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Abstract

The key challenge of multi-view indoor 3D object detection is to infer accurate
geometry information from images for precise 3D detection. Previous method
relies on NeRF for geometry reasoning. However, the geometry extracted from
NeRF is generally inaccurate, which leads to sub-optimal detection performance.
In this paper, we propose MVSDet which utilizes plane sweep for geometry-aware
3D object detection. To circumvent the requirement for a large number of depth
planes for accurate depth prediction, we design a probabilistic sampling and soft
weighting mechanism to decide the placement of pixel features on the 3D volume.
We select multiple locations that score top in the probability volume for each
pixel and use their probability score to indicate the confidence. We further apply
recent pixel-aligned Gaussian Splatting to regularize depth prediction and improve
detection performance with little computation overhead. Extensive experiments on
ScanNet and ARKitScenes datasets are conducted to show the superiority of our
model. Our code is available at https://github.com/Pixie8888/MVSDet.

1 Introduction

Indoor 3D object detection is a fundamental task in scene understanding and has wide applications
in robotics, AR/VR equipment, etc. Although point cloud based 3D objection methods [13, 14, 15]
have achieved impressive performance, depth sensors are required to capture the data, which may
not be available due to budget limitation, form factor constraints, etc. Recently, the more economic
pipeline of 3D object detection from only posed multi-view images is gaining increasing attention.
However, it is much more sophisticated to estimate geometry information from 2D images alone.

A straightforward solution to this problem is using ground truth geometry information, e.g. point
cloud [19] or TSDF [17], to supervise the model. Built on the 3D volume representation [16],
ImGeoNet [19] predicts the emptiness of each voxel by converting the ground truth point clouds to
surface voxels as supervision. CN-RMA [17] first reconstructs 3D scenes using ground truth TSDF
as supervision and then runs an existing point cloud based object detector to predict bounding boxes.
Although they achieve promising performance, the precise ground truth scene geometry is hard to
obtain and may not be available [1].

An alternative way is to learn geometry via self-supervision. The pioneer work ImVoxelNet [16]
unprojectes 2D image features to a 3D volume representation. However, 2D features can propagate
to irrelevant 3D locations since depth information is not known. NeRF-Det [22] relies on a Neural
Radiance Field (NeRF) [12] to learn a density field and queries an opacity score for each voxel. The
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Figure 1: Comparison with NeRF-Det [22]. The 3D voxel centers (grey dots) are overlaid with the
reference scene. The red dots denotes the erroneous backprojection pixel features to the points in the
free space. Compared to NeRF-Det, we show much less inaccurate backprojections.

opacity score is multiplied with voxel feature to decrease the influence of voxels in the empty space to
the feature volume. Since the detection performance is completely determined by the quality of NeRF,
enormous effort is spent on making NeRF generalizable and avoiding aliasing issue. Unfortunately,
the geometry extracted from NeRF remains unsatisfactory due to insufficient surface constraints in
the representation [21]. Consequently, it wrongly backprojects features to voxels in the free space (as
illustrated by the red dots in the example shown on the middle of Fig. 1).

In this paper, we propose MVSDet to extract geometry information from only the input multi-view
images. A straightforward way is to leverage multi-view stereo algorithms [24, 25] to decide the
accurate depths for correct placements of 2D features of each image to the 3D volume. However,
accurate depth estimation in the plane-sweeping algorithm [8] requires computationally expensive
sampling of many depth planes over all the multi-view images. We mitigate the computational
complexity by proposing a probabilistic sampling and soft weighting mechanism to decide the
possible depth locations for each pixel. Specifically, we sample multiple top scoring depth proposals
in the probability volume that are most likely covering the true depth locations. Pixel features are
placed onto the 3D volume only when the backprojected ray intersects at the depth locations. Since
the normalized probability score indicates the confidence of the the current depth location, we use it
to weigh the pixel feature before assigning the feature to its backprojected voxel center.

To further improve the depth prediction accuracy, we utilize the recent pixel-aligned Gaussian
Splatting (PAGS) [3, 28] for novel view rendering as an additional supervision. PAGS predicts a 3D
Gaussian primitive [9] for every pixel in the input views, and all the Gaussians are used to render
novel views via rasterization-based splatting. Compare to NeRF that uses computation expensive
volumetric sampling, Gaussian Splatting is fast and light-weight. A key to good rendering quality in
PAGS is the correct positioning of the 3D Gaussians, which depends on an accurate depth prediction.
As a result, by putting the Gaussians according to the depth map computed from the probability
volume in the plane sweep module, the rendering loss would guide the the Gaussian centers and
consequently the depths to the correct values.

