
Under review as submission to TMLR

Setting the Record Straight on Transformer Oversmoothing

Anonymous authors
Paper under double-blind review

Abstract

Transformer-based models have recently become wildly successful across a diverse set of
domains. At the same time, recent work has shown empirically and theoretically that
Transformers are inherently limited. Specifically, they argue that as model depth increases,
Transformers oversmooth, i.e., inputs become more and more similar. A natural question
is: How can Transformers achieve these successes given this shortcoming? In this work we
test these observations empirically and theoretically and uncover a number of surprising
findings. We find that there are cases where feature similarity increases but, contrary to
prior results, this is not inevitable, even for existing pre-trained models. Theoretically, we
show that smoothing behavior depends on the eigenspectrum of the value and projection
weights. We verify this empirically and observe that the sign of layer normalization weights
can influence this effect. Our analysis reveals a simple way to parameterize the weights
of the Transformer update equations to influence smoothing behavior. We hope that our
findings give ML researchers and practitioners additional insight into how to develop future
Transformer-based models.

1 Introduction

In recent years, Transformer models Vaswani et al. (2017) have achieved astounding success across vastly
different domains: e.g., vision Dosovitskiy et al. (2020); Touvron et al. (2021a), NLP Touvron et al. (2023);
Wei et al. (2023); Kaddour et al. (2023a), chemistry Schwaller et al. (2019), and many others. However
their performance can quickly saturate as model depth increases Kaplan et al. (2020); Wang et al. (2022).
This appears to be caused by fundamental properties of Transformer models. Empirically, researchers first
observed that as depth was increased, even to just 12 layers, features became more and more similar to one
another (Tang et al., 2021; Zhou et al., 2021a;b; Gong et al., 2021; Yan et al., 2022). Theoretically, these
observations were characterized as (a) Input Convergence: Transformer features converge to the exact
same vector (Park & Kim, 2022; Wang et al., 2022; Bai et al., 2022); (b) Angle Convergence: the angle
between Transformer features converges to 0 (Tang et al., 2021; Zhou et al., 2021a; Gong et al., 2021; Yan
et al., 2022; Shi et al., 2022; Noci et al., 2022; Guo et al., 2023); or (c) Rank Collapse: Transformer features
collapse to a rank one matrix (Dong et al., 2021; Shi et al., 2022; Noci et al., 2022; Guo et al., 2023; Ali et al.,
2023). In practice, this has led to a search for replacements for Transformer layers, including completely new
attention blocks Zhou et al. (2021a;b); Wang et al. (2022); Ali et al. (2023), normalization layers Guo et al.
(2023); Zhai et al. (2023), altered skip connections Tang et al. (2021); Noci et al. (2022); Shi et al. (2022),
convolutional layers Park & Kim (2022), fully-connected layers Liu et al. (2021a); Kocsis et al. (2022); Yu
et al. (2022a), and even average pooling layers Yu et al. (2022b).

But are Transformers destined to oversmooth? In this work we test the above observations theoretically and
empirically. Theoretically, we analyze the eigenspectrum of a simplified Transformer layer: fixed attention,
weights, and a residual connection. We show even for this simplified setup that: (a) There are cases where
all features converge to the same vector, but this is not inevitable, contrary to prior results; (b) Angle
convergence is also possible, but not guaranteed; and (c) while rank collapse is likely, it is also not required.
Empirically, for existing pre-trained models we find cases where (a) features do not converge to the same
vector, (c) feature angles do not converge to 0, and (c) rank does not collapse. In fact, our analysis uncovers
a parameterization that allows one, in some cases better than others, to increase smoothing or reduce it. We

1

Under review as submission to TMLR

observe that the sign of the weights of layer normalization plays a role in how much this parameterization
influences smoothing behavior.

2 Background & Related Work

2.1 The Transformer Update

At their core, Transformers are a linear combination of a set of ‘heads’. Each head applies its own self-
attention function on the input X ∈ Rn×d as follows

A := Softmax
(1√

k
XWQW⊤

KX⊤
)

, (1)

where the Softmax(·) function is applied to each row individually. Further, WQ, WK ∈ Rd×k are learned
query and key weight matrices. This ‘attention map’ A then transforms the input to produce the output
of a single head: AXWV Wproj, where WV , Wproj ∈ Rd×d are learned value and projection weights. Most
architectures then add a residual connection:

Xℓ = Xℓ−1 + AXℓ−1WV Wproj. (2)

These architectures also consist of layer-specific attention and weights, multiple heads (i.e., multiple A, WV

are to X and the outputs of each head is summed), layer normalization (either in the Post-LN format
(Vaswani et al., 2017; Wang et al., 2019; Xiong et al., 2020) e.g., for BERT (Kenton & Toutanova, 2019),
RoBERTa (Liu et al., 2019), and ALBERT (Lan et al., 2019), or in the Pre-LN format (Baevski & Auli,
2018), e.g., for GPT (Brown et al., 2020), ViT (Dosovitskiy et al., 2020), and PALM (Chowdhery et al.,
2023) architectures), and fully-connected layers. Unfortunately, these layers make eigenspectrum analysis
intractable (we detail why this is the case in Section 3). However, recent work has demonstrated that
simplified Transformer models have surprisingly similar behaviors as full models (Von Oswald et al., 2023;
Mahankali et al., 2023; Ahn et al., 2024; Zhang et al., 2024; Ahn et al., 2023). We find that this is also the
case for oversmoothing: even though our analysis considers the restricted update in eq. (2) it can explain
the smoothing behavior of full Transformer models (e.g., ViT and DeiT models).

2.2 What Is Oversmoothing?

In deep learning, ‘oversmoothing’ broadly describes the tendency of a model to produce more and more
similar features as depth increases. For Transformers, prior work largely uses one of three different ways
to measure oversmoothing: (a) Input Convergence: Do the inputs converge to the exact same feature
vector? (Park & Kim, 2022; Wang et al., 2022; Bai et al., 2022); (b) Angle Convergence: Do the angles
between inputs converge to 0? (Tang et al., 2021; Zhou et al., 2021a; Gong et al., 2021; Yan et al., 2022; Shi
et al., 2022; Noci et al., 2022; Guo et al., 2023); (c) Rank Collapse: Does the rank of inputs collapse to 1?
(Dong et al., 2021; Shi et al., 2022; Noci et al., 2022; Guo et al., 2023; Ali et al., 2023).

Input Convergence. One way to formalize oversmoothing is through the lens of signal-processing (Wang
et al., 2022): the smoothing of a function can be measured by how much it suppresses higher frequencies
in the signal, removing smaller fluctuations to highlight the larger trend. To measure the smoothing of the
Transformer update in eq. (2) we can compute the ratio of high frequency signals to low frequency signals
preserved in Xℓ. If this goes to 0 as ℓ → ∞, all high frequency information is lost: the signal is maximally
smoothed. To estimate these signals we can compute the Discrete Fourier Transform (DFT) F of Xℓ, via
F(Xℓ) := FXℓ, where F ∈ Cn×n is equal to Fk,l := e2πi(k−1)(l−1) for all k, l ∈ {2, . . . , n} (where i :=

√
−1),

and is 1 otherwise (i.e., in the first row and column). Define the Low Frequency Component (LFC) of Xℓ

as LFC[Xℓ] := F−1diag([1, 0, . . . , 0])FXℓ = (1/n)11⊤Xℓ. Further, define the High Frequency Component
(HFC) of Xℓ as HFC[Xℓ] := F−1diag([0, 1, . . . , 1])FXℓ = (I − (1/n)11⊤)Xℓ. We can now state the first
definition of oversmoothing:

2

Under review as submission to TMLR

Definition 1 (Input Convergence (Wang et al., 2022)). The Transformer update in eq. (2) oversmooths if
for all X ∈ Rn×d we have that

lim
ℓ→∞

∥HFC[Xℓ]∥2

∥LFC[Xℓ]∥2
= 0.

This definition measures the extent to which inputs converge to the same feature vector. To see this, notice
that the term in the numerator HFC[Xℓ] = (I − (1/n)11⊤)Xℓ goes to 0 if Xℓ = 1x⊤ where x ∈ Rd is a
vector where entry xi is the mean of the ith column of X. This is because (1/n)11⊤X = 1x⊤. Finally, the
required condition Xℓ = 1x⊤ only holds when all input vectors are equal. In the following we will refer to
the ratio in the above definition as HFC/LFC.

Angle Convergence. Another way to quantify oversmoothing is via the cosine similarity between inputs:
Definition 2 (Angle Convergence). The Transformer update in eq. (2) oversmooths if for all X ∈ Rn×d we
have that

lim
ℓ→∞

2
n(n − 1)

n∑
i=1

n∑
j=i+1

x⊤
i,ℓxj,ℓ

∥xi,ℓ∥2∥xj,ℓ∥2
= 1,

where xi,ℓ ∈ Rd is the ith row of Xℓ. This measures the cosine of the angle θ between every pair of inputs
xi,ℓ, xj,ℓ and is 1 iff θ = 0.

Rank Collapse. Finally, we can also measure oversmoothing via rank collapse in Xℓ. This is usually
described as limℓ→∞ rank(Xℓ) = 1. While rank can be computed via a singular value decomposition (SVD),
it is highly-sensitive to the threshold deciding when a singular should be treated as zero. Instead, Guo et al.
(2023) use a continuous approximation of rank called the ‘effective rank’, first introduced by Roy & Vetterli
(2007).
Definition 3 (Rank Collapse). Given Xℓ ∈ Rn×d, let Xℓ = UℓΣℓVℓ be a singular value decomposition
of X with singular values diag(Σℓ) = [σ1,ℓ, . . . , σr,ℓ] for r ≤ min{n, d} and σ1,ℓ ≥ · · · ≥ σr,ℓ ≥ 0. Define the
following discrete distribution according to the singular values as pi,ℓ = σi,ℓ/

∑r
j=1 σj,ℓ. The effective rank

(Roy & Vetterli, 2007) is the exponential of the entropy of this distribution: exp(−
∑r

i=1 −pi,ℓ log pi,ℓ). The
Transformer update in eq. (2) oversmooths if for all X ∈ Rn×d we have that

lim
ℓ→∞

exp(−
r∑

i=1
pi,ℓ log pi,ℓ) = 1.

