
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FILLING THE GAPS: LLMS FOR CAUSAL HYPOTHESIS
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Scientific discovery catalyzes human intellectual advances, driven by the cycle of
hypothesis generation, experimental design, data evaluation, and iterative assump-
tion refinement. This process, while crucial, is expensive and heavily dependent
on the domain knowledge of scientists to generate hypotheses and navigate the
scientific cycle. Central to this is causality, the ability to establish the relationship
between the cause and the effect. Motivated by the scientific discovery process, in
this work, we formulate a novel task where the input is a partial causal graph with
missing variables, and the output is a hypothesis about the missing variables to
complete the partial graph. We design a benchmark with varying difficulty levels
and knowledge assumptions about the causal graph. With the growing interest in
using Large Language Models (LLMs) to assist in scientific discovery, we bench-
mark open-source and closed models on our testbed. We show the strong ability
of LLMs to hypothesize the mediation variables between a cause and its effect.
In contrast, they underperform in hypothesizing the cause and effect variables
themselves. We also observe surprising results where some of the open-source
models outperform the closed GPT-4 model.

1 INTRODUCTION

Scientific discovery has been key to humankind’s advances. It is a dynamic process revolving around
inquiry and constant refinements driven by new observations. Scientists adhere to a structured process
that involves formulating a hypothesis and then collecting pertinent data (Wang et al., 2023a). They
then draw inferences from experiments and the collected data, modify the hypothesis, formulate
sub-questions, and repeat the process until the research question is answered (Kıcıman et al., 2023).

New Hypothesis

Partial Causal
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Experimental
Design 

Data CollectionValidation

Smoking Dyspnea

What could be the
missing variable?

Chronic Bronchitis

Ground truth: 
Bronchitis

1

2

3

45

Figure 1: Scientific discovery iteratively
generates hypotheses from assumptions
using human expertise. We use LLMs as
proxy experts to propose new hypotheses
in causal DAGs.

Causality empowers scientists to assess the hypotheses
and interpret the collected data beyond mere correlations
and associations. Tools such as Randomised Control Tri-
als (RCTs) (Kendall, 2003) allow for establishing causal
relationships between variables. Naturally, the process of
causal discovery heavily relies on human experts to guide
the hypothesis formation and experimental design (Kıcı-
man et al., 2023). Expert domain knowledge is crucial to
narrow the search space of hypotheses, especially when
it is expensive to collect data or when systematic explo-
ration is infeasible. However, a possible impediment is
that domain knowledge can be difficult to formulate and
collect (Kıcıman et al., 2023).

With the recent advancement of Large Language Models
(LLMs) (Brown et al., 2020; OpenAI, 2023), there has
been a growing interest in using them for scientific dis-
covery (AI4Science and Quantum, 2023; Lu et al., 2024;
Cory-Wright et al., 2024). Their potential is now stud-
ied in domains such as natural sciences (AI4Science and
Quantum, 2023). Given the importance of causality in the
scientific discovery process, we focus on how LLMs can
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assist with causal reasoning. LLMs have achieved state-of-the-art results for causal tasks such as
determining pairwise causal relationships by considering variable names (Kıcıman et al., 2023),
combined with causal discovery algorithms (Abdulaal et al., 2024; Ban et al., 2023a; Vashishtha et al.,
2023) for refinement.

Causal discovery, however, comes after hypothesizing the variables of interest (which require domain
knowledge), forming experiments, and potentially costly data collection. Our work, therefore,
extends LLM applications to assist in steps essential before causal discovery, specifically identifying
and hypothesizing missing variables in partially known causal graphs. This simulates the realistic
scientific discovery process of incremental hypothesis formation and testing. By leveraging curated
causal graphs, we evaluate the feasibility and reliability of LLMs in generating hypotheses under
controlled yet realistic settings, ensuring reproducibility and providing a foundation for LLM-driven
scientific discovery.

We break down causal hypothesis generation into smaller tasks, starting with baseline experiments,
and progressing to realistic scenarios where only treatments and outcomes are known. We leverage
LLMs’ large-scale training to propose memorized or inferred variables based on their general and
domain knowledge. This enables users to identify missing variables to guide data collection, fol-
lowed by subsequent downstream causal tasks. Importantly, we avoid requiring LLMs to determine
pairwise causal relations or perform numerical calculations, sidestepping their limitations in these
areas (Zečević et al., 2023; Jin et al., 2023a). Existing work explores the inductive hypothesis
generation capabilities of LLMs by using them as creative solution proposers with task-specific
means of verifying said solutions (Romera-Paredes et al., 2023; Wang et al., 2023b; Qiu et al., 2024).
In contrast, our work uniquely focuses on hypothesis generation within a causal paradigm.
Contributions. Our main contributions are: 1) We propose and formalize the novel task of LLM-
assisted causal variable identification and hypothesizing. 2) We propose a benchmark for hypothesiz-
ing missing variables across diverse domains of existing causal graphs. 3) We design experimental
tests with different difficulty levels and knowledge assumptions, such as open-world and closed-world
settings, the number of missing variables, etc. 4) Our benchmark allows for allow for both grounded
evaluations and a reproducible framework to benchmark LLMs’ capabilities in hypothesis generation.

2 RELATED WORK

LLMs and Causality. Our work is based on the framework of causality as proposed by Pearl
(2009). The intersection of language and causality is explored by Girju et al. (2002); Hassanzadeh
et al. (2020); Tan et al. (2023); Dhawan et al. (2024) to extract causal relationships from a large
corpus of text. With the advancements in LLMs and their ability to process large contexts, there
has been an interest in using them for causal reasoning (Kıcıman et al., 2023). Some works have
focused on commonsense causality (Frohberg and Binder, 2021; Singh et al., 2021) and temporal
causal reasoning (Zhang et al., 2020; 2022). More recently Kıcıman et al. (2023); Long et al. (2023);
Darvariu et al. (2024) introduced methods to discover causal structures by prompting LLMs with
variable names. Ban et al. (2023b); Vashishtha et al. (2023); Ban et al. (2023a) extended this work by
introducing ancestral constraints to refine the causal structures derived from LLMs. Abdulaal et al.
(2024) combined data-based deep structural causal models, such as (Yu et al., 2019), with LLMs
generated causal structure. Jin et al. (2023b) focused on causal inference using LLMs. While a tool
on GitHub PyWhy-LLM used LLMs to propose confounders, our work formalizes such a task along
with detailed insights. Recent work attempted to train transformers for improved causal inference
and discovery (Vashishtha et al., 2024; Zhang et al., 2024). In contrast to previous work, we focus
on the novel task of identifying and hypothesizing missing variables, a task that comes before data
collection and evaluation, with LLMs as assistants. We test the hypothesizing abilities of generalist
pre-trained LLMs as our task is primarily linked with pre-training knowledge.

LLMs and hypothesis generation. Existing works tested inductive hypothesis generation with
LLMs in reasoning tasks or free-form scientific hypotheses from background knowledge provided in
the context (Gendron et al., 2023; Qi et al., 2023; Xu et al., 2023a;b; Qiu et al., 2024; Lu et al., 2024).
In contrast, we consider the structured task of causal hypothesis generation, where the ground-truth
variables are known and can be used for evaluation. We also assume a pertinent human-in-the-loop
assistive scientific discovery setup to counter LLMs’ limitations and hallucinations.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES: CAUSAL GRAPH

A causal relationship can be modeled via a Directed Acyclic Graph (DAG). A causal DAG represents
relationships between a set of N variables defined by V = {v1, ..., vN}. The variables are encoded
in a graph G = (V,E) where E is a set of directed edges between the nodes ∈ V such that no cycle
is formed. Mathematically it can be expressed as:

G = (V,E), E = {ei,j | vi, vj ∈ V, i ̸= j} and vi → vj

Each edge ei,j ∈ E denotes causal relationship between vi and vj , vi
ei,j−−→ vj , emphasizing the influ-

ence from vi to vj . Beyond visualization, causal DAGs allow for the mathematical characterization
of different node types for a causal model to understand the influences and dependencies.