In summary, our contributions are as follows:

1. We propose a probabilistic sampling and soft weighting mechanism to efficiently learn ge-
ometry without sampling many depth planes in multi-view stereo. Multiple depth proposals
are sampled with the probability scores to guide the propagation of image features to 3D
voxels.

2. We adopt pixel-aligned Gaussian Splatting to enhance depth prediction without much
additional computation overhead, which consequently improves detection performance.

3. We conduct extensive experiments on the ScanNet and ARKitScene datasets to verify the
effectivess of our method. Notably, we achieve significant improvements of +3.9 and +5.1
under the mAP@0.5 metric on ScanNet and ARKitScenes, respectively.

2 Related Work

Indoor 3D Object Detection. 3D object detection for indoor scenes predicts three dimensional
bounding boxes and corresponding classes by taking in 3D or 2D inputs. Point cloud is the most
popular choice of 3D data for detection as it provide accurate 3D information. To detect objects
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from the irregularity and sparseness of the point cloud, VoteNet [14] utilizes Hough voting by points
sub-sampling, voting and grouping to generate object proposals. Later methods improve VoteNet
by either predicting geometric primitives [27] or using hierarchical graph network [4]. 3DETR [13]
reduces hand-coded designs of VoteNet with transformer encoder-decoder blocks. Despite their
promising performance, depth sensors are required to capture the data, which is not always available
due to power consumption or budget limitation.

Alternatively, detecting 3D objects from images only [16, 22, 19, 17] is a cheaper choice, but with a
sacrifice of losing geometry information. Some methods guide the model to predict scene geometry
using ground truth geometry, i.e. ground truth surface voxels [19] or TSDF [17], as supervision.
However, obtaining ground truth scene geometry is troublesome. In contrast, ImVoxelNet [16] builds
a 3D feature volume in the world coordinate, where each voxel center aggregate the corresponding
features of its projected 2D pixels. Subsequently, 3D U-Net is applied to refine the volume features
and predict bounding boxes from each voxel center. However, voxels may wrongly aggregate
irrelevant image features since depth is not known. Recently, NeRF-Det [22] uses NeRF to learn
a density field and predict an opacity score per voxel center to downweigh the influence of voxels
in the empty space to the feature volume. However, the implicit modeling of geometry in NeRF
leads to unsatisfactory performance. Moreover, the reliance of NeRF during training side-tracked the
effort in making NeRF generalizable. Instead of implicitly modeling geometry with NeRF, we utilize
plane-swept cost volumes for geometry-aware scene reasoning. We propose a probabilistic sampling
and soft weighting mechanism to accurately decide the placement of pixel features without sampling
many depth planes.

Multi-View Depth Estimation. Multi-view depth estimation has long been studied in the multi-
view stereo [24, 20, 25, 5, 26, 11, 7]. MVSNet [24] constructs a 3D cost volume, regularize it with a
3D CNN and regresses the depth map from the probability volume. However, MVSNet consumes
large memory due the expensive 3D cost volume. Follow-up works reduce computation by replacing
3D CNN with recurrent network [23, 25] or using coarse to fine depth estimation [5, 20, 2, 7].
Recurrent methods only reduces cost regularization module to a 2D network, but still faces a large
3D cost volume to predict accurate depth. Although coarse to fine pipeline can reduce the number of
sampled depth planes, it still requires to sample a certain amount of initial depth locations, e.g. 32 to
64 planes [7, 20], to get a reasonable coarse depth map, which still leads to intractable computation in
our multi-view object detection task. Bae et al. [2] propose to sample extremely few number (i.e. 5)
of initial depth planes based on a pre-trained single view depth probability distribution. It has been
further applied to outdoor multi-view object detection [10]. However, both of them need the guidance
of ground truth depth to learn a correct monocular depth estimation, and would otherwise fail as
shown in the experiment section. Instead, we propose a probabilistic sampling and soft weighting
module to bypass the large 3D cost volume to decide the 3D locations of every pixel. We also novelly
utilize Gaussian Splatting to enhance our depth prediction with little computation overhead.

