FILLING THE GAPS: LLMS FOR CAUSAL HYPOTHESIS GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Scientific discovery catalyzes human intellectual advances, driven by the cycle of hypothesis generation, experimental design, data evaluation, and iterative assumption refinement. This process, while crucial, is expensive and heavily dependent on the domain knowledge of scientists to generate hypotheses and navigate the scientific cycle. Central to this is causality, the ability to establish the relationship between the cause and the effect. Motivated by the scientific discovery process, in this work, we formulate a novel task where the input is a partial causal graph with missing variables, and the output is a hypothesis about the missing variables to complete the partial graph. We design a benchmark with varying difficulty levels and knowledge assumptions about the causal graph. With the growing interest in using Large Language Models (LLMs) to assist in scientific discovery, we benchmark open-source and closed models on our testbed. We show the strong ability of LLMs to hypothesize the mediation variables between a cause and its effect. In contrast, they underperform in hypothesizing the cause and effect variables themselves. We also observe surprising results where some of the open-source models outperform the closed GPT-4 model.

025 026 027

028 029

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

023

024

1 INTRODUCTION

Scientific discovery has been key to humankind's advances. It is a dynamic process revolving around inquiry and constant refinements driven by new observations. Scientists adhere to a structured process that involves formulating a hypothesis and then collecting pertinent data (Wang et al., 2023a). They then draw inferences from experiments and the collected data, modify the hypothesis, formulate sub-questions, and repeat the process until the research question is answered (K1c1man et al., 2023).

Causality empowers scientists to assess the hypotheses and interpret the collected data beyond mere correlations and associations. Tools such as Randomised Control Tri-037 als (RCTs) (Kendall, 2003) allow for establishing causal relationships between variables. Naturally, the process of causal discovery heavily relies on human experts to guide 040 the hypothesis formation and experimental design (K1c1-041 man et al., 2023). Expert domain knowledge is crucial to 042 narrow the search space of hypotheses, especially when 043 it is expensive to collect data or when systematic explo-044 ration is infeasible. However, a possible impediment is that domain knowledge can be difficult to formulate and collect (Kıcıman et al., 2023). 046

With the recent advancement of Large Language Models
(LLMs) (Brown et al., 2020; OpenAI, 2023), there has
been a growing interest in using them for scientific discovery (AI4Science and Quantum, 2023; Lu et al., 2024;
Cory-Wright et al., 2024). Their potential is now studied in domains such as natural sciences (AI4Science and Quantum, 2023). Given the importance of causality in the scientific discovery process, we focus on how LLMs can

Figure 1: Scientific discovery iteratively generates hypotheses from assumptions using human expertise. We use LLMs as proxy experts to propose new hypotheses in causal DAGs.

assist with causal reasoning. LLMs have achieved state-of-the-art results for causal tasks such as
determining pairwise causal relationships by considering variable names (K1c1man et al., 2023),
combined with causal discovery algorithms (Abdulaal et al., 2024; Ban et al., 2023a; Vashishtha et al.,
2023) for refinement.

Causal discovery, however, comes *after* hypothesizing the variables of interest (which require domain knowledge), forming experiments, and potentially costly data collection. Our work, therefore, extends LLM applications to assist in steps essential *before* causal discovery, specifically identifying and hypothesizing *missing variables* in partially known causal graphs. This simulates the realistic scientific discovery process of incremental hypothesis formation and testing. By leveraging curated causal graphs, we evaluate the feasibility and reliability of LLMs in generating hypotheses under controlled yet realistic settings, ensuring reproducibility and providing a foundation for LLM-driven scientific discovery.

066 We break down causal hypothesis generation into smaller tasks, starting with baseline experiments, 067 and progressing to realistic scenarios where only treatments and outcomes are known. We leverage 068 LLMs' large-scale training to propose memorized or inferred variables based on their general and 069 domain knowledge. This enables users to identify missing variables to guide data collection, followed by subsequent downstream causal tasks. Importantly, we avoid requiring LLMs to determine 070 pairwise causal relations or perform numerical calculations, sidestepping their limitations in these 071 areas (Zečević et al., 2023; Jin et al., 2023a). Existing work explores the inductive hypothesis 072 generation capabilities of LLMs by using them as creative solution proposers with task-specific 073 means of verifying said solutions (Romera-Paredes et al., 2023; Wang et al., 2023b; Qiu et al., 2024). 074 In contrast, our work uniquely focuses on hypothesis generation within a causal paradigm. 075

Contributions. Our main contributions are: 1) We propose and formalize the novel task of LLM-assisted causal variable identification and hypothesizing. 2) We propose a benchmark for hypothesizing missing variables across diverse domains of existing causal graphs. 3) We design experimental tests with different difficulty levels and knowledge assumptions, such as open-world and closed-world settings, the number of missing variables, etc. 4) Our benchmark allows for allow for both grounded evaluations and a reproducible framework to benchmark LLMs' capabilities in hypothesis generation.

081 082

083

084

2 RELATED WORK

085 LLMs and Causality. Our work is based on the framework of causality as proposed by Pearl (2009). The intersection of language and causality is explored by Girju et al. (2002); Hassanzadeh et al. (2020); Tan et al. (2023); Dhawan et al. (2024) to extract causal relationships from a large 087 880 corpus of text. With the advancements in LLMs and their ability to process large contexts, there has been an interest in using them for causal reasoning (Kıcıman et al., 2023). Some works have 089 focused on commonsense causality (Frohberg and Binder, 2021; Singh et al., 2021) and temporal 090 causal reasoning (Zhang et al., 2020; 2022). More recently K1c1man et al. (2023); Long et al. (2023); 091 Darvariu et al. (2024) introduced methods to discover causal structures by prompting LLMs with 092 variable names. Ban et al. (2023b); Vashishtha et al. (2023); Ban et al. (2023a) extended this work by 093 introducing ancestral constraints to refine the causal structures derived from LLMs. Abdulaal et al. 094 (2024) combined data-based deep structural causal models, such as (Yu et al., 2019), with LLMs 095 generated causal structure. Jin et al. (2023b) focused on causal inference using LLMs. While a tool 096 on GitHub PyWhy-LLM used LLMs to propose confounders, our work formalizes such a task along 097 with detailed insights. Recent work attempted to train transformers for improved causal inference 098 and discovery (Vashishtha et al., 2024; Zhang et al., 2024). In contrast to previous work, we focus on the novel task of identifying and hypothesizing missing variables, a task that comes before data 099 collection and evaluation, with LLMs as assistants. We test the hypothesizing abilities of generalist 100 pre-trained LLMs as our task is primarily linked with pre-training knowledge. 101

102

LLMs and hypothesis generation. Existing works tested inductive hypothesis generation with
LLMs in reasoning tasks or free-form scientific hypotheses from background knowledge provided in
the context (Gendron et al., 2023; Qi et al., 2023; Xu et al., 2023a;b; Qiu et al., 2024; Lu et al., 2024).
In contrast, we consider the structured task of causal hypothesis generation, where the ground-truth
variables are known and can be used for evaluation. We also assume a pertinent human-in-the-loop assistive scientific discovery setup to counter LLMs' limitations and hallucinations.

¹⁰⁸ 3 PRELIMINARIES: CAUSAL GRAPH

110 A causal relationship can be modeled via a Directed Acyclic Graph (DAG). A causal DAG represents 111 relationships between a set of N variables defined by $\mathbf{V} = \{v_1, ..., v_N\}$. The variables are encoded 112 in a graph $\mathcal{G} = (\mathbf{V}, \mathbf{E})$ where E is a set of directed edges between the nodes $\in \mathbf{V}$ such that no cycle 113 is formed. Mathematically it can be expressed as:

 $\mathcal{G} = (\mathbf{V}, \mathbf{E}), \ \mathbf{E} = \{e_{i,j} \mid v_i, v_j \in \mathbf{V}, i \neq j\} \text{ and } v_i \rightarrow v_j$

Each edge $e_{i,j} \in \mathbf{E}$ denotes causal relationship between v_i and v_j , $v_i \xrightarrow{e_{i,j}} v_j$, emphasizing the influence from v_i to v_j . Beyond visualization, causal DAGs allow for the mathematical characterization of different node types for a causal model to understand the influences and dependencies.

We define $\mathbf{d}(v)$ as the degree of a node v, representing the total number of edges connected to v. $\mathbf{d}_{in}(v)$ is the in-degree, representing the number of incoming edges to v. $\mathbf{d}_{out}(v)$ is the out-degree, representing the number of outgoing edges from v.

Sources are variables v_s with no incoming edges. Mathematically sources are $d_{in}(v_s) = 0$ where d_{in} is the in-degree of the graph.

Sinks are variables v_k with no outgoing edges. Sinks are $d_{out}(v_k) = 0$ where d_{out} is the out-degree of the graph.

Treatment are variables v_t , characterized as nodes $d_{in}(v_t) = 0$ that are being intervened upon.

Outcome are variables v_y , characterized as the nodes $d_{out}(v_y) = 0$ that are observed for interventions from the treatments.

129 Mediator are variables v_m that have both incoming and outgoing edges $(d_{in}(v_m) > 0 \text{ and } d_{out}(v_m) > 0)$, acting as intermediaries in the causal pathways between treatment and outcome.

131 **Confounder** are variables v_k that influence both treatment and outcome, exhibiting edges directed 132 towards the treatment and outcome nodes $(d_{out}(v_k) \ge 2$. Hence v_k is a confounder if it is a parent of 133 both v_i and v_j .

Collider are variables v_l that have two edges meeting, and have an in-degree greater than one din $(v_l) > 1$. Hence v_k is a collider if it is a child of both v_i and v_j .

136

141

146

114

115

Average Treatment Effect. Average Treatment Effect (ATE) quantifies the expected change in the outcome v_y caused by the unit change of the treatment v_t . ATE is a part of the causal do-calculus introduced by Pearl (2009). We consider binary causal DAGs, i.e., each variable can either take 0 or 1 as values.

$$ATE = \mathbb{E}[v_y | do(v_t = 1)] - \mathbb{E}[v_y | do(v_t = 0)]$$

where the do(·) operator, represents an intervention. The $E[v_y|do(v_t = 1)]$ represents the expected value of the outcome variable v_y when we intervene to set the treatment variable v_t to 1 (i.e., apply the treatment), and $E[v_y|do(v_t = 0)]$ represents the expected value of v_y when we set v_t to 0 (i.e., do not apply the treatment).

Mediation Analysis. Mediation analysis is implemented to quantify the effect of a treatment on the outcome via a third variable, the mediator. The total mediation effect can be decomposed into the Natural Direct Effect (NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE) is the effect of the treatment on the outcome variable when not mediated by the mediator variable.
The Natural Indirect Effect (NIE) is the effect of the treatment variable on the outcome variable when mediated by the mediator variable.

158 159

NDE =
$$\mathbb{E}[v_{t=1}, v_{m=0} - v_{t=0}, v_{m=0}]$$

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to 1and the mediator is fixed at the level it would take under the control treatment $v_t = 0$, with the expected outcome when both the treatment and the mediator are set to the control level.

NIE =
$$\mathbb{E}[v_{t=0}, v_{m=1} - v_{t=0}, v_{m=0}]$$

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1 and the mediator is allowed to change as it would under the treatment, with the expected outcome when the treatment variable is set to 1 but the mediator is fixed at the control level.

Figure 2: Leveraging LLM to indentify the missing variable for a causal DAG in the presence of out-of-context distractors (a), an in-context distractor along with out-of-context distractors (b).

4 LLMs for Identifying and Hypothesizing Causal Variables

In this work, we aim to leverage language models to identify and hypothesize variables in a causal DAG. Motivated by the process of hypothesizing a causal graph from a partially known structure Glymour et al. (2019), this paper proceeds under the assumption that some elements of the graph are already known. The aim is to find additional variables that can be incorporated into the existing causal structure to enhance the underlying causal mechanism.

We assume a partially known causal DAG, defined as $\mathcal{G}^* = (V^*, E)$, where $V^* \subseteq V$. The objective is to identify the set of missing variables $V^* = V \setminus V_{\text{missing}}$ thereby expanding \mathcal{G}^* to \mathcal{G} . This implies that all causal relationships (edges) among variables in V^* are known and correctly represented in \mathcal{G}^* ; i.e., E is fully specified. Here, "missing" variables are not latent or hidden by measurement error but known unknowns within the causal graph reflective of LLMs perspective.

Our methodology is structured around progressively challenging scenarios, explores the ability of 189 LLMs to identify and hypothesize causal variables. This starts from a restrictive and controlled 190 exploration to an open-ended one. Initially, we restrict the exploration by providing the language 191 models with a partially known causal DAG and a set of multiple choices for the missing variables. 192 The complexity of the task is gradually increased by removing more than one node from the graph. 193 Finally, we move to an open-ended scenario where the ground truth is not available to LLM. In 194 this setting, LLM is required to hypothesize the missing variables of the causal DAG without any 195 explicit hints. We evaluate the causal reasoning capability of LLMs through prompting. Given LLMs' 196 limitation to textual input, we represent the graph \mathcal{G}^* using a prompt template $P_{\text{LLM}}(\cdot)$ which enables 197 LLMs to parse the causal relationships embedded within the DAG.

198

200

174

175 176

177

4.1 TASK 1: OUT-OF-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

201 This task (depicted in Figure 2a) evaluates LLMs' ability to identify missing variables in a causal graph from a list of multiple choices, thereby reconstructing the original graph. The partial DAG \mathcal{G}^* 202 is created by removing one variable from the original DAG \mathcal{G} . Let us denote the removed node as 203 v_x . Along with the partial graphs, we operate in the multiple-choice question answering (MCQA) 204 paradigm. The role of the LLM is to select a variable from the multiple choices, MCQ_{v_x} , that can be 205 used to complete the graph. The multiple choices include the missing variable v_x and out-of-context 206 distractors. The out-of-context distractors are unrelated to the causal domain of the given DAG, 207 chosen to minimize any contextual and overlap with the true missing variable. Let v_x^* represent the 208 variable selected by the LLM to complete \mathcal{G}^* . 209

210

 $v_x^* = P_{\text{LLM}}(\mathcal{G}^*, \text{MCQ}_{v_x}) \quad \forall v_x \in \mathbf{V}$

211

213

4.2 TASK 2: IN-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

In practical applications, such as healthcare (Robins, 1986) and finance (Hughes et al., 2019), dealing
 with missing data and unobserved latent variables is a major challenge (Tian and Pearl, 2012;
 Bentler, 1980). Therefore, it is important to identify the missing variables and their underlying causal

Figure 3: Leveraging LLM to hypothesize the missing variable in a causal DAG in an open-world setting for one variable (a), in an iterative fashion for multiple missing mediators (b).

mechanism. To simulate this, a more challenging task is introduced (see Figure 2b). Here, instead of removing one node from the ground truth DAG \mathcal{G} , two nodes, v_{x_1} and v_{x_2} , are now removed to create the partial graph, \mathcal{G}^* .

$$\mathcal{G}^* = \mathcal{G} \setminus \{v_{x_1}, v_{x_2}\} \quad ext{for} \quad v_{x_1}, v_{x_2} \in \mathbf{V}$$

We use the MCQA paradigm to provide multiple choices that include the missing variables v_{x_1} and v_{x_2} . The task for the LLM here is to select the correct variable v_{x_1} only, given an in-context choice v_{x_2} and out-of-context choices. The in-context variables are plausible variables within the same causal graph. We introduce the non-parental constrain for v_{x_1} and v_{x_2} . This prevents the removal of both a parent node and its immediate child node in \mathcal{G}^* .