We define d(v) as the degree of a node v, representing the total number of edges connected to v.
din(v) is the in-degree, representing the number of incoming edges to v. dout(v) is the out-degree,
representing the number of outgoing edges from v.

Sources are variables vs with no incoming edges. Mathematically sources are din(vs) = 0 where din
is the in-degree of the graph.
Sinks are variables vk with no outgoing edges. Sinks are dout(vk) = 0 where dout is the out-degree of
the graph.
Treatment are variables vt, characterized as nodes din(vt) = 0 that are being intervened upon.
Outcome are variables vy , characterized as the nodes dout(vy) = 0 that are observed for interventions
from the treatments.
Mediator are variables vm that have both incoming and outgoing edges (din(vm) > 0 and dout(vm) >
0), acting as intermediaries in the causal pathways between treatment and outcome.
Confounder are variables vk that influence both treatment and outcome, exhibiting edges directed
towards the treatment and outcome nodes (dout(vk) ≥ 2. Hence vk is a confounder if it is a parent of
both vi and vj .
Collider are variables vl that have two edges meeting, and have an in-degree greater than one
din(vl) > 1. Hence vk is a collider if it is a child of both vi and vj .

Average Treatment Effect. Average Treatment Effect (ATE) quantifies the expected change in the
outcome vy caused by the unit change of the treatment vt. ATE is a part of the causal do-calculus
introduced by Pearl (2009). We consider binary causal DAGs, i.e., each variable can either take 0 or 1
as values.

ATE = E[vy|do(vt = 1)]− E[vy|do(vt = 0)]

where the do(·) operator, represents an intervention. The E[vy|do(vt = 1)] represents the expected
value of the outcome variable vy when we intervene to set the treatment variable vt to 1 (i.e., apply
the treatment), and E[vy|do(vt = 0)] represents the expected value of vy when we set vt to 0 (i.e., do
not apply the treatment).

Mediation Analysis. Mediation analysis is implemented to quantify the effect of a treatment on the
outcome via a third variable, the mediator. The total mediation effect can be decomposed into the
Natural Direct Effect (NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE)
is the effect of the treatment on the outcome variable when not mediated by the mediator variable.
The Natural Indirect Effect (NIE) is the effect of the treatment variable on the outcome variable when
mediated by the mediator variable.

NDE = E[vt=1, vm=0 − vt=0, vm=0]

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to
1 and the mediator is fixed at the level it would take under the control treatment vt = 0, with the
expected outcome when both the treatment and the mediator are set to the control level.

NIE = E[vt=0, vm=1 − vt=0, vm=0]

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1
and the mediator is allowed to change as it would under the treatment, with the expected outcome
when the treatment variable is set to 1 but the mediator is fixed at the control level.
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(a) Task 1
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Figure 2: Leveraging LLM to indentify the missing variable for a causal DAG in the presence of
out-of-context distractors (a), an in-context distractor along with out-of-context distractors (b).

4 LLMS FOR IDENTIFYING AND HYPOTHESIZING CAUSAL VARIABLES

In this work, we aim to leverage language models to identify and hypothesize variables in a causal
DAG. Motivated by the process of hypothesizing a causal graph from a partially known structure Gly-
mour et al. (2019), this paper proceeds under the assumption that some elements of the graph are
already known. The aim is to find additional variables that can be incorporated into the existing
causal structure to enhance the underlying causal mechanism.

We assume a partially known causal DAG, defined as G∗ = (V∗,E), where V∗ ⊆ V. The objective
is to identify the set of missing variables V∗ = V \ Vmissing thereby expanding G∗ to G. This implies
that all causal relationships (edges) among variables in V ∗ are known and correctly represented in
G∗; i.e., E is fully specified. Here, “missing” variables are not latent or hidden by measurement error
but known unknowns within the causal graph reflective of LLMs perspective.

Our methodology is structured around progressively challenging scenarios, explores the ability of
LLMs to identify and hypothesize causal variables. This starts from a restrictive and controlled
exploration to an open-ended one. Initially, we restrict the exploration by providing the language
models with a partially known causal DAG and a set of multiple choices for the missing variables.
The complexity of the task is gradually increased by removing more than one node from the graph.
Finally, we move to an open-ended scenario where the ground truth is not available to LLM. In
this setting, LLM is required to hypothesize the missing variables of the causal DAG without any
explicit hints. We evaluate the causal reasoning capability of LLMs through prompting. Given LLMs’
limitation to textual input, we represent the graph G∗ using a prompt template PLLM(·) which enables
LLMs to parse the causal relationships embedded within the DAG.

4.1 TASK 1: OUT-OF-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

This task (depicted in Figure 2a) evaluates LLMs’ ability to identify missing variables in a causal
graph from a list of multiple choices, thereby reconstructing the original graph. The partial DAG G∗
is created by removing one variable from the original DAG G. Let us denote the removed node as
vx. Along with the partial graphs, we operate in the multiple-choice question answering (MCQA)
paradigm. The role of the LLM is to select a variable from the multiple choices, MCQvx , that can be
used to complete the graph. The multiple choices include the missing variable vx and out-of-context
distractors. The out-of-context distractors are unrelated to the causal domain of the given DAG,
chosen to minimize any contextual and overlap with the true missing variable. Let v∗x represent the
variable selected by the LLM to complete G∗.

v∗x = PLLM(G∗,MCQvx) ∀vx ∈ V

4.2 TASK 2: IN-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

In practical applications, such as healthcare (Robins, 1986) and finance (Hughes et al., 2019), dealing
with missing data and unobserved latent variables is a major challenge (Tian and Pearl, 2012;
Bentler, 1980). Therefore, it is important to identify the missing variables and their underlying causal

4
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(a) Task 3
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Figure 3: Leveraging LLM to hypothesize the missing variable in a causal DAG in an open-world
setting for one variable (a), in an iterative fashion for multiple missing mediators (b).

mechanism. To simulate this, a more challenging task is introduced (see Figure 2b). Here, instead
of removing one node from the ground truth DAG G, two nodes, vx1 and vx2 , are now removed to
create the partial graph, G∗.

G∗ = G \ {vx1 , vx2} for vx1 , vx2 ∈ V

We use the MCQA paradigm to provide multiple choices that include the missing variables vx1 and
vx2 . The task for the LLM here is to select the correct variable vx1 only, given an in-context choice
vx2 and out-of-context choices. The in-context variables are plausible variables within the same
causal graph. We introduce the non-parental constrain for vx1

and vx2
. This prevents the removal of

both a parent node and its immediate child node in G∗.

v∗x1
= PLLM(G∗,MCQvx1 ,vx2

) ∀ vx1
, vx2

∈ V and vx1
̸→ vx2

, vx2
̸→ vx1

4.3 TASK 3: HYPOTHESIZING IN OPEN WORLD

So far, we have described the testbeds for variable identification in a partial DAG given the controlled
world knowledge in the form of distractors. This assumption allows for the evaluation of the language
model’s ability to select the correct answer from a set of options. However, in the open-world setting,
we increase the complexity to provide no choices, as shown in Figure 3a. Hence the task is to predict
the missing node vx given the partial graph G∗ to complete the ground truth graph G. Here, the model
returns a set of potential hypotheses, {v∗x,1, ..., v∗x,k} where k is the number of hypotheses.