3D Gaussian Splatting. 3D Gaussian Splatting (3DGS) [9] is a recent technique for novel view
rendering. It models a 3D scene explicitly with Gaussian primitives, each of which is defined by a 3D
Gaussian center, covairance matrix, opacity and color. Compared to volume rendering based NeRF
[12], it achieves real-time rendering with much lighter computation. To avoid per-scene optimization
of 3DGS, several works [28, 3, 6, 18] propose to model a scene with pixel-aligned Gaussians Splatting
(PAGS). A Gaussian primitive is predicted per pixel, and all predicted Gaussians are then combined
for novel view synthesis. A key to PAGS is the accurate 3D Gaussian center which is determined
by the depth estimation. Thus, instead of targeting novel view synthesis, we novelly utilize it for
3D object detection through improving depth prediction. Our method is also significantly different
from NeRF-Det. While NeRF plays a major role in NeRF-Det by predicting opacity scores, we use
Gaussian Splatting as a regularizer to our plane sweep algorithm with little computation overhead.

3 Our Method

Problem Definition. The goal of multi-view indoor 3D object detection is to predict bounding
box {B} ⊆ R7 of objects in the 3D scene and their corresponding classes from N posed images
{I1, · · · , IN} ∈ RH×W×3. Each bounding box B is parameterized as (x, y, z, w, h, l, ϕ), where
(x, y, z) are the coordinates of the box center, (w, h, l) are the width, height, and length, and ϕ is the
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Figure 2: Overview of our MVSDet. The upper branch shows the detection pipeline with our proposed
probabilistic sampling and soft weighting. The backprojected ray intersects at 3 points (shown as
dots), but only the green point receives the pixel feature based on the selected depth proposals. The
red points are denoted as invalid backprojection location and thus the pixel feature is not assigned
to them. “GT Location” is the ground truth 3D location of the pixel. The lower branch shows the
pixel-aligned Gaussian Splatting (PAGS). We select nearby views for the novel image from the
images input to the detection branch and predict Gaussian maps on them. Note that PAGS is removed
during testing.

rotation angle around z-axis. The intrinsic and extrinsic matrix for each input image are denoted as
K ∈ R3×3 and P = [R | t] ∈ R3×4, respectively.

Overview. Fig. 2 shows our proposed MVSDet, a geometry-aware approach for indoor 3D object
detection from posed multi-view images. Our MVSDet is built on 3D volume-based object detection
(cf. Sec. 3.1). Instead of naively assigning the same 2D feature redundantly to every voxel center that
intersect the backprojected ray, we place the pixel features according to the estimated depth from our
proposed efficient plane sweep algorithm. We alleviate the costly sampling of many depth planes
for accurate depth prediction by proposing a probabilistic sampling and soft weighting mechanism
(cf. Sec. 3.2). We further utilize pixel-aligned Gaussian Splatting to enhance our depth prediction
module with little extra computation cost (cf. Sec. 3.3). Intuitively, our depth-aware framework leads
to more precise assignments of multi-view image features in the 3D volume and consequently better
3D object detection results.

3.1 Background: 3D Volume-Based Object Detection

Existing methods [16, 22] estimate bounding boxes from a 3D feature volume aggregated from
the multi-view image features. Image features F ∈ RH

4 ×W
4 ×C are first extracted from every input

image I ∈ RH×W×3. A 3D volume is defined in the world space with the size of Nx ×Ny ×Nz

voxels. Voxel center p = [x, y, z]⊤ ∈ R3 is projected to i-th input image to obtain the 2D coordinate
[ui, vi]

⊤ ∈ R2 as:

[u′i, v′i, di]⊤ = K′
iPi[p⊤, 1]⊤, [ui, vi]⊤ = [u′i/di, v′i/di]⊤, (1)

where K′
i is the scaled intrinsic matrix according the image downsampling ratio. Subsequently, 2D

feature fi ∈ RC is assigned to p via nearest neighbour interpolation as follow:

fi = interpolate ((ui, vi) ,Fi) . (2)

For p that are projected outside the boundary of feature map or behind the image plane, the projection
is considered as invalid and we set fi = 0. Finally, it averages all valid backprojected features as the
voxel feature v =

∑n
i=1 fi/n ∈ RC , where n denotes the number of valid projection.
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The feature volume is refined by a 3D U-Net before being fed into the detection head to predict
category, a bounding box and centerness score on each voxel location. The training losses for
detection consists of focal loss for classification Lcls, cross-entropy loss for centerness Lcenter, and
IoU loss for location Lloc:

Ldet = Lcls + Lcenter + Lloc. (3)
Observation. We observe that the feature aggregation method in existing multi-view indoor 3D
object detection works causes 2D pixel features to be duplicated on voxels intersecting with the ray
emitted from camera origin though the pixel as illustrated in Fig. 3. This is a result from lack of
depth-awareness where voxels can end up aggregating irrelevant pixel features that are either not on
the surface or occluded.