Roy & Vetterli (2007) prove that 1 ≤ exp(−
∑r

i=1 pi,ℓ log pi,ℓ) ≤ r, where r is the rank of Xℓ.

Notice that Definitions 1-3 are progressively relaxed, i.e., if an update satisfies an oversmoothing definition,
it also satisfies any later definitions. For each measure, we say that a model producing Xℓ causes smoothing
if the measure approaches the value in each Definition (i.e., towards 0 for Definition 1 and 1 for Definitions
2 & 3). Alternatively, if the measures move away from the value in each Definition, then we say that the
model causes sharpening (i.e., Definitions 1 & 3 grow towards ∞ and Definition 2 shrinks towards 0).

2.3 Observations of Transformer Oversmoothing

The term ‘oversmoothing’ was first coined by Li et al. (2018) to describe how GNN node features become
more similar with more rounds of message passing. A similar observation was made for Transformers by
Zhou et al. (2021a). They observed that as depth was increased, the cosine similarity among self-attention
layers also increased. After this work many other works noticed that feature similarity in vision and language
Transformers also increased with depth Zhou et al. (2021b); Gong et al. (2021); Tang et al. (2021); Raghu
et al. (2021); Yan et al. (2022); Shi et al. (2022); Wang et al. (2022); Park & Kim (2022); Bai et al. (2022);
Choi et al. (2023) found. Multiple works around this time found that it was possible to improve vision
Transformers by replacing self-attention layers with convolutional layers (Han et al., 2021; Liu et al., 2021b;
Jiang et al., 2021; Touvron et al., 2021b; Yuan et al., 2021; Park & Kim, 2022).

3

Under review as submission to TMLR

<latexit sha1_base64="t9jkG0/Gkw1YLpJSOAPcecW508s=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgKiRi1eyqblxWsA9sQ5lMJ+3QySTMTIQS+hduXCji1r9x5984aSv4PDBwOOde5twTJJwp7TjvVmFhcWl5pbhaWlvf2Nwqb+80VZxKQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMLnO/dUelYrG40eOE+hEeCBYygrWRbrsR1sMgzM4nvXLFsT3P9bwq+k1c25miAnPUe+W3bj8maUSFJhwr1XGdRPsZlpoRTielbqpogskID2jHUIEjqvxsmniCDozSR2EszRMaTdWvGxmOlBpHgZnME6qfXi7+5XVSHZ75GRNJqqkgs4/ClCMdo/x81GeSEs3HhmAimcmKyBBLTLQpqWRK+LwU/U+aR7Z7Ylevjyu1i3kdRdiDfTgEF06hBldQhwYQEHAPj/BkKevBerZeZqMFa76zC99gvX4AY2KRbQ==</latexit>

A
<latexit sha1_base64="Saimt0eg8HC+8mhlrI5ZFbNfbXk=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiRi1eyKblxWsA9oQplMJ+3QySTMTIQS+htuXCji1p9x5984aSv4PDBwOOde7pkTppwp7TjvVmlpeWV1rbxe2djc2t6p7u61VZJJQlsk4YnshlhRzgRtaaY57aaS4jjktBOOrwq/c0elYom41ZOUBjEeChYxgrWRfD/GehRGeWfab/erNcf2PNfz6ug3cW1nhhos0OxX3/xBQrKYCk04VqrnOqkOciw1I5xOK36maIrJGA9pz1CBY6qCfJZ5io6MMkBRIs0TGs3Urxs5jpWaxKGZLDKqn14h/uX1Mh1dBDkTaaapIPNDUcaRTlBRABowSYnmE0MwkcxkRWSEJSba1FQxJXz+FP1P2ie2e2bXb05rjctFHWU4gEM4BhfOoQHX0IQWEEjhHh7hycqsB+vZepmPlqzFzj58g/X6Aem6kkw=</latexit>

WV

<latexit sha1_base64="yWQ3WOSDsQRsCXJJ6jWKOYsmHPY=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBbBVUjEqtkV3bisYB/QhjCZTtqxk0yYmQglBNz4K25cKOLWn3Dn3zhNK/g8cOFwzr3ce0+QMCqVbb8bpbn5hcWl8nJlZXVtfcPc3GpJngpMmpgzLjoBkoTRmDQVVYx0EkFQFDDSDkbnE799Q4SkPL5S44R4ERrENKQYKS355k4vQmoYhFk797OCyzBLBL/Oc9+s2pbrOq5bg7+JY9kFqmCGhm++9focpxGJFWZIyq5jJ8rLkFAUM5JXeqkkCcIjNCBdTWMUEellxQ853NdKH4Zc6IoVLNSvExmKpBxHge4srvzpTcS/vG6qwlMvo3GSKhLj6aIwZVBxOAkE9qkgWLGxJggLqm+FeIgEwkrHVtEhfH4K/yetQ8s5tmqXR9X62SyOMtgFe+AAOOAE1MEFaIAmwOAW3INH8GTcGQ/Gs/EybS0Zs5lt8A3G6wc8OJk9</latexit>

Wproj
<latexit sha1_base64="IAQ1oeiaWaqciJNmNfvmEQcqCb0=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiTia1l047KCfUATwmQ6aYdOJmFmItTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86Udpxva2V1bX1js7JV3d7Z3avZ+wcdlWSS0DZJeCJ7IVaUM0HbmmlOe6mkOA457Ybj28LvPlKpWCIe9CSlfoyHgkWMYG2kwK55MdajMMp708CjnAd23Wk4M6Bl4pakDiVagf3lDRKSxVRowrFSfddJtZ9jqRnhdFr1MkVTTMZ4SPuGChxT5eez4FN0YpQBihJpntBopv7eyHGs1CQOzWQRUy16hfif1890dO3nTKSZpoLMD0UZRzpBRQtowCQlmk8MwUQykxWREZaYaNNV1ZTgLn55mXTOGu5l4+L+vN68KeuowBEcwym4cAVNuIMWtIFABs/wCm/Wk/VivVsf89EVq9w5hD+wPn8AFPeTYQ==</latexit>

X`
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="Zjtd1zMlwgFW7MONj3zSFdiv9Ew=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHaNryPRi0dM5JEAktmhFybMzmxmZiVkw3948aAxXv0Xb/6NA+xBwUo6qVR1p7sriDnTxvO+ndzK6tr6Rn6zsLW9s7tX3D+oa5koijUquVTNgGjkTGDNMMOxGSskUcCxEQxvp37jCZVmUjyYcYydiPQFCxklxkqPbS5Fn2NoiFJy1C2WvLI3g7tM/IyUIEO1W/xq9yRNIhSGcqJ1y/di00mJMoxynBTaicaY0CHpY8tSQSLUnXR29cQ9sUrPDaWyJYw7U39PpCTSehwFtjMiZqAXvan4n9dKTHjdSZmIE4OCzheFCXeNdKcRuD2mkBo+toRQxeytLh0QRaixQRVsCP7iy8ukflb2L8sX9+elyk0WRx6O4BhOwYcrqMAdVKEGFBQ8wyu8OSPnxXl3PuatOSebOYQ/cD5/ACRakvI=</latexit> �

Input Convergence Rank CollapseAngle ConvergenceTransformer Update

<latexit sha1_base64="t9jkG0/Gkw1YLpJSOAPcecW508s=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgKiRi1eyqblxWsA9sQ5lMJ+3QySTMTIQS+hduXCji1r9x5984aSv4PDBwOOde5twTJJwp7TjvVmFhcWl5pbhaWlvf2Nwqb+80VZxKQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMLnO/dUelYrG40eOE+hEeCBYygrWRbrsR1sMgzM4nvXLFsT3P9bwq+k1c25miAnPUe+W3bj8maUSFJhwr1XGdRPsZlpoRTielbqpogskID2jHUIEjqvxsmniCDozSR2EszRMaTdWvGxmOlBpHgZnME6qfXi7+5XVSHZ75GRNJqqkgs4/ClCMdo/x81GeSEs3HhmAimcmKyBBLTLQpqWRK+LwU/U+aR7Z7Ylevjyu1i3kdRdiDfTgEF06hBldQhwYQEHAPj/BkKevBerZeZqMFa76zC99gvX4AY2KRbQ==</latexit>

A
<latexit sha1_base64="Saimt0eg8HC+8mhlrI5ZFbNfbXk=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiRi1eyKblxWsA9oQplMJ+3QySTMTIQS+htuXCji1p9x5984aSv4PDBwOOde7pkTppwp7TjvVmlpeWV1rbxe2djc2t6p7u61VZJJQlsk4YnshlhRzgRtaaY57aaS4jjktBOOrwq/c0elYom41ZOUBjEeChYxgrWRfD/GehRGeWfab/erNcf2PNfz6ug3cW1nhhos0OxX3/xBQrKYCk04VqrnOqkOciw1I5xOK36maIrJGA9pz1CBY6qCfJZ5io6MMkBRIs0TGs3Urxs5jpWaxKGZLDKqn14h/uX1Mh1dBDkTaaapIPNDUcaRTlBRABowSYnmE0MwkcxkRWSEJSba1FQxJXz+FP1P2ie2e2bXb05rjctFHWU4gEM4BhfOoQHX0IQWEEjhHh7hycqsB+vZepmPlqzFzj58g/X6Aem6kkw=</latexit>

WV

<latexit sha1_base64="yWQ3WOSDsQRsCXJJ6jWKOYsmHPY=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBbBVUjEqtkV3bisYB/QhjCZTtqxk0yYmQglBNz4K25cKOLWn3Dn3zhNK/g8cOFwzr3ce0+QMCqVbb8bpbn5hcWl8nJlZXVtfcPc3GpJngpMmpgzLjoBkoTRmDQVVYx0EkFQFDDSDkbnE799Q4SkPL5S44R4ERrENKQYKS355k4vQmoYhFk797OCyzBLBL/Oc9+s2pbrOq5bg7+JY9kFqmCGhm++9focpxGJFWZIyq5jJ8rLkFAUM5JXeqkkCcIjNCBdTWMUEellxQ853NdKH4Zc6IoVLNSvExmKpBxHge4srvzpTcS/vG6qwlMvo3GSKhLj6aIwZVBxOAkE9qkgWLGxJggLqm+FeIgEwkrHVtEhfH4K/yetQ8s5tmqXR9X62SyOMtgFe+AAOOAE1MEFaIAmwOAW3INH8GTcGQ/Gs/EybS0Zs5lt8A3G6wc8OJk9</latexit>

