This approach has been observed to not only enhance the fine detail rendering but also, to our
delight, significantly reduce the stochastic tendencies inherent in diffusion processes ( See in Fig.
4) . Consequently, through in-depth cross-domain interaction and feature complementation, it not
only effectively bridges the gap between the generative potential and the determinism essential for
precise segmentation tasks but also yields more refined details in the predicted results.

4.3 SCALE-WISE CONDITIONAL INJECTION

In traditional diffusion models for dense prediction tasks, conditioning is typically done at the in-
put stage by concatenating along the channel dimension with the variable to be denoised (Ke et al.,
2024; Fu et al., 2024). This approach can lead to information loss in later stages. To establish long-
range and profound conditional guidance, we introduce Scale-Wise Conditional Injection to create
multi-granular, long-range, and deep visual interactions. Specifically, we incorporate multi-scale
conditions into the corresponding layers of the U-Net encoder (See Fig. 3) . Specifically, we em-
ploy three injector heads, each composed of a simple convolutional layer and two zero convolution
layers (Zhang et al., 2023) (See Fig. 3). Each injector head receives conditional latent code that is
resized to corresponding scales as input. The resulting outputs are then integrated at the junction of
the last three layers in the U-Net encoder, facilitating the generation of more authentic structural de-
tails. In this way, we introduce multi-granularity information for semantic and structural perception,
without causing excessive interference with RGB texture.

4.4 ONE-STEP MASK SAMPLING

A depiction of the sampling pipeline can be seen in Fig. 5. During inference, we first encode
the RGB image into the latent space using a VAE encoder. Next, we sample the starting variable
from standard Gaussian noise, which serves as the initialization for both the mask and edge in the
latent space. Similar to the training phase, these two components are concatenated in a batch, with
batch-discriminative embedding applied to effectively distinguish between them. The concatenated
components, conditioned on the RGB latent representation, are then fed into the U-Net to predict the
noise. Building upon the established DDPM approach (Ho et al., 2020), we implement a streamlined
one-step sampling process, as detailed in Fig. 5. Finally, the mask and edge map are decoded from
the latent code using the VAE decoder and are post-processed by averaging the channels.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Metrics Similar to previous works (Yu et al., 2024; Kim et al., 2022), we conducted
training on the DIS5K training dataset, which consists of 3,000 images spanning 225 categories.
Validation and testing were performed on the DIS5K validation and test datasets, referred to as
DIS-VD and DIS-TE, respectively. The DIS-TE dataset is further divided into four subsets (DIS-
TE1, DIS-TE2, DIS-TE3, DIS-TE4), each containing 500 images with progressively more complex
morphological structures.

Following MVANet (Yu et al., 2024), we employ a total of five evaluation metrics, concentrating
on measuring the precision of the foreground areas as well as the intricacy of the structural details
across the compared models, including max F-measure (Fmax

β ) (Perazzi et al., 2012), weighted
F-measure (Fω

β ) (Margolin et al., 2014), structural similarity measure (Sm) (Fan et al., 2017), E-
measure (Em

ϕ ) (Fan et al., 2018) and mean absolute error (MAE, M) (Perazzi et al., 2012).

Implementation Details Experiments were implemented in PyTorch and conducted on a single
NVIDIA H800 GPU. During training, the original images were resized to 1024× 1024 for training.
We use SD V2.1 (Rombach et al., 2022) as the backbone, and initialize the model with the parame-
ters from SD-Turbo (Sauer et al., 2023). To mitigate the risk of overfitting in diffusion models when
trained on a relatively small dataset, we apply several data augmentation techniques, including ran-
dom horizontal flipping, cropping, rotation, and CutMix (Yun et al., 2019). For optimization, we
use the Adam optimizer, setting the initial learning rate to 3 × 10−5. The batch size is configured
as 2. The maximum number of training epochs was set to 90. During evaluation, we binarize the
predicted maps for accuracy calculation.

5.2 COMPARISON

Quantitative Evaluation In this study, we benchmark our proposed DiffDIS against six DIS-
only models, including IS-Net (Qin et al., 2022), FP-DIS (Zhou et al., 2023), UDUN (Pei et al.,
2023), InSPyReNet (Kim et al., 2022), BiRefNet (Zheng et al., 2024), and MVANet (Yu et al.,
2024). Additionally, we incorporate GenPercept (Xu et al., 2024), a diffusion-based model that has
been experimentally applied to DIS. We also include four widely recognized segmentation mod-
els: BSANet (Zhu et al., 2022), ISDNet (Guo et al., 2022), IFA (Hu et al., 2022), and PGNet (Xie
et al., 2022). For a fair comparison, we standardize the input size of the comparison models to
1024 × 1024. The results, as shown in Tab. 2, indicate that our method outperforms others and
achieves state-of-the-art performance.

Qualitative Evaluation Fig. 6 presents a qualitative comparison of our approach with previous
state-of-the-art methods, highlighting our method’s enhanced capability to perceive fine regions
with greater clarity. As depicted in Fig. 6, our model adeptly captures precise object localization
and edge details across a variety of complex scenes, showcasing its robust performance in high-
accuracy segmentation tasks.