Proposition. To circumvent this problem, we propose: 1) an efficient plane sweep to instill depth
awareness. Our efficient plane sweep consists of a probabilistic sampling and soft weighting mech-
anism based on a cost volume representation to evaluate the placement of pixel features on the
intersected voxel centers; 2) a depth prediction regularizor based on 3D Gaussian Splatting to
improve depth accuracy.

3.2 Efficient Plane Sweep

Valid

Invalid

Volume

ImVoxelNet Ours

GT 
Location

Figure 3: Comparison of different feature back-
projection methods. The pixel ray intersects
at 4 voxel centers with the blue box denoting
the ground truth 3D location of the pixel. Our
method computes the placement of the pixel fea-
tures based on the depth probability distribution
(purple) and thus able to suppress incorrect inter-
sections.

Cost Volume Construction. We build N cost
volumes for N input images to predict N depth
probability distribution maps. To construct the
cost volume for the i-th view, we set the image Ii
as the reference view and select 2 nearby views
as the source views Ij∈2NB(i). A raw matching
volume for Ii is constructed by backprojecting
source feature map Fj∈2NB(i) ∈ RH

4 ×W
4 ×C into

the coordinate system defined by Ii at a stack of
fronto-parallel virtual planes. The virtual planes
{d1, . . . , dM} are uniformly sampled on a pre-
defined depth range. The coordinate mapping
from the source feature map Fj to the reference
feature map Fi at depth dm is determined by a
planar homography transformation:

qj,m = Kj [Rij | tij ]
[
dm

(
K−1

i q
)⊤

, 1
]⊤

. (4)

where q is the homogeneous coordinate of a pixel
on Fi, qj,m is the projected homogeneous coordinate of q on Fj . [Rij | tij ] are the rotation and the
translation of Ij relative to Ii. We use Eqn. 4 to warp every source feature map Fj∈2NB(i) into all
the depth planes and use a variance based metric [24] to generate a cost volume U ∈ RH

4 ×W
4 ×C×M .

Subsequently, we use a shallow 3D CNN to refine U to generate a probability volume (after softmax)
B ∈ RH

4 ×W
4 ×M . We also predict an offset per depth bin to account for the discretization error.

Probabilistic Sampling and Soft Weighting. Although we can place pixel features to the 3D
volume by predicting depth using the weighted average based on B, it requires sampling sufficient
depth planes, which is prohibitive for our task. To this end, we propose a probabilistic sampling and
soft weighting mechanism to decide the placement of pixel features on its backprojected ray without
the need for many depth planes.

For every pixel, we sample k depth locations that score top in the corresponding distribution in B as its
depth proposals. We denote their depth values as {didx1 , . . . , didxk}, and also use their corresponding
probability score to evaluate its confidence with respect to the ground truth location. The scores
are denoted as {B̃idx1 , . . . , B̃idxk}, where B̃idxk = Bidxk/

∑i=k
i=1 Bidxi . Intuitively, this is equivalent to

split one depth prediction to multiple depth prediction based on the scores. As a result, it is more
likely to cover the ground truth location when depth bins are insufficient.

Suppose a voxel center p ∈ R3 intersects the backprojected ray of a pixel from the i-th image, and
the depth of p under the i-th camera frustum is d(p). We consider the projection of point p to the i-th
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image as valid and set the indicator gi = 1 when d(p) resides near any of the top-k depth proposals
{didx1 , . . . , didxk}. We assign the normalized probability score of the nearest depth proposal to p as its
confidence. The corresponding pixel feature is assigned to p weighted by the confidence score. The
projection is invalid when d(p) is not close to any of the depth proposals, and we set the backprojected
feature from i-th image as 0. Thus, the feature f̃i ∈ RC backprojected from the i-th image to point p
and its corresponding indicator gi are given as follows:

f̃i =

{
B̃i

ϕ(p)fi if d(p) ⊂ {didx1 , . . . , didxk}
0 otherwise

, gi =

{
1 if d(p) ⊂ {didx1 , . . . , didxk}
0 otherwise

, (5)

where ϕ(p) is the index of depth proposal that is close to d(p), and B̃
i

ϕ(p) is the score of dϕ(p). After
looping through every input image, we average all valid backprojected features for point p as its voxel
feature v̂ ∈ RC :

v̂ = η−1
v

i=N∑
i=1

gi f̃i, where ηv =

i=N∑
i=1

giB̃
i

ϕ(p). (6)