{v∗x,1, v∗x,2, ..., v∗x,k} = PLLM(G∗) ∀ vx ∈ V

4.4 TASK 4: ITERATIVELY HYPOTHESIZING IN OPEN WORLD

In addition to the search space relaxation, we further relax the number of missing variables. The
partial DAG here, is obtained for one or more missing node variables. G∗ = G \ {vx1 ...vxM

}. The
fine-grained results from the open-world setting reveal that language models exhibit a particularly
strong performance in identifying mediator variables. Thus, the LLM is used here to iteratively
hypothesize mediator variables in a causal DAG given a treatment and an effect. The task (shown
in Figure 3b) is set up as follows: given a partial graph G∗, which includes observed treatment and
outcome variables, we aim to hypothesize a set of mediators, denoted as M = {vm1

, vm2
, ..., vmH

},
that mediates the treatment vt to the outcome vy. Here, H represents the number of direct, and
indirect mediators. A pair of treatments and outcomes are considered iteratively across the causal
DAG. In the first iteration, the LLM generates a hypothesis for the mediator vm1 . The hypothesized
mediator, vm1 is then added to the graph, updating G∗ → G∗ ∪ {vm1}. The partial graph that now
also includes v∗m1

can be used to identify the second mediator v∗m2
and so on. Therefore, in each

subsequent iteration i, the LLM is tasked to generate a hypothesis for the next missing mediator vmi

given the updated graph G∗ ∪ {v∗m1
, ..., vm∗

i−1
}.

v∗mi
= PLLM(G∗ ∪ {v∗m1

, ..., v∗mi−1
}) for i = 1, ...,H

The sequence of mediators M = {vm1
, vm2

, ..., vmH
} is chosen at random. To formally investigate

how the order of hypothesized mediators influences LLM performance, we borrow concepts from the
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mediation analysis literature, specifically the Natural Direct Effect (NDE) and the Natural Indirect
Effect (NIE). The NDE measures the effect of the treatment on the outcome that is not mediated
by a particular mediator, while the NIE measures the effect of the treatment that is mediated by the
mediator. We introduce a metric called Mediation Influence Score (MIS) that quantifies the influence
of each mediator between a treatment and an effect. MIS defined as the ratio of NIE to NDE, provides
a scale-free measure of a mediator’s relative influence, enabling prioritization. MIS is always positive,
reflecting the absolute contribution of mediators.

MIS (vmi) =

∣∣∣∣ NIE(vmi)

NDE(vmi
)

∣∣∣∣ for i = 1, ...,H.

This metric quantifies the relative importance of the indirect effect (through the mediator) compared
to the direct impact. Mediators are then ranked and prioritized based on their MIS scores, with higher
scores indicating a stronger mediation effect.

5 EVALUATION AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate a variety of causal datasets spanning diverse domains. We use the semi-synthetic datasets
from BNLearn repository - Cancer:G(5, 4) (Korb and Nicholson, 2010), Survey:G(6, 6) (Scutari
and Denis, 2021), Asia:G(8, 8) (Lauritzen and Spiegelhalter, 1988), Child:G(20, 25) (Spiegelhalter,
1992), Insurance:G(27, 52) (Binder et al., 1997), and Alarm:G(37, 46) (Beinlich et al., 1989). We
also evaluate our approach on a realistic Alzheimer’s Disease dataset:G(9, 16) (Abdulaal et al., 2024),
developed by five domain experts. We also test on a legal causal graph, Law:G(8, 20) (VanderWeele
and Staudt, 2011). See Appendix A.1 for further details.

We evaluate our setups across different open-source and closed models. The models we use are
GPT-3.5 (Brown et al., 2020), GPT-4 (OpenAI, 2023), LLama2-chat-7b (Touvron et al., 2023),
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), Mixtral-7B-Instruct-v0.1 (Jiang et al., 2024), Zephyr-
7b-Beta (Tunstall et al., 2023) and Neural-chat-7b-v3-1 (Intel, 2023).

Implementation details are mentioned in Appendix A. Prompt templates are illustrated in Appendix F.

5.2 TASK 1: OUT-OF-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

Our first experiment is designed to assess the fundamental ability of language models to identify
missing variables in a partial causal graph, serving as a baseline for understanding their performance
in variable identification tasks. Here, the input to the LLM is the ground truth variable name in
addition to out-of-context multiple choices for the missing variable vx and the partial DAG G∗. We
then calculate the models’ accuracy in correctly predicting vx.

Accuracy =
1

N

N∑
i=1

1(v∗x = vix)

Results. In Figure 4a, we report the accuracy of different LLMs in identifying the missing variable.
GPT-4, followed by Mixtral, consistently performs well, achieving perfect accuracy on most of
the datasets. GPT-3.5 also shows overall strong performance, apart from the Insurance and Alarm
datasets. The other models, including Mistral-7b, Llama-7b, and Zephyr-7b, demonstrate varying
degrees of success. Insurance is the most challenging dataset, which could potentially be due to the
high number of edges present in the DAG. It is noteworthy that all models significantly outperform
the random baseline, indicating that given out-of-context multiple choices along with the ground truth
variable, the language model can pick out the missing causal variable to complete the partial graph
G∗. However, we may conjecture that the high performance could be attributed to the simplicity of
the task. The models might be primarily inferring from the context of the dataset domain, rather than
performing actual causal reasoning among multiple plausible choices. To further investigate this, we
introduce an in-domain choice in the multiple choices in the next experiment. This can assess LLMs’
ability to choose a causal variable for a partial DAG beyond the highly evident correlations.
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Figure 4: Accuracy of LLMs in identifying the missing causal variable from multiple choices with
out-of-context distractors (a), and from both out-of-context and in-context distractors (b).

Cancer Survey Asia Law Alzheimers Child Insurance Alarm Avg

Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J

Zephyr 0.36 0.61 0.34 0.60 0.45 0.66 0.41 0.70 0.35 0.75 0.51 0.70 0.45 0.44 0.46 0.69 0.42 0.63
Mixtral 0.41 0.66 0.39 0.66 0.66 0.75 0.38 0.69 0.31 0.77 0.53 0.77 0.46 0.56 0.50 0.72 0.46 0.70
Neural 0.38 0.77 0.43 0.55 0.53 0.55 0.47 0.72 0.44 0.71 0.48 0.70 0.47 0.43 0.47 0.67 0.45 0.63
Llama 0.40 0.48 0.40 0.54 0.53 0.58 0.67 0.65 0.45 0.61 0.48 0.63 0.42 0.34 0.46 0.65 0.45 0.55
Mistral 0.33 0.67 0.44 0.65 0.60 0.73 0.49 0.67 0.34 0.76 0.48 0.68 0.46 0.47 0.47 0.71 0.44 0.67
GPT-3.5 0.48 0.74 0.42 0.79 0.47 0.61 0.52 0.73 0.39 1.00 0.36 0.60 0.47 0.52 0.48 0.73 0.44 0.71
GPT-4 0.49 0.90 0.51 0.67 0.66 0.76 0.55 0.78 0.47 0.98 0.36 0.53 0.52 0.56 0.49 0.75 0.50 0.73

Table 1: Task 3 Results. Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in
hypothesizing the missing variable in a causal DAG.

5.3 TASK 2: IN-CONTEXT CONTROLLED VARIABLE IDENTIFICATION

We introduce a more complex setting to further challenge the models’ abilities in missing variable
identification. In this setup, the partial graph has two missing nodes. Alongside out-of-context choices
and the ground truth variable, the multiple-choice options also include the second missing node
from the partial graph as an in-context distractor. This configuration requires the language model to
reason about indirect causal relationships to identify the correct missing variable. To evaluate models’
performance, we present two metrics: accuracy and false node accuracy. The false node accuracy,
measures the confusion of LLMs in picking the in-context variable instead of the ground truth.