242

243

227

228

229 230

231

232

233 234

235

236

237

238

 $v_{x_1}^* = P_{\mathrm{LLM}}(\mathcal{G}^*, \mathrm{MCQ}_{v_{x_1}, v_{x_2}}) \ \, \forall \, v_{x_1}, v_{x_2} \in \mathbf{V} \ \, \mathrm{and} \ \, v_{x_1} \not \rightarrow v_{x_2}, \ \, v_{x_2} \not \rightarrow v_{x_1}$

4.3 TASK 3: HYPOTHESIZING IN OPEN WORLD

So far, we have described the testbeds for variable identification in a partial DAG given the controlled world knowledge in the form of distractors. This assumption allows for the evaluation of the language model's ability to select the correct answer from a set of options. However, in the open-world setting, we increase the complexity to provide no choices, as shown in Figure 3a. Hence the task is to predict the missing node v_x given the partial graph \mathcal{G}^* to complete the ground truth graph \mathcal{G} . Here, the model returns a set of potential hypotheses, $\{v_{x,1}^*, ..., v_{x,k}^*\}$ where k is the number of hypotheses.

$$\{v_{x,1}^*, v_{x,2}^*, ..., v_{x,k}^*\} = P_{\text{LLM}}(\mathcal{G}^*) \ \forall \ v_x \in \mathbf{V}$$

250 251

253

267

268

4.4 TASK 4: ITERATIVELY HYPOTHESIZING IN OPEN WORLD

In addition to the search space relaxation, we further relax the number of missing variables. The 254 partial DAG here, is obtained for one or more missing node variables. $\mathcal{G}^* = \mathcal{G} \setminus \{v_{x_1}...v_{x_M}\}$. The 255 fine-grained results from the open-world setting reveal that language models exhibit a particularly 256 strong performance in identifying mediator variables. Thus, the LLM is used here to iteratively 257 hypothesize mediator variables in a causal DAG given a treatment and an effect. The task (shown 258 in Figure 3b) is set up as follows: given a partial graph \mathcal{G}^* , which includes observed treatment and 259 outcome variables, we aim to hypothesize a set of mediators, denoted as $M = \{v_{m_1}, v_{m_2}, ..., v_{m_H}\},\$ 260 that mediates the treatment v_t to the outcome v_y . Here, H represents the number of direct, and 261 indirect mediators. A pair of treatments and outcomes are considered iteratively across the causal DAG. In the first iteration, the LLM generates a hypothesis for the mediator v_{m_1} . The hypothesized 262 mediator, v_{m_1} is then added to the graph, updating $\mathcal{G}^* \to \mathcal{G}^* \cup \{v_{m_1}\}$. The partial graph that now 263 also includes $v_{m_1}^*$ can be used to identify the second mediator $v_{m_2}^*$ and so on. Therefore, in each 264 subsequent iteration i, the LLM is tasked to generate a hypothesis for the next missing mediator v_{m_i} 265 given the updated graph $\mathcal{G}^* \cup \{v_{m_1}^*, ..., v_{m_{i-1}^*}\}$. 266

$$v_{m_i}^* = P_{\text{LLM}}(\mathcal{G}^* \cup \{v_{m_1}^*, ..., v_{m_{i-1}}^*\}) \text{ for } i = 1, ..., H$$

The sequence of mediators $M = \{v_{m_1}, v_{m_2}, ..., v_{m_H}\}$ is chosen at random. To formally investigate how the order of hypothesized mediators influences LLM performance, we borrow concepts from the mediation analysis literature, specifically the Natural Direct Effect (NDE) and the Natural Indirect
Effect (NIE). The NDE measures the effect of the treatment on the outcome that is not mediated
by a particular mediator, while the NIE measures the effect of the treatment that is mediated by the
mediator. We introduce a metric called Mediation Influence Score (MIS) that quantifies the influence
of each mediator between a treatment and an effect. MIS defined as the ratio of NIE to NDE, provides
a scale-free measure of a mediator's relative influence, enabling prioritization. MIS is always positive,
reflecting the absolute contribution of mediators.

 $\text{MIS}(v_{m_i}) = \left| \frac{\text{NIE}(v_{m_i})}{\text{NDE}(v_{m_i})} \right| \quad \text{for} \quad i = 1, ..., H.$

This metric quantifies the relative importance of the indirect effect (through the mediator) compared to the direct impact. Mediators are then ranked and prioritized based on their MIS scores, with higher scores indicating a stronger mediation effect.

5 EVALUATION AND RESULTS

285 286 287

288

277

278 279 280

281

282

283 284

5.1 EXPERIMENTAL SETUP

We evaluate a variety of causal datasets spanning diverse domains. We use the semi-synthetic datasets from BNLearn repository - Cancer: $\mathcal{G}(5, 4)$ (Korb and Nicholson, 2010), Survey: $\mathcal{G}(6, 6)$ (Scutari and Denis, 2021), Asia: $\mathcal{G}(8, 8)$ (Lauritzen and Spiegelhalter, 1988), Child: $\mathcal{G}(20, 25)$ (Spiegelhalter, 1992), Insurance: $\mathcal{G}(27, 52)$ (Binder et al., 1997), and Alarm: $\mathcal{G}(37, 46)$ (Beinlich et al., 1989). We also evaluate our approach on a realistic Alzheimer's Disease dataset: $\mathcal{G}(9, 16)$ (Abdulaal et al., 2024), developed by five domain experts. We also test on a legal causal graph, Law: $\mathcal{G}(8, 20)$ (VanderWeele and Staudt, 2011). See Appendix A.1 for further details.

We evaluate our setups across different open-source and closed models. The models we use are
GPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI, 2023), LLama2-chat-7b (Touvron et al., 2023),
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Mixtral-7B-Instruct-v0.1 (Jiang et al., 2024), Zephyr7b-Beta (Tunstall et al., 2023) and Neural-chat-7b-v3-1 (Intel, 2023).

300 Implementation details are mentioned in Appendix A. Prompt templates are illustrated in Appendix F.

301 302 303

309 310 311

5.2 TASK 1: OUT-OF-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

Our first experiment is designed to assess the fundamental ability of language models to identify missing variables in a partial causal graph, serving as a baseline for understanding their performance in variable identification tasks. Here, the input to the LLM is the ground truth variable name in addition to out-of-context multiple choices for the missing variable v_x and the partial DAG \mathcal{G}^* . We then calculate the models' accuracy in correctly predicting v_x .

Accuracy
$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(v_x^* = v_x^i)$$

312 **Results.** In Figure 4a, we report the accuracy of different LLMs in identifying the missing variable. 313 GPT-4, followed by Mixtral, consistently performs well, achieving perfect accuracy on most of 314 the datasets. GPT-3.5 also shows overall strong performance, apart from the Insurance and Alarm 315 datasets. The other models, including Mistral-7b, Llama-7b, and Zephyr-7b, demonstrate varying 316 degrees of success. Insurance is the most challenging dataset, which could potentially be due to the 317 high number of edges present in the DAG. It is noteworthy that all models significantly outperform 318 the random baseline, indicating that given out-of-context multiple choices along with the ground truth 319 variable, the language model can pick out the missing causal variable to complete the partial graph 320 \mathcal{G}^* . However, we may conjecture that the high performance could be attributed to the simplicity of 321 the task. The models might be primarily inferring from the context of the dataset domain, rather than performing actual causal reasoning among multiple plausible choices. To further investigate this, we 322 introduce an in-domain choice in the multiple choices in the next experiment. This can assess LLMs' 323 ability to choose a causal variable for a partial DAG beyond the highly evident correlations.

1.0 1.0 Zephy Mixtral Neural Zephyr Mixtral Neura 0.8 0.8 Meurai Llama Mistral GPT-3.5 Accuracy 9.0 20.6 GPT-4 GPT-4 Accui 0.4 0.2 0.2 0.0 Child Insurance cancer Child 13W Alarm Althei NT (a) Task 1 Result. (b) Task 2 Result.

Figure 4: Accuracy of LLMs in identifying the missing causal variable from multiple choices with out-of-context distractors (a), and from both out-of-context and in-context distractors (b).

	Ca	ncer	Su	rvey	A	sia	L	aw	Alzho	eimers	Cl	nild	Insu	rance	Al	arm	А	vg
	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J
Zephyr	0.36	0.61	0.34	0.60	0.45	0.66	0.41	0.70	0.35	0.75	0.51	0.70	0.45	0.44	0.46	0.69	0.42	0.63
Mixtral	0.41	0.66	0.39	0.66	0.66	0.75	0.38	0.69	0.31	0.77	0.53	0.77	0.46	0.56	0.50	0.72	0.46	0.70
Neural	0.38	0.77	0.43	0.55	0.53	0.55	0.47	0.72	0.44	0.71	0.48	0.70	0.47	0.43	0.47	0.67	0.45	0.63
Llama	0.40	0.48	0.40	0.54	0.53	0.58	0.67	0.65	0.45	0.61	0.48	0.63	0.42	0.34	0.46	0.65	0.45	0.55
Mistral	0.33	0.67	0.44	0.65	0.60	0.73	0.49	0.67	0.34	0.76	0.48	0.68	0.46	0.47	0.47	0.71	0.44	0.67
GPT-3.5	0.48	0.74	0.42	0.79	0.47	0.61	0.52	0.73	0.39	1.00	0.36	0.60	0.47	0.52	0.48	0.73	0.44	0.71
GPT-4	0.49	0.90	0.51	0.67	0.66	0.76	0.55	0.78	0.47	0.98	0.36	0.53	0.52	0.56	0.49	0.75	0.50	0.73

Table 1: Task 3 Results. Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing the missing variable in a causal DAG.

5.3 TASK 2: IN-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

We introduce a more complex setting to further challenge the models' abilities in missing variable identification. In this setup, the partial graph has two missing nodes. Alongside out-of-context choices and the ground truth variable, the multiple-choice options also include the second missing node from the partial graph as an in-context distractor. This configuration requires the language model to reason about indirect causal relationships to identify the correct missing variable. To evaluate models' performance, we present two metrics: accuracy and false node accuracy. The false node accuracy, measures the confusion of LLMs in picking the in-context variable instead of the ground truth.

False Node Accuracy (FNA)
$$\downarrow = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(v_{x_1}^* = v_{x_2})$$

362 Results. In Figure 4b, we plot both Accuracy and False Node Accuracy across different datasets. Ideally, accuracy should be 1.0, and the FNA should be 0.0. Since there were 5 multiple choices, the random chance is 0.2. We observe that most of the models for larger datasets achieve much higher 364 accuracy than random chance. GPT-3.5 and GPT-4 consistently perform well across all datasets, with high accuracy and low FNA. This suggests that these models are capable of reasoning by identifying 366 the missing nodes in the causal graph and are less likely to be confused by the in-context node 367 variable. On the other hand, open-source models like Mistral, Zephyr, and Mixtral show varying 368 performance across different datasets. For instance, Mistral performs well on the easy Cancer dataset 369 but underperforms in the more complex Alarm dataset. In summary, we observe that most language 370 models can identify causal variables in the presence of multiple missing nodes and an in-context 371 distractor. These results indicate that while most language models can handle missing variable 372 identification in the presence of multiple missing nodes and in-context distractors, the robustness of 373 their reasoning abilities varies significantly with dataset complexity and model architecture.

374 375

376

324

325

326

327

328

329

330

331 332

333

334

335 336

337

338 339

347

348 349 350

351

359 360 361

5.4 TASK 3: HYPOTHESIZING IN OPEN WORLD

377 We recall that the goal is for the language models to be able to complete a causal graph given a partial graph. In realistic scenarios, where scientists provide incomplete graphs without pre-defined answers,

Figure 5: Task 3 Results. Visualizing each model's performances, averaged across the different datasets, for Sink, Source, Mediator, and Collider nodes.

there is often no single 'ground truth' for what the missing variable should be. The correct hypothesis may vary based on domain expertise or available data, making this task fundamentally open-ended. Hence in this test-bed, we aim to leverage LLMs to hypothesize the causal variables. The language model is prompted for k = 5 suggestions for the missing node v_x .

We then compare the suggestions against the ground truth, acknowledging that in realistic scenarios, there is often no single 'ground truth' for the missing variables. This complexity necessitates careful evaluation, as we suspect that traditional metrics may not fully capture the performance of models, particularly when suggestions must be assessed within the broader context of the entire causal graph (see Appendix C.5 for more details). Hence, for a robust evaluation of this experiment, we use two metrics, semantic similarity, and LLM-as-Judge that incorporate contextual information.

400 Semantic Similarity: measures the cosine similarity between the embeddings (of another pretrained 401 sentence embedding model) of each suggestion of the model's predictions, $v_{x_{1:5}}^*$ and the ground truth 402 v_x . The distances of the most similar suggestion are averaged across all nodes $v_x \in \mathbf{V}$. For a detailed 403 explanation of this process, please refer to Appendix A.4.

LLM-Judge: This metric evaluates the quality of the model's suggestions using a two-step process inspired by Zheng et al. (2023). In particular, LLM-as-Judge compares against ground truth variables to measure contextual semantic similarity beyond semi-exact matching like in semantic similarity metric. In the first step, the language model is prompted to determine which suggestion best fits the partial graph, given the ground truth and the suggestions, $v_{x_{1:5}}^*$. In the second step, the language model is again prompted to rate the selected suggestion on a scale of 1 to 10 in terms of similarity. This is repeated for all nodes, and the ratings are averaged to provide an overall quality measure. Implementation details can be found in Appendix A.5.

Results. We report models' performances using both semantic similarity and LLM-Judge metrics in Table 1. For brevity, we provided the variances in Appendix C.1. To develop an intuition of LLMs' performance, we provide a detailed analysis of each metric across different types of node variables (defined in Section 3). We specifically look at sources, sinks, colliders, and mediators for each of the partial causal graphs. The results, fine-grained by node type, are given in Figure 5 that shows each model's average performance across datasets. For a detailed performance per each dataset individually, see Figure 18.

418 GPT-4 and Mistral generally achieve higher semantic similarity and LLM-as-Judge scores across 419 most datasets (Figure 18). GPT-3.5 also shows good average performance. We observe that semantic 420 similarity is a stricter metric than LLM-as-judge since it cannot encode contextual information 421 about the causal DAG (see example in Table 7). Despite different scales, semantic similarity and 422 LLM-as-judge metrics both seem to be fairly correlated. In Figure 5, we observe that models display 423 stronger performance for colliders and mediators on average. This suggests that these models are relatively proficient at reasoning about common causes and indirect causal relationships. Sinks are 424 typically the nodes that represent the outcomes or effects of interventions (treatments) applied to 425 other nodes, and the lower performance on these nodes indicates that the models find it challenging 426 to reason about the potential outcomes of the causal graphs. Source nodes represent the causes in a 427 causal graph, and lower performance on these nodes might indicate difficulties in reasoning about the 428 potential treatments from the partial graph. 429

In Figure 16a, we observe that the model performance increases with k, i.e., with a higher number of suggestions. From Figure 16b, it is also evident that the performance is proportional to the number of total edges, $d_{in} + d_{out}$ (more context about the node). In summary, LLMs show impressive performance across some of the nodes and can be particularly useful to hypothesize mediators and colliders in a partial causal DAG. It is, hence, potentially beneficial to use LLMs in the real world because, in practice, treatment and outcomes are usually known.

436 437 5.4.1 Hypothesizing Confounder

438 In causal inference, backdoor paths are alternative causal pathways 439 that confound the estimation of causal effects. They introduce bias 440 when estimating causal effects if not appropriately addressed. Hence 441 hypothesizing and controlling for confounders is an important task 442 in causal inference (Pourhoseingholi et al., 2012). We extract con-443 founder subgraphs from (Sachs et al., 2005), Alarm, and Insurance graphs. From Table 2, with detailed results in Appendix B, we ob-444 serve that while some confounders were easily hypothesized by LLMs, 445 achieving perfect accuracy, the genomic domain of the SACHS posed 446 challenges for models with potentially less domain-specific knowl-447 edge. Similar to the mediator analysis, a large model: GPT-4, does 448 not always perform best across all datasets. This highlights the need 449 for a diverse set of benchmarks, like ours, to fully assess models' 450 performance. Considering the importance of backdoor paths, we have 451 also benchmarked LLM performance for confounders in addition to 452 colliders. LLM typically performs well when hypothesizing a collider, 453 however, the results for confounders are varied.