We also utilize the multi-view consistency to compute a surface score s for point p by averaging
confidence scores B̃

i

ϕ(p) from every valid projection. We set s = 0 when the point does not have any
valid projection, which means point p is in the free space. s is multiplied with voxel feature v̂ as the
final feature v ∈ RC for point p as follows:

s = η−1
s

i=N∑
i=1

giB̃
i

ϕ(p), where ηs =

i=N∑
i=1

gi, v = sv̂. (7)

The adoption of s shares similar spirit with existing methods [22, 19] to decrease the influence of
empty space voxels in the feature volume. Yet, we learn it directly from multi-view images instead of
relying on NeRF [22] or ground truth supervision [19].

3.3 Enhancing Depth Prediction with Gaussian Splatting

We further utilize the recent pixel-aligned Gaussian Splatting (PAGS) [3, 28] to enhance our depth
prediction module. PAGS takes in sparse views and predict a Gaussian primitive per pixel. The
parameters for each primitive are center µ , Gaussian opacity α , covariance Σ and color c. All the
Gaussian primitives are combined together to render a novel view via rasterization-based splatting.

We select 3 nearby views per novel view from the images input to the detection branch , and
predict Gaussian maps {Mµ,Mα,MΣ,Mc} for the selected views. The Gaussian center map Mµ ∈
RH

4 ×W
4 ×3 are directly estimated from the predicted depth based on the probability volume B as

follows:
Mµ(r) = o(r) + D̂(r)h(r), D = BG (8)

where G = [d1, . . . , dM ]⊤ is the virtual depth planes and D ∈ RH
4 ×W

4 ×1 is the estimated depth map.
o(r) is the camera origin, D̂(r) is the projected ray depth obtained from the depth map D, and h(r) is
the ray direction for pixel r. The Gaussian opacity map Mα ∈ RH

4 ×W
4 ×1 is predicted by taking the

max probability score of B as follow:
Mα = max(B, dim = −1). (9)

The Gaussian covariance map MΣ ∈ RH
4 ×W

4 ×16 and color map Mc ∈ RH
4 ×W

4 ×3 are predicted from
a MLP as follows:

MΣ,Mc = MLP(F ∥ D ∥ Î), (10)
where ∥ denotes concatenation and Î ∈ RH

4 ×W
4 ×3 denotes the resized image map. Following 3DGS

[9], Σ is predicted by a rotation quaternion and scaling factors. Color is predicted by spherical
harmonics coefficients.

We render the image color Ĉcolor via alpha-blending and the rendering loss is a L2 loss as follows:

Lrender = ||Ĉcolor − Ccolor||2. (11)
One of the key factors for good rendering is accurate Mµ, which is directly related to correct depth
estimation from our model (cf. Eqn. 8). The rendering loss thus iteratively guides the Gaussians
to the correct 3D locations, and consequently benefits our detection pipeline. Our final loss is
L = Ldet + Lrender.
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Table 1: Results on ScanNet. “GT Geo” denotes
whether ground truth geometry is used as super-
vision during training.

Method GT Geo mAP@.25 mAP@.5

ImGeoNet[19] ! 54.8 28.4

CN-RMA [17] ! 58.6 36.8

ImVoxelNet [16] – 46.7 23.4

NeRF-Det [22] – 53.5 27.4

Ours – 56.2 31.3

Table 2: Results on ARKitScenes. “GT Geo”
denotes whether ground truth geometry is used
as supervision during training.

Method GT Geo mAP@.25 mAP@.5

ImGeoNet[19] ! 60.2 43.4

CN-RMA [17] ! 67.6 56.5

ImVoxelNet [16] – 27.3 4.3

NeRF-Det [22] – 39.5 21.9

Ours – 42.9 27.0

G
round-truth

N
eR
F-D

et
O
urs

Figure 4: Qualitative comparison on ScanNet dataset. Note that the mesh is not the input to the model
and is only for visualization purpose.