Wproj
<latexit sha1_base64="IAQ1oeiaWaqciJNmNfvmEQcqCb0=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiTia1l047KCfUATwmQ6aYdOJmFmItTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86Udpxva2V1bX1js7JV3d7Z3avZ+wcdlWSS0DZJeCJ7IVaUM0HbmmlOe6mkOA457Ybj28LvPlKpWCIe9CSlfoyHgkWMYG2kwK55MdajMMp708CjnAd23Wk4M6Bl4pakDiVagf3lDRKSxVRowrFSfddJtZ9jqRnhdFr1MkVTTMZ4SPuGChxT5eez4FN0YpQBihJpntBopv7eyHGs1CQOzWQRUy16hfif1890dO3nTKSZpoLMD0UZRzpBRQtowCQlmk8MwUQykxWREZaYaNNV1ZTgLn55mXTOGu5l4+L+vN68KeuowBEcwym4cAVNuIMWtIFABs/wCm/Wk/VivVsf89EVq9w5hD+wPn8AFPeTYQ==</latexit>

X`
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="Zjtd1zMlwgFW7MONj3zSFdiv9Ew=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHaNryPRi0dM5JEAktmhFybMzmxmZiVkw3948aAxXv0Xb/6NA+xBwUo6qVR1p7sriDnTxvO+ndzK6tr6Rn6zsLW9s7tX3D+oa5koijUquVTNgGjkTGDNMMOxGSskUcCxEQxvp37jCZVmUjyYcYydiPQFCxklxkqPbS5Fn2NoiFJy1C2WvLI3g7tM/IyUIEO1W/xq9yRNIhSGcqJ1y/di00mJMoxynBTaicaY0CHpY8tSQSLUnXR29cQ9sUrPDaWyJYw7U39PpCTSehwFtjMiZqAXvan4n9dKTHjdSZmIE4OCzheFCXeNdKcRuD2mkBo+toRQxeytLh0QRaixQRVsCP7iy8ukflb2L8sX9+elyk0WRx6O4BhOwYcrqMAdVKEGFBQ8wyu8OSPnxXl3PuatOSebOYQ/cD5/ACRakvI=</latexit> �

<latexit sha1_base64="t9jkG0/Gkw1YLpJSOAPcecW508s=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgKiRi1eyqblxWsA9sQ5lMJ+3QySTMTIQS+hduXCji1r9x5984aSv4PDBwOOde5twTJJwp7TjvVmFhcWl5pbhaWlvf2Nwqb+80VZxKQhsk5rFsB1hRzgRtaKY5bSeS4ijgtBWMLnO/dUelYrG40eOE+hEeCBYygrWRbrsR1sMgzM4nvXLFsT3P9bwq+k1c25miAnPUe+W3bj8maUSFJhwr1XGdRPsZlpoRTielbqpogskID2jHUIEjqvxsmniCDozSR2EszRMaTdWvGxmOlBpHgZnME6qfXi7+5XVSHZ75GRNJqqkgs4/ClCMdo/x81GeSEs3HhmAimcmKyBBLTLQpqWRK+LwU/U+aR7Z7Ylevjyu1i3kdRdiDfTgEF06hBldQhwYQEHAPj/BkKevBerZeZqMFa76zC99gvX4AY2KRbQ==</latexit>

A
<latexit sha1_base64="Saimt0eg8HC+8mhlrI5ZFbNfbXk=">AAAB83icdVDLSsNAFL2pr1pfVZduBovgKiRi1eyKblxWsA9oQplMJ+3QySTMTIQS+htuXCji1p9x5984aSv4PDBwOOde7pkTppwp7TjvVmlpeWV1rbxe2djc2t6p7u61VZJJQlsk4YnshlhRzgRtaaY57aaS4jjktBOOrwq/c0elYom41ZOUBjEeChYxgrWRfD/GehRGeWfab/erNcf2PNfz6ug3cW1nhhos0OxX3/xBQrKYCk04VqrnOqkOciw1I5xOK36maIrJGA9pz1CBY6qCfJZ5io6MMkBRIs0TGs3Urxs5jpWaxKGZLDKqn14h/uX1Mh1dBDkTaaapIPNDUcaRTlBRABowSYnmE0MwkcxkRWSEJSba1FQxJXz+FP1P2ie2e2bXb05rjctFHWU4gEM4BhfOoQHX0IQWEEjhHh7hycqsB+vZepmPlqzFzj58g/X6Aem6kkw=</latexit>

WV

<latexit sha1_base64="yWQ3WOSDsQRsCXJJ6jWKOYsmHPY=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBbBVUjEqtkV3bisYB/QhjCZTtqxk0yYmQglBNz4K25cKOLWn3Dn3zhNK/g8cOFwzr3ce0+QMCqVbb8bpbn5hcWl8nJlZXVtfcPc3GpJngpMmpgzLjoBkoTRmDQVVYx0EkFQFDDSDkbnE799Q4SkPL5S44R4ERrENKQYKS355k4vQmoYhFk797OCyzBLBL/Oc9+s2pbrOq5bg7+JY9kFqmCGhm++9focpxGJFWZIyq5jJ8rLkFAUM5JXeqkkCcIjNCBdTWMUEellxQ853NdKH4Zc6IoVLNSvExmKpBxHge4srvzpTcS/vG6qwlMvo3GSKhLj6aIwZVBxOAkE9qkgWLGxJggLqm+FeIgEwkrHVtEhfH4K/yetQ8s5tmqXR9X62SyOMtgFe+AAOOAE1MEFaIAmwOAW3INH8GTcGQ/Gs/EybS0Zs5lt8A3G6wc8OJk9</latexit>

Wproj
<latexit sha1_base64="IAQ1oeiaWaqciJNmNfvmEQcqCb0=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiTia1l047KCfUATwmQ6aYdOJmFmItTQL3HjQhG3foo7/8ZJm4W2Hhg4nHMv98wJU86Udpxva2V1bX1js7JV3d7Z3avZ+wcdlWSS0DZJeCJ7IVaUM0HbmmlOe6mkOA457Ybj28LvPlKpWCIe9CSlfoyHgkWMYG2kwK55MdajMMp708CjnAd23Wk4M6Bl4pakDiVagf3lDRKSxVRowrFSfddJtZ9jqRnhdFr1MkVTTMZ4SPuGChxT5eez4FN0YpQBihJpntBopv7eyHGs1CQOzWQRUy16hfif1890dO3nTKSZpoLMD0UZRzpBRQtowCQlmk8MwUQykxWREZaYaNNV1ZTgLn55mXTOGu5l4+L+vN68KeuowBEcwym4cAVNuIMWtIFABs/wCm/Wk/VivVsf89EVq9w5hD+wPn8AFPeTYQ==</latexit>

X`
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="i0HSbftgKFIjf3gHWHPFlBCzUdM=">AAAB/HicbVDLSsNAFJ3UV62vaJduBovgxpKIr2XRjcsK9gFNCJPpTTt08mBmIpQQf8WNC0Xc+iHu/BsnbRbaemDgcM693DPHTziTyrK+jcrK6tr6RnWztrW9s7tn7h90ZZwKCh0a81j0fSKBswg6iikO/UQACX0OPX9yW/i9RxCSxdGDmibghmQUsYBRorTkmXUnJGrsB1k/9zIHOD+1c89sWE1rBrxM7JI0UIm2Z345w5imIUSKciLlwLYS5WZEKEY55DUnlZAQOiEjGGgakRCkm83C5/hYK0McxEK/SOGZ+nsjI6GU09DXk0VUuegV4n/eIFXBtZuxKEkVRHR+KEg5VjEumsBDJoAqPtWEUMF0VkzHRBCqdF81XYK9+OVl0j1r2pfNi/vzRuumrKOKDtEROkE2ukItdIfaqIMomqJn9IrejCfjxXg3PuajFaPcqaM/MD5/AMqclN8=</latexit>

X`�1
<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+
<latexit sha1_base64="Zjtd1zMlwgFW7MONj3zSFdiv9Ew=">AAAB9XicbVDLTgJBEOzFF+IL9ehlIzHxRHaNryPRi0dM5JEAktmhFybMzmxmZiVkw3948aAxXv0Xb/6NA+xBwUo6qVR1p7sriDnTxvO+ndzK6tr6Rn6zsLW9s7tX3D+oa5koijUquVTNgGjkTGDNMMOxGSskUcCxEQxvp37jCZVmUjyYcYydiPQFCxklxkqPbS5Fn2NoiFJy1C2WvLI3g7tM/IyUIEO1W/xq9yRNIhSGcqJ1y/di00mJMoxynBTaicaY0CHpY8tSQSLUnXR29cQ9sUrPDaWyJYw7U39PpCTSehwFtjMiZqAXvan4n9dKTHjdSZmIE4OCzheFCXeNdKcRuD2mkBo+toRQxeytLh0QRaixQRVsCP7iy8ukflb2L8sX9+elyk0WRx6O4BhOwYcrqMAdVKEGFBQ8wyu8OSPnxXl3PuatOSebOYQ/cD5/ACRakvI=</latexit> �

[Noci et al., 2022]
[Dong et al., 2021]

[Ali et al., 2023]
[Wang et al., 2022]
ours

ours
ours

ours

ours

(Definition 1) (Definition 2) (Definition 3)

[Noci et al., 2022]
[Dong et al., 2021]

ours

[Noci et al., 2022]
[Dong et al., 2021]

ours

[Wang et al., 2022]

[Wang et al., 2022]
ours

[Wu et al., 2024]
ours

*

Figure 1: Theory of Transformer Oversmoothing. A Ë indicates prior work says that the corresponding
Definition is always satisfied, an é indicates it is not always satisfied. Note that if a Definition is satisfied,
then all later Definitions, which are progressively more relaxed, must also be satisfied. The asterisk at the
bottom right indicates that Definition 3 is not guaranteed, but it is highly likely.

2.4 The Theory of Transformer Oversmoothing

Figure 1 shows current work on the theory of Transformer oversmoothing for three Transformer updates.