	Sachs	Alarm	Ins
Zephyr	$\left \begin{array}{c} 0.10 \\ \pm 0.01 \end{array}\right $	$0.45_{\pm 0.05}$	0.53
Mixtral	0.95	0.85	0.63
Neural	$0.30 \\ \pm 0.03$	0.45	$0.61 \\ \pm 0.06$
LLama	$0.20 \\ \pm 0.02$	0.47	$0.63 \\ \pm 0.06$
Mistral	$0.20 \\ \pm 0.02$	0.85	$0.61 \\ \pm 0.06$
GPT-3.5	0.40	$0.49 \\ \pm 0.05$	0.67
GPT-4	0.95 ±0.10	$0.73 \\ \pm 0.07$	$\underset{\pm 0.08}{\textbf{0.78}}$

Table 2: Hypothesizing Confounders.

455 456 457

454

5.5 TASK 4: ITERATIVELY HYPOTHESIZING IN OPEN WORLD

In the previous open-world experiment, we observed that LLMs excel at identifying mediators when the treatments and outcomes are given. This observation could be particularly relevant in medical settings, where understanding the mediators can provide insights into causal mechanisms through which a treatment affects a patient's outcome.

For hypothesizing mediators, we adopted an iterative approach rather than a global (all-at-once) strategy. This interactive process allows the language model to progressively refine its predictions, reducing the search space for subsequent variables. As observed in our empirical results (see Appendix C.7), LLMs underperform when tasked with making multiple simultaneous predictions across different mediators. The iterative approach aligns more closely with human reasoning, as evidenced by Chain-of-Thought (CoT) (Wei et al., 2022) strategies, where sequential decision-making enhances accuracy.

For **unordered mediator evaluation**, the model is prompted iteratively with mediators presented in random order, and the final semantic similarity is averaged across all predictions. In contrast, **ordered mediator evaluation** ranks the mediators using the Mediation Influence Score (MIS), prompting the model in both ascending and descending orders of significance. We introduce the metric Δ , presenting the difference in performance when mediators are iteratively presented to the LLM in ascending and descending orders of significance defined by the MIS. Given that some datasets only contain a single mediator, we selected the Asia, Child, Insurance, and Alarm datasets, as they offer a wider range of mediators, ranging from *1 to 10* for the Alarm dataset.

476

468

477 **Results.** The results of this experiment are in Table 3. Results with variances are provided in 478 Appendix C.1. In a highly complex environment with more than one node missing and with open-479 world search space, we observe that LLMs can still maintain their performance. Unlike the overall 480 consistent performance of GPT-4 across all of the datasets from the open-world setting, the model 481 showed superior performance in Insurance and Alarm datasets only. As the complexity of the dataset 482 increases, we observe larger differences in hypothesizing the mediators according to the MIS order. 483 Positive Δ values suggest that prompting the LLM based on the MIS metric leads to higher semantic similarity between the mediator hypotheses and the ground truth variables. In summary, we observe 484 that LLMs can be highly effective in iteratively hypothesizing multiple mediators in a DAG, and if 485 present, some domain knowledge about the significance of the mediator can boost the performance.

	A	sia	C	hild	Insu	rance	A	arm
	Sim	Δ	Sim	Δ	Sim	Δ	Sim	Δ
Zephyr	0.61	-0.02	0.54	0.17	0.47	0.19	0.51	0.20
Mixtral	0.87	0.01	0.50	0.18	0.48	0.15	0.52	0.13
Neural	0.65	0.04	0.48	0.21	0.42	0.16	0.46	0.12
Llama	0.80	0.07	0.49	-0.05	0.44	0.21	0.51	0.07
Mistral	0.33	0.02	0.50	0.12	0.48	0.13	0.47	0.11
GPT-3.5	0.48	0.01	0.36	0.25	0.48	0.17	0.51	0.02
GPT-4	0.49	0.04	0.39	0.16	0.52	0.14	0.60	-0.07

495

496

497

498

Table 3: Sim: semantic similarity for iteratively hypothesizing the mediator nodes (Task 4) when prompted with random order. Δ measures the change in the prediction of each model when repeating the experiment with ordering according to the MIS metric instead of randomly.

499 5.6 DISCUSSION AND LIMITATIONS

The results show that LLMs effectively hypothesize missing variables, particularly mediators, though 501 performance varies with task complexity. Simple tasks, like identifying missing variables from 502 controlled options, had high success rates. Without unified metrics, we focused on relative rankings across models (Appendix C.2) and observed that no model, including GPT-4, consistently outper-504 formed the others. We hypothesize that the differences in performance across domains may stem 505 from potential biases within the LLMs. These biases may stem from the models' training data and, 506 therefore, its parametric memory, leading to disparities in how effectively the models handle different 507 tasks introduced in the benchmark. For instance, the models' ability to hypothesize confounders 508 varied significantly across datasets. In some cases, such as the Sachs dataset (see Appendix B), 509 domain-specific knowledge gaps may have led to lower accuracy.

510 511 While this paper aimed to evaluate the ability of current LLMs to identify and hypothesize variables 512 in a partial causal graph, we attempted to improve the performance by fine-tuning the model and 513 few-shot prompting. However, given the limited size of the DAGs used, the resulting datasets were 513 small, leading to mixed results (see Appendix D.1). We suspect that while fine-tuning may help the 514 model to specialize, it can also reduce its ability to leverage the general parametric knowledge (Yang 515 et al., 2024). Future approaches can look at domain-specific fine-tuning.

Given the non-disclosed datasets of models, it is difficult to confirm with absolute certainty that the datasets are not ingested by models during training. However, one of the datasets we used was released recently (Abdulaal et al., 2024) after the announced cut-off date of models. Additionally, our task itself is novel, including the way we verbalize the graphs and prompt the models. Additionally, in Table 3 we further demonstrate that LLM-generated suggestions are non-verbatim, indicating they generate novel hypotheses rather than retrieving memorized patterns. Finally, we did not observe any direct reconstruction of graphs that would suggest memorization.

Our setup assumes known edges among missing variables to enable controlled evaluation, which
 future work can extend. We envision this as a human-LLM collaboration under expert supervision,
 as LLMs cannot automatically identify the most plausible answer or express confidence in their
 responses (Zhou et al., 2024). Future work could explore better filtering mechanisms and improve
 performance on source and sink nodes.

528 529

530

6 CONCLUSION

531 Most causality literature assumes that the necessary data has been collected, focusing on establishing causal relationships between variables. However, generating hypotheses about which variables 532 to observe is typically done by human experts. LLMs, trained on large-scale datasets, can act as 533 expert proxies for this task. We introduce the novel task of using LLMs to hypothesize missing 534 variables in causal graphs, formalizing it with benchmarks that vary in difficulty and knowledge of 535 the ground truth graph. We evaluate models on identifying missing variables from in-context and 536 out-of-context distractors and hypothesizing variables in an open-world setting. We also explore an 537 iterative approach for populating graphs with up to 10 missing mediator nodes. Our results show 538 that LLMs are particularly effective at hypothesizing mediators, which are often less known than treatments and outcomes. To support further research, we will release our benchmark and codebase.

540 REFERENCES

542 543 544	Ahmed Abdulaal, adamos hadjivasiliou, Nina Montana-Brown, Tiantian He, Ayodeji Ijishakin, Ivana Drobnjak, Daniel C. Castro, and Daniel C. Alexander. Causal modelling agents: Causal graph discovery through synergising metadata- and data-driven reasoning. In <i>ICLR</i> , 2024.
545 546	Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large language models on scientific discovery: a preliminary study using gpt-4. <i>arXiv</i> , 2023.
54 <i>7</i> 548 549	Taiyu Ban, Lyuzhou Chen, Derui Lyu, Xiangyu Wang, and Huanhuan Chen. Causal structure learning supervised by large language model. <i>arXiv</i> , 2023a.
550 551	Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal architects: Harnessing large language models for advanced causal discovery from data. <i>arXiv</i> , 2023b.
552 553 554 555 556	Ingo A Beinlich, Henri Jacques Suermondt, R Martin Chavez, and Gregory F Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. In <i>AIME 89: Second European Conference on Artificial Intelligence in Medicine, London, August 29th–31st 1989. Proceedings</i> , pages 247–256. Springer, 1989.
557 558	Peter M Bentler. Multivariate analysis with latent variables: Causal modeling. <i>Annual review of psychology</i> , 31(1):419–456, 1980.
559 560	John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic networks with hidden variables. <i>Machine Learning</i> , 29:213–244, 1997.
562 563 564	Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. In <i>NeurIPS</i> , 2020.
565 566 567	Ryan Cory-Wright, Cristina Cornelio, Sanjeeb Dash, Bachir El Khadir, and Lior Horesh. Evolv- ing scientific discovery by unifying data and background knowledge with ai hilbert. <i>Nature</i> <i>Communications</i> , 15(1):5922, 2024.
568 569 570	Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Large language models are effective priors for causal graph discovery. <i>arXiv</i> , 2024.
571 572	Nikita Dhawan, Leonardo Cotta, Karen Ullrich, Rahul G Krishnan, and Chris J Maddison. End-to-end causal effect estimation from unstructured natural language data. <i>arXiv</i> , 2024.
573 574 575	Jörg Frohberg and Frank Binder. Crass: A novel data set and benchmark to test counterfactual reasoning of large language models. <i>arXiv</i> , 2021.
576 577	Gaël Gendron, Qiming Bao, Michael Witbrock, and Gillian Dobbie. Large language models are not abstract reasoners. <i>arXiv</i> , 2023.
578 579 580	Roxana Girju, Dan I Moldovan, et al. Text mining for causal relations. In <i>FLAIRS conference</i> , pages 360–364, 2002.
581 582	Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graphical models. <i>Frontiers in genetics</i> , 10:524, 2019.
583 584 585 586	Akash Gupta, Ivaxi Sheth, Vyas Raina, Mark Gales, and Mario Fritz. Llm task interference: An initial study on the impact of task-switch in conversational history. <i>arXiv preprint arXiv:2402.18216</i> , 2024.
587 588 589	Oktie Hassanzadeh, Debarun Bhattacharjya, Mark Feblowitz, Kavitha Srinivas, Michael Perrone, Shirin Sohrabi, and Michael Katz. Causal knowledge extraction through large-scale text mining. In <i>AAAI Conference on Artificial Intelligence</i> , volume 34, pages 13610–13611, 2020.
590 591 592	Rachael A Hughes, Jon Heron, Jonathan AC Sterne, and Kate Tilling. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. <i>International journal of epidemiology</i> , 48(4):1294–1304, 2019.
292	Intel. Intel neural-chat-7b model achieves top ranking on 1lm leaderboard! 2023.

594 595 596	Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. <i>arXiv</i> , 2023.
597 598 599 600	Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al. Mixtral of experts. <i>arXiv</i> , 2024.
601 602 603	Zhijing Jin, Yuen Chen, Felix Leeb, Luigi Gresele, Ojasv Kamal, Zhiheng Lyu, Kevin Blin, Fernando Gonzalez, Max Kleiman-Weiner, Mrinmaya Sachan, and Bernhard Schölkopf. CLadder: Assessing causal reasoning in language models. In <i>NeurIPS</i> , 2023a.
605 606 607	Zhijing Jin, Jiarui Liu, Zhiheng Lyu, Spencer Poff, Mrinmaya Sachan, Rada Mihalcea, Mona Diab, and Bernhard Schölkopf. Can large language models infer causation from correlation? <i>arXiv</i> , 2023b.
608 609 610	John Kendall. Designing a research project: randomised controlled trials and their principles. <i>Emergency medicine journal: EMJ</i> , 20(2):164, 2003.
611 612	Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large language models: Opening a new frontier for causality. <i>arXiv</i> , 2023.
613 614 615	Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. <i>NeurIPS</i> , 2022.
616 617	Kevin B Korb and Ann E Nicholson. Bayesian artificial intelligence. CRC press, 2010.
618 619 620	Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei Wang, Liangyou Li, Lifeng Shang, Xin Jiang, Qun Liu, and Kam-Fai Wong. Mt-eval: A multi-turn capabilities evaluation benchmark for large language models. <i>EMNLP</i> , 2024.
621 622 623 624	Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. <i>Journal of the Royal Statistical Society: Series B (Methodological)</i> , 50(2):157–194, 1988.
625 626	Stephanie Long, Tibor Schuster, Alexandre Piché, ServiceNow Research, et al. Can large language models build causal graphs? <i>arXiv</i> , 2023.
627 628 629	Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist: Towards fully automated open-ended scientific discovery. <i>arXiv</i> , 2024.
630 631	OpenAI. Gpt-4 technical report. arXiv, 2023.
632	Judea Pearl. Causality. Cambridge university press, 2009.
633 634 635 636	Mohamad Amin Pourhoseingholi, Ahmad Reza Baghestani, and Mohsen Vahedi. How to control confounding effects by statistical analysis. <i>Gastroenterology and hepatology from bed to bench</i> , 5 (2):79, 2012.
637	PyWhy-LLM. https://github.com/py-why/.
639 640 641	Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Sihang Zeng, Zhang-Ren Chen, and Bowen Zhou. Large language models are zero shot hypothesis proposers. In <i>NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following</i> , 2023.
642 643 644 645	Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, et al. Phenomenal yet puzzling: Testing inductive reasoning capabilities of language models with hypothesis refinement. In <i>ICLR</i> , 2024.
646 647	James Robins. A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. <i>Mathematical modelling</i> , 7 (9-12):1393–1512, 1986.

 Bernardino Romera-Paredes, Mohammadamin Barekatain M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, J Omar Fawzi, et al. Mathematical discoveries from progra <i>Nature</i>, pages 1–3, 2023. 	, Alexander Novikov, Matej Balog, Jordan S Ellenberg, Pengming Wang, m search with large language models.
 Karen Sachs, Omar Perez, Dana Pe'er, Douglas A Lauffenburg signaling networks derived from multiparameter single-ce 2005. 	ger, and Garry P Nolan. Causal protein- ell data. <i>Science</i> , 308(5721):523–529,
Marco Scutari and Jean-Baptiste Denis. <i>Bayesian networks:</i>	with examples in R. CRC press, 2021.
 Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormolabashi, Peng. Com2sense: A commonsense reasoning benchmark 2021. 	, Te-Lin Wu, Xuezhe Ma, and Nanyun with complementary sentences. <i>arXiv</i> ,
David J Spiegelhalter. Learning in probabilistic expert systems	s. Bayesian statistics, 4:447–465, 1992.
Fiona Anting Tan, Xinyu Zuo, and See-Kiong Ng. Unicausal: causal text mining. In <i>International Conference on Big Dat</i> pages 248–262. Springer, 2023.	Unified benchmark and repository for the Analytics and Knowledge Discovery,
Jin Tian and Judea Pearl. On the testable implications of causa 2012.	al models with hidden variables. arXiv,
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mart Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, F efficient foundation language models. <i>arXiv</i> , 2023.	tinet, Marie-Anne Lachaux, Timothée Faisal Azhar, et al. Llama: Open and
Ruibo Tu, Kun Zhang, Bo Bertilson, Hedvig Kjellstrom, a diagnosis simulator for causal discovery algorithm evaluat <i>Processing Systems</i> , 32, 2019.	and Cheng Zhang. Neuropathic pain tion. <i>Advances in Neural Information</i>
Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Shengyi Huang, Leandro von Werra, Clémentine Fourrier distillation of lm alignment. <i>arXiv</i> , 2023.	Rajani, Kashif Rasul, Younes Belkada, ; Nathan Habib, et al. Zephyr: Direct
Tyler J VanderWeele and Nancy Staudt. Causal diagrams for en for identifying causation, avoiding bias and interpreting re 329–354, 2011.	mpirical legal research: a methodology esults. <i>Law, Probability & Risk</i> , 10(4):
Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kur ramanian, and Amit Sharma. Causal inference using llm-g	mar, Saketh Bachu, Vineeth N Balasub- uided discovery. <i>arXiv</i> , 2023.
Aniket Vashishtha, Abhinav Kumar, Abbavaram Gowtham Re Amit Sharma. Teaching transformers causal reasoning thro	eddy, Vineeth N Balasubramanian, and bugh axiomatic training. <i>arXiv</i> , 2024.
Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Sci intelligence. <i>Nature</i> , 620(7972):47–60, 2023a.	n Huang, Ziming Liu, Payal Chandak, ientific discovery in the age of artificial
Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu Hypothesis search: Inductive reasoning with language mod	, Nick Haber, and Noah D Goodman. dels. <i>arXiv</i> , 2023b.
Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma Zhou, et al. Chain-of-thought prompting elicits reasoning 2022.	a, Fei Xia, Ed Chi, Quoc V Le, Denny g in large language models. <i>NeurIPS</i> ,
Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, a models really good logical reasoners? a comprehensive eva abductive views. <i>arXiv</i> , 2023a.	and Erik Cambria. Are large language aluation from deductive, inductive and
Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, an tion and reasoning corpus: Successes, failures, and the impo <i>arXiv</i> , 2023b.	nd Elias B Khalil. Llms and the abstrac- ortance of object-based representations.