False Node Accuracy (FNA) ↓= 1

N

N∑
i=1

1(v∗x1
= vx2)

Results. In Figure 4b, we plot both Accuracy and False Node Accuracy across different datasets.
Ideally, accuracy should be 1.0, and the FNA should be 0.0. Since there were 5 multiple choices, the
random chance is 0.2. We observe that most of the models for larger datasets achieve much higher
accuracy than random chance. GPT-3.5 and GPT-4 consistently perform well across all datasets, with
high accuracy and low FNA. This suggests that these models are capable of reasoning by identifying
the missing nodes in the causal graph and are less likely to be confused by the in-context node
variable. On the other hand, open-source models like Mistral, Zephyr, and Mixtral show varying
performance across different datasets. For instance, Mistral performs well on the easy Cancer dataset
but underperforms in the more complex Alarm dataset. In summary, we observe that most language
models can identify causal variables in the presence of multiple missing nodes and an in-context
distractor. These results indicate that while most language models can handle missing variable
identification in the presence of multiple missing nodes and in-context distractors, the robustness of
their reasoning abilities varies significantly with dataset complexity and model architecture.

5.4 TASK 3: HYPOTHESIZING IN OPEN WORLD

We recall that the goal is for the language models to be able to complete a causal graph given a partial
graph. In realistic scenarios, where scientists provide incomplete graphs without pre-defined answers,
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Mediator

Collider

Sink

Source

(a) Types of nodes in a DAG.

        Source

Sink

Collider          

Mediator

0.25
0.35

0.45
0.55

Zephyr
Mixtral
Neural
llama
Mistral
GPT 3.5
GPT 4

(b) Semantic similarity.

    Source

Sink

Collider          

Mediator

0.4
0.5

0.6
0.7

0.8

Zephyr
Mixtral
Neural
llama
Mistral
GPT 3.5
GPT 4

(c) LLM-as-Judge.

Figure 5: Task 3 Results. Visualizing each model’s performances, averaged across the different
datasets, for Sink, Source, Mediator, and Collider nodes.

there is often no single ‘ground truth’ for what the missing variable should be. The correct hypothesis
may vary based on domain expertise or available data, making this task fundamentally open-ended.
Hence in this test-bed, we aim to leverage LLMs to hypothesize the causal variables. The language
model is prompted for k = 5 suggestions for the missing node vx.

We then compare the suggestions against the ground truth, acknowledging that in realistic scenarios,
there is often no single ‘ground truth’ for the missing variables. This complexity necessitates careful
evaluation, as we suspect that traditional metrics may not fully capture the performance of models,
particularly when suggestions must be assessed within the broader context of the entire causal graph
(see Appendix C.5 for more details). Hence, for a robust evaluation of this experiment, we use two
metrics, semantic similarity, and LLM-as-Judge that incorporate contextual information.
Semantic Similarity: measures the cosine similarity between the embeddings (of another pretrained
sentence embedding model) of each suggestion of the model’s predictions, v∗x1:5

and the ground truth
vx. The distances of the most similar suggestion are averaged across all nodes vx ∈ V. For a detailed
explanation of this process, please refer to Appendix A.4.
LLM-Judge: This metric evaluates the quality of the model’s suggestions using a two-step process
inspired by Zheng et al. (2023). In particular, LLM-as-Judge compares against ground truth variables
to measure contextual semantic similarity beyond semi-exact matching like in semantic similarity
metric. In the first step, the language model is prompted to determine which suggestion best fits the
partial graph, given the ground truth and the suggestions, v∗x1:5

. In the second step, the language
model is again prompted to rate the selected suggestion on a scale of 1 to 10 in terms of similarity.
This is repeated for all nodes, and the ratings are averaged to provide an overall quality measure.
Implementation details can be found in Appendix A.5.

Results. We report models’ performances using both semantic similarity and LLM-Judge metrics
in Table 1. For brevity, we provided the variances in Appendix C.1. To develop an intuition of
LLMs’ performance, we provide a detailed analysis of each metric across different types of node
variables (defined in Section 3). We specifically look at sources, sinks, colliders, and mediators
for each of the partial causal graphs. The results, fine-grained by node type, are given in Figure 5
that shows each model’s average performance across datasets. For a detailed performance per each
dataset individually, see Figure 18.

GPT-4 and Mistral generally achieve higher semantic similarity and LLM-as-Judge scores across
most datasets (Figure 18). GPT-3.5 also shows good average performance. We observe that semantic
similarity is a stricter metric than LLM-as-judge since it cannot encode contextual information
about the causal DAG (see example in Table 7). Despite different scales, semantic similarity and
LLM-as-judge metrics both seem to be fairly correlated. In Figure 5, we observe that models display
stronger performance for colliders and mediators on average. This suggests that these models are
relatively proficient at reasoning about common causes and indirect causal relationships. Sinks are
typically the nodes that represent the outcomes or effects of interventions (treatments) applied to
other nodes, and the lower performance on these nodes indicates that the models find it challenging
to reason about the potential outcomes of the causal graphs. Source nodes represent the causes in a
causal graph, and lower performance on these nodes might indicate difficulties in reasoning about the
potential treatments from the partial graph.

In Figure 16a, we observe that the model performance increases with k, i.e., with a higher number of
suggestions. From Figure 16b, it is also evident that the performance is proportional to the number
of total edges, din + dout (more context about the node). In summary, LLMs show impressive
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performance across some of the nodes and can be particularly useful to hypothesize mediators and
colliders in a partial causal DAG. It is, hence, potentially beneficial to use LLMs in the real world
because, in practice, treatment and outcomes are usually known.

5.4.1 HYPOTHESIZING CONFOUNDER

Sachs Alarm Ins

Zephyr 0.10
±0.01

0.45
±0.05

0.53
±0.06

Mixtral 0.95
±0.10

0.85
±0.09

0.63
±0.07

Neural 0.30
±0.03

0.45
±0.05

0.61
±0.06

LLama 0.20
±0.02

0.47
±0.05

0.63
±0.06

Mistral 0.20
±0.02

0.85
±0.09

0.61
±0.06

GPT-3.5 0.40
±0.04

0.49
±0.05

0.67
±0.07

GPT-4 0.95
±0.10

0.73
±0.07

0.78
±0.08

Table 2: Hypothesizing Con-
founders.

In causal inference, backdoor paths are alternative causal pathways
that confound the estimation of causal effects. They introduce bias
when estimating causal effects if not appropriately addressed. Hence
hypothesizing and controlling for confounders is an important task
in causal inference (Pourhoseingholi et al., 2012). We extract con-
founder subgraphs from (Sachs et al., 2005), Alarm, and Insurance
graphs. From Table 2, with detailed results in Appendix B, we ob-
serve that while some confounders were easily hypothesized by LLMs,
achieving perfect accuracy, the genomic domain of the SACHS posed
challenges for models with potentially less domain-specific knowl-
edge. Similar to the mediator analysis, a large model: GPT-4, does
not always perform best across all datasets. This highlights the need
for a diverse set of benchmarks, like ours, to fully assess models’
performance. Considering the importance of backdoor paths, we have
also benchmarked LLM performance for confounders in addition to
colliders. LLM typically performs well when hypothesizing a collider,
however, the results for confounders are varied.

5.5 TASK 4: ITERATIVELY HYPOTHESIZING IN OPEN WORLD

In the previous open-world experiment, we observed that LLMs excel at identifying mediators when
the treatments and outcomes are given. This observation could be particularly relevant in medical
settings, where understanding the mediators can provide insights into causal mechanisms through
which a treatment affects a patient’s outcome.

For hypothesizing mediators, we adopted an iterative approach rather than a global (all-at-once)
strategy. This interactive process allows the language model to progressively refine its predictions,
reducing the search space for subsequent variables. As observed in our empirical results (see
Appendix C.7), LLMs underperform when tasked with making multiple simultaneous predictions
across different mediators. The iterative approach aligns more closely with human reasoning, as
evidenced by Chain-of-Thought (CoT) (Wei et al., 2022) strategies, where sequential decision-making
enhances accuracy.