4 Experiments

4.1 Datasets

We conduct experiments on the ScanNet and ARKitScenes datasets. ScanNet has 1,201 and 312
scans for training and testing, respectively. We detect axis-aligned bounding boxes for 18 classes.
ARKitScenes has 4,498 and 549 scans for training and testing, respectively. We detect oriented
bounding boxes for 17 class. We adopt mean average precision (mAP) with thresholds of 0.25 and
0.5 as the evaluation metrics.

4.2 Implementation Details

We use the same feature extractor, training and testing configurations as [22] for detection. Specifically,
images are resized into (240, 320). During training, we input 40 images to the detection branch.
During testing, the detection branch takes in 100 images and the rendering branch is removed. The
size of the 3D volume is (Nx = 40, Ny = 40, Nz = 16), with each voxel represents a cube of 0.16m
×0.16m × 0.2m The depth range is empirically set as [0.2m, 5m]. The number of depth planes
M is set to 12 and k = 3 depth proposals are selected in the probabilistic sampling. We consider
d(p) ⊂ {didx1 , . . . , didxk} if d(p) is within ±0.2m of any depth proposals. For the rendering branch,
we select another two images as the target views that do not overlap with the images in the detection
branch. We use AdamW optimizer with learning rate 0.0002, total epochs of 12 and batchsize of 1.
All experiments are conducted on two NVIDIA A6000 GPUs.
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Table 3: Ablation study of probabilistic sampling and soft weighting. All methods are conducted
without using rendering loss.

Probabilistic Sampling Soft Weighting mAP@.25 mAP@.5

! – 50.0 24.8
– ! 36.9 13.5
! ! 56.0 29.7

Table 4: Ablation study of Gaussian Splatting. M denotes the number of depth planes in the plane
sweep. “Gaussian” denotes using pixel-aligned Gaussian splatting. “RMSE” is the depth evaluation
metric. “Memory ∆” denotes the increased memory consumption during training.

M Gaussian mAP@.25 mAP@.5 RMSE Memory ∆ (GB)

12 – 56.0 29.7 0.674 0
12 ! 56.2 31.3 0.374 +2.6
16 – 55.8 31.1 0.480 +9.4

4.3 Comparison with Baselines

We compare our method with ImGeoNet [19], CN-RMA [17], ImVoxelNet [16] and NeRF-Det [22].
We directly report their results from the CN-RMA [17] paper. Note that ImGeoNet and CN-RMA
use ground truth 3D geometry as supervision during training. Tab. 1 and Tab. 2 show the results
on ScanNet and ARKitScenes, respectively. It is expected that using ground truth geometry as
supervision can achieve good performance. However, ground truth geometry may not be accessible
and therefore we seek for a self-supervised approach that do not rely its supervision. ImVoxelNet and
NeRF-Det are the two existing methods that leverage self-supervision to learn geometry for multi-
view 3D detection. Compared to these works, our method achieve much better performance. It clearly
shows the superiority of our efficient plane sweep method over the vanilla feature backprojection in
ImVoxeNet and the density field in NeRF-Det. Fig. 1 shows the qualitative results on ScanNet. The
first two columns show that our model can detect more target objects. We also find that NeRF-Det
tends to detect objects in the free space (last two colums), which is due to inaccurate feature projection.
In contrast, our model is able to place bounding boxes at more accurate locations.

4.4 Ablation Study

Effectiveness of Probabilistic Sampling and Soft Weighting. Tab. 3 shows the ablation stdudy
of the probabilistic sampling and soft weghting (PSSW). All methods are conducted without the
rendering loss Lrender to test the performance of PSSW alone. Removing “Probabilistic Sampling”
means replacing top-k sampling with a single depth estimation computed by the weighted average of
depth probability volume B. We use the max probability score as the weight in this case. Removing
“Soft Weighting” means replacing B̃

i

ϕ(p) with value 1. As shown in the table, removing either
“Probabilistic Sampling” or “Soft Weighting” causes drastic drop in the performance. Particularly,
removing probabilistic sampling depth proposals drops by 19.1 at mAP@.25. It suggests that
estimating accurate depth is very hard under insufficient depth planes. Furthermore, soft weighting is
very important to our model as it can decrease the influence of wrong depth proposals introduced by
the sampling. Overall, both probabilistic sampling and soft weighting are crucial to our model.