702 703 704	Haoran Yang, Yumeng Zhang, Jiaqi Xu, Hongyuan Lu, Pheng-Ann Heng, and Wai Lam. Unveiling the generalization power of fine-tuned large language models. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, <i>NAACL:HLT</i> , 2024.
705 706 707	Yue Yu, Jie Chen, Tian Gao, and Mo Yu. Dag-gnn: Dag structure learning with graph neural networks. In <i>ICML</i> , pages 7154–7163. PMLR, 2019.
708 709	Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal parrots: Large language models may talk causality but are not causal. <i>TMLR</i> , 2023.
710 711 712	Jiaqi Zhang, Joel Jennings, Agrin Hilmkil, Nick Pawlowski, Cheng Zhang, and Chao Ma. Towards causal foundation model: on duality between optimal balancing and attention. In <i>ICML</i> , 2024.
713 714 715	Jiayao Zhang, Hongming Zhang, Weijie Su, and Dan Roth. Rock: Causal inference principles for reasoning about commonsense causality. In <i>ICML</i> , pages 26750–26771. PMLR, 2022.
716 717	Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about goals, steps, and temporal ordering with wikihow. <i>arXiv</i> , 2020.
718 719 720	Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. <i>arXiv</i> , 2023.
721 722 723	Kaitlyn Zhou, Jena D Hwang, Xiang Ren, and Maarten Sap. Relying on the unreliable: The impact of language models' reluctance to express uncertainty. <i>arXiv</i> , 2024.
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735	
730	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	
751	
752	
753	
754	
755	

A IMPLEMENTATION

A.1 DATASETS

758

777 778 779

We use 7 real-world based datasets. These datasets span different domain knowledge topics. These datasets have ground truth graphs along with their observational data. The simplest dataset used is the cancer dataset with 4 edges and 5 node variables. In addition to the semi-synthetic datasets from the BNLearn library, we also evaluate our approach on a realistic Alzheimer's Disease dataset Abdulaal et al. (2024), which was developed by five domain experts. Given that each expert created a different causal graph, the final causal DAG comprises only those edges that were agreed upon by consensus.

Dataset	V	Е	Description
Cancer	5	4	Factors around lung cancer
Survey	6	6	Factors for choosing transportation
Asia	8	8	Factors affecting dysponea
Law	8	20	factors around legal system
Alzheimer	9	16	Factors around Alzheimer's Disease
Child	20	25	Lung related illness for a child
Insurance	27	52	Factors affecting car accident insurance
Alarm	37	46	Patient monitoring system

Table 4: Dataset description.

A.2 REPRODUCIBILITY

For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We also mentioned the snapshot of the model used. We have also included the prompts and examples below. Our code can be anonymously found here - https://anonymous.4open.science/r/causal-llm-env-6C8E/README.md. The datasets are under CC BY-SA 3.0 which allows us to freely modify the datasets for benchmarking. Our benchmark will be released under the CC BY-SA License.

787GPT-3.5 GPT-4 were accessed via API. Rest of the models were run on 1 A100 GPU. Since we used788off-the-shelf LLM, there was no training to be performed. Since many of the models were run by789API, it is difficult to calculate the entire compute, however, all of the experiments for each model790took ≈ 6 hours.

791 792

793

A.3 CONTROLLED VARIABLE IDENTIFICATION

For variable identification, we generate multiple choices that remain consistent across all missing nodes and all of the datasets. The words were randomly chosen to be far enough from the nodes. The options chosen were weather, book sales, and movie ratings. We wanted to make sure that the options were not from one specific domain such that the LLM could do the process of elimination.

798 799

A.4 SEMANTIC SIMILARITY

800 Given the task of hypothesizing missing nodes in a partial graph \mathcal{G}^* in the absence of multiple-801 choices, we evaluate the semantic similarity between the model's predictions and the ground truth 802 node variable. We leverage an open model namely 'all-mpnet-base-v2' to transform the textual 803 representations of the model's predictions and the ground truth into high-dimensional vector space 804 embeddings. Post transforming textual representations into embeddings and normalizing them, we 805 calculate the cosine similarity. Scores closer to 1 indicate a high semantic similarity, suggesting the 806 model's predictions align well with the ground truth. This metric gives a score of similarity without 807 the contextual knowledge of the causal graph. We perform our experiments to consider every node of the ground truth as a missing node iteratively. For all the suggestions for a node variable, we calculate 808 the semantic similarity. The average similarity reported is the highest semantic similarity for each of 809 the variable suggestions.

Alg	orithm 1 Evaluating Semantic Similarity for Hypothesized Missing Nodes
1:	Input: Partial graph \mathcal{G}^* , Ground truth node variables V_{GT} , Language model LM =
	'all-mpnet-base-v2'
2:	Output: Average highest semantic similarity score
3:	procedure SEMANTICSIMILARITY($\mathcal{G}^*, V_{GT}, LM$)
4:	Initialize <i>similarityScores</i> as an empty list
5:	for each node $v_{\rm GT}$ in v do
6:	$predictions \leftarrow \text{GeneratePredictions}(\mathcal{G}^*, LM)$
7:	Initialize nodeScores as an empty list
8:	for each prediction p in predictions do
9:	$embedding_{\text{GT}} \leftarrow \text{Embed}(v_{\text{GT}}, LM)$
10:	$embedding_p \leftarrow Embed(p, LM)$
11:	Normalize $embedding_{GT}$ and $embedding_p$
12:	$score \leftarrow CosineSimilarity(embedding_{GT}, embedding_p)$
13:	Append score to nodeScores
14:	end for
15:	$maxScore \leftarrow Max(nodeScores)$
16:	Append maxScore to similarityScores
17:	end for
18:	$averageScore \leftarrow Average(similarityScores)$
19:	return $averageScore$
20:	end procedure

833 834	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Smoking status Smoking 0.72	Alcohol Consumption 0.38	Exposure to Radiation 0.22	Poor Diet 0.22	Genetic Predisposition 0.17
835 836 837	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Employee or self-employed Income Level 0.30	Job Location 0.25	Environmental Awareness 0.17	Lifestyle Preferences 0.15	Health Consciousness 0.10
838 839	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Dyspnea laboured breathing Shortness of breath 0.57	Chest Pain 0.41	Coughing 0.36	Fatigue 0.29	Weight Loss 0.11
840 841 842	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Montreal Cognitive Assessment score Cognitive Function 0.60	Neurological Function 0.47	Mental Health Status 0.38	Risk of Alzheimer's Disease 0.36	Memory Performance 0.16
843 844	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Grunting in infants Respiratory distress 0.22	Asthma 0.18	Pneumonia 0.17	Pulmonary infection 0.11	Bronchopulmonary dysplasia 0.01
845 846 847	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Driving history Previous accidents 0.55	Distance driven daily 0.42	Type of car insurance 0.27	Frequency of car maintenance 0.26	Location of parking 0.18
848 849 850	Ground Truth : <i>LLM Suggestions</i> : Semantic similarity :	Heart rate blood pressure Pulse Rate 0.78	Blood Pressure 0.78	Respiratory Rate 0.57	EKG Reading 0.49	Blood Oxygen Level 0.42

Table 5: Examples of model suggestions from and the corresponding semantic similarity score for a missing node variable from each of the datasets.

A.5 LLM-AS-JUDGE

870

To capture the domain knowledge of the expert that selects the most relevant causal variable, we
use LLM-as-Judge as a proxy expert. This also allows for evaluation based on contextual DAG
knowledge as well. Given the impressive results of GPT-4 in (Zheng et al., 2023), we use GPT-4 as a
judge for all of the experiments.

Algorithm 2 Evaluating Model Suggestions with LLM as Judge 871 872 1: Input: Partial graph \mathcal{G}^* , Ground truth node variables V_{GT} , Predictions P, Language model LLM 873 = GPT-4 874 2: Output: Average quality rating of model's suggestions 3: **procedure** LLMASJUDGE($\mathcal{G}^*, V_{GT}, P, LLM$) 875 4: Initialize qualityRatings as an empty list 876 5: for each node $v_{\rm GT}$ in V do 877 $suggestions \leftarrow GenerateSuggestions(\mathcal{G}^*, P, LLM)$ 6: 878 7: $bestSuggestion \leftarrow SelectBestSuggestion(suggestions, v_{GT}, LLM)$ 879 8: $rating \leftarrow RateSuggestion(bestSuggestion, LLM)$ 880 9: Append rating to qualityRatings 10: end for 11: $averageRating \leftarrow Average(qualityRatings)$ 883 12: return averageRating 13: end procedure 885 14: function GENERATESUGGESTIONS(\mathcal{G}^* , P, LLM) return A set of suggestions for missing nodes based on P15: 887 16: end function 17: **function** SELECTBESTSUGGESTION(suggestions, v_{GT},LLM) 18: Prompt LLM with \mathcal{G}^* , v_{GT} , and suggestions 889 return LLM's choice of the best fitting suggestion 19: 890 20: end function 891 21: function RATESUGGESTION(suggestion, LM) 892 22: Prompt LLM to rate suggestion on a scale of 1 to 10 893 23: return LLM's rating 894 24: end function 895 896 Ground Truth: Education up to high school or university degree Top ranked suggestion: Education level Rating : 9.5900 Ground Truth: Pollution 901 Top ranked suggestion: Smoking history 902 Rating : 2.0903 Ground Truth: Bonchitis 904 *Top ranked suggestion:* smoking behavior Rating : 2.0905 906 Ground Truth: Lung XRay report 907 Top ranked suggestion: Lung Damage Rating : 8.0908 909 Ground Truth: Socioeconomic status Top ranked suggestion: Driver's lifestyle 910 Rating : 7.0911 912

Table 6: Examples of model suggestions from and the corresponding LLM-as-judge score for amissing node variable.

915 916

Shortcomings of LLM-as-judge. LLM-as-judge uses GPT-4 as a judge model which could be biased towards some data. Since the training datasets are not public for this model, it would be hard

Ground Truth: Dyspnea laboured breathing LLM Suggestion: Shortness of breathSemantic similarity to GT: 0.57 LLM-as-Judge score: 9.5Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge.to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity.A.6ITERATIVELY HYPOTHESIZING IN OPEN WORLDFor each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity cross obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions.Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators S : procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow calculate semantic similarity for suggestion10: if similarity.Score \leftarrow highestSimilarity \leftarrow on3: mode of suggestion in suggestions do9: similarity.Score \leftarrow calculate semantic similarity for suggestion10: if similarity.Score \leftarrow highestSimilarity \leftarrow simil	
LLM Suggestion: Shorness of breathSemantic similarity to GT: 0.57LLM-as-Judge score: 9.5Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge.to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity.A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLDFor each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges- tion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions.Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of me	Ground Truth: Dyspnea laboured breathing
Semantic similarity to GT: 0.57 LLM-as-Judge score: 9.5 Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge. to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ_i quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions k Generate k suggestions for v_m , using $P_{LLM}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null	LLIVI Suggestion: Shortness of breath
LLM-as-Judge score: 9.5 Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Update graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions $\leftarrow $ Calculate semantic similarity for suggestion 10: if similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \leftarrow Calculate semantic similarity for suggestion 11: highestSimilarity \leftarrow o 12: selectedMediator \leftarrow sugge	Semantic similarity to GT: 0.57
Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge. to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$). Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{1LM}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \leftarrow highestSimilarity then 11: $highestSimilarity \leftarrow similarityScore$ 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	LLM-as-Judge score: 9.5
Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge.to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity.A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLDFor each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges- tion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3 : procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 1: Input: Partial graph \mathcal{G}^* with selected mediators 3 : procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions in suggestions for 9	
medical term for shortness of breath. In this example, the contextual information, beyond exact matching, is better captured by LLM-as-Judge. to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. A, quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input : Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output : Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityGcore \leftarrow highestSimilarity then 11: highestSimilarity $\leftarrow o$ signest similarity for suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	ing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a
matching, is better captured by LLM-as-Judge. to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges- tion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H, Number of suggestions $k2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM(\mathcal{G}^*, v_t, v_y, H, k)4: for i \leftarrow 1 to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using P_{\text{LLM}}(\mathcal{G}^*)6: Initialize highestSimilarity \leftarrow 07: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \sim Calculate semantic similarity for suggestion10: if similarityCore > highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update \mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator \}16: end for17: return \mathcal{G}^*18: end procedure$	of breath. In this example, the contextual information, beyond exact
to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ_{i} quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input : Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output : Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output : Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	i by LLM-as-Judge.
to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input : Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output : Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize $highestSimilarity \leftarrow 0$ 7: Initialize $selectedMediator \leftarrow null$ 8: for each suggestion in suggestions do 9: similarityScore \leftarrow highestSimilarity then 11: highestSimilarity $\leftarrow similarityScore$ 2: selectedMediator \leftarrow suggestion 3: end if 4: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	
to judge now these blases might affect the final score. Hence for robust evaluation we also evaluate using the semantic similarity. A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize highestSimilarity $\leftarrow 0$ 8: for each suggestion in suggestions do 9: similarityScore \succ highestSimilarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	wight offerst the final second Users for achieve evaluation and also evaluate
A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges- tion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input : Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H, Number of suggestions $k2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM(\mathcal{G}^*, v_t, v_y, H, k)4: for i \leftarrow 1 to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using P_{\text{LLM}}(\mathcal{G}^*)6: Initialize highestSimilarity \leftarrow 07: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \leftarrow Calculate semantic similarity for suggestion10: if similarityScore > highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update \mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator \}16: end for17: return \mathcal{G}^*18: end procedure$	light affect the final score. Hence for robust evaluation we also evaluate
A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input : Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output : Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \leftarrow highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	·y.
For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: $similarityScore < highestSimilarity then$ 11: $highestSimilarity \leftarrow similarityScore$ 12: $selectedMediator \leftarrow suggestion$ 13: end for 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$	THESIZING IN OPEN WORLD
For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the suggestion with the highest semantic similarity to the context, and iteratively updates the partial graph with these mediators. Δ , quantifies the impact of mediator ordering by comparing the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion is suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarity \leftarrow similarity \leftarrow similarity score 11: highestSimilarity \leftarrow similarity Score 12: selectedMediator \leftarrow suggestion 13: end for 14: end for	and time and the second s
the information of the end of the context, and the average highest semantic similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM(\mathcal{G}^* , v_t , v_y , H , k) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore $>$ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	in prompts the LLW to generate mediator suggestions, selects the sugges-
$\begin{aligned} & \text{semantic similarity scores obtained from both descending of comparing the average ingress \\ & \text{semantic similarity scores obtained from both descending and ascending orders. This methodical \\ & \text{evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's \\ & \text{ability to generate contextually relevant and accurate predictions.} \end{aligned}$	fies the impact of mediator ordering by comparing the average highest
Schafter similarity scores obtained from both descending and ascending orders. This methodical evaluation sheds light on how the sequence in which mediators are considered might affect the LLM's ability to generate contextually relevant and accurate predictions. Algorithm 3 Random Order Mediator Hypothesis 1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: $similarityScore \leftarrow$ Calculate semantic similarity for suggestion 10: if $similarityScore > highestSimilarity$ then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	obtained from both descending and ascending orders. This methodical
Provide the sequence in which inclusion are considered high three the LEM's ability to generate contextually relevant and accurate predictions.Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediators H , Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \leftarrow Calculate semantic similarity for suggestion10: if similarityScore \succ highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for17: return \mathcal{G}^* 18: end procedure	w the sequence in which mediators are considered might affect the LLM's
Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediatorsH. Number of suggestions k2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \leftarrow Calculate semantic similarity for suggestion10: if similarityScore $>$ highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for17: return \mathcal{G}^* 18: end procedure	ally relevant and accurate predictions.
Algorithm 3 Random Order Mediator Hypothesis1: Input: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediatorsH, Number of suggestions k2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \leftarrow Calculate semantic similarity for suggestion10: if similarityScore \succ highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for17: return \mathcal{G}^* 18: end procedure	
In put: Partial graph \mathcal{G}^* (where $\mathcal{G}^* = \mathcal{G} - H$), Treatment v_t , Outcome v_y , Number of mediatorsH, Number of suggestions kOutput: Updated graph \mathcal{G}^* with selected mediatorsprocedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)for $i \leftarrow 1$ to H dosuggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ Initialize highestSimilarity $\leftarrow 0$ Initialize selectedMediator \leftarrow nullfor each suggestion in suggestions dosimilarityScore \leftarrow Calculate semantic similarity for suggestionif similarityScore \succ highestSimilarity thenhighestSimilarity \leftarrow similarityScoreselectedMediator \leftarrow suggestionselectedMediator \leftarrow suggestionend ifend forupdate $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ end forreturn \mathcal{G}^* send procedure	er Mediator Hypothesis
1. Input: Failing part of (while $g' = g' = H$), Freaklish v_t , Outcome v_y , Number of mediators H, Number of suggestions k 2: Output: Updated graph \mathcal{G}^* with selected mediators 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator \}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	(where $C^* = C = H$) Treatment v_1 . Outcome v_2 Number of mediators
11. Function of suggestions in2: Output: Updated graph \mathcal{G}^* with selected mediators3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$)4: for $i \leftarrow 1$ to H do5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{LLM}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null8: for each suggestion in suggestions do9: similarityScore \leftarrow Calculate semantic similarity for suggestion10: if similarityScore $>$ highestSimilarity then11: highestSimilarity \leftarrow similarityScore12: selectedMediator \leftarrow suggestion13: end if14: end for15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for17: return \mathcal{G}^* 18: end procedure	(where $g' = g' = n$), freatment v_t , outcome v_y , runnoer of mediators
2. Output: Opdated graph \mathcal{G} with selected methans 3: procedure GENERATEMEDIATORSRANDOM($\mathcal{G}^*, v_t, v_y, H, k$) 4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{\text{LLM}}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	h \mathcal{C}^* with selected mediators
4: for $i \leftarrow 1$ to H do 5: suggestions \leftarrow Generate k suggestions for v_{m_i} using $P_{LLM}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	MEDIATORS RANDOM $(C^* y, y, H, k)$
1. Initial 5: $suggestions \leftarrow$ Generate k suggestions for v_{m_i} using $P_{LLM}(\mathcal{G}^*)$ 6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: $similarityScore \leftarrow$ Calculate semantic similarity for suggestion 10: if $similarityScore \leftarrow$ Calculate semantic similarity then 11: highestSimilarity \leftarrow similarityScore 12: $selectedMediator \leftarrow$ suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	$MEDIATORSKANDOM(\mathbf{y}^{*}, v_{t}^{*}, v_{y}^{*}, \mathbf{n}^{*}, \mathbf{n}^{*})$
6: Initialize highestSimilarity $\leftarrow 0$ 7: Initialize selectedMediator \leftarrow null 8: for each suggestion in suggestions do 9: similarityScore \leftarrow Calculate semantic similarity for suggestion 10: if similarityScore \succ highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	- Generate k suggestions for y_{ij} using $P_{IIII}(\mathcal{C}^*)$
1Initialize highests initiality $\langle 0 \rangle$ 7:Initialize selected Mediator \leftarrow null8:for each suggestion in suggestions do9:similarityScore \leftarrow Calculate semantic similarity for suggestion10:if similarityScore $>$ highestSimilarity then11:highestSimilarity \leftarrow similarityScore12:selectedMediator \leftarrow suggestion13:end if14:end for15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	Scherule n suggestions for v_{m_i} using $\Gamma_{\text{LLM}}(g^{-})$
1Initial of outcount outcourse of a finite8:for each suggestion in suggestions do9:similarityScore \leftarrow Calculate semantic similarity for suggestion10:if similarityScore > highestSimilarity then11:highestSimilarity \leftarrow similarityScore12:selectedMediator \leftarrow suggestion13:end if14:end for15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	$edMediator \leftarrow null$
9: $similarityScore \leftarrow Calculate semantic similarity for suggestion$ 10:if $similarityScore > highestSimilarity$ then11: $highestSimilarity \leftarrow similarityScore$ 12: $selectedMediator \leftarrow suggestion$ 13:end if14:end for15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	stion in suggestions do
10: if similarityScore > highestSimilarity then 11: highestSimilarity \leftarrow similarityScore 12: selectedMediator \leftarrow suggestion 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	Score \leftarrow Calculate semantic similarity for suggestion
11: $highestSimilarity \leftarrow similarityScore$ 12: $selectedMediator \leftarrow suggestion$ 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	tyScore > highestSimilarity then
12: $selectedMediator \leftarrow suggestion$ 13: end if 14: end for 15: Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16: end for 17: return \mathcal{G}^* 18: end procedure	$\dot{S}imilarity \leftarrow similarityScore$
13:end if14:end for15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	$lMediator \leftarrow suggestion$
14:end for15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	
15:Update $\mathcal{G}^* \leftarrow \mathcal{G}^* \cup \{selectedMediator\}$ 16:end for17:return \mathcal{G}^* 18:end procedure	
16:end for17:return \mathcal{G}^* 18:end procedure	$\mathcal{J}^* \cup \{selectedMediator\}$
17:return \mathcal{G}^* 18:end procedure	
18: end procedure	