For unordered mediator evaluation, the model is prompted iteratively with mediators presented in
random order, and the final semantic similarity is averaged across all predictions. In contrast, ordered
mediator evaluation ranks the mediators using the Mediation Influence Score (MIS), prompting
the model in both ascending and descending orders of significance. We introduce the metric ∆,
presenting the difference in performance when mediators are iteratively presented to the LLM in
ascending and descending orders of significance defined by the MIS. Given that some datasets only
contain a single mediator, we selected the Asia, Child, Insurance, and Alarm datasets, as they offer a
wider range of mediators, ranging from 1 to 10 for the Alarm dataset.

Results. The results of this experiment are in Table 3. Results with variances are provided in
Appendix C.1. In a highly complex environment with more than one node missing and with open-
world search space, we observe that LLMs can still maintain their performance. Unlike the overall
consistent performance of GPT-4 across all of the datasets from the open-world setting, the model
showed superior performance in Insurance and Alarm datasets only. As the complexity of the dataset
increases, we observe larger differences in hypothesizing the mediators according to the MIS order.
Positive ∆ values suggest that prompting the LLM based on the MIS metric leads to higher semantic
similarity between the mediator hypotheses and the ground truth variables. In summary, we observe
that LLMs can be highly effective in iteratively hypothesizing multiple mediators in a DAG, and if
present, some domain knowledge about the significance of the mediator can boost the performance.
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Asia Child Insurance Alarm
Sim ∆ Sim ∆ Sim ∆ Sim ∆

Zephyr 0.61 −0.02 0.54 0.17 0.47 0.19 0.51 0.20
Mixtral 0.87 0.01 0.50 0.18 0.48 0.15 0.52 0.13
Neural 0.65 0.04 0.48 0.21 0.42 0.16 0.46 0.12
Llama 0.80 0.07 0.49 −0.05 0.44 0.21 0.51 0.07
Mistral 0.33 0.02 0.50 0.12 0.48 0.13 0.47 0.11
GPT-3.5 0.48 0.01 0.36 0.25 0.48 0.17 0.51 0.02
GPT-4 0.49 0.04 0.39 0.16 0.52 0.14 0.60 −0.07

Table 3: Sim: semantic similarity for iteratively hypothesizing the mediator nodes (Task 4) when
prompted with random order. ∆ measures the change in the prediction of each model when repeating
the experiment with ordering according to the MIS metric instead of randomly.

5.6 DISCUSSION AND LIMITATIONS

The results show that LLMs effectively hypothesize missing variables, particularly mediators, though
performance varies with task complexity. Simple tasks, like identifying missing variables from
controlled options, had high success rates. Without unified metrics, we focused on relative rankings
across models (Appendix C.2) and observed that no model, including GPT-4, consistently outper-
formed the others. We hypothesize that the differences in performance across domains may stem
from potential biases within the LLMs. These biases may stem from the models’ training data and,
therefore, its parametric memory, leading to disparities in how effectively the models handle different
tasks introduced in the benchmark. For instance, the models’ ability to hypothesize confounders
varied significantly across datasets. In some cases, such as the Sachs dataset (see Appendix B),
domain-specific knowledge gaps may have led to lower accuracy.

While this paper aimed to evaluate the ability of current LLMs to identify and hypothesize variables
in a partial causal graph, we attempted to improve the performance by fine-tuning the model and
few-shot prompting. However, given the limited size of the DAGs used, the resulting datasets were
small, leading to mixed results (see Appendix D.1). We suspect that while fine-tuning may help the
model to specialize, it can also reduce its ability to leverage the general parametric knowledge (Yang
et al., 2024). Future approaches can look at domain-specific fine-tuning.

Given the non-disclosed datasets of models, it is difficult to confirm with absolute certainty that
the datasets are not ingested by models during training. However, one of the datasets we used was
released recently (Abdulaal et al., 2024) after the announced cut-off date of models. Additionally, our
task itself is novel, including the way we verbalize the graphs and prompt the models. Additionally,
in Table 3 we further demonstrate that LLM-generated suggestions are non-verbatim, indicating they
generate novel hypotheses rather than retrieving memorized patterns. Finally, we did not observe any
direct reconstruction of graphs that would suggest memorization.

Our setup assumes known edges among missing variables to enable controlled evaluation, which
future work can extend. We envision this as a human-LLM collaboration under expert supervision,
as LLMs cannot automatically identify the most plausible answer or express confidence in their
responses (Zhou et al., 2024). Future work could explore better filtering mechanisms and improve
performance on source and sink nodes.

6 CONCLUSION

Most causality literature assumes that the necessary data has been collected, focusing on establishing
causal relationships between variables. However, generating hypotheses about which variables
to observe is typically done by human experts. LLMs, trained on large-scale datasets, can act as
expert proxies for this task. We introduce the novel task of using LLMs to hypothesize missing
variables in causal graphs, formalizing it with benchmarks that vary in difficulty and knowledge of
the ground truth graph. We evaluate models on identifying missing variables from in-context and
out-of-context distractors and hypothesizing variables in an open-world setting. We also explore an
iterative approach for populating graphs with up to 10 missing mediator nodes. Our results show
that LLMs are particularly effective at hypothesizing mediators, which are often less known than
treatments and outcomes. To support further research, we will release our benchmark and codebase.
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A IMPLEMENTATION

A.1 DATASETS

We use 7 real-world based datasets. These datasets span different domain knowledge topics. These
datasets have ground truth graphs along with their observational data. The simplest dataset used is the
cancer dataset with 4 edges and 5 node variables. In addition to the semi-synthetic datasets from the
BNLearn library, we also evaluate our approach on a realistic Alzheimer’s Disease dataset Abdulaal
et al. (2024), which was developed by five domain experts. Given that each expert created a different
causal graph, the final causal DAG comprises only those edges that were agreed upon by consensus.

Dataset V E Description

Cancer 5 4 Factors around lung cancer
Survey 6 6 Factors for choosing transportation
Asia 8 8 Factors affecting dysponea
Law 8 20 factors around legal system
Alzheimer 9 16 Factors around Alzheimer’s Disease
Child 20 25 Lung related illness for a child
Insurance 27 52 Factors affecting car accident insurance
Alarm 37 46 Patient monitoring system

Table 4: Dataset description.

A.2 REPRODUCIBILITY

For reproducibility, we used temperature 0 and top-p value as 1 across all of the models. We
also mentioned the snapshot of the model used. We have also included the prompts and examples
below. Our code can be anonymously found here - https://anonymous.4open.science/
r/causal-llm-env-6C8E/README.md. The datasets are under CC BY-SA 3.0 which allows
us to freely modify the datasets for benchmarking. Our benchmark will be released under the CC
BY-SA License.

GPT-3.5 GPT-4 were accessed via API. Rest of the models were run on 1 A100 GPU. Since we used
off-the-shelf LLM, there was no training to be performed. Since many of the models were run by
API, it is difficult to calculate the entire compute, however, all of the experiments for each model
took ≈ 6 hours.

A.3 CONTROLLED VARIABLE IDENTIFICATION

For variable identification, we generate multiple choices that remain consistent across all missing
nodes and all of the datasets. The words were randomly chosen to be far enough from the nodes. The
options chosen were weather, book sales, and movie ratings. We wanted to make sure that the options
were not from one specific domain such that the LLM could do the process of elimination.