Input Convergence. Wang et al. (2022) analyzed oversmoothing from the lens of signal processing (Defi-
nition 1). They showed that as the number of self-attention operations tended to infinity, all inputs converge
to the same feature vector, producing a low-pass filter. They also analyzed the convergence rate when the
residual connection, weights, multiple heads, and a linear layer is added, and found that convergence is
not guaranteed. However, they argued that even with these additions oversmoothing still happens: ‘it is
inevitable that high-frequency components are continuously diluted as ViT goes deeper’, i.e., Definition 1
holds. At the same time Shi et al. (2022) analyzed oversmoothing using a different notion of input conver-
gence. Curiously, while they argue that oversmoothing can be due to the parameters of layer normalization,
their analysis seems to suggest that without layer normalization, oversmoothing does not occur. Because
their focus is on the effect of normalization, which we do not analyze here (more details on why we do not
analyze this in Section 3), we describe input convergence using the definition of Wang et al. (2022).

Angle Convergence. As far as we are aware there is no prior work that directly analyzes oversmoothing
from the perspective of angle convergence (Definition 2). However, if an update is shown to input-converge it
will also angle-converge (and rank collapse), because input convergence is a stricter requirement than angle
convergence (and rank collapse).

Rank Convergence. The first work we are aware of that developed a theory around Transformer over-
smoothing was Dong et al. (2021) using the notion of rank collapse. Initially, they showed that, without
skip-connections, repeated self-attention layers converge double-exponentially to a rank 1 matrix. They then
show that there exist models where skip-connections counteract this convergence. Noci et al. (2022) con-
tradict this, arguing that oversmoothing still happens when the residual connection is added, but this can
be counteracted if the residual connection is scaled appropriately. Ali et al. (2023) show that rank collapse
happens without a residual connection and value and projection weights. When a residual connection is
added our analysis shows that it is possible to avoid rank collapse.

3 Do Transformers Always Oversmooth?

Given the current theory on Transformer oversmoothing, how are Transformer models so successful for
vision and NLP applications (Kenton & Toutanova, 2019; Liu et al., 2019; Lan et al., 2019; Brown et al.,
2020; Dosovitskiy et al., 2020; Chowdhery et al., 2023)? To investigate this, we computed the above three
metrics in Definitions 1-3 on a set of pre-trained models for vision and NLP that have been used in prior
work on oversmoothing (Wang et al., 2022; Choi et al., 2023) in Figure 2. We notice that for all ImageNet
models (ViT-B, ViT-L (Dosovitskiy et al., 2020), DeiT-B (Touvron et al., 2021a), DeiT3-L (Touvron et al.,

4

Under review as submission to TMLR

Th
e

Pi
le

C
IF

AR
10

0
Im

ag
eN

et

ViT-Ti [Touvron et al., 2021]

attention layers
fully-connected layers

layer normalization layers

ViT-L [Dosovitsky et al., 2021]
DeiT3-L [Touvron et al., 2022]

attention layers
fully-connected layers

layer normalization layers

ViT-B [Dosovitsky et al., 2021]
DeiT-B [Touvron et al., 2022]

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)

D
efi

ni
tio

n
2

(a
ve

ra
ge

 c
os

in
e

si
m

ila
rit

y)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)

D
efi

ni
tio

n
2

(a
ve

ra
ge

 c
os

in
e

si
m

ila
rit

y)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)

D
efi

ni
tio

n
2

(a
ve

ra
ge

 c
os

in
e

si
m

ila
rit

y)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

Crammed BERT [Geiping & Goldstein, 2023]

attention layers
fully-connected layers

layer normalization layers

Gemma 2B [Mesnard et al., 2024]

Figure 2: Smoothing behavior. The smoothing metrics defined in Definitions 1-3 for different models and
datasets in vision and NLP. See text for details.

2022)), as depth increases, we do see the metrics approaching their oversmoothing values as described in
Definitions 1-3. Rank (Definition 3) does not consistently decrease and stays relatively high for 12 layer
models, but continues to drop as depth is increased. However, we see something completely unexpected
from the CIFAR model (ViT-Ti (Touvron et al., 2021a)). All of the metrics show reduction in smoothing
behavior as depth increases. Similarly, for The Pile model (Crammed BERT (Geiping & Goldstein, 2023))
we see behavior that appears to oscillate between more and less smoothing. These behaviors motivate us to
further investigate the Transformer update.

3.1 Preliminaries

Our strategy will be to understand the eigenspectrum of the Transformer update in the limit and to use this
understanding to derive what the features Xℓ converge to as ℓ → ∞. This will allow us to understand if and
when Definitions 1-3 hold. We start by rewriting the Transformer update, eq. (2), to make it more amenable
to analysis. Define the vec(M) operator as converting any matrix M to a vector m by stacking its columns.
We can rewrite eq. (2) vectorized as follows

vec(Xℓ) = (I + W⊤
projW⊤

V︸ ︷︷ ︸
:=H

⊗A)vec(Xℓ−1). (3)

This formulation is especially useful because vec(Xℓ) = (I + H ⊗ A)ℓvec(X0). We now introduce an assump-
tion on A that is also used in prior work (Ali et al., 2023; Wang et al., 2022).
Assumption 1 ((Ali et al., 2023; Wang et al., 2022)). The attention matrix is positive, i.e., A > 0, and
diagonalizable.

This assumption nearly always holds unless A numerically underflows. In our experiments we never en-
countered aij = 0 for any element (i, j) ∈ Rn × Rn or A that was not diagonalizable, in any architecture.
Note A is also right-stochastic, i.e.,

∑
j ai,j = 1, by definition in eq. (1). This combined with Assumption 1

immediately implies the following proposition.

5

Under review as submission to TMLR

Proposition 1 (Meyer & Stewart (2023)). Given Assumption 1, all eigenvalues of A lie within (−1, 1].
There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.

We leave the proof to the Appendix. We can now analyze the eigenvalues of the Transformer update
equations.

3.2 The Eigenvalues

First notice that the eigenvalues of (I + H ⊗ A)ℓ can be written in terms of the eigenvalues of H, A:
Lemma 1. Let λA

1 , . . . , λA
n be the eigenvalues of A and let λH

1 , . . . , λH
d be the eigenvalues of H. The eigen-

values of (I + H ⊗ A)ℓ are equal to (1 + λH
j λA

i) for j ∈ {1, . . . , d} and i ∈ {1, . . . , n}.

The proof can be derived from Theorem 2.3 of (Schacke, 2004). Given this, notice that as the number of
layers ℓ in the Transformer update eq. (3) increases, one eigenvalue (1+λH

j∗λA
i∗) will dominate the rest (except

in cases of ties).
Definition 4 (Dominating eigenvalue(s)). At least one of the eigenvalues of (I + H ⊗ A) has a larger
magnitude than all others, i.e., there exists j∗, i∗ (which may be a set of indices if there are ties) such that
|1 + λH

j∗λA
i∗ | > |1 + λH

j′ λA
i′ | for all j′ ∈ {1, . . . , d} \ j∗ and i′ ∈ {1, . . . , n} \ i∗. These eigenvalues are called

dominating.

Which eigenvalue dominates will control the smoothing behavior of the Transformer.
Theorem 1. Given the Transformer update in eq. (3), let {λA

i }n
i=1 and {λH

j }d
j=1 be the eigenvalues of A

and H. Let the eigenvalues be sorted as follows, λA
1 ≤ · · · ≤ λA

n and |1+λH
1 | ≤ · · · ≤ |1+λH

d |. As the number
of layers ℓ → ∞, there are two types of dominating eigenvalues: (1) (1 + λH

j∗λA
n). and (2) (1 + λH

j∗λA
1)

We leave the proof to the Appendix (where we describe all possible cases). We can now use this result to
derive what Xℓ converges to as depth increases.

3.3 The Features

Theorem 2. Given the Transformer update in eq. (3), if a single eigenvalue dominates, as the number of
total layers ℓ → ∞, the feature representation Xℓ converges to one of two representations: (1) If (1+λH

j λA
n)

dominates then,

Xℓ → (1 + λH
j λA

n)ℓsj,n1vH
j

⊤
, (4)

(2) If (1 + λH
j λA

1) dominates then,

Xℓ → (1 + λH
j λA

1)ℓsj,1vA
1 vH

j

⊤ (5)

where vH , vA are eigenvalues of H, A and sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1

(here Q is the matrix of eigenvectors of (I + H ⊗ A)). (3) If multiple eigenvalues have the same dominating
magnitude, Xℓ converges to the sum of the dominating terms.
Corollary 1. If the residual connection is removed in the Transformer update, then the eigenval-
ues are of the form (λH

j λA
i). Further, (λH

j∗λA
n) is always a dominating eigenvalue, and Xℓ →

1
(∑

j∗∈EH
max

(λH
j∗λA

n)ℓsj∗,nvH
j∗

⊤)
as ℓ → ∞, where EH

max is the set of all eigenvalue indices equal to the
dominating eigenvalue λH

j∗ .

See the Appendix for proofs of the above statements. Given these results, we can now understand when the
oversmoothing definitions apply.

3.4 When Oversmoothing Happens

Theorem 3. Given the Transformer update eq. (3), as the number of total layers ℓ → ∞, if (1) one
eigenvalue (1 + λH

j∗λA
n) dominates, we have input convergence, angle convergence, and rank collapse. If (2)

6

Under review as submission to TMLR

one eigenvalue (1 + λH
j∗λA

1) dominates, we do not have input convergence or angle convergence, but we do
have rank collapse. If (3) multiple eigenvalues have the same dominating magnitude and: (a) there is at
least one dominating eigenvalue (1 + λH

j∗λA
i∗) where λA

i∗ ̸= λA
n , then we do not have input convergence or

angle convergence, if also (b) the geometric multiplicity of λA
1 and λH

j∗ are both greater than 1, then we also
do not have rank collapse.
Corollary 2. If the residual connection is removed in the Transformer update, input convergence, angle
convergence, and rank collapse are guaranteed.

The proofs are left to the Appendix. The above statements follow directly from Theorem 2 and Corollary 1.
They tell us that whenever a single eigenvalue (1 + λH

j λA
n) dominates, every input in Xℓ converges to the

same feature vector. This happens because vA
n = 1 and so xℓ,i ∼ vH

j , for all i as ℓ → ∞. But there is a
second case: whenever the single eigenvalue (1 + λH

j λA
1) dominates, each feature is not guaranteed to be

identical. However, Xℓ → (1+λH
j λA

1)ℓsj,1vA
1 vH

j
⊤ is still a matrix of rank one. If instead multiple eigenvalue

dominate and the geometric multiplicity of λA
1 and λH

j∗ are both greater than 1 then Xℓ is a sum of at least
2 rank-1 matrices and so we do not have rank collapse.