972	
973	
07/	
075	
975	
976	
977	
978	
979	
980	
981	
000	
902	
983	
984	Neorithm 4 Ordered Mediator Generation and Evaluation Based on MIS
985 -	
986	1: Input: Partial graph \mathcal{G}^* , Treatment v_t , Outcome v_y , Set of potential mediators M , Number of
987	suggestions k
988	2: Output: Δ - measure of the influence of mediator ordering
080	3: procedure CALCULATEMIS (v_t, v_y, M)
909	4: Initialize MISList as an empty list
990	5: for each mediator v_{m_i} in M do
991	6: Calculate NIE (v_{m_i}) and NDE (v_{m_i})
992	7. $\operatorname{MIS}(v) \leftarrow \operatorname{NiE}(v_{m_i})$
993	$V. \qquad \text{NDE}(v_{m_i}) \\ NDE$
994	8: Append $MIS(v_{m_i})$ to $MISList$
995	9: end for
006	0: return MISList
990	1: end procedure
997	2: procedure GENERATEMEDIATORSORDERED($\mathcal{G}^*, v_t, v_y, M, k$)
998	3: MISList \leftarrow CALCULATEMIS (v_t, v_y, M)
999	4: Sort M in descending order of MISList to get M_{desc}
1000	5: Sort M in ascending order of MISList to get $M_{\rm asc}$
1001	6: $averageDesc \leftarrow GENERATEANDEVALUATE(\overline{G^*}, M_{desc}, k)$
1002	7: $averageAsc \leftarrow GENERATEANDEVALUATE(G^*, M_{acc}, k)$
1003	8. $\Lambda = \begin{bmatrix} averageDesc-averageAsc \end{bmatrix}$
1003	averageDesc
1004	9: return Δ
1005	10: end procedure
1006	1: function GENERATEANDEVALUATE($\mathcal{G}^+, M_{\text{order}}, k$)
1007	22: Initialize similarityScores as an empty list
1008	3: for each mediator v_{m_i} in M_{order} do
1009	4: Perform the same steps as in the refined random order mediator generation
1010	(Generate k suggestions, select the most similar, update \mathcal{G}^*)
1011	6: Append the highest similarity score to similarityScores
1010	7: end for
1012	18: return Average of similarityScores
1013	19: end function
1014 -	
1015	
1016	
1017	
1018	
1019	
1020	
1024	
1021	
1022	
1023	
1024	
1025	

В **CONFOUNDERS**

	Sachs	Alarm1	Alarm2	Ins1	Ins2	Ins3	Ins4	Ins5	Ins6	Ins7
Zephyr	0.12	0.37	0.29	0.45	0.49	0.37	0.29	0.33	0.46	0.73
Mixtral	0.89	0.54	0.57	0.57	1.0	0.32	0.23	0.38	0.28	1.0
Neural	0.34	0.27	0.28	0.42	0.47	0.34	0.48	0.48	0.38	0.48
LLama	0.27	0.39	0.44	0.55	1.0	0.29	0.22	0.57	0.45	1.0
Mistral	0.23	0.62	0.46	0.58	1.0	0.28	0.28	0.28	0.28	1.0
GPT-3.5	0.34	0.39	0.48	0.48	1.0	0.58	0.20	0.48	0.47	1.0
GPT-4	0.91	0.49	0.44	0.62	0.39	0.58	0.44	0.58	0.52	1.0

Table 8:	Semantic	similarity
----------	----------	------------

	Sachs	Alarm1	Alarm2	Ins1	Ins2	Ins3	Ins4	Ins5	Ins6	Ins7
Zephyr	0.10	0.40	0.30	0.45	0.60	0.40	0.40	0.30	0.70	0.80
Mixtral	0.95	0.70	1.0	0.75	1.0	0.80	0.20	0.20	0.20	1.0
Neural	0.30	0.60	0.30	1.0	0.60	0.30	0.80	0.30	0.40	0.60
LLama	0.20	0.50	0.44	0.40	1.0	0.50	0.20	0.70	0.45	1.0
Mistral	0.20	0.90	0.80	0.55	1.0	0.30	0.20	0.70	0.30	1.0
GPT-3.5	0.40	0.50	0.48	0.30	1.0	0.75	0.40	0.75	0.60	1.0
GPT-4	0.95	0.65	0.80	0.60	0.70	0.80	0.85	0.80	0.75	1.0

Figure 6: Alarm 1

Figure 12: Insurance 5

¹¹⁸⁸ C FURTHER RESULTS

C.1 VARIANCES

For brevity we didnt add variance in the main text, the following results have variances:

	Car	ncer	Sur	vey	As	sia	Alzhe	imers	Ch	ild	Insu	ance	Ala	arm	A	vg
	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J	Sim	LLM-J
Zephyr	$\left \begin{smallmatrix} 0.36 \\ \pm 0.04 \end{smallmatrix} \right $	$\underset{\pm 0.06}{0.61}$	$\left \substack{0.34 \\ \pm 0.07} \right $	$\left. \begin{array}{c} 0.60 \\ \pm 0.05 \end{array} \right $	$\underset{\pm 0.05}{0.45}$	$\underset{\pm 0.04}{0.66}$	$\left \begin{smallmatrix} 0.35 \\ \pm 0.03 \end{smallmatrix} \right $	$\underset{\pm0.03}{0.75}$	$\underset{\pm 0.02}{0.51}$	$\underset{\pm 0.04}{0.70}$	$\underset{\pm 0.04}{0.45}$	$\underset{\pm 0.05}{0.44}$	$\left \substack{ 0.46 \\ \pm 0.03 } \right $	$\underset{\pm 0.02}{0.69}$	$\underset{\pm 0.04}{0.42}$	$\underset{\pm 0.04}{0.63}$
Mixtral	$\underset{\pm 0.03}{0.41}$	$\underset{\pm 0.04}{0.66}$	$\begin{smallmatrix} 0.39 \\ \pm 0.05 \end{smallmatrix}$	$\left. \substack{ 0.66 \\ \pm 0.06 } \right $	$\underset{\pm 0.02}{\textbf{0.66}}$	$\underset{\pm 0.03}{0.75}$	$\left \begin{smallmatrix} 0.31 \\ \pm 0.04 \end{smallmatrix} \right $	$\underset{\pm 0.02}{0.77}$	$\underset{\pm 0.03}{\textbf{0.53}}$	$\underset{\pm 0.02}{\textbf{0.77}}$	$\underset{\pm 0.03}{0.46}$	$\underset{\pm 0.04}{\textbf{0.56}}$	$\left {\substack{\textbf{0.50} \\ \pm 0.03}} \right $	$\underset{\pm 0.06}{0.72}$	$\underset{\pm 0.03}{0.46}$	$\underset{\pm 0.05}{0.70}$
Neural	$\underset{\pm 0.02}{0.38}$	$\underset{\pm 0.05}{0.77}$	$\begin{smallmatrix} 0.43 \\ \pm 0.02 \end{smallmatrix}$	$\begin{array}{c} 0.55 \\ \pm 0.03 \end{array}$	$\underset{\pm 0.03}{0.53}$	$\underset{\pm 0.04}{0.55}$	$\left \begin{smallmatrix} 0.44 \\ \pm 0.05 \end{smallmatrix} \right $	$\underset{\pm 0.03}{0.71}$	$\underset{\pm 0.04}{0.48}$	$\underset{\pm 0.03}{0.70}$	$\underset{\pm 0.04}{0.47}$	$\underset{\pm 0.05}{0.43}$	$\left \substack{0.47 \\ \pm 0.02} \right $	$\underset{\pm 0.03}{0.67}$	$\underset{\pm 0.03}{0.45}$	$\underset{\pm 0.04}{0.63}$
Llama	$\underset{\pm 0.03}{0.40}$	$\underset{\pm 0.05}{0.48}$	$\left \begin{smallmatrix} 0.40 \\ \pm 0.04 \end{smallmatrix} \right $	$\begin{array}{c} 0.54 \\ \pm 0.05 \end{array}$	$\underset{\pm 0.03}{0.53}$	$\underset{\pm 0.06}{0.58}$	$\left \begin{smallmatrix} 0.45 \\ \pm 0.05 \end{smallmatrix} \right $	$\underset{\pm 0.03}{0.61}$	$\underset{\pm 0.04}{0.48}$	$\underset{\pm0.03}{0.63}$	$\underset{\pm 0.01}{0.42}$	$\underset{\pm 0.05}{0.34}$	$\left \substack{ 0.46 \\ \pm 0.02 } \right $	$\underset{\pm 0.03}{0.65}$	$\underset{\pm 0.03}{0.45}$	$\underset{\pm 0.04}{0.55}$
Mistral	$\underset{\pm 0.01}{0.33}$	$\underset{\pm 0.05}{0.67}$	$\begin{smallmatrix} 0.44 \\ \pm 0.05 \end{smallmatrix}$	$\left. \begin{array}{c} 0.65 \\ \pm 0.04 \end{array} \right $	$\underset{\pm 0.03}{0.60}$	$\underset{\pm 0.04}{0.73}$	$\left \begin{smallmatrix} 0.34 \\ \pm 0.04 \end{smallmatrix} \right $	$\underset{\pm 0.02}{0.76}$	$\underset{\pm 0.04}{0.48}$	$\underset{\pm 0.03}{0.68}$	$\underset{\pm 0.03}{0.46}$	$\underset{\pm 0.01}{0.47}$	$\left \substack{0.47 \\ \pm 0.03} \right $	$\underset{\pm 0.03}{0.71}$	$\underset{\pm 0.03}{0.44}$	$\underset{\pm 0.03}{0.67}$
GPT-3.5	$\underset{\pm 0.03}{0.48}$	$\underset{\pm 0.04}{0.74}$	$\left \begin{smallmatrix} 0.42 \\ \pm 0.00 \end{smallmatrix} \right $	$\begin{array}{c} \textbf{0.79} \\ \pm 0.03 \end{array}$	$\underset{\pm 0.04}{0.47}$	$\underset{\pm 0.04}{0.61}$	$\left \begin{smallmatrix} 0.39 \\ \pm 0.05 \end{smallmatrix} \right $	$\underset{\pm 0.00}{1.00}$	$\underset{\pm 0.05}{0.36}$	$\underset{\pm 0.05}{0.60}$	$\underset{\pm 0.07}{0.47}$	$\underset{\pm 0.02}{0.52}$	$\left \substack{0.48 \\ \pm 0.04} \right $	$\underset{\pm 0.05}{0.73}$	$\underset{\pm 0.04}{0.44}$	$\underset{\pm 0.03}{0.71}$
GPT-4	$\underset{\pm 0.02}{\textbf{0.49}}$	$\underset{\pm 0.03}{\textbf{0.90}}$	$\underset{\pm 0.06}{\textbf{0.51}}$	$\begin{array}{c} 0.67 \\ \pm 0.04 \end{array}$	$\underset{\pm 0.02}{\textbf{0.66}}$	$\underset{\pm 0.03}{\textbf{0.76}}$	$\left egin{smallmatrix} 0.47 \\ \pm 0.02 \end{smallmatrix} ight $	$\underset{\pm 0.02}{0.98}$	$\underset{\pm 0.05}{0.36}$	$\underset{\pm 0.04}{0.53}$	$\underset{\pm 0.03}{\textbf{0.52}}$	$\underset{\pm 0.03}{\textbf{0.56}}$	$\left \substack{0.49 \\ \pm 0.06} \right $	$\underset{\pm 0.02}{\textbf{0.75}}$	$\underset{\pm 0.04}{\textbf{0.50}}$	$\underset{\pm 0.03}{\textbf{0.73}}$

Table 10: Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing the missing variable in a causal DAG.