A.4 SEMANTIC SIMILARITY

Given the task of hypothesizing missing nodes in a partial graph G∗ in the absence of multiple-
choices, we evaluate the semantic similarity between the model’s predictions and the ground truth
node variable. We leverage an open model namely ’all-mpnet-base-v2’ to transform the textual
representations of the model’s predictions and the ground truth into high-dimensional vector space
embeddings. Post transforming textual representations into embeddings and normalizing them, we
calculate the cosine similarity. Scores closer to 1 indicate a high semantic similarity, suggesting the
model’s predictions align well with the ground truth. This metric gives a score of similarity without
the contextual knowledge of the causal graph. We perform our experiments to consider every node of
the ground truth as a missing node iteratively. For all the suggestions for a node variable, we calculate
the semantic similarity. The average similarity reported is the highest semantic similarity for each of
the variable suggestions.
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Algorithm 1 Evaluating Semantic Similarity for Hypothesized Missing Nodes

1: Input: Partial graph G∗, Ground truth node variables VGT, Language model LM =
’all-mpnet-base-v2’

2: Output: Average highest semantic similarity score
3: procedure SEMANTICSIMILARITY(G∗, VGT, LM )
4: Initialize similarityScores as an empty list
5: for each node vGT in v do
6: predictions← GeneratePredictions(G∗, LM )
7: Initialize nodeScores as an empty list
8: for each prediction p in predictions do
9: embeddingGT ← Embed(vGT, LM )

10: embeddingp ← Embed(p, LM )
11: Normalize embeddingGT and embeddingp
12: score← CosineSimilarity(embeddingGT, embeddingp)
13: Append score to nodeScores
14: end for
15: maxScore←Max(nodeScores)
16: Append maxScore to similarityScores
17: end for
18: averageScore← Average(similarityScores)
19: return averageScore
20: end procedure

Ground Truth: Smoking status
LLM Suggestions: Smoking Alcohol Consumption Exposure to Radiation Poor Diet Genetic Predisposition
Semantic similarity : 0.72 0.38 0.22 0.22 0.17

Ground Truth: Employee or self-employed
LLM Suggestions: Income Level Job Location Environmental Awareness Lifestyle Preferences Health Consciousness
Semantic similarity : 0.30 0.25 0.17 0.15 0.10

Ground Truth: Dyspnea laboured breathing
LLM Suggestions: Shortness of breath Chest Pain Coughing Fatigue Weight Loss
Semantic similarity : 0.57 0.41 0.36 0.29 0.11

Ground Truth: Montreal Cognitive Assessment score
LLM Suggestions: Cognitive Function Neurological Function Mental Health Status Risk of Alzheimer’s Disease Memory Performance
Semantic similarity : 0.60 0.47 0.38 0.36 0.16

Ground Truth: Grunting in infants
LLM Suggestions: Respiratory distress Asthma Pneumonia Pulmonary infection Bronchopulmonary dysplasia (BPD)
Semantic similarity : 0.22 0.18 0.17 0.11 0.01

Ground Truth: Driving history
LLM Suggestions: Previous accidents Distance driven daily Type of car insurance Frequency of car maintenance Location of parking
Semantic similarity : 0.55 0.42 0.27 0.26 0.18

Ground Truth: Heart rate blood pressure
LLM Suggestions: Pulse Rate Blood Pressure Respiratory Rate EKG Reading Blood Oxygen Level
Semantic similarity : 0.78 0.78 0.57 0.49 0.42

Table 5: Examples of model suggestions from and the corresponding semantic similarity score for a
missing node variable from each of the datasets.
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A.5 LLM-AS-JUDGE

To capture the domain knowledge of the expert that selects the most relevant causal variable, we
use LLM-as-Judge as a proxy expert. This also allows for evaluation based on contextual DAG
knowledge as well. Given the impressive results of GPT-4 in (Zheng et al., 2023), we use GPT-4 as a
judge for all of the experiments.

Algorithm 2 Evaluating Model Suggestions with LLM as Judge

1: Input: Partial graph G∗, Ground truth node variables VGT, Predictions P , Language model LLM
= GPT-4

2: Output: Average quality rating of model’s suggestions
3: procedure LLMASJUDGE(G∗, VGT, P , LLM)
4: Initialize qualityRatings as an empty list
5: for each node vGT in V do
6: suggestions← GenerateSuggestions(G∗, P , LLM)
7: bestSuggestion← SelectBestSuggestion(suggestions, vGT, LLM)
8: rating ← RateSuggestion(bestSuggestion, LLM)
9: Append rating to qualityRatings

10: end for
11: averageRating ← Average(qualityRatings)
12: return averageRating
13: end procedure
14: function GENERATESUGGESTIONS(G∗, P , LLM)
15: return A set of suggestions for missing nodes based on P
16: end function
17: function SELECTBESTSUGGESTION(suggestions, vGT,LLM)
18: Prompt LLM with G∗, vGT, and suggestions
19: return LLM’s choice of the best fitting suggestion
20: end function
21: function RATESUGGESTION(suggestion, LM )
22: Prompt LLM to rate suggestion on a scale of 1 to 10
23: return LLM’s rating
24: end function

Ground Truth: Education up to high school or university degree
Top ranked suggestion: Education level
Rating : 9.5

Ground Truth: Pollution
Top ranked suggestion: Smoking history
Rating : 2.0

Ground Truth: Bonchitis
Top ranked suggestion: smoking behavior
Rating : 2.0

Ground Truth: Lung XRay report
Top ranked suggestion: Lung Damage
Rating : 8.0

Ground Truth: Socioeconomic status
Top ranked suggestion: Driver’s lifestyle
Rating : 7.0

Table 6: Examples of model suggestions from and the corresponding LLM-as-judge score for a
missing node variable.

Shortcomings of LLM-as-judge. LLM-as-judge uses GPT-4 as a judge model which could be
biased towards some data. Since the training datasets are not public for this model, it would be hard

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Ground Truth: Dyspnea laboured breathing
LLM Suggestion: Shortness of breath

Semantic similarity to GT: 0.57
LLM-as-Judge score: 9.5

Table 7: Example comparing the semantic similarity and LLM-as-Judge metrics. Dyspnea is a
medical term for shortness of breath. In this example, the contextual information, beyond exact
matching, is better captured by LLM-as-Judge.

to judge how these biases might affect the final score. Hence for robust evaluation we also evaluate
using the semantic similarity.

A.6 ITERATIVELY HYPOTHESIZING IN OPEN WORLD

For each order, the algorithm prompts the LLM to generate mediator suggestions, selects the sugges-
tion with the highest semantic similarity to the context, and iteratively updates the partial graph with
these mediators. ∆, quantifies the impact of mediator ordering by comparing the average highest
semantic similarity scores obtained from both descending and ascending orders. This methodical
evaluation sheds light on how the sequence in which mediators are considered might affect the LLM’s
ability to generate contextually relevant and accurate predictions.