Theorem 3 largely contradicts prior theoretical results on oversmoothing. We suspect a few reasons for this.
First, if multiple types of analyses are used within one paper, and they give conflicting results, resolving
this can be especially challenging (Wang et al., 2022). Second, certain assumptions may not always hold in
practice, e.g., Noci et al. (2022) assume that A = 1

n 11⊤ at initialization.

On Layer Normalization & Feed Forward Layers. Most Transformers also include layer normalization
and feedforward layers. Unfortunately, both of these break our analysis. For instance, a repeated Pre-LN
layer can be represented by the following update,

vec(Xℓ) = (I + HD−1 ⊗ A)ℓvec(X0) − ℓ(vec(A1b⊤D−1H⊤)),

where b and D−1 are terms introduced by the normalization layer. However, as far as we are aware there is
no way to characterize the relationship between the eigenvalues of (I+HD−1 ⊗A) and the eigenvalues of H,
A, and D, without introducing further assumptions (e.g., if H is symmetric there is a known relationship).
This difficulty also applies to Post-LN layers. We encounter a similar difficulty for feed forward layers,

vec(Xℓ) = (W⊤ ⊗ I + W⊤H ⊗ A)ℓvec(X0),

where W is the parameter of the feed forward layer. Similar to layer normalization, as far as we are aware,
we cannot characterize the eigenvalues of (W⊤ ⊗ I + W⊤H ⊗ A) in terms of the eigenvalues of H, A, and
W, without further assumptions.

A natural question is can we use the above analysis to influence the smoothing behavior of Transformer
models? In the next section we derive a Corollary of Theorem 1 that allows one to do so using a simple
reparameterization of H.

4 A Reparameterization that Influences Smoothing

How applicable are the theoretical results developed in the previous section? Similar to recent theoretical
work on Transformer optimization (Ahn et al., 2023; Mahankali et al., 2023; Von Oswald et al., 2023; Ahn
et al., 2024; Zhang et al., 2024), the Transformer update we analyze in eq. (3) is simplified: no positional
encoding, fixed attention and weights, single-head attention, no layer normalization or feed-forward layers.
How we understand the explanatory impact of our theory on full-scale Transformer models? To do so, we
derive a simple reparameterization of the weights H that allows one influence smoothing behavior. We can
then test this parameterization in existing Transformer architectures to see if smoothing can be affected, and
also judge its impact on generalization.

To derive this reparameterization, first note that Theorem 3 tells us that if (1 + λH
j λA

n) dominates then this
will cause oversmoothing, whereas if instead (1 + λH

j λA
1) dominates we avoid it. To find A and H that are

7

Under review as submission to TMLR

ViT-S [Dosovitsky et al., 2021]
ViT-S (sharpening)
ViT-S (smoothing)

attention layers
fully-connected layers

layer normalization layers

Th
e

Pi
le

C
IF

AR
10

0
Im

ag
eN

et

ViT-Ti [Touvron et al., 2021]
ViT-Ti (sharpening)
ViT-Ti (smoothing)

attention layers
fully-connected layers

layer normalization layers

Crammed BERT [Geiping & Goldstein, 2023]

attention layers
fully-connected layers

layer normalization layers

Crammed BERT (sharpening)
Crammed BERT (smoothing)

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)
D

efi
ni

tio
n

1
(a

ve
ra

ge
 H

FC
/L

FC
)

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)

D
efi

ni
tio

n
2

(a
ve

ra
ge

 c
os

in
e

si
m

ila
rit

y)
D

efi
ni

tio
n

2
(a

ve
ra

ge
 c

os
in

e
si

m
ila

rit
y)

D
efi

ni
tio

n
2

(a
ve

ra
ge

 c
os

in
e

si
m

ila
rit

y)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

D
efi

ni
tio

n
3

(a
ve

ra
ge

 e
ra

nk
)

Figure 3: Influencing smoothing. The smoothing metrics defined in Definitions 1-3 for different models
and datasets when H is reparameterized as H = VHΛHV−1

H . See text for details.

CIFAR100 ImageNet The Pile
layer ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)

LayerNorm -0.073 +0.011 -0.043 -0.126 +0.276 -0.244 +0.157 +0.338 -0.364 +0.811 -0.915 -0.086 -0.019
Attention -0.165 +0.418 -0.121 -0.123 -0.048 +0.043 -0.535 -0.961 +0.008 -1.012 +0.994 -0.042 -0.003

MLP +0.425 +0.418 +0.168 +0.175 -0.496 +0.270 +0.061 +0.258 +0.624 -0.604 +0.914 +0.316 +0.043

Table 1: Change in HFC/LFC for each layer type, across all models.

CIFAR100 ImageNet The Pile
Layer type ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)
LayerNorm +0.573 +1.304 +0.684 +14.975 +9.447 +2.628 +10.436 +12.41 +17.746 +19.18 +6.088 +6.084 +5.027
Attention -0.171 +4.754 -2.870 -15.454 -5.185 +6.203 -10.247 -14.301 -18.671 -16.939 -5.927 -6.338 -5.002

MLP +5.171 -0.217 +3.118 -13.352 -17.056 -8.405 -10.298 -8.821 -17.308 -21.052 -6.541 -6.093 -5.481

Table 2: Change in effective rank for each layer type, across all models.

CIFAR100 ImageNet The Pile
Layer type ViT-Ti ViT-Ti (sharpening) ViT-Ti (smoothing) ViT-S ViT-S (sharpening) ViT-S (smoothing) ViT-B DeiT-B ViT-L DeiT3-L Cram. Bert Cram. Bert (sharpening) Cram. Bert (smoothing)
LayerNorm +0.006 -0.004 +0.001 -0.057 -0.013 -0.056 -0.061 -0.064 +0.002 -0.166 -0.274 -0.232 -0.025
Attention +0.04 -0.086 +0.052 +0.129 +0.054 -0.005 +0.163 +0.192 +0.072 +0.211 +0.263 +0.258 +0.035

MLP -0.078 +0.054 -0.038 +0.258 +0.021 +0.021 +0.005 -0.052 -0.058 +0.117 +0.111 +0.188 +0.016

Table 3: Change in cosine similarity for each layer type, across all models.

guaranteed to have either (1 + λH
j λA

1) or (1 + λH
j λA

n) dominate we could dig through the proof of Theorem 1
and consider all cases. However, as A changes for every batch of data X there is no easy way to guarantee
the smoothing behavior of a model. Because of this, we need a solution that involves only controlling the
eigenvalues of H. Luckily, we can simplify the proof of Theorem 1 into a much simpler condition.
Corollary 3. If the eigenvalues of H fall within [−1, 0), then (1 + λH

j∗λA
1) dominates. If the eigenvalues of

H fall within (0, ∞), then (1 + λH
j∗λA

n) dominates.

See the Appendix for a proof. To ensure that the eigenvalues of H fall in these ranges, we propose to directly
parameterize its eigendecomposition. Specifically, define H as H = VHΛHV−1

H , where VH is a full-rank
matrix and ΛH is diagonal. We learn parameters VH by taking gradients in the standard way (i.e., directly
and through the inversion). To learn the diagonal of ΛH , i.e., diag(ΛH), we parameterize the sharpening

8

Under review as submission to TMLR

te
st

 e
rr

or
 im

pr
ov

em
en

t %

Crammed BERT (sharpening)
Crammed BERT (smoothing)

Figure 4: Test performance: NLP. The performance of reparameterized models on the SuperGlue text
generation benchmark.

model as diag(ΛH) := clip(ψ, [−1, 0]), where ψ are tunable parameters and clip(ψ, [l, u]) := min(max(ψ, l), u)
forces all of ψ to lie in [l, u]. Similarly we parameterize the smoothing model as diag(ΛH) := clip(ψ, [0, 1]).1

5 Experiments

We now evaluate the above reparameterization in Transformer models used for image classifiation and text
generation. We also investigate its interaction with layer normalization, to provide some insights that extend
beyond our theoretical results.

Initialization. We initialize H = VHΛHV−1
H to mimic the initializations used in the ViT-Ti and Bert

baselines, which are initialized using He initialization He et al. (2015). Specifically, we first initialize VH using
He initialization. To initialize diag(ΛH) we sample from a normal distribution with mean 0, as randomly
initialized matrices will typically have normally distributed eigenvalues centered at 0. We noticed that if we
set the standard deviation of this normal distribution to 1, the sampled values of diag(ΛH) are often too
large and lead to training instability. To stabilize training, we set the standard deviation to 0.1. All other
training and architecture details are in the Appendix.

ViT-Ti (sharpening)
ViT-Ti (smoothing)

Figure 5: Test performance: CIFAR100.
The performance of reparameterized models on CI-
FAR100.

Reparameterization results. Figure 3 show the
effect of reparameterizing H and restricting the
range of eigenvalues to encourage sharpening and
smoothing. For ImageNet we see that this does not
have a large effect of HFC/LFC and cosine similar-
ity, but influences the effective rank somewhat in
later layers. For CIFAR100 the sharpening param-
eterization reduces smoothing in all metrics while
the smoothing parameterization further increases
smoothing. For The Pile the sharpening parameter-
ization has little effect on HFC/LFC and effective
rank, but seems to reduce smoothing somewhat in
terms of cosine similarity. The opposite is true of the
smoothing parameterization: little effect on cosine
similarity, but increased smoothing for HFC/LFC
and effective rank.

1While we could have allowed the smoothing model to use the space of positive reals via diag(ΛH) := |ψ| , we found that
restricting the space of allowed eigenvalues stabilized training.

9

Under review as submission to TMLR

sm
oo

th
in

g
sh

ar
pe

ni
ng

D
efi

ni
tio

n
1

(a
ve

ra
ge

 H
FC

/L
FC

)
D

efi
ni

tio
n

1
(a

ve
ra

ge
 H

FC
/L

FC
)

Figure 6: Impact of Layer Normalization. The average HFC/LFC for the Transformer update with
repeated layers, as in eq. (3), and different types of layer normalization (Post-LN (Vaswani et al., 2017),
Pre-LN (Baevski & Auli, 2018)) where the weights of the layer normalization are fixed to be positive or
negative. See text for details.