1214 C.2 ANALYSIS OF DIFFERENCE ACROSS TASKS

Since the metrics are different to evaluate each task, it is not meaningful or straightforward to compare the raw results. It must also be noted that the tasks are not linear. To address this, we rank the model performances across all models and datasets and present these rankings in Figure 15. This allows us to compare the relative performance of the models across different tasks.

As we observe from the graph, GPT-4 model shows consistently top performances in Tasks 1-3, however, it has one of the lowest performances for Task 4. GPT-3.5 shows a strong performance in Task 2 and 4, ranking 2nd, but drops in Tasks 1 and 3. We observe that Zephyr, Neural and Mistral show consistently average performances. These observations motivate the significance of the tasks proposed in our benchmark. They highlight the variability in model performance across different tasks and emphasize the need for comprehensive and diverse benchmarks to fully assess the capabilities of these models.

	A	sia	C	hild	Insu	ance	Al	arm
	Sim	Δ	Sim	Δ	Sim	Δ	Sim	Δ
Zephyr	$\left \begin{array}{c} 0.61 \\ \pm 0.03 \end{array} \right $	$\substack{-0.02\\\pm0.01}$	$\underset{\pm 0.04}{\textbf{0.54}}$	$\underset{\pm 0.02}{0.17}$	$\left \begin{array}{c} 0.47 \\ \pm 0.05 \end{array} \right $	$\underset{\pm 0.02}{0.19}$	$\underset{\pm 0.05}{0.51}$	$\underset{\pm 0.02}{0.20}$
Mixtral	$\underset{\pm 0.02}{\textbf{0.87}}$	$\underset{\pm 0.01}{0.01}$	$\underset{\pm 0.05}{0.50}$	$\underset{\pm 0.02}{0.18}$	$0.48 \\ \pm 0.05$	$\underset{\pm 0.02}{0.15}$	$\underset{\pm 0.05}{0.52}$	$\underset{\pm 0.01}{0.13}$
Neural	$\substack{0.65\\\pm0.06}$	$\underset{\pm 0.02}{0.04}$	$\underset{\pm 0.05}{0.48}$	$\underset{\pm 0.02}{0.21}$	$0.42 \\ \pm 0.04$	$\underset{\pm 0.02}{0.16}$	$\underset{\pm 0.04}{0.46}$	$\underset{\pm 0.01}{0.12}$
Llama	$\underset{\pm 0.08}{0.80}$	$\underset{\pm 0.02}{0.07}$	$\underset{\pm 0.05}{0.49}$	$\substack{-0.05\\\pm0.01}$	$0.44 \\ \pm 0.06$	$\underset{\pm 0.02}{0.21}$	$\underset{\pm 0.05}{0.51}$	$\underset{\pm 0.01}{0.07}$
Mistral	$\underset{\pm 0.03}{0.33}$	$\underset{\pm 0.01}{0.02}$	$\underset{\pm 0.05}{0.50}$	$\underset{\pm 0.01}{0.12}$	$0.48 \\ \pm 0.05$	$\underset{\pm 0.02}{0.13}$	$\underset{\pm 0.04}{0.47}$	$\underset{\pm 0.01}{0.11}$
GPT-3.5	$\underset{\pm 0.05}{0.48}$	$\underset{\pm 0.01}{0.01}$	$\underset{\pm 0.04}{0.36}$	$\underset{\pm 0.03}{0.25}$	$\begin{smallmatrix} 0.48 \\ \pm 0.05 \end{smallmatrix}$	$\underset{\pm 0.02}{0.17}$	$\underset{\pm 0.05}{0.51}$	$\underset{\pm 0.01}{0.02}$
GPT-4	$\left \begin{array}{c} 0.49 \\ \pm 0.07 \end{array} \right $	$\underset{\pm 0.01}{0.04}$	$\underset{\pm 0.05}{0.39}$	$\underset{\pm 0.02}{0.16}$	$\left \begin{array}{c} 0.52 \\ \pm 0.05 \end{array} \right $	$\underset{\pm 0.02}{0.14}$	$\underset{\pm 0.06}{\textbf{0.60}}$	$\substack{-0.07\\\pm0.01}$

Table 11: Sim: semantic similarity for iteratively hypothesizing the mediator nodes when prompted with random order. Δ measures the change in the prediction of each model according to the MIS.

Figure 15: Average Rank of each model against the different tasks. We ranked the mode since the metrics are different to evaluate each task averaged across datasets

Figure 16: L: Plot of semantic similarity with an increasing number of suggestions for GPT-4 on the Alarm dataset. R: Plot of semantic similarity against the total number of incoming and outgoing edges for GPT-4 on the Alarm dataset.

1272 C.3 Breaking down the performance

1273 C.4 EFFECT OF CONTEXT

We observed notable differences in the accuracy of LLM predictions for missing nodes within causal graphs when context was provided versus when it was absent. Specifically, the inclusion of contextual information about the causal graph significantly enhanced the LMs' ability to generate accurate and relevant predictions. In realistic settings, when this setup is being used by a scientist, they would provide the context of the task along with the partial graph. When context was not provided, the models often struggled to identify the most appropriate variables, leading to a decrease in prediction accuracy, especially for smaller models. Unsurprisingly, providing context was more important for smaller graphs than larger graphs. LLMs were able to understand the context of the graph via multiple other nodes in the graph for larger graphs.

	Car	Cancer		Survey		Asia		Insurance		Alarm	
	X	\checkmark									
In-Context	0.75	1.00	0.67	1.00	0.68	0.88	0.85	0.90	0.96	0.96	
Out-of-Context	0.00	0.25	0.33	0.33	0.53	0.61	0.58	0.58	0.60	0.57	
Open world Hypothesis	0.39	0.41	0.40	0.39	0.63	0.66	0.49	0.50	0.44	0.46	

Table 12: Model-Mixtral to evaluate the effect of context given in the prompt.

1293 C.5 USING EXPLANATIONS

1295 While using LLMs for hypothesizing the missing nodes withing the causal graph for the open world setting, introduced an additional question to prompt the model to provide explanations for each of

1296 their predictions. This was motivated by the fact that incorporating a rationale behind each prediction 1297 might enhance the model's semantic similarity. We present the results in the Table below: We 1298 observe that evaluating semantic similarity with explanations leads to a decrease in performance as 1299 compared to the earlier setting where the language model returned phrases. This is because semantic 1300 similarity, as a metric, evaluates the closeness of the model's predictions to the ground truth in a high-dimensional vector space, focusing on the semantic content encapsulated within the embeddings. 1301 It is a metric that leaves little room for interpretative flexibility, focusing strictly on the degree of 1302 semantic congruence between the predicted and actual variables. The introduction of explanations, 1303 while enriching the model's outputs with contextual insights, did not translate into improved semantic 1304 alignment with the ground truth. 1305

	Car X	icer √	Sur X	vey √	As X	sia √	Insur X	ance √	Ala X	ırm √
Sim	$ \begin{array}{c} 0.49 \\ \pm 0.02 \end{array} $	$0.38 \\ \pm 0.07$	$0.51 \\ \pm 0.06$	$0.44 \\ \pm 0.10$	$0.66 \\ \pm 0.02$	$0.57 \\ \pm 0.09$	$0.52 \\ \pm 0.03$	$0.40 \\ \pm 0.07$	$0.49 \\ \pm 0.06$	$0.40 \\ \pm 0.06$
LLM-Judge	$\underset{\pm 0.03}{0.90}$	$\underset{\pm 0.02}{0.91}$	$\underset{\pm 0.04}{\overline{0.67}}$	$\underset{\pm 0.02}{0.69}$	$\underset{\pm 0.03}{0.76}$	$\underset{\pm 0.04}{0.76}$	$\underset{\pm0.03}{0.56}$	$\underset{\pm0.03}{0.55}$	$\underset{\pm 0.02}{0.75}$	$\underset{\pm 0.02}{0.75}$

1310 1311

1309

1306

1312 1313

1314

Table 13: Model-GPT 4. Evaluating the effect of explanations on different metrics from Task 3.

Ambiguous predictions which semantically represent the same variable. An important linguis-1315 tic concern that could be missed by semantic similarity is ambiguous hypothesis by the LLM that 1316 may have same semantics, which again breaks the semantic similarity metric. This further motivates 1317 LLM-judge metric whose input is - the context of the causal graph, the partial causal graph, the 1318 ground truth variable, and the model predictions. Given the rich context of the LLM-judge metric we 1319 suspect it would be able to overcome the ambiguity. We prompted the model to justify its hypothesis 1320 variables using explanations. We observe that evaluating semantic similarity with explanations leads 1321 to a decrease in performance as compared to the earlier setting where the language model returned 1322 just phrases. In Table 13 we observed a drop in performance for semantic similarity. In contrast, we 1323 observe a similar or slight improvement in the LLM-judge metric when the explanation of the model 1324 hypothesis is given.

1325 1326 1327

C.6 CHAIN OF THOUGHT

In recent times, Chain-of-Thought prompting has gained popularity due to its impressive performance in proving the quality of LLMs' output Kojima et al. (2022) also in metadata-based causal reasoning Vashishtha et al. (2023). We also incorporated COT prompting for our prompts. We perform ablation studies in Table. We observe that COT particularly improves the performance of the identification experiments.

	Cancer		Survey		Asia		Insurance		Alarm	
	X	\checkmark	X	\checkmark	X	\checkmark	X	\checkmark	X	\checkmark
In-Context	1.00	1.00	0.83	1.00	0.75	0.88	0.74	0.90	0.91	0.96
Out-of-Context	0.50	0.25	0.18	0.33	0.57	0.61	0.56	0.58	0.54	0.57

1337 1338

1333 1334 1335

1336

Table 14: Model-Mixtral to evaluate the effect of COT given in the prompt.

1339 1340

1341

C.7 ITERATIVE MEDIATOR SEARCH VS ALL AT ONCE

For Task 4, we iteratively hypothesize the missing variables (mediators). Our choice was primarily driven by the complexity of Task 4, which involves predicting multiple missing mediators, ranging from 1 to 10. For a Task with 10 missing mediators, the model would have to predict 50 suggestions at once. We initially hypothesized that LLMs might struggle with making multiple predictions across different variables simultaneously. This was indeed reflected in our results and GPT-4 outputs from Table X. The iterative approach allows the model's prediction to narrow the search space, which would not be possible in a non-iterative approach. This method is more aligned with the scientific discovery process, where hypotheses are often refined iteratively based on new findings. Furthermore, our approach simulates a human-in-the-loop scenario, where the most plausible answer is selected
 and used to guide the next prediction.

	Asia	Child	Insurance	Alarm
Non-iterative	0.42 +- 0.07	0.33 +- 0.06	0.45 +- 0.09	0.54 +- 0.05
Iterative	0.49 +- 0.05	0.39 +-0.03	0.52 +- 0.02	0.60 +- 0.04

1360 C.8 Results on Neuropathic Dataset

We added a new dataset, the neuropathic pain dataset Tu et al. (2019), which is not part of common LLM training corpora as one needs to use a python script to download it. The dataset consists of 221 nodes and 770 edges, but for feasibility, we selected a subset of the graph for evaluation. We ran experiments for Task 1, Task 2, and Task 3.

Model	Task 1	Task 2 Result	Task 2 FNA	Task 3 Sim	Task 3 LLM-J
Mistral	0.64	0.51	0.32	0.38	0.53
Mixtral	0.83	0.55	0.34	0.45	0.69
Llama	0.78	0.49	0.27	0.44	0.63
GPT-3.5	0.82	0.53	0.31	0.47	0.72
GPT-4	0.94	0.68	0.24	0.51	0.76

Table 15: Comparison of model performances across tasks on Neuropathic dataset.

C.9 FINE GRAINED MODEL PERFORMANCE

D FINETUNING AND FEW-SHOT PROMPTING

1401 D.1 FINETUNING

1403 we aim to assess the LLM's causal reasoning via prompting. Following are the reasons why finetuning is not the most practical solution:

1457 Similar to fine-tuning, few-shot learning's success depends on balancing domain specificity and generality. To avoid test examples becoming part of the shots, we have to use different domains as

1458	examples. Given the complex	tity of the Alarm	graph, y	ve decid	ed to use	them as a	prior. We	performed
1459	experiments with 1-shot and	5-shots for the	Mixtral	8x7b mo	odel. We	would lil	ke to remin	d you that
1460								
1461		Dataset	0-shot	1-shot	5-shot			
1462		Cancer	0.41	0.43	0.46			
1463		Survey	0.39	0.38	0.36			
1464		Asia	0.66	0.70	0.72			
1465		Alzheimer's	0.31	0.33	0.34			
1466		Child	0.53	0.55	0.56			
1467		Insurance	0.46	0.42	0.45			
1468					·			
1469		Table 17: Fey	vshot pro	ompting	results.			
1470								
1471	Alarm was a medical dataset	which means th	at provid	ling mor	e examp	les in a di	fferent don	nain might
1472	hinder the model performance	e. Drop in perf	ormance	when cl	hanging	domain fo	or in-contex	ct learning
1473	has been discussed in Kwan	et al. (2024) and	d Gupta	et al. (20)24).			
1474								
1473								
1470								
14/79								
1/170								
1479								
1/181								
1/182								
1483								
1484								
1485								
1486								
1487								
1488								
1489								
1490								
1491								
1492								
1493								
1494								
1495								
1496								
1497								
1498								
1499								
1500								
1501								
1502								
1503								
1504								
1505								
1506								
1507								
1508								
1509								
1510								
1511								

1782 F PROMPT TEMPLATE

	Italia Venerillika since a sensel small. The content of the small [CONTEXT] Discound and and
	the causal relationships between the variables - [VERBALISED DAG]
	Prompt 1: Base prompt to describe the causal graph
	bbbb
Г	
	Hello. You will be given a causal graph. The context of the graph is hypothetical patient monitoring
	system in an intensive care unit (ICU). Please understand the causal relationships between the
	variables - $<$ anaphylaxis > causes $<$ total peripheral resistance >. $<$ arterial co2 > causes $<$ availed co2 > . $<$ arterial co2 > causes $<$ basis rate
	\sim cardiac output \sim causes $<$ blood pressure \sim disconnection \sim causes $<$ breathing tube \sim
	<pre>< error cauter > causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen</pre>
	saturation >. $<$ error low output > causes $<$ heart rate blood pressure >. $<$ high concentration of
	oxygen in the gas mixture > causes < pulmonary artery oxygen saturation >. < heart rate > causes <
	heart rate blood pressure >. < heart rate > causes < heart rate displayed on ekg monitor >. < heart
	$rate > causes < oxygen \ saturation >. < heart \ rate > causes < cardiac \ output >. < hypovolemia$
	> causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >.
	< insufficient anesthesia > causes < catecholamine >. < intubation > causes < lung ventilation
	>. < intubation > causes < minute volume >. < intubation > causes < alveolar ventilation >.
	< intudation > causes < shuft - normal and high >. < intudation > causes < breathing pressure \sim kinked chest tube > causes < breathing
	pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >. <
	left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
	ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
	$ventricular \ end-diastolic \ volume > . < left \ ventricular \ failure > causes < stroke \ volume > . < the$
	amount of time using a breathing machine > causes < the intensity level of a breathing machine
	>. < sudden blockage in the pulmonary arteries > causes < shunt - normal and high >. < sudden
	blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < pulmonary artery
	\sim shunt - normal and high \sim causes < oxygen saturation $>$ < oxygen saturation $>$ causes < categories causes < categorie
	\sim show volume $>$ causes $<$ oxygen saturation $>$ $<$ show volume $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ causes $<$ categorization $>$ $<$ total peripheral resistance $>$ $<$ categorization $>$ $<$ respective $>$
	causes $<$ blood pressure $>$. $<$ alveolar ventilation $>$ causes $<$ arterial co2 $>$. $<$ alveolar ventilation
	> causes < pulmonary artery oxygen saturation >. < lung ventilation > causes < expelled co2 >.
	< lung ventilation > causes < minute volume >. < lung ventilation > causes < alveolar ventilation
	>. < the intensity level of a breathing machine > causes < breathing tube >. < breathing tube >
	causes < lung ventilation >. < breathing tube > causes < breathing pressure >.
1	Prompt 2: An example of the base prompt for Alarm dataset. Each relationship is enclosed in pointed
t	brackets, < > followed by a full stop.