Effectiveness of Gaussian Splatting for Depth Prediction. Tab. 4 shows the ablation study for
using pixel-aligned Gaussian splatting (PAGS) for detection. “RMSE” evaluates the average quality
of depth prediction for the images in the detection branch. Increasing depth planes to M = 16 or
using Gaussian Splatting both improve the depth estimation and bring similar improvement to the
detection performance. However, using PAGS consumes much less memory during training than
M = 16, i.e. adding only 28% memories compared to increasing depth planes. Moreover, PAGS
does not bring any additional memory cost during testing because it is removed for detection. We
visualize the depth maps predicted by the probability volume B in Fig. 5. The depth maps are of
1/16 size of the original image since we estimate depth on the feature map level. It shows that PAGS
significantly improves the depth quality.
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Image GT Depth w/ Gaussian w/o Gaussian Image GT Depth w/ Gaussian w/o Gaussian

Figure 5: Depth map visualization. “GT Depth” denotes ground truth depth map. Both “w/ Gaussian”
and “w/o Gaussian” use M = 12 depth planes. Table 5: Ablation study of

Top-k depth proposals.
k mAP@.25 mAP@.5

1 49.3 24.4
3 56.2 31.3
5 55.5 29.8

Analysis of the number of Top-k depth proposals. Tab. 5 shows
the ablation study of number of depth proposals. Sampling top-1
depth proposal leads to severe performance decrease as the correct
depth location is harder to be selected. Sampling too many depth
proposals (k = 5) also leads to some decrease since more inaccurate
locations are sampled. We thus choose k = 3 in our model.
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Figure 6: Comparison of different depth predic-
tion methods on 3D object detection on ScanNet.

Comparison with Depth Estimation Methods.
Fig. 6 shows the comparison of different depth
prediction methods to the detection performance.
MVSNet [24] performs one-time plane sweep by
using M = 16 depth planes. BEVStereo [10]
performs iterative depth estimation by sampling
depth planes according to a monocular depth es-
timation. We set the number of iterations to 3 and
the number of depth planes in each iteration to
5. We remove ground truth depth supervision for
BEVStereo for fair comparison. “Ground-truth
Depth” denotes placing pixel feature on the 3D
volume according to the ground-truth depth loca-
tion, which is the upper bound of our method. We
show the results of our approach using different
number of depth planes (M = 12 and M = 8).
MVSNet performs badly even though it samples
more planes than us. This is because MVSNet requires sufficient depth planes to estimate depth
correctly. BEVStereo also fails because it requires the ground truth depth supervision to learn a
good initial monocular depth estimation. In contrast, our model achieve close performance as the
“Ground-truth Depth” using only 12 or even 8 depth planes. This demonstrates that our approach
efficiently learns geometry without sampling many depth planes.

Time and memory comparison. Tab. 6 shows the comparison of time and memory in the training
and testing stages on ScanNet, respectively. We omit comparison with ImGeoNet since it does not
release any code. All models are ran on 2× A6000 GPUs. Due to the complexity of CN-RMA
(as mentioned in Sec 3.5 of their paper), it requires much longer time to train and evaluate than
other models. Furthermore, CN-RMA consumes much more memory in the training stage because
it requires joint end-to-end training of the 3D reconstruction and detection network. Although
NeRF-Det is efficient in time and memory of the training and testing stages, their performance is
much worse than ours as shown in Tab. 1 and 2.

Table 6: Time and memory comparison in training and testing stages on ScanNet dataset, respectively.

Method Train Test
Time(hrs) Memory(GB) Time(min) Memory(GB)

CN-RMA[17] 121 43 10 12
NeRF-Det[22] 7 13 2 12

Ours 18 35 3 28
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5 Conclusion

In this paper, we propose MVSDet for multi-view image based indoor 3D object detection. We design
a probabilistic sampling and soft weighting mechanism to decide the placement of pixel features
on the 3D volume without the need of the computationally sampling of many depth planes. We
further introduce the use of pixel-aligned Gaussian Splatting to improve depth prediction with little
computation overhead. Extensive experiments on two benchmark datasets demonstrate the superiority
of our method.

6 Limitation

Similar to existing multi-view stereo methods [24, 20], feature matching would fail on texture-less
or reflective surfaces. One possible solution is to combine with monocular depth estimation [2].
However, estimating monocular depth is non-trivial and we leave it for future research.
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A Appendix / Supplemental Material

A.1 Qualitative Results on ARKitScenes Dataset

Fig. 2 shows the qualitative results on ARKitScenes dataset. Compared to NeRF-Det [22], we are able to detect
more target objects.