Image classification. Figure 5 shows the changes in test error of image classification on CIFAR100
respective to an unconstrained ViT-Ti for both sharpening and smoothing. We see that the smoothing
model ViT-Ti (smoothing) matches or outperforms the other sharpening model when the depth increases.
Table 4 shows the accuracies of the sharpening and smoothing models on ImageNet. Notably they both
underperform the unconstrained model, and forcing the model to sharpen is much more detrimental to
performance than forcing it to smooth. These results seem to show that the best filtering behavior depends
on the data, task, and the model size.

Text generation. Figure 4 shows the change in performance of Crammed Bert models on SuperGlue
tasks (following the literature we report changes in test F1 for the CB and MultiRC benchmarks, and test
accuracy for the rest). We observe that both Crammed Bert (shapening) and Crammed Bert (smoothing)
largely harm the performance of the original model. Different from image classification, text generation
seems to not be improved by exclusively smoothing or sharpening.

Method Params (M) Test Acc (%)
DeiT-S 22 79.8

DeiT-S (sharpening) 20 77.2
DeiT-S (smoothing) 20 79.2

Table 4: Test performance: ImageNet.
The performance of reparameterized mod-
els on ImageNet.

Impact of layer normalization. The position and weights
of the layer normalization layer can impact the filtering be-
havior of a layer. In Figure 6 we parameterize two layers, one
smoothing and one sharpening and apply it to an input image
for 128 iterations in order to visualize its asymptotic behavior.
We repeat the process with the two most common layer nor-
malization implementations: Pre-LN and Post-LN Xiong et al.
(2020), each with a positive then negative weight matrix sam-
pled randomly. We do not use a bias since our focus is showing
the impact of the normalization weight. When the weights are
negative, Pre-LN reverses the expected filtering behavior of the layer. That is due to the normalization
happening after the attention but before the residual connection. With Post-LN, the attention and residual
connection are both applied before the normalization, so we still observe the expected behavior though it
tends to be unstable for sharpening layers. This also means that while our reparametrization gives us control

10

Under review as submission to TMLR

over the filtering behavior of the attention layers in a model, we can lose control when the layer normalization
weights become negative. This could explain the surprising results we observe in Table 1 and Figure 3.

6 Discussion

In this paper, we have attempted to unify current work on Transformer oversmoothing, testing the existing
definitions empirically and theoretically. Empirically, we found that, contrary to prior findings, oversmooth-
ing is not inevitable, even in existing pre-trained models. Theoretically, we presented a new analysis detailing
how the eigenspectrum of attention and weight matrices influences smoothing behavior. We used these the-
oretical findings to derive a reparamterization of the Transformer weights that allows one to influence the
smoothing behavior. This influence changes depending on the normalization scheme used. One limitation of
the current theoretical analysis is that the results are asymptotic, applying in the limit as ℓ → ∞. It would be
useful to understand the rates of convergence of each of the results. Alongside this, we would like to expand
the theoretical analysis to account for layer normalization and fully-connected layers. Special conditions will
likely need to be placed on H to enable this analysis, such as symmetric A, H (Sander et al., 2022). We
leave these extensions for future work. Another is that we do not take into account some specific aspects
of the Transformer implementation for language modeling such as causal attention and positional encoding.
These have recently been discussed in other works Barbero et al. (2024) where they relate it to oversquash-
ing, another phenomenon discussed in graph neural network literature. Considering how oversmoothing and
oversquashing both lead to a form of collapse, it would be interesting to unify these views.

References
Ahn, K., Cheng, X., Song, M., Yun, C., Sra, S., and Jadbabaie, A. Linear attention is (maybe) all you

need (to understand transformer optimization). In The Twelfth International Conference on Learning
Representations, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Transformers learn to implement preconditioned gradient
descent for in-context learning. Advances in Neural Information Processing Systems, 36, 2024.

Ali, A., Galanti, T., and Wolf, L. Centered self-attention layers. arXiv preprint arXiv:2306.01610, 2023.

Baevski, A. and Auli, M. Adaptive input representations for neural language modeling. In International
Conference on Learning Representations, 2018.

Bai, J., Yuan, L., Xia, S.-T., Yan, S., Li, Z., and Liu, W. Improving vision transformers by revisiting
high-frequency components. In European Conference on Computer Vision, pp. 1–18. Springer, 2022.

Barbero, F., Banino, A., Kapturowski, S., Kumaran, D., Araújo, J. G. M., Vitvitskyi, A., Pascanu, R.,
and Veličković, P. Transformers need glasses! information over-squashing in language tasks, 2024. URL
https://arxiv.org/abs/2406.04267.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877–1901, 2020.

Choi, J., Wi, H., Kim, J., Shin, Y., Lee, K., Trask, N., and Park, N. Graph convolutions enrich the
self-attention in transformers! arXiv preprint arXiv:2312.04234, 2023.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H. W.,
Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. Journal of Machine
Learning Research, 24(240):1–113, 2023.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Randaugment: Practical automated data augmentation
with a reduced search space, 2019.

Dong, Y., Cordonnier, J.-B., and Loukas, A. Attention is not all you need: Pure attention loses rank doubly
exponentially with depth. In International Conference on Machine Learning, pp. 2793–2803. PMLR, 2021.

11

https://arxiv.org/abs/2406.04267

Under review as submission to TMLR

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2020.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A.,
Nabeshima, N., et al. The Pile: An 800GB dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027, 2020.

Geiping, J. and Goldstein, T. Cramming: Training a language model on a single gpu in one day. In
International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Gong, C., Wang, D., Li, M., Chandra, V., and Liu, Q. Vision transformers with patch diversification. arXiv
preprint arXiv:2104.12753, 2021.

Guo, X., Wang, Y., Du, T., and Wang, Y. Contranorm: A contrastive learning perspective on oversmoothing
and beyond. arXiv preprint arXiv:2303.06562, 2023.

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., and Wang, Y. Transformer in transformer. Advances in Neural
Information Processing Systems, 34:15908–15919, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpassing human-level performance
on imagenet classification, 2015.

Jiang, Z., Hou, Q., Yuan, L., Zhou, D., Jin, X., Wang, A., and Feng, J. Token labeling: Training a 85.5%
top-1 accuracy vision transformer with 56m parameters on imagenet. arXiv preprint arXiv:2104.10858, 3
(6):7, 2021.

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., and McHardy, R. Challenges and applications
of large language models, 2023a.

Kaddour, J., Key, O., Nawrot, P., Minervini, P., and Kusner, M. J. No train no gain: Revisiting efficient
training algorithms for transformer-based language models, 2023b.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu,
J., and Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of NAACL-HLT, pp. 4171–4186, 2019.

Kocsis, P., Súkeník, P., Brasó, G., Nießner, M., Leal-Taixé, L., and Elezi, I. The unreasonable effectiveness
of fully-connected layers for low-data regimes. Advances in Neural Information Processing Systems, 35:
1896–1908, 2022.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. Albert: A lite bert for self-
supervised learning of language representations. In International Conference on Learning Representations,
2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph convolutional networks for semi-supervised
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Liu, H., Dai, Z., So, D., and Le, Q. V. Pay attention to mlps. Advances in Neural Information Processing
Systems, 34:9204–9215, 2021a.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. Swin transformer: Hierarchical
vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10012–10022, 2021b.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization, 2019.

12

Under review as submission to TMLR

Mahankali, A. V., Hashimoto, T., and Ma, T. One step of gradient descent is provably the optimal in-
context learner with one layer of linear self-attention. In The Twelfth International Conference on Learning
Representations, 2023.

Meyer, C. D. and Stewart, I. Matrix analysis and applied linear algebra. SIAM, 2023.

Noci, L., Anagnostidis, S., Biggio, L., Orvieto, A., Singh, S. P., and Lucchi, A. Signal propagation in
transformers: Theoretical perspectives and the role of rank collapse. Advances in Neural Information
Processing Systems, 35:27198–27211, 2022.

Park, N. and Kim, S. How do vision transformers work? In International Conference on Learning Repre-
sentations, 2022.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A. Do vision transformers see like
convolutional neural networks? Advances in Neural Information Processing Systems, 34:12116–12128,
2021.

Roy, O. and Vetterli, M. The effective rank: A measure of effective dimensionality. In 2007 15th European
signal processing conference, pp. 606–610. IEEE, 2007.

Sander, M. E., Ablin, P., Blondel, M., and Peyré, G. Sinkformers: Transformers with doubly stochastic
attention. In International Conference on Artificial Intelligence and Statistics, pp. 3515–3530. PMLR,
2022.

Schacke, K. On the kronecker product. Master’s thesis, University of Waterloo, 2004.

Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C. A., Bekas, C., and Lee, A. A. Molecular
transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS Central Science, 5(9):
1572–1583, aug 2019. doi: 10.1021/acscentsci.9b00576. URL https://doi.org/10.1021%2Facscentsci.
9b00576.

Shi, H., Gao, J., Xu, H., Liang, X., Li, Z., Kong, L., Lee, S., and Kwok, J. T. Revisiting over-smoothing in
bert from the perspective of graph. arXiv preprint arXiv:2202.08625, 2022.

Tang, Y., Han, K., Xu, C., Xiao, A., Deng, Y., Xu, C., and Wang, Y. Augmented shortcuts for vision
transformers. Advances in Neural Information Processing Systems, 34:15316–15327, 2021.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. Training data-efficient image
transformers & distillation through attention, 2021a.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and Jégou, H. Going deeper with image transformers.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 32–42, 2021b.

Touvron, H., Cord, M., and Jegou, H. Deit iii: Revenge of the vit. arXiv preprint arXiv:2204.07118, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal, N.,
Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. Llama: Open and efficient
foundation language models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
Attention is all you need. Advances in neural information processing systems, 30, 2017.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and Vla-
dymyrov, M. Transformers learn in-context by gradient descent. In International Conference on Machine
Learning, pp. 35151–35174. PMLR, 2023.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R.
Superglue: A stickier benchmark for general-purpose language understanding systems, 2020.