1836	Drompt: Hello, You will be given a causal graph. The context of the graph is different aspects of
1837	a potient's health related to lung diseases. Place understand the causal relationships between the
1838	x particult s near related to fung diseases. These understand the causar relationships between the variables $x = x$ s causes x tuberculosis $x = x$ bronchitis x causes x dyspnoea-laboured breathing
1839	\sim individual has either tuberculosis or lung cancer > causes < positive xray > < individual
1840	has either tuberculosis or lung cancer > causes $<$ dyspnoea-laboured breathing >. $<$ lung cancer >
1841	causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung
1842	cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual
1843	has either tuberculosis or lung cancer >.Based on your understanding and analytical skills, please
1844	identify what the variable X could most likely be from the given multiple choices. It's important to
1845	note that you MUST select an option from the provided choices, as one of them is the correct answer.
1846	The choices are: [visited Asia; weather; book sales; movie rating]. Please think step by step. Your
1847	answer should be formatted as follows - Answer: $X = choice$. The choice must be one of the provided
1848	options, and it should be formatted exactly as it appears in the choices. Generating your own options
1849	is not allowed in this task.
1850	
1851	Answer : X = visited Asia.My thought process is as follows: The causal graph suggests that X causes
1952	tuberculosis, and tuberculosis is related to lung diseases. Visiting Asia is a possible explanation for
1052	why an individual may have been exposed to tuberculosis, as the disease is more prevalent in some
1053	Asian countries. Therefore, visited Asia is the most likely option for X.
1004	
1000	Prompt 3: Out-of-context controlled variable identification, Ground truth variable: visited Asia
1057	
1050	
1858	
1859	
1860	
1861	
1862	
1863	
1864	
1865	
1866	
1867	
1868	
1869	
1870	
1871	
1872	
1873	
1874	
1875	
1876	
1877	
1878	
1879	
1880	
1881	
1882	
1883	
1884	
1885	
1886	
1887	
1888	
1889	

Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of a patient's health related to lung diseases Please understand the causal relationships between the variables - $\langle x \rangle$ causes \langle tuberculosis \rangle . \langle bronchitis \rangle causes \langle dyspnoea-laboured breathing \rangle . \langle individual has either tuberculosis or lung cancer \rangle causes $\langle y \rangle$. \langle individual has either tuberculosis or lung cancer \rangle causes $\langle y \rangle$. \langle individual has either tuberculosis or lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle causes \langle individual has either tuberculosis or lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle tuberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle tuberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle tuberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle tuberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle tuberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle suberculosis \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle bronchitis \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes \rangle causes \langle lung cancer \rangle . \langle smoking cigarettes

Answer: Answer: X = visited Asia. My thought process is as follows:1. The graph shows that X causes tuberculosis, which suggests that X is a variable related to healthcare or medicine. 2. The graph also shows that bronchitis causes dyspnoea-laboured breathing, which further supports the idea that X is a variable related to healthcare or medicine. 3. The graph shows that individual has either tuberculosis or lung cancer causes y, which suggests that X could be a variable related to diagnosing or treating lung diseases. 4. The graph shows that smoking cigarettes causes lung cancer and bronchitis, which suggests that X could be a variable related to smoking or lung health. 5. Based on the above observations, it seems unlikely that X would be weather, book sales, or movie rating.6. Visited Asia is a variable that could potentially relate to healthcare or medicine, particularly if the patient has traveled to a region with a high prevalence of tuberculosis or other lung diseases.7. Therefore, based on the information provided in the graph, it seems most likely that X = visited Asia.

Prompt 4: In-context controlled variable identification, Ground truth variable: visited asia

1944	
1045	Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
1945	a patient's health related to lung diseases. Please understand the causal relationships between the
1946	variables - $\langle x \rangle$ causes \langle tuberculosis \rangle . \langle bronchitis \rangle causes \langle dyspnoea-laboured breathing
1947	>. < individual has either tuberculosis or lung cancer > causes < positive xray >. < individual
1948	has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer >
1949	causes $<$ individual has either tuberculosis of lung cancer >. $<$ smoking cigarettes > causes $<$ lung
1950	cancer >. $<$ smoking cigarenes > causes $<$ bioincinus >. $<$ tuberculosis > causes $<$ individual has
1951	X most likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions
1952	Finally return your answer (without reasoning) in the following format: < Answer > [first suggestions]
1953	second suggestion, third suggestion and so on] No explanations, no reasoning, just
1954	answers as a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <answer></answer>
1955	[A, B, C, D, E]
1956	
1957	Answer : <answer> [HIV/AIDS, Chronic respiratory conditions, Pneumonia, Exposure to asbestos,</answer>
1958	Silicosis]
1959	Reasons:
1960	1. HIV/AIDS: It is known to weaken the immune system, making the individual more susceptible to
1961	infections like tuberculosis.
1962	2. Chronic respiratory conditions: These can make an individual more susceptible to lung diseases
1963	like tuberculosis.
1964	3. Preumonia: It is a lung infection that can lead to serious conditions like tuberculosis if not treated
1965	4 Exposure to ashestos: Long-term exposure to ashestos can lead to lung diseases including lung
1966	cancer and tuberculosis.
1967	5. Silicosis: It is a lung disease caused by inhalation of silica dust, leading to inflammation and
1968	scarring of the lung tissue, making the individual more susceptible to tuberculosis.
1969	
1970	Prompt 5: Hypothesizing missing variable in open world, Ground truth variable: Visted Asia
1971	
1972	
1973	
1974	
1975	
1976	
1977	
1978	
1979	
1980	
1981	
1982	
1983	
1984	
1985	
1986	
1987	
1988	
1989	
1990	
1991	
1992	
1993	
1994	
1995	
1996	
1997	

03	
04	
05	
06	
07	
800	
09	
10	
11	
)12)13	Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
14	a patient s nealth related to lung diseases. Please understand the causal relationships between the variables \leq visited asia \geq assume \leq tuberculoris \geq \leq bronchitis \geq assume \leq dynamics laboured
15	variables - < visited asia > causes < tuberculosis >. < bioinclinitis > causes < tuberculosis or lung cancer > causes < positive vrav >
6	individual has either tuberculosis or lung cancer \geq causes \leq dysphoea laboured breathing \geq \leq x \geq
7	causes $<$ individual has either tuberculosis or lung cancer $> <$ smoking cigarettes $>$ causes $< x$
	\sim smoking cigarettes > causes < bronchitis > < tuberculosis > causes < individual has either
	tuberculosis or lung cancer >. Using your causal knowledge, can you suggest what variable X most
	likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions. Finally,
	return your answer (without reasoning) in the following format: <answer> [first suggestion, second</answer>
	suggestion, third suggestion and so on] No explanations, no reasoning, just answers as
	a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <answer> [A, B, C,</answer>
	D, E]
	Answer: <answer> [Lung Cancer, Chronic Obstructive Pulmonary Disease, Emphysema, Pneu-</answer>
	monia, Asthma]
	Reasons:
	1. Lung Cancer: Smoking is a major cause of lung cancer and lung cancer can lead to tuberculosis
	or other lung diseases.
	2. Chronic Obstructive Pulmonary Disease: Smoking is a leading cause of COPD and it can lead to
	other lung diseases including tuberculosis and lung cancer.
	3. Emphysema: It is a type of COPD often caused by smoking and can lead to other lung diseases.
	4. Pneumonia: Smoking increases the risk of pneumonia and pneumonia can lead to other lung
	diseases.
	5. Asthma: Smoking can trigger asthma attacks and severe asthma can lead to other lung diseases.
	Prompt 6: Hypothesizing missing variable in open world, Ground truth variable: Lung cancer

2052	Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
2053	monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
2054	the variables - $<$ anaphylaxis > causes $<$ total peripheral resistance >. $<$ x > causes $<$ expelled
2055	co2 > . < x > causes < x3 > . < x3 > causes < x2 > . < x1 > causes < blood pressure > . <
2056	disconnection $>$ causes $< x7 >$. $<$ error cauter $>$ causes $<$ heart rate displayed on ekg monitor $>$.
2057	<pre>< error cauter > causes < oxygen saturation >. < error low output > causes < heart rate blood</pre>
2058	pressure >. < high concentration of oxygen in the gas mixture > causes $\langle x9 \rangle$. $\langle x2 \rangle$ causes
2059	< heart rate blood pressure >. < x^2 > causes < heart rate displayed on ekg monitor >. < x^2 >
2060	causes $<$ oxygen saturation $>$. $<$ x2 $>$ causes $<$ x1 $>$. $<$ hypovolemia $>$ causes $<$ left ventricular
2061	end-diastolic volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia
2062	> causes $< x3 >$. $<$ intubation $>$ causes $< x5 >$. $<$ intubation $>$ causes $<$ minute volume $>$. $<$
2063	intubation > causes $< x4 >$. $<$ intubation > causes $<$ shunt - normal and high >. $<$ intubation >
2064	causes $<$ breathing pressure $>$. $<$ kinked chest tube $>$ causes $<$ x5 $>$. $<$ kinked chest tube $>$ causes
2065	< breatning pressure $>$. $<$ left ventricular end-diastonic volume $>$ causes $<$ central venous pressure $>$ $<$ left
2066	>. < left ventricular end-diastonic volume > causes < putnionally capitally wedge pressure >. < left ventricular foilure > causes < left
2067	ventricular failure $>$ causes $<$ previous metricular failure $>$ causes $<$ stroke volume $>$ $<$ left
2068	amount of time using a breathing machine > causes $< x_6 > <$ sudden blockage in the pulmonary
2069	arteries $>$ causes $<$ shunt - normal and high $>$. $<$ sudden blockage in the nulmonary arteries $>$
2070	causes < pulmonary artery pressure >. < $x9$ > causes < $x8$ >. < $x8$ > causes < $x3$ >. < shunt -
2071	normal and high > causes $\langle x8 \rangle$. $\langle stroke volume \rangle$ causes $\langle x1 \rangle$. $\langle total peripheral resistance$
2071	> causes $< x3 >$. $<$ total peripheral resistance $>$ causes $<$ blood pressure $>$. $< x4 >$ causes $< x >$.
2073	< x4 > causes < x9 >. < x5 > causes < expelled co2 >. < x5 > causes < minute volume >. < x4 > causes < x5 > causes < minute volume >. < x5 > causes < minute volume
2074	x5 > causes < x4 > . < x6 > causes < x7 > . < x7 > causes < x5 > . < x7 > causes < breathing
2075	pressure >. Using your causal knowledge, can you suggest what variable X most likely? Give 5
2076	suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
2077	answer (without reasoning) in the following format: < Answer > [first suggestion, second suggestion, third areas and a second suggestion, third areas and a second suggestion.
2077	α third suggestion and so on β No explanations, no reasoning, just answers as a list as described earlier. For example, if the suggestions are A B C D E then β Answer > $[A B C D E]$
2079	<pre>//Answer></pre>
2080	
2081	Answer: < Answer [ventilation rate, respiratory effort, airway resistance, lung compliance, alveolar
2082	answer < Answer < [ventilation rate, respiratory errort, an way resistance, rung compilance, arveorar
2083	Reasons for the answer:
2003	1. **Ventilation Rate**: The variable X causes both expelled CO2 and another variable (X3), which
2004	indirectly influences heart rate, blood pressure, and oxygen saturation. The rate of ventilation directly
2005	affects the amount of CO2 expelled from the body, making it a plausible candidate for X.
2000	2. **Respiratory Effort**: This suggestion is based on the relationship between X and expelled CO2,
2007	as well as the influence of X on another variable (X3) that affects cardiovascular and respiratory
2000	parameters. Respiratory effort, which encompasses the work of breathing, could affect CO2 expulsion
2000	and have downstream effects on the cardiovascular system.
2000	3. **Airway Resistance**: Airway resistance could be a candidate for X because it directly influences
2002	use amount of CO2 that can be experied (a function of airflow) and could also affect other physiological variables through its impact on vantilation afficiency.
2092	variables unrough its impact on ventilation enriciency.
2033	affects ventilation and consequently the expulsion of CO2. It could also indirectly influence other
2094	variables in the graph through its impact on gas exchange efficiency
2095	5. **Alveolar Gas Exchange**: This process directly determines the amount of CO2 expelled and
2030	could influence the variable X3, affecting cardiovascular parameters. Efficient gas exchange is crucial
2031	for maintaining appropriate oxygen and CO2 levels in the blood, impacting heart rate, blood pressure,
2030	and oxygen saturation.
2099	These suggestions are not explicitly mentioned in the input graph but are closely related to the
2100	physiological processes and outcomes described. They offer plausible explanations for the causal
2101	relationships involving the variable X, considering the context of patient monitoring in an ICU setting.
2102	
2103	

Prompt 7: Hypothesizing missing variable in open world #1 Ground truth variable: arterial CO2

²¹⁰⁶ G ASSUMPTIONS

2107

2108 The **causal sufficiency** of \mathcal{G} , by definition, implies that for every pair of variables within V, all 2109 common causes are also included within V. Extending this assumption to \mathcal{G}^* , we assume that the 2110 partial graph inherits causal sufficiency for its given that all edges among these variables are preserved 2111 as in \mathcal{G} . This preservation ensures that the observed relationships within V^* are not confounded 2112 by omitted common causes. Since the faithfulness of \mathcal{G} ensures that the observed conditional independencies among variables in V are accurately reflected by the causal structure represented 2113 by E. By maintaining the same set of edges E in \mathcal{G}^* for the subset V^* , we uphold the faithfulness 2114 assumption within the partial graph. 2115

2116

2118

2117 H NDE AND NIE

2119 Average Treatment Effect (ATE) quantifies the expected change in the outcome v_y caused by the unit 2120 change of the treatment v_t . ATE is part of the causal do-calculus introduced by Pearl (2009). We 2121 consider binary causal DAGs, i.e., each variable can either take 0 or 1 as values.

2128

 $ATE = \mathbb{E}[v_y | do(v_t = 1)] - \mathbb{E}[v_y | do(v_t = 0)]$

where the do(·) operator, represents an intervention. The $E[v_y|do(v_t = 1)]$ represents the expected value of the outcome variable v_y when we intervene to set the treatment variable v_t to 1 (i.e., apply the treatment), and $E[v_y|do(v_t = 0)]$ represents the expected value of v_y when we set v_t to 0 (i.e., do not apply the treatment).

2129 H.1 MEDIATION ANALYSIS

Mediation analysis is implemented to quantify the effect of a treatment on the outcome via a third variable, the mediator. The total mediation effect can be decomposed into the Natural Direct Effect (NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE) is the effect of the treatment on the outcome variable when not mediated by the mediator variable. The Natural Indirect Effect (NIE) is the effect of the treatment variable on the outcome variable when mediated by the mediator variable.

2136 2137

2138

2142 2143

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to 1 and the mediator is fixed at the level it would take under the control treatment $v_t = 0$, with the expected outcome when both the treatment and the mediator are set to the control level.

$$NIE = \mathbb{E}[v_{t=0}, v_{m=1} - v_{t=0}, v_{m=0}]$$

NDE = $\mathbb{E}[v_{t=1}, v_{m=0} - v_{t=0}, v_{m=0}]$

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1
and the mediator is allowed to change as it would under the treatment, with the expected outcome
when the treatment variable is set to 1 but the mediator is fixed at the control level.