Algorithm 3 Random Order Mediator Hypothesis

1: Input: Partial graph G∗ (where G∗ = G −H), Treatment vt, Outcome vy , Number of mediators
H , Number of suggestions k

2: Output: Updated graph G∗ with selected mediators
3: procedure GENERATEMEDIATORSRANDOM(G∗, vt, vy, H, k)
4: for i← 1 to H do
5: suggestions← Generate k suggestions for vmi using PLLM(G∗)
6: Initialize highestSimilarity ← 0
7: Initialize selectedMediator ← null
8: for each suggestion in suggestions do
9: similarityScore← Calculate semantic similarity for suggestion

10: if similarityScore > highestSimilarity then
11: highestSimilarity ← similarityScore
12: selectedMediator ← suggestion
13: end if
14: end for
15: Update G∗ ← G∗ ∪ {selectedMediator}
16: end for
17: return G∗
18: end procedure
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Algorithm 4 Ordered Mediator Generation and Evaluation Based on MIS

1: Input: Partial graph G∗, Treatment vt, Outcome vy, Set of potential mediators M , Number of
suggestions k

2: Output: ∆ - measure of the influence of mediator ordering
3: procedure CALCULATEMIS(vt, vy,M )
4: Initialize MISList as an empty list
5: for each mediator vmi

in M do
6: Calculate NIE(vmi

) and NDE(vmi
)

7: MIS(vmi
)← NIE(vmi

)

NDE(vmi
)

8: Append MIS(vmi
) to MISList

9: end for
10: return MISList
11: end procedure
12: procedure GENERATEMEDIATORSORDERED(G∗, vt, vy,M, k)
13: MISList← CALCULATEMIS(vt, vy,M )
14: Sort M in descending order of MISList to get Mdesc
15: Sort M in ascending order of MISList to get Masc
16: averageDesc← GENERATEANDEVALUATE(G∗,Mdesc, k)
17: averageAsc← GENERATEANDEVALUATE(G∗,Masc, k)
18: ∆← |averageDesc−averageAsc|

averageDesc

19: return ∆
20: end procedure
21: function GENERATEANDEVALUATE(G∗,Morder, k)
22: Initialize similarityScores as an empty list
23: for each mediator vmi

in Morder do
24: Perform the same steps as in the refined random order mediator generation
25: (Generate k suggestions, select the most similar, update G∗)
26: Append the highest similarity score to similarityScores
27: end for
28: return Average of similarityScores
29: end function
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B CONFOUNDERS

Sachs Alarm1 Alarm2 Ins1 Ins2 Ins3 Ins4 Ins5 Ins6 Ins7

Zephyr 0.12 0.37 0.29 0.45 0.49 0.37 0.29 0.33 0.46 0.73
Mixtral 0.89 0.54 0.57 0.57 1.0 0.32 0.23 0.38 0.28 1.0
Neural 0.34 0.27 0.28 0.42 0.47 0.34 0.48 0.48 0.38 0.48
LLama 0.27 0.39 0.44 0.55 1.0 0.29 0.22 0.57 0.45 1.0
Mistral 0.23 0.62 0.46 0.58 1.0 0.28 0.28 0.28 0.28 1.0
GPT-3.5 0.34 0.39 0.48 0.48 1.0 0.58 0.20 0.48 0.47 1.0
GPT-4 0.91 0.49 0.44 0.62 0.39 0.58 0.44 0.58 0.52 1.0

Table 8: Semantic similarity

Sachs Alarm1 Alarm2 Ins1 Ins2 Ins3 Ins4 Ins5 Ins6 Ins7

Zephyr 0.10 0.40 0.30 0.45 0.60 0.40 0.40 0.30 0.70 0.80
Mixtral 0.95 0.70 1.0 0.75 1.0 0.80 0.20 0.20 0.20 1.0
Neural 0.30 0.60 0.30 1.0 0.60 0.30 0.80 0.30 0.40 0.60
LLama 0.20 0.50 0.44 0.40 1.0 0.50 0.20 0.70 0.45 1.0
Mistral 0.20 0.90 0.80 0.55 1.0 0.30 0.20 0.70 0.30 1.0
GPT-3.5 0.40 0.50 0.48 0.30 1.0 0.75 0.40 0.75 0.60 1.0
GPT-4 0.95 0.65 0.80 0.60 0.70 0.80 0.85 0.80 0.75 1.0

Table 9: LLM judge

Intubation

MinvolVentlung

Figure 6: Alarm 1
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Intubation

VentalvVentlung

Figure 7: Alarm 2

CarValue

ThisCarCostTheft

Figure 8: Insurance 1

Age

GoodStudentSocioEcon

Figure 9: Insurance 2

SocioEcon

MakeModelRiskAverse

Figure 10: Insurance 3

SocioEcon

VehicleYearRiskAverse

Figure 11: Insurance 4

SocioEcon

HomeBaseRiskAverse

Figure 12: Insurance 5
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SocioEcon

AntiTheftRiskAverse

Figure 13: Insurance 6

Age

SeniorTrainRiskAverse

Figure 14: Insurance 7

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C FURTHER RESULTS

C.1 VARIANCES

For brevity we didnt add variance in the main text, the following results have variances:

Cancer Survey Asia Alzheimers Child Insurance Alarm Avg

Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J Sim LLM-J

Zephyr 0.36
±0.04

0.61
±0.06

0.34
±0.07

0.60
±0.05

0.45
±0.05

0.66
±0.04

0.35
±0.03

0.75
±0.03

0.51
±0.02

0.70
±0.04

0.45
±0.04

0.44
±0.05

0.46
±0.03

0.69
±0.02

0.42
±0.04

0.63
±0.04

Mixtral 0.41
±0.03

0.66
±0.04

0.39
±0.05

0.66
±0.06

0.66
±0.02

0.75
±0.03

0.31
±0.04

0.77
±0.02

0.53
±0.03

0.77
±0.02

0.46
±0.03

0.56
±0.04

0.50
±0.03

0.72
±0.06

0.46
±0.03

0.70
±0.05

Neural 0.38
±0.02

0.77
±0.05

0.43
±0.02

0.55
±0.03

0.53
±0.03

0.55
±0.04

0.44
±0.05

0.71
±0.03

0.48
±0.04

0.70
±0.03

0.47
±0.04

0.43
±0.05

0.47
±0.02

0.67
±0.03

0.45
±0.03

0.63
±0.04

Llama 0.40
±0.03

0.48
±0.05

0.40
±0.04

0.54
±0.05

0.53
±0.03

0.58
±0.06

0.45
±0.05

0.61
±0.03

0.48
±0.04

0.63
±0.03

0.42
±0.01

0.34
±0.05

0.46
±0.02

0.65
±0.03

0.45
±0.03

0.55
±0.04

Mistral 0.33
±0.01

0.67
±0.05

0.44
±0.05

0.65
±0.04

0.60
±0.03

0.73
±0.04

0.34
±0.04

0.76
±0.02

0.48
±0.04

0.68
±0.03

0.46
±0.03

0.47
±0.01

0.47
±0.03

0.71
±0.03

0.44
±0.03

0.67
±0.03

GPT-3.5 0.48
±0.03

0.74
±0.04

0.42
±0.00

0.79
±0.03

0.47
±0.04

0.61
±0.04

0.39
±0.05

1.00
±0.00

0.36
±0.05

0.60
±0.05

0.47
±0.07

0.52
±0.02

0.48
±0.04

0.73
±0.05

0.44
±0.04

0.71
±0.03

GPT-4 0.49
±0.02

0.90
±0.03

0.51
±0.06

0.67
±0.04

0.66
±0.02

0.76
±0.03

0.47
±0.02

0.98
±0.02

0.36
±0.05

0.53
±0.04

0.52
±0.03

0.56
±0.03

0.49
±0.06

0.75
±0.02

0.50
±0.04

0.73
±0.03

Table 10: Average semantic similarity and LLM-as-Judge metrics to evaluate LLMs in hypothesizing
the missing variable in a causal DAG.

C.2 ANALYSIS OF DIFFERENCE ACROSS TASKS

Since the metrics are different to evaluate each task, it is not meaningful or straightforward to compare
the raw results. It must also be noted that the tasks are not linear. To address this, we rank the model
performances across all models and datasets and present these rankings in Figure 15. This allows us
to compare the relative performance of the models across different tasks.

As we observe from the graph, GPT-4 model shows consistently top performances in Tasks 1-3,
however, it has one of the lowest performances for Task 4. GPT-3.5 shows a strong performance
in Task 2 and 4, ranking 2nd, but drops in Tasks 1 and 3. We observe that Zephyr, Neural and
Mistral show consistently average performances. These observations motivate the significance of
the tasks proposed in our benchmark. They highlight the variability in model performance across
different tasks and emphasize the need for comprehensive and diverse benchmarks to fully assess the
capabilities of these models.