G
round-truth
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eR
F-D
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Figure 7: Qualitative comparison on ARKitScenes dataset. Note that the mesh is not the input to the
model and is only for visualization purpose.

A.2 Novel View Synthesis Results

Fig. 8 shows the novel view synthesis results on ScanNet test dataset. Our model gives reasonable rendering
results, indicating that the Gaussian Splatting module successfully learn the geometry. Note that the Gaussian
Splatting module is only a regularizer to our plane sweep algorithm instead of the determining factor to learn
geometry like NeRF in NeRF-Det [22].

Rendering GT Rendering GT Rendering GT Rendering GT

Figure 8: Novel view synthesis results on ScanNet dataset.“Rendering” denotes the rendered image /
depth from our Gaussian Splatting module. “GT” denotes the ground-truth image /depth of the novel
view.

Table 7: Per-class results under AP@0.25 on ScanNet dataset.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath other

NeRF-Det 42.3 84.6 75.9 78.5 56.3 33.4 21.4 49.9 2.4 50.6 73.9 21.3 54.3 62.5 90.9 57.7 75.5 32.3
Ours 40.5 82.4 79.2 80.2 55.6 40.3 25.4 60.9 3.5 47.3 73.4 28.9 64.6 64.1 94.8 52.1 76.7 41.8

12



Table 8: Per-class results under AP@0.5 on ScanNet dataset.

Method cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath other

NeRF-Det 15.8 73.1 45.3 40.6 39.5 8.1 2.0 20.3 0.2 13.8 42.5 5.3 25.3 10.0 63.0 26.0 49.1 12.7
Ours 14.9 71.4 48.9 54.4 38.8 9.5 3.1 29.6 0.8 9.8 48.5 5.6 40.2 10.2 77.3 29.0 52.9 17.7

A.3 Per-Class Performance

Tab. 7, Tab. 8, Tab. 9 and Tab. 10 are the per-class results under AP@0.25 and AP@0.5 on ScanNet and
ARKitScenes datasets, respectively.

Table 9: Per-class results under AP@0.25 on ARKitScenes dataset.

Method cab fridg shlf stove bed sink wshr tolt bthtb oven dshwshr frplce stool chr tbl TV sofa

NeRF-Det 34.7 61.1 30.7 9.4 73.2 29.9 62.6 77.2 86.4 45.0 7.4 2.1 12.1 46.4 38.3 0.1 55.5
Ours 42.7 65.6 34.6 12.1 77.9 35.5 61.5 78.9 86.9 51.5 13.6 5.4 13.2 50.0 40.7 0.2 59.0

Table 10: Per-class results under AP@0.5 on ARKitScenes dataset.

Method cab fridg shlf stove bed sink wshr tolt bthtb oven dshwshr frplce stool chr tbl TV sofa

NeRF-Det 10.8 48.0 5.7 0.6 36.1 7.9 46.3 60.8 64.9 21.0 5.6 0.0 2.9 18.8 14.1 0.0 28.2
Ours 17.5 50.6 9.2 1.9 51.9 9.9 51.6 65.0 70.6 27.8 9.3 1.8 6.6 29.1 20.2 0.0 36.5
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The experiments support our claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section 6 Limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: We do not propose any theories.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include the implementation details in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will release our code upon paper acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include the dataset and implementation details in the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: We follow baselines to not report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We include it in the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We confirm that we follow NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [No]

Justification: Our work is useful for 3D scene understanding. We do not have any negative social
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [No]

Justification: We follow baselines to not describe safeguards. We do not foresee any misuse cases.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We properly cite the datasets we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer:[NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: We do not conduct crowdsourcing or research with Human Subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

18

paperswithcode.com/datasets


Justification: We do not have such experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

19


	Introduction
	Related Work
	black Our Method
	Background: 3D Volume-Based Object Detection
	Efficient Plane Sweep
	Enhancing Depth Prediction with Gaussian Splatting

	Experiments
	Datasets
	Implementation Details
	Comparison with Baselines
	Ablation Study

	Conclusion
	Limitation
	Appendix / Supplemental Material
	Qualitative Results on ARKitScenes Dataset
	Novel View Synthesis Results
	Per-Class Performance