5.3 ABLATION

In this section, we analyze the effects of each component and evaluate the impact of various pre-
trained parameters and denoising paradigms on experimental accuracy. All results are tested on the
DIS-VD dataset.

Table 3: Ablation experiments of components.

Edge DBIA SWCI CutMix Fmax
β ↑ Em

ϕ ↑ Sm ↑ M↓
0.895 0.916 0.880 0.046

✓ 0.902 0.921 0.888 0.036
✓ ✓ 0.917 0.943 0.895 0.032
✓ ✓ ✓ 0.918 0.945 0.899 0.030
✓ ✓ ✓ ✓ 0.918 0.948 0.904 0.029

Effectiveness of each component In Tab.
3, the first row represents the SD model
using a single-step denoising paradigm as
described in Eqn. 4, initialized with SD-
Turbo pre-trained parameters. Subsequent
rows represent the incremental addition of
auxiliary edge prediction, the DBIA mech-
anism, the SWCI module, and CutMix
data augmentation, respectively. The pro-
gressive trend illustrates the utility of each module, demonstrating their collective contribution to
the model’s performance.
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Table 2: Quantitative comparison of DIS5K with 11 representative methods. ↓ represents the lower value is
better, while ↑ represents the higher value is better. The best score is highlighted in bold, and the second is
underlined.

Datasets Metric BSANet ISDNet IFA PGNet IS-Net FP-DIS UDUN InSPyReNet BiRefNet MVANet GenPercept Ours