- 2147
- 2148
- 2149 2150
- 2151
- 2152
- 2153
- 2154
- 2155 2156
- ≥100 2157
- 2158
- 2159

2160	Prompt: Strictly follow the format mentioned otherwise you will be disqualified.', 'ello. You will
2161	be given a causal graph. The context of the graph is hypothetical patient monitoring system in
2162	an intensive care unit (ICU) Please understand the causal relationships between the variables - <
2163	anaphylaxis > causes < total peripheral resistance >. < Alveolar Gas Exchange > causes <
2164	expelled $co2 > . < Alveolar Gas Exchange > causes < x2 > . < x2 > causes < x1 > . < x >$
2165	causes < blood pressure >. < disconnection > causes < x6 >. < error cauter > causes < heart rate
2166	displayed on ekg monitor >. < error cauter > causes < oxygen saturation >. < error low output >
2167	causes < heart rate blood pressure >. < high concentration of oxygen in the gas mixture > causes
2168	< x8 > . < x1 > causes < heart rate blood pressure > . < x1 > causes < heart rate displayed on
2169	ekg monitor >. $< x1 >$ causes $< oxygen saturation >. < x1 > causes < x >. < hypovolemia >$
2170	causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >. <
2171	insufficient anesthesia > causes $\langle x^2 \rangle$. $\langle intubation \rangle$ causes $\langle x^4 \rangle$. $\langle intubation \rangle$ causes
2172	< minute volume >. $<$ intubation > causes $<$ x3 >. $<$ intubation > causes $<$ shunt - normal and
2173	high >. < intubation > causes < breathing pressure >. < kinked chest tube > causes < $x4$ >.
2170	< kinked chest tube > causes < breathing pressure >. < left ventricular end-diastolic volume >
2175	causes $<$ central venous pressure $>$. $<$ left ventricular end-diastonic volume $>$ causes $<$ pulmonary
2175	capitally wedge pressure $>$. < left ventricular failure $>$ causes < previous medical mistory $>$. <
2170	The vehicular famile $>$ causes $<$ left vehicular end-diastone volume $>$. $<$ left vehicular famile $>$ causes $<$ stroke volume $>$. $<$ the amount of time using a breathing machine $>$ causes $<$ x5
21//	\sim causes < show volume >. < the amount of time using a oreaning inactime > causes < x.5 >.
21/0	blockage in the pullionary arteries > causes < pullionary artery pressure > $< x8$ > causes $< x7$ >
2179	< x7 > causes < x2 >. $< shunt - normal and high > causes < x7 >$. $< stroke volume > causes$
2180	$< x > <$ total peripheral resistance > causes $< x^2 > <$ total peripheral resistance > causes $<$
2181	blood pressure $>$. $< x3 >$ causes $<$ Alveolar Gas Exchange $>$. $< x3 >$ causes $< x8 >$. $< x4 >$
2182	causes $<$ expelled co2 $>$. $<$ x4 $>$ causes $<$ minute volume $>$. $<$ x4 $>$ causes $<$ x3 $>$. $<$ x5 $>$
2183	causes $\langle x6 \rangle$. $\langle x6 \rangle$ causes $\langle x4 \rangle$. $\langle x6 \rangle$ causes \langle breathing pressure \rangle . Using your causal
2184	knowledge, can you suggest what variable X most likely? Give 5 suggestions for what variable X
2185	could be. Give reason for your suggestions. Finally, return your answer (without reasoning) in the
2186	following format: <answer> [first suggestion, second suggestion, third suggestion and so on]</answer>
2187	No explanations, no reasoning, just answers as a list as described earlier. For example, if
2188	the suggestions are A,B,C,D,E then - <answer> [A, B, C, D, E] </answer>
2189	
2190	Answer: <answer> [cardiac output, heart function, blood flow, vascular resistance, cardiac cycle]</answer>
2191	
2192	Reasons for the answer:
2193	1. **Cardiac Output **: The variable X causes blood pressure and is caused by stroke volume. In
2194	physiological terms, cardiac output is a primary factor influencing blood pressure, as it represents the
2195	volume of blood the heart pumps per minute. Since stroke volume (the amount of blood pumped by
2196	the left ventricle of the heart in one contraction) contributes to cardiac output, it's logical to suggest
2197	"cardiac output" as a potential identity for X.
2198	2. **Heart Function**: Given that X is related to blood pressure and influenced by stroke volume,
2199	it's reasonable to infer that A pertains to the overall function of the neart. Heart function encompasses
2200	various aspects of now the heart works, including pumping efficiency, which directly affects blood
2200	2 **Blood Flow**: Since X has a direct relationship with blood pressure and an indirect relationship
2201	with factors affecting the heart's numping ability "blood flow" could be a plausible suggestion. Blood
2202	flow is crucial for maintaining blood pressure and is inherently linked to the heart's ability to nump
2203	blood effectively.
2204	4. **Vascular Resistance**: X's impact on blood pressure and its connection to total peripheral
2200	resistance suggest that it might involve vascular resistance. Vascular resistance is the resistance that
2206	must be overcome to push blood through the circulatory system and is a key determinant of blood
2207	pressure.
2208	5. **Cardiac Cycle**: The cardiac cycle involves all the events related to the flow of blood through
2209	the heart during one complete heartbeat, including systole (contraction) and diastole (relaxation).
2210	Given X's influence on blood pressure and its relationship with stroke volume, considering the cardiac
2211	cycle as a potential identity for X makes sense, as it encompasses the mechanisms affecting blood
2212	pressure regulation.
2213	

2214	Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
2215	monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
2216	the variables - < anaphylaxis > causes < total peripheral resistance >. < < Alveolar Gas Exchange
2217	> causes < expelled co2 >. < < Alveolar Gas Exchange > causes < x1 >. < x1 > causes < x >.
2218	Cardiac Output > causes < blood pressure >. < disconnection > causes < x5 >. < error cauter
2219	> causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen saturation >.
2220	<pre>< error low output > causes < heart rate blood pressure >. < high concentration of oxygen in the</pre>
2221	gas mixture > causes $\langle x7 \rangle$. $\langle x \rangle$ causes \langle heart rate blood pressure >. $\langle x \rangle$ causes \langle heart
2222	rate displayed on ekg monitor >. $< x >$ causes $<$ oxygen saturation >. $< x >$ causes $<$ Cardiac
2223	Output >. < hypovolemia > causes < left ventricular end-diastolic volume >. < hypovolemia >
2224	causes $<$ stroke volume $>$. $<$ insufficient anestnesia $>$ causes $<$ x1 $>$. $<$ intubation $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes $>$ causes $<$ x2 $>$ $<$ intubation $>$ causes
2225	$x_3 > . < \text{Intubation} > \text{causes} < \text{intubation} > . < \text{intubation} > \text{causes} < x_2 > . < \text{intubation} > . < < < < < < < < < < < < < < < < < <$
2226	$tube > causes < x^2 > < kinked cheet tube > causes < breathing pressure > < laft ventricular$
2227	and disstolic volume \geq causes \leq central various pressure \geq \leq left ventricular and disstolic volume
2228	\sim causes $<$ nulmonary canillary wedge pressure $>$ $<$ left ventricular failure $>$ causes $<$ nervious
2229	\sim causes $<$ putnionally capitally wedge pressure $>$. $<$ left ventricular failure $>$ causes $<$ left ventricular end-diastolic volume $>$ $<$
2230	left ventricular failure $>$ causes $<$ stroke volume $>$. $<$ the amount of time using a breathing machine
2231	> causes $< x4 >$ $<$ sudden blockage in the pulmonary arteries $>$ causes $<$ shunt - normal and high
2232	>. < sudden blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < x7
2232	> causes $< x6 >$. $< x6 >$ causes $< x1 >$. $<$ shunt - normal and high > causes $< x6 >$. $<$ stroke
2233	volume > causes < Cardiac Output >. < total peripheral resistance > causes < x1 >. < total
2234	peripheral resistance > causes < blood pressure >. < x^2 > causes < < Alveolar Gas Exchange >.
2230	$ < x^2 > causes < x^7 > . < x^3 > causes < expelled co^2 > . < x^3 > causes < minute volume > . < $
2236	$x_3 > causes < x_2 > . < x_4 > causes < x_5 > . < x_5 > causes < x_3 > . < x_5 > causes < breathing$
2237	pressure > Using your causal knowledge, can you suggest what variable X most likely? Give 5
2238	suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
2239	answer (without reasoning) in the following format: <answer> [first suggestion, second suggestion,</answer>
2240	third suggestion and so on] No explanations, no reasoning, just answers as a list as
2241	described earlier. For example, if the suggestions are A,B,C,D,E then - <answer> [A, B, C, D, E]</answer>
2242	
2243	
2244	Answer: <answer> [patient anxiety level, patient consciousness level, patient pain level, patient</answer>
2245	respiratory rate, patient skin temperature]
2246	Reasons for the answer:
2247	1. **Patient Anxiety Level**: The variable X influences neart rate, blood pressure, oxygen satura-
2248	tion, and cardiac output, which are all physiological parameters that can be affected by a patient's
2249	changes in oxygen saturation, and alterations in cardiac output due to the body's stress response
2250	2 **Patient Consciousness Level**: Consciousness level can impact heart rate, blood pressure
2251	and oxygen saturation due to the brain's control over these vital signs. Changes in consciousness
2252	level, such as becoming more alert or lansing into unconsciousness, can significantly affect these
2253	parameters, which are all influenced by variable X.
2254	3. **Patient Pain Level**: Pain can cause physiological responses that include increased heart rate,
2255	elevated blood pressure, changes in oxygen saturation due to hyperventilation or altered breathing
2256	patterns, and potentially affect cardiac output as the body reacts to the stress of pain.
2257	4. **Patient Respiratory Rate** : Given that X influences expelled CO2 and is affected by alveolar
2258	gas exchange, it's plausible that X could relate to the patient's respiratory rate. Respiratory rate
2259	directly impacts alveolar gas exchange, which in turn affects expelled CO2 levels, oxygen saturation,
2260	and indirectly influences heart rate and blood pressure through changes in blood chemistry.
2261	5. **Patient Skin Temperature**: While not directly related to the cardiovascular or respiratory
2262	systems, skin temperature can be an indirect indicator of changes in these systems. For example,
2262	changes in cardiac output and peripheral resistance can affect blood flow to the skin, thereby influenc-
2203	ing skin temperature. Variable X's impact on cardiac output and blood pressure suggests it could also
2204	indirectly affect skin temperature.
2200	These suggestions are based on the understanding that variable X has a broad impact on both
2266	cardiovascular and respiratory parameters, indicating it could be a factor that influences or reflects
2267	the overall physiological state of the patient.

2268	Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
2269	monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
2270	the variables - < anaphylaxis > causes < total peripheral resistance >. < < Alveolar Gas Exchange
2271	> causes $<$ expelled co2 $>$. $<$ $<$ Alveolar Gas Exchange $>$ causes $<$ x $>$. $<$ x $>$ causes $<$ Patient
2272	Respiratory Rate>. < Cardiac Output > causes < blood pressure >. < disconnection > causes
2273	< x4 >. < error cauter > causes < heart rate displayed on ekg monitor >. < error cauter >
2274	causes < oxygen saturation >. < error low output > causes < heart rate blood pressure >. <
2275	high concentration of oxygen in the gas mixture > causes < x6 >. <patient rate="" respiratory=""></patient>
2276	causes < heart rate blood pressure >. < Patient Respiratory Rate > causes < heart rate displayed on
2277	ekg monitor >. <patient rate="" respiratory=""> causes < oxygen saturation >. <patient respiratory<="" td=""></patient></patient>
2278	Rate> causes < Cardiac Output >. < hypovolemia > causes < left ventricular end-diastolic
2279	volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia > causes < x
2280	>. < intubation > causes < x2 >. < intubation > causes < minute volume >. < intubation >
2200	causes $< x1 >$. $<$ intubation $>$ causes $<$ shunt - normal and high $>$. $<$ intubation $>$ causes $<$
2201	breathing pressure >. < kinked chest tube > causes < x^2 >. < kinked chest tube > causes <
2282	breathing pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >.
2283	< left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
2284	ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
2285	ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the amount of time using a breathing machine > causes < x^2 > < < x^2 > < < x^2 > < < x^2 > < x^2 > < < < x^2 > < < x^2 > < < x^2
2286	amount of time using a breatning machine > causes $\langle x_3 \rangle$. $\langle sudden blockage in the pulmonary arteriae > causes \langle x_3 \rangle.$
2287	autorics $>$ causes $<$ shuft - normal and migh $>$. $<$ sudden blockage in the pullionary afteries $>$ causes $<$ rule $x_5 > - x_5 $
2288	causes $<$ pullionary aftery pressure $>$. $<$ x0 $>$ causes $<$ x5 $>$. $<$ x5 $>$ causes $<$ x $>$. $<$ shuft
2289	- normal and high > causes $< x_3 > . <$ show volume > causes $<$ causes $<$ blood pressure >
2290	$x_1 > causes < x_2 > causes < x_3 > causes > x_3 > causes < x_3 > causes < x_3 > causes > x_3 > causes < x_3 $
2291	$x_1 > causes < x_1 > causes < minute volume > < x_3 > causes < x_1 > < x_3 > causes < x_4 > <$
2292	$x_4 > causes < x_3 > < x_4 > causes < breathing pressure > Using your causal knowledge, can$
2293	you suggest what variable X most likely? Give 5 suggestions for what variable X could be. Give
2294	reason for your suggestions. Finally, return your answer (without reasoning) in the following format:
2295	<answer> [first suggestion, second suggestion, third suggestion and so on] </answer> No
2296	explanations, no reasoning, just answers as a list as described earlier. For example, if the suggestions
2297	are A,B,C,D,E then - \langle Answer \rangle [A, B, C, D, E] \langle /Answer \rangle
2298	
2299	Answer: < Answer > [oxygen delivery, arterial blood gas, lung compliance, blood oxygen level.]
2300	respiratory efficiency]
2301	Reasons for the answer:
2301	1. **Oxygen Delivery** : Given that "alveolar gas exchange" causes "X" and "X" in turn affects
2302	"patient respiratory rate," it's logical to infer that "X" could be related to how effectively oxygen is
2303	being delivered throughout the body. Oxygen delivery is a critical aspect of respiratory function and
2304	would directly impact respiratory rate.
2305	2. **Arterial Blood Gas (ABG)**: ABG tests measure the levels of oxygen and carbon dioxide in the
2306	blood and can indicate how well oxygen is being transported and carbon dioxide is being expelled,
2307	which are functions influenced by alveolar gas exchange. Since "X" is caused by "alveolar gas
2308	exchange" and affects "patient respiratory rate," it's plausible that "X" could involve the measurement
2309	or state of arterial blood gases.
2310	3. **Lung Compliance**: This refers to the elasticity or flexibility of the lungs, which directly
2311	impacts alveolar gas exchange and, consequently, the respiratory rate. Since "X" is linked to both
2312	alveolar gas exchange and patient respiratory rate," it could suggest a relationship with the
2313	inechanical properties of the lung, such as compliance.
2314	4. Droou Oxygen Level . This is a uncer outcome of effective alveolar gas exchange and would naturally influence the patient's respiratory rate as the body adjusts to maintain adaqueta avyconstion
2315	Given the causal links mentioned "Y" could very well represent the level of ovugan present in the
2316	blood
2317	5 **Respiratory Efficiency**: This encompasses how effectively the respiratory system can supply
2318	oxygen to and remove carbon dioxide from the body. It's influenced by alveolar gas exchange and
2319	directly affects the respiratory rate making it a plausible candidate for "X "
2320	These suggestions are not availability faith and in the input area but are locically informed based on

These suggestions are not explicitly mentioned in the input graph but are logically inferred based on the described causal relationships and a basic understanding of respiratory physiology.

Prompt 10: Hypothesizing missing variable in open world #4 Ground truth variable: catecholamine. This repeats until all of the mediators are hypothesized.