Wang, P., Zheng, W., Chen, T., and Wang, Z. Anti-oversmoothing in deep vision transformers via the fourier
domain analysis: From theory to practice. In International Conference on Learning Representations, 2022.

13

https://doi.org/10.1021%2Facscentsci.9b00576
https://doi.org/10.1021%2Facscentsci.9b00576

Under review as submission to TMLR

Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D. F., and Chao, L. S. Learning deep transformer models
for machine translation. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1810–1822, 2019.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language models, 2023.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On
layer normalization in the transformer architecture. In International Conference on Machine Learning,
pp. 10524–10533. PMLR, 2020.

Yan, H., Gui, L., Li, W., and He, Y. Addressing token uniformity in transformers via singular value
transformation. In Uncertainty in artificial intelligence, pp. 2181–2191. PMLR, 2022.

Yu, P., Artetxe, M., Ott, M., Shleifer, S., Gong, H., Stoyanov, V., and Li, X. Efficient language modeling
with sparse all-mlp. arXiv preprint arXiv:2203.06850, 2022a.

Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng, J., and Yan, S. Metaformer is actually what you
need for vision. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10819–10829, 2022b.

Yuan, L., Chen, Y., Wang, T., Yu, W., Shi, Y., Jiang, Z.-H., Tay, F. E., Feng, J., and Yan, S. Tokens-
to-token vit: Training vision transformers from scratch on imagenet. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 558–567, 2021.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. Cutmix: Regularization strategy to train strong
classifiers with localizable features, 2019.

Zhai, S., Likhomanenko, T., Littwin, E., Busbridge, D., Ramapuram, J., Zhang, Y., Gu, J., and Susskind,
J. M. Stabilizing transformer training by preventing attention entropy collapse. In International Conference
on Machine Learning, pp. 40770–40803. PMLR, 2023.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. mixup: Beyond empirical risk minimization, 2018.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transformers learn linear models in-context. Journal of
Machine Learning Research, 25(49):1–55, 2024.

Zhou, D., Kang, B., Jin, X., Yang, L., Lian, X., Jiang, Z., Hou, Q., and Feng, J. Deepvit: Towards deeper
vision transformer. arXiv preprint arXiv:2103.11886, 2021a.

Zhou, D., Shi, Y., Kang, B., Yu, W., Jiang, Z., Li, Y., Jin, X., Hou, Q., and Feng, J. Refiner: Refining
self-attention for vision transformers. arXiv preprint arXiv:2106.03714, 2021b.

14

Under review as submission to TMLR

Appendix

A Proofs

Proposition 1 (Meyer & Stewart (2023)). Given Assumption 1, all eigenvalues of A lie within (−1, 1].
There is one largest eigenvalue that is equal to 1, with corresponding unique eigenvector 1.

Proof. First, because A is positive, by the Perron-Frobenius Theorem Meyer & Stewart (2023) all eigenvalues
of A are in R (and so there exist associated eigenvectors that are also in R). Next, recall the definition of
an eigenvalue λ and eigenvector v: Av = λv. Let us write the equation for any row i ∈ {1, . . . , n} explicitly:

ai1v1 + · · · + ainvn = λvi.

Further let,

vmax := max{|v1|, . . . , |vn|} (6)

Note that vmax > 0, otherwise it is not a valid eigenvector. Further let kmax be the index of v corresponding
to vmax. Then we have,

|λ|vmax = |akmax1v1 + · · · + akmaxnvn|
≤ akmax1|v1| + · · · + akmaxn|vn|
≤ akmax1|vkmax | + · · · + akmaxn|vkmax |
= (akmax1 + · · · + akmaxn)|vkmax | = |vmax|

The first inequality is given by the triangle inequality and because aij > 0. The second is given by the
definition of vmax as the maximal element in v. The final inequality is given by the definition of A in eq. (1)
as right stochastic (i.e., all rows of A sum to 1) and because |vkmax | = |vmax|. Next, note that because
vmax > 0, it must be that λ ≤ 1. Finally, to show that the one largest eigenvalue is equal to 1, recall by
the definition of A in eq. (1) that A1 = 1, where 1 is the vector of all ones. So 1 is an eigenvector of A,
with eigenvalue λ∗ = 1. Because aij > 0, and we showed above that all eigenvalues must lie in in [−1, 1], by
the Perron-Frobenius theorem Meyer & Stewart (2023) λ∗ = 1 is the Perron root. This means that all other
eigenvalues λi satisfy the following inequality |λi| < λ∗. Further 1 is the Perron eigenvector, and all other
eigenvectors have at least one negative component, making 1 unique. Finally, because A is diagonalizable
it has n linearly independent eigenvectors.

We now prove a lemma that will allow us to prove Theorem 1.
Lemma 2. Consider the Transformer update in eq. (3). Let {λA

i , vA
i }n

i=1 and {λH
j , vH

j }d
j=1 be the eigenvalue

and eigenvectors of A and H. Let the eigenvalues (and associated eigenvectors) be sorted as follows, λA
1 ≤

· · · ≤ λA
n and |1 + λH

1 | ≤ · · · ≤ |1 + λH
d |. Let φH

1 , . . . , φH
d be the phases of λH

1 , . . . , λH
d . As the number of

layers L → ∞, one eigenvalue dominates the rest (multiple dominate if there are ties):

(1 + λH
d λA

n) if |1 + λH
d λA

n | ≥ 1
(1 + λH

minλA
1) if |1 + λH

d λA
n | < 1

}
if λA

1 > 0

(1 + λH
d λA

n) if |1 + λH
d λA

n | > |1 + λH
k λA

1 |
(1 + λH

k λA
1) if |1 + λH

d λA
n | < |1 + λH

k λA
1 |

}
if λA

1 < 0, φH
d ∈ [− π

2 , π
2]

(1 + λH
d λA

n) if |1 + λH
d λA

n | > |1 + λH
d λA

1 |
(1 + λH

d λA
1) if |1 + λH

d λA
n | < |1 + λH

d λA
1 |

}
if λA

1 < 0, φH
d ∈ (π

2 , π] ∪ [−π, − π
2)

where λH
min is the eigenvalue of H with smallest magnitude and λH

k is the eigenvalue with the largest index
k such that φH

k ∈ (π/2, π] ∪ [−π, −π/2).

15

Under review as submission to TMLR

Proof. Given Lemma 1, the eigenvalues and eigenvectors of (I+H⊗A) are equal to (1+λH
j λA

i) and vH
j ⊗vA

i

for all j ∈ {1, ..., d} and i ∈ {1, . . . , n}. Recall that eigenvalues (and associated eigenvectors) are sorted in
the following order λA

1 ≤ · · · ≤ λA
n and |1 + λH

1 | ≤ · · · ≤ |1 + λH
d |. Our goal is to understand the identity of

the dominating eigenvalue(s) λH
j∗λA

i∗ for all possible values of λH , λA.

First recall that λA
i ∈ (−1, 1] and λA

n = 1. A useful way to view selecting λH
j λA

i to maximize |1 + λH
j λA

i |
is as maximizing distance to −1. If (i), λA

1 > 0 then λA
i , for all i ∈ {1, . . . , n − 1} always shrinks λH

j

to the origin and λA
n leaves it unchanged. Because of how the eigenvalues are ordered we must have that

|1 + λH
j | = |1 + λH

j λA
n | ≤ |1 + λH

d λA
n | = |1 + λH

d |. If |1 + λH
d λA

n | ≥ 1 then shrinking any λH
i to the origin will

also move it closer to −1. However, if |1 + λH
d λA

n | < 1 then shrinking to the origin can move λH
i farther from

−1 than |1 + λH
d λA

n |. The eigenvalue of H that can be moved farthest is the one with the smallest overall
magnitude, defined as λH

min. The eigenvalue of A that can shrink it the most is λA
1 . This completes the first

two cases.

If instead (ii), λA
1 < 0 then it is possible to ‘flip’ λH

j across the origin, and so the maximizer depends
on φH

d . If (a) φH
d ∈ [−π/2, π/2] then let λH

k be the eigenvalue with the largest index k such that φH
k ∈

(π/2, π]∪[−π, −π/2). It is possible that ‘flipping’ this eigenvalue across the origin makes it farther away than
λH

d , i.e., |1+λH
k λA

1 | > |1+λH
d λA

n |. In this case (1+λH
k λA

1) dominates, otherwise (1+λH
d λA

n) dominates. If they
are equal then both dominate. If instead (b) φH

d ∈ (π/2, π]∪ [−π, −π/2) then either |1+λH
d λA

n | > |1+λH
j′ λA

i′ |
for all j′ ̸= d and i′ ̸= n, and so (1 + λH

d λA
n) dominates, or ‘flipping’ λH

d increases its distance from −1, and
so |1 + λH

d λA
1 | > |1 + λH

j′ λA
i′ | for all j′ ̸= d and i′ ̸= n, and instead (1 + λH

d λA
1) dominates. Because we cannot

have that |1 + λH
d λA

n | = |1 + λH
d λA

1 | as λA
1 > −1 this covers all cases.

Now we can prove Theorem 1.
Theorem 1. Given the Transformer update in eq. (3), let {λA

i }n
i=1 and {λH

j }d
j=1 be the eigenvalues of A

and H. Let the eigenvalues be sorted as follows, λA
1 ≤ · · · ≤ λA

n and |1+λH
1 | ≤ · · · ≤ |1+λH

d |. As the number
of layers ℓ → ∞, there are two types of dominating eigenvalues: (1) (1 + λH

j∗λA
n). and (2) (1 + λH

j∗λA
1)

The proof follows immediately from Lemma 2.
Theorem 2. Given the Transformer update in eq. (3), if a single eigenvalue dominates, as the number of
total layers ℓ → ∞, the feature representation Xℓ converges to one of two representations: (1) If (1+λH

j λA
n)

dominates then,

Xℓ → (1 + λH
j λA

n)ℓsj,n1vH
j

⊤
, (7)

(2) If (1 + λH
j λA

1) dominates then,

Xℓ → (1 + λH
j λA

1)ℓsj,1vA
1 vH

j

⊤ (8)

where vH , vA are eigenvalues of H, A and sj,i := ⟨vQ−1
j,i , vec(X)⟩ and vQ−1

j,i is row ji in the matrix Q−1

(here Q is the matrix of eigenvectors of (I + H ⊗ A)). (3) If multiple eigenvalues have the same dominating
magnitude, Xℓ converges to the sum of the dominating terms.