D
IS

-V
D

Fmax
β ↑ 0.738 0.763 0.749 0.798 0.791 0.823 0.823 0.889 0.897 0.913 0.844 0.918

Fω
β ↑ 0.615 0.691 0.653 0.733 0.717 0.763 0.763 0.834 0.863 0.856 0.824 0.888

Em
ϕ ↑ 0.807 0.852 0.829 0.879 0.856 0.891 0.892 0.914 0.937 0.938 0.924 0.948

Sm ↑ 0.786 0.803 0.785 0.824 0.813 0.843 0.838 0.900 0.905 0.905 0.863 0.904

M↓ 0.100 0.080 0.088 0.067 0.074 0.062 0.059 0.042 0.036 0.036 0.044 0.029

D
IS

-T
E

1

Fmax
β ↑ 0.683 0.717 0.673 0.754 0.740 0.784 0.784 0.845 0.866 0.893 0.807 0.903

Fω
β ↑ 0.545 0.643 0.573 0.680 0.662 0.713 0.720 0.788 0.829 0.823 0.781 0.862

Em
ϕ ↑ 0.773 0.824 0.785 0.848 0.820 0.860 0.864 0.874 0.917 0.911 0.889 0.933

Sm ↑ 0.754 0.782 0.746 0.800 0.787 0.821 0.817 0.873 0.889 0.879 0.852 0.891

M↓ 0.098 0.077 0.088 0.067 0.074 0.060 0.059 0.043 0.036 0.037 0.043 0.030

D
IS

-T
E

2

Fmax
β ↑ 0.752 0.783 0.758 0.807 0.799 0.827 0.829 0.894 0.906 0.925 0.849 0.927

Fω
β ↑ 0.628 0.714 0.666 0.743 0.728 0.767 0.768 0.846 0.876 0.874 0.827 0.895

Em
ϕ ↑ 0.815 0.865 0.835 0.880 0.858 0.893 0.886 0.916 0.943 0.944 0.922 0.951

Sm ↑ 0.794 0.817 0.793 0.833 0.823 0.845 0.843 0.905 0.913 0.915 0.869 0.913

M↓ 0.098 0.072 0.085 0.065 0.070 0.059 0.058 0.036 0.031 0.030 0.042 0.026

D
IS

-T
E

3

Fmax
β ↑ 0.783 0.817 0.797 0.843 0.830 0.868 0.865 0.919 0.920 0.936 0.862 0.938

Fω
β ↑ 0.660 0.747 0.705 0.785 0.758 0.811 0.809 0.871 0.888 0.890 0.839 0.916

Em
ϕ ↑ 0.840 0.893 0.861 0.911 0.883 0.922 0.917 0.940 0.951 0.954 0.935 0.964

Sm ↑ 0.814 0.834 0.815 0.844 0.836 0.871 0.865 0.918 0.918 0.920 0.869 0.919

M↓ 0.090 0.065 0.077 0.056 0.064 0.049 0.050 0.034 0.029 0.031 0.042 0.025

D
IS

-T
E

4

Fmax
β ↑ 0.757 0.794 0.790 0.831 0.827 0.846 0.846 0.905 0.906 0.911 0.841 0.916

Fω
β ↑ 0.640 0.725 0.700 0.774 0.753 0.788 0.792 0.848 0.866 0.857 0.823 0.893

Em
ϕ ↑ 0.815 0.873 0.847 0.899 0.870 0.906 0.901 0.936 0.940 0.944 0.934 0.955

Sm ↑ 0.794 0.815 0.841 0.811 0.830 0.852 0.849 0.905 0.902 0.903 0.849 0.896

M↓ 0.107 0.079 0.085 0.065 0.072 0.061 0.059 0.042 0.038 0.041 0.049 0.032

O
ve

ra
ll

Fmax
β ↑ 0.744 0.778 0.755 0.809 0.799 0.831 0.831 0.891 0.900 0.916 0.840 0.921

Fω
β ↑ 0.618 0.707 0.661 0.746 0.726 0.770 0.772 0.838 0.865 0.855 0.817 0.892

Em
ϕ ↑ 0.811 0.864 0.832 0.885 0.858 0.895 0.892 0.917 0.938 0.938 0.920 0.947

Sm ↑ 0.789 0.812 0.791 0.830 0.819 0.847 0.844 0.900 0.906 0.905 0.860 0.905

M↓ 0.098 0.073 0.084 0.063 0.070 0.057 0.057 0.039 0.034 0.035 0.044 0.028

Table 4: Ablation experiments of the pre-trained parameters and denoising steps. The asterisk (*)
indicates that the timestep is not fixed during training.

Pre-trained Params Train step Infer step Fmax
β ↑ Em

ϕ ↑ Sm ↑ M ↓ Inf. Time ↓
Train from scratch 1 1 0.747 0.758 0.687 0.103 0.33

SD-Turbo
1 1 0.895 0.916 0.880 0.046 0.33

1* 2 0.889 0.913 0.878 0.047 0.52
2 2 0.894 0.923 0.881 0.038 0.52

SDV2.1
1 1 0.890 0.910 0.869 0.048 0.33

1* 10 0.823 0.878 0.854 0.052 1.40

Diverse Pre-trained Parameters and Denoising Steps As shown in Tab. 4, to further investigate
the impact of SD’s powerful pretrained prior on high-resolution DIS tasks and to explore the effects
of various denoising paradigms, we experimented with the following variants based on the vanilla
SD backbone. All experiments shared the same network architecture:

By comparing the results of the 1st, 2nd, and 5th rows, which correspond to different pretrained pa-
rameters loaded into the U-Net, it’s evident that SD-Turbo outperforms others in one-step denoising.
This superior performance can be attributed to its efficient, few-step image generation capabilities
acquired through distillation. The 2nd, 3rd, and 4th rows of Table 4 illustrate the varying impacts
of different few-step denoising paradigms. Our approach, as mentioned in the paper, is reflected
in the 2nd row. The 4th row represents a fixed two-step denoising paradigm with timesteps [999,
499] used for both training and testing, which, compared to the second row, shows a slightly better
accuracy but at the expense of doubled inference and training time. The 3rd row modifies the 4th

by introducing a random timestep selection from (999, 499) during training, followed by a one-
step denoising process. During testing, a fixed two-step denoising procedure is employed, using the
timesteps [999, 499]. While this approach reduces training time, it results in lower accuracy than the
2nd row. The performance decrease is probably because the model wasn’t consistently trained for the
specific two-step denoising needed at test time. The last two rows of Table 4 demonstrate the com-
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Image GT Ours GenPercept MVANet BiRefNet InSPyReNet ISNet

Figure 6: Visual comparison of different DIS methods.

parative efficacy between one-step denoising paradigms and traditional multi-step approaches (Ke
et al., 2024; Rombach et al., 2022) in the context of high-precision, HR object segmentation. The
final row, which employs a random timestep between 0 and 1000 to introduce noise into the mask
latent during training, followed by a ten-step denoising process during testing, similar to (Ke et al.,
2024), yields significantly lower results than one-step paradigms. This diminished performance is
attributed to the increased prediction variance stemming from the model’s exposure to inconsistent
data distributions during training.

Table 5: Ablation experiments of the interaction in DBIA.

Edge DBIA DBIAgeo Fmax
β ↑ Em

ϕ ↑ Sm ↑ M↓
✓ ✓ 0.917 0.943 0.895 0.032
✓ ✓ 0.912 0.935 0.894 0.035

Comparison of Different Interac-
tion Methods in DBIA To compare
the differences in cross-domain in-
teraction methods between our ap-
proach and (Fu et al., 2024), we re-
placed the interaction method in the
additional cross-attention mechanism
of DBIA with a fusion-oriented ap-
proach similar to that used in (Fu et al., 2024). As shown in the 2nd line, our targeted interaction is
more likely to boost generation accuracy and enhance information exchange.

6 CONCLUSION

In this paper, we made the attempt to harness the exceptional performance and prior knowledge
of diffusion architectures to transcend the limitations of traditional discriminative learning-based
frameworks in HR, fine-grained object segmentation, aiming at generating detailed binary maps at
high resolutions, while demonstrating impressive accuracy and swift processing. Our approach used
a one-step denoising paradigm to generate detailed binary maps quickly and accurately. To handle
the complexity and detail richness of DIS segmentation, we introduced additional edge constraints
and upgraded the attention module to Detail-Balancing Interactive Attention, enhancing both detail
clarity and the generative certainty of the diffusion model. We also incorporated multi-scale con-
ditional injection into the U-Net, introducing multi-granularity information for enhanced semantic
and structural perception. Extensive experiments demonstrate DiffDIS’s excellent performance on
the DIS dataset.
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