Proof. Recall that the eigenvalues and eigenvectors of (I + H ⊗ A) are equal to (1 + λH
j λA

i) and vH
j ⊗ vA

i

for all j ∈ {1, ..., d} and i ∈ {1, . . . , n}. This means,

vec(Xℓ) =
∑
i,j

(1 + λH
j λA

i)ℓ⟨vQ−1
j,i , vec(X)⟩(vH

j ⊗ vA
i).

Recall that vQ−1
j,i is row ji in the matrix Q−1, where Q is the matrix of eigenvectors vH

j ⊗ vA
i . Further

recall that vA
i = 1. As described in Theorem 1, as ℓ → ∞ at least one of the eigenvalues pairs λH

j λA
i will

dominate the expression (1 + λH
j λA

i)ℓ, which causes vec(XL) to converge to the dominating term. Finally,
we can rewrite, v1 ⊗ v2 as vec(v2v⊤

1). Now all non-scalar terms have vec(·) applied, so we can remove this
function everywhere to give the matrix form given in eq. (7) and eq. (8).

16

Under review as submission to TMLR

Corollary 1. If the residual connection is removed in the Transformer update, then the eigenval-
ues are of the form (λH

j λA
i). Further, (λH

j∗λA
n) is always a dominating eigenvalue, and Xℓ →

1
(∑

j∗∈EH
max

(λH
j∗λA

n)ℓsj∗,nvH
j∗

⊤)
as ℓ → ∞, where EH

max is the set of all eigenvalue indices equal to the
dominating eigenvalue λH

j∗ .

Proof. The eigendecomposition of the Transformer update without the residual connection is:

vec(Xℓ) =
∑
i,j

(λH
j λA

i)ℓ⟨vQ−1
j,i , vec(X)⟩(vH

j ⊗ vA
i).

In this case, (λH
j∗λA

n) is always a dominating eigenvalue because |λA
n | > |λA

i | for any i ∈ {1, . . . , n − 1}. This
observation, combined with the above eigendecomposition, produces Xℓ → 1

(∑
j∗∈EH

max
(λH

j∗λA
n)ℓsj∗,nvH

j∗
⊤)

as ℓ → ∞.

Theorem 3. Given the Transformer update eq. (3), as the number of total layers ℓ → ∞, if (1) one
eigenvalue (1 + λH

j λA
n) dominates, we have input convergence, angle convergence, and rank collapse. If (2)

one eigenvalue (1 + λH
j λA

1) dominates, we do not have input convergence or angle convergence, but we do
have rank collapse. If (3) multiple eigenvalues have the same dominating magnitude and: (a) there is at
least one dominating eigenvalue (1 + λH

j∗λA
i∗) where λA

i∗ ̸= λA
n , then we do not have input convergence or

angle convergence, or (b) the geometric multiplicity of λA
1 and λH

j∗ are both greater than 1, then we also do
not have rank collapse.

Proof. If (1) one eigenvalue (1 + λH
j λA

n) dominates then we have that Xℓ → (1 + λH
j λA

n)ℓsj,n1vH
j

⊤. There-
fore, Xℓ has all the same inputs which also implies angle convergence and rank collapse. If (2) one eigenvalue
(1 + λH

j λA
1) dominates then we have that Xℓ → (1 + λH

j λA
1)ℓsj,1vA

1 vH
j

⊤. Therefore, we do not have input
convergence. Further as vA

1 can contain both positive an negative components we do not have angle con-
vergence. However, Xℓ is rank one so we do have rank collapse. If (3) multiple eigenvalues have the same
dominating magnitude and: (a) there is at least one dominating eigenvalue (1+λH

j∗λA
i∗) where λA

i∗ ̸= λA
n then

we do not have input convergence or angle convergence, as shown for case (2); if (b) the geometric multi-
plicity of λA

1 and λH
j∗ are both greater than 1, then Xℓ converges to the sum of at least 2 rank-1 matrices

which are not themselves linear combinations of each other. Therefore, rank(Xℓ) ≥ 2.

Corollary 2. If the residual connection is removed in the Transformer update, input convergence, angle
convergence, and rank collapse are guaranteed.

Proof. Corollary 1 tells us that in this case Xℓ → 1
(∑

j∗∈EH
max

(λH
j∗λA

n)ℓsj∗,nvH
j∗

⊤)
as ℓ → ∞. This matrix is

rank-1 and so we have input convergence, angle convergence, and rank collapse.

Corollary 3. If the eigenvalues of H fall within [−1, 0), then (1 + λH
j∗λA

1) dominates. If the eigenvalues of
H fall within (0, ∞), then (1 + λH

j∗λA
n) dominates.

Proof. Let λH
1 ≤ · · · ≤ λH

d . Again we can think of selecting λH
j λA

i that maximizes |1 + λH
j λA

i | as maximizing
the distance of λH

j λA
i to −1. Consider the first case where λH

1 , · · · , λH
d ∈ [−1, 0), and so λH

1 is the closest
eigenvalue to −1 and λH

d is the farthest. If λA
1 > 0 then all λA can do is shrink λH to the origin, where λA

1
shrinks λH the most. The closest eigenvalue to the origin is λH

d , and so (1 + λH
d λA

1) dominates. If instead
λA

1 < 0, then we can ‘flip’ λH
j over the origin, making it farther from −1 than all other λH

j′ . The eigenvalue
that we can ‘flip’ the farthest from −1 is λH

1 , and so (1 + λH
1 λA

1) dominates. If all eigenvalues of H are
equal, then both (1 + λH

d λA
1) and (1 + λH

1 λA
1) dominate. For the second case where λH

1 , · · · , λH
d ∈ (0, ∞),

we have that |1 + λH
d λA

n | > |1 + λH
j′ λA

i′ | for all j′ ∈ {1, . . . , d − 1} and i′ ∈ {1, . . . , n − 1}. This is because,
by definition λH

d λA
n > λH

j′ λA
i′ . Further, 1 + λH

d λA
n ≥ |1 + λH

j′ λA
i′ | as the largest |1 + λH

j′ λA
i′ | can be is either

(i) |1 − ϵλH
d | for 0 < ϵ < 1 or (ii) |1 + λH

d−1λA
n | (i.e., in (i) λH

d is negated by λA
1 and in (ii) λH

d−1 is the next
largest value of λH). For (i), it must be that 1 + λH

d λA
n ≥ |1 − ϵλH

d | as λH
d > 0. For (ii) λH

d ≥ λH
d−1 > 0, and

so |1 + λH
d λA

n | ≥ |1 + λH
d−1λA

n |. Therefore λA
n dominates.

17

Under review as submission to TMLR

B Training & Architecture Details

Crucially, even though our theoretical analysis applies for fixed attention A and weights H, we use exist-
ing model architectures throughout, i.e., including different attention/weights each layer, multi-head
attention, layer normalization (arranged in the pre-LN format Xiong et al. (2020)), and fully-connected
layers.2

Image Classification: Training & Architecture Details. We base our image classification experiments
on the ViT model Dosovitskiy et al. (2020) and training recipe introduced in Touvron et al. (2021a). On
CIFAR100 for 300 epochs using the cross-entropy loss and the AdamW optimizer Loshchilov & Hutter (2019).
Our setup is the one used in Park & Kim (2022) which itself follows the DeiT training recipe Touvron et al.
(2021a). We use a cosine annealing schedule with an initial learning rate of 1.25 × 10−4 and weight decay
of 5 × 10−2. We use a batch size of 96. We use data augmentation including RandAugment Cubuk et al.
(2019), CutMix Yun et al. (2019), Mixup Zhang et al. (2018), and label smoothing Touvron et al. (2021a).
The models were trained on two Nvidia RTX 2080 Ti GPUs. On ImageNet, we use the original DeiT code
and training recipe described above. Changes from CIFAR100 are that we use a batch size of 512 and train
on a single Nvidia RTX 4090 GPU.

Text Generation: Training & Architecture Details. We base our NLP experiments on Geiping &
Goldstein (2023), using their code-base. Following this work we pre-train encoder-only ‘Crammed’ Bert
models with a maximum budget of 24 hours. We use a masked language modeling objective and train on the
Pile dataset Gao et al. (2020). The batch size is 8192 and the sequence length is 128. We evaluate models
on SuperGLUE Wang et al. (2020) after fine-tuning for each task. In order to ensure a fair comparison, all
models are trained on a reference system with an RTX 4090 GPU. We use mixed precision training with
bfloat16 as we found it to be the most stable Kaddour et al. (2023b).

C Distribution of the eigenvalues of H in trained models

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 1

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 2

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 3

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 4

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 5

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 6

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 5

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 6

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 7

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 8

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 9

1 0 1
1.0

0.5

0.0

0.5

1.0
Layer 10

real

im
m

ag
in

ar
y

5 0 5
6
4
2
0
2
4
6

Layer 1

5 0 5
6
4
2
0
2
4
6

Layer 2

5 0 5
6
4
2
0
2
4
6

Layer 3

5 0 5
6
4
2
0
2
4
6

Layer 4

5 0 5
6
4
2
0
2
4
6

Layer 5

5 0 5
6
4
2
0
2
4
6

Layer 6

5 0 5
6
4
2
0
2
4
6

Layer 7

5 0 5
6
4
2
0
2
4
6

Layer 8

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 5

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 6

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 7

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 8

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 9

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 10

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 11

5 0 5

5.0

2.5

0.0

2.5

5.0

Layer 12

real

im
m

ag
in

ar
y

Figure 7: Distributions of eigenvalues of H (Top) Vision models have distributions skewing to the
negatives; (Bottom) Language models have symmetrically distributed eigenvalues.

2If a model has multiple heads we will define WV = VH and Wproj = ΛHV⊤
H).

18

	Introduction
	Background & Related Work
	The Transformer Update
	What Is Oversmoothing?
	Observations of Transformer Oversmoothing
	The Theory of Transformer Oversmoothing

	Do Transformers Always Oversmooth?
	Preliminaries
	The Eigenvalues
	The Features
	When Oversmoothing Happens

	A Reparameterization that Influences Smoothing
	Experiments
	Discussion
	Proofs
	Training & Architecture Details
	Distribution of the eigenvalues of H in trained models