Asia Child Insurance Alarm
Sim ∆ Sim ∆ Sim ∆ Sim ∆

Zephyr 0.61
±0.03

−0.02
±0.01

0.54
±0.04

0.17
±0.02

0.47
±0.05

0.19
±0.02

0.51
±0.05

0.20
±0.02

Mixtral 0.87
±0.02

0.01
±0.01

0.50
±0.05

0.18
±0.02

0.48
±0.05

0.15
±0.02

0.52
±0.05

0.13
±0.01

Neural 0.65
±0.06

0.04
±0.02

0.48
±0.05

0.21
±0.02

0.42
±0.04

0.16
±0.02

0.46
±0.04

0.12
±0.01

Llama 0.80
±0.08

0.07
±0.02

0.49
±0.05

−0.05
±0.01

0.44
±0.06

0.21
±0.02

0.51
±0.05

0.07
±0.01

Mistral 0.33
±0.03

0.02
±0.01

0.50
±0.05

0.12
±0.01

0.48
±0.05

0.13
±0.02

0.47
±0.04

0.11
±0.01

GPT-3.5 0.48
±0.05

0.01
±0.01

0.36
±0.04

0.25
±0.03

0.48
±0.05

0.17
±0.02

0.51
±0.05

0.02
±0.01

GPT-4 0.49
±0.07

0.04
±0.01

0.39
±0.05

0.16
±0.02

0.52
±0.05

0.14
±0.02

0.60
±0.06

−0.07
±0.01

Table 11: Sim: semantic similarity for iteratively hypothesizing the mediator nodes when prompted
with random order. ∆ measures the change in the prediction of each model according to the MIS.
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Figure 15: Average Rank of each model against the different tasks. We ranked the mode since the
metrics are different to evaluate each task averaged across datasets
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Figure 16: L: Plot of semantic similarity with an increasing number of suggestions for GPT-4 on
the Alarm dataset. R: Plot of semantic similarity against the total number of incoming and outgoing
edges for GPT-4 on the Alarm dataset.

C.3 BREAKING DOWN THE PERFORMANCE

C.4 EFFECT OF CONTEXT

We observed notable differences in the accuracy of LLM predictions for missing nodes within causal
graphs when context was provided versus when it was absent. Specifically, the inclusion of contextual
information about the causal graph significantly enhanced the LMs’ ability to generate accurate and
relevant predictions. In realistic settings, when this setup is being used by a scientist, they would
provide the context of the task along with the partial graph. When context was not provided, the
models often struggled to identify the most appropriate variables, leading to a decrease in prediction
accuracy, especially for smaller models. Unsurprisingly, providing context was more important for
smaller graphs than larger graphs. LLMs were able to understand the context of the graph via multiple
other nodes in the graph for larger graphs.

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

In-Context 0.75 1.00 0.67 1.00 0.68 0.88 0.85 0.90 0.96 0.96
Out-of-Context 0.00 0.25 0.33 0.33 0.53 0.61 0.58 0.58 0.60 0.57
Open world Hypothesis 0.39 0.41 0.40 0.39 0.63 0.66 0.49 0.50 0.44 0.46

Table 12: Model-Mixtral to evaluate the effect of context given in the prompt.

C.5 USING EXPLANATIONS

While using LLMs for hypothesizing the missing nodes withing the causal graph for the open world
setting, introduced an additional question to prompt the model to provide explanations for each of
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their predictions. This was motivated by the fact that incorporating a rationale behind each prediction
might enhance the model’s semantic similarity. We present the results in the Table below: We
observe that evaluating semantic similarity with explanations leads to a decrease in performance as
compared to the earlier setting where the language model returned phrases. This is because semantic
similarity, as a metric, evaluates the closeness of the model’s predictions to the ground truth in a
high-dimensional vector space, focusing on the semantic content encapsulated within the embeddings.
It is a metric that leaves little room for interpretative flexibility, focusing strictly on the degree of
semantic congruence between the predicted and actual variables. The introduction of explanations,
while enriching the model’s outputs with contextual insights, did not translate into improved semantic
alignment with the ground truth.

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

Sim 0.49
±0.02

0.38
±0.07

0.51
±0.06

0.44
±0.10

0.66
±0.02

0.57
±0.09

0.52
±0.03

0.40
±0.07

0.49
±0.06

0.40
±0.06

LLM-Judge 0.90
±0.03

0.91
±0.02

0.67
±0.04

0.69
±0.02

0.76
±0.03

0.76
±0.04

0.56
±0.03

0.55
±0.03

0.75
±0.02

0.75
±0.02

Table 13: Model-GPT 4. Evaluating the effect of explanations on different metrics from Task 3.

Ambiguous predictions which semantically represent the same variable. An important linguis-
tic concern that could be missed by semantic similarity is ambiguous hypothesis by the LLM that
may have same semantics, which again breaks the semantic similarity metric. This further motivates
LLM-judge metric whose input is - the context of the causal graph, the partial causal graph, the
ground truth variable, and the model predictions. Given the rich context of the LLM-judge metric we
suspect it would be able to overcome the ambiguity. We prompted the model to justify its hypothesis
variables using explanations. We observe that evaluating semantic similarity with explanations leads
to a decrease in performance as compared to the earlier setting where the language model returned
just phrases. In Table 13 we observed a drop in performance for semantic similarity. In contrast, we
observe a similar or slight improvement in the LLM-judge metric when the explanation of the model
hypothesis is given.

C.6 CHAIN OF THOUGHT

In recent times, Chain-of-Thought prompting has gained popularity due to its impressive perfor-
mance in proving the quality of LLMs’ output Kojima et al. (2022) also in metadata-based causal
reasoning Vashishtha et al. (2023). We also incorporated COT prompting for our prompts. We
perform ablation studies in Table. We observe that COT particularly improves the performance of the
identification experiments.

Cancer Survey Asia Insurance Alarm
X ✓ X ✓ X ✓ X ✓ X ✓

In-Context 1.00 1.00 0.83 1.00 0.75 0.88 0.74 0.90 0.91 0.96
Out-of-Context 0.50 0.25 0.18 0.33 0.57 0.61 0.56 0.58 0.54 0.57

Table 14: Model-Mixtral to evaluate the effect of COT given in the prompt.

C.7 ITERATIVE MEDIATOR SEARCH VS ALL AT ONCE

For Task 4, we iteratively hypothesize the missing variables (mediators). Our choice was primarily
driven by the complexity of Task 4, which involves predicting multiple missing mediators, ranging
from 1 to 10. For a Task with 10 missing mediators, the model would have to predict 50 suggestions
at once. We initially hypothesized that LLMs might struggle with making multiple predictions across
different variables simultaneously. This was indeed reflected in our results and GPT-4 outputs from
Table X. The iterative approach allows the model’s prediction to narrow the search space, which
would not be possible in a non-iterative approach. This method is more aligned with the scientific
discovery process, where hypotheses are often refined iteratively based on new findings. Furthermore,
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our approach simulates a human-in-the-loop scenario, where the most plausible answer is selected
and used to guide the next prediction.

Asia Child Insurance Alarm

Non-iterative 0.42 +- 0.07 0.33 +- 0.06 0.45 +- 0.09 0.54 +- 0.05
Iterative 0.49 +- 0.05 0.39 +-0.03 0.52 +- 0.02 0.60 +- 0.04

C.8 RESULTS ON NEUROPATHIC DATASET

We added a new dataset, the neuropathic pain dataset Tu et al. (2019), which is not part of common
LLM training corpora as one needs to use a python script to download it. The dataset consists of 221
nodes and 770 edges, but for feasibility, we selected a subset of the graph for evaluation. We ran
experiments for Task 1, Task 2, and Task 3.

Model Task 1 Task 2 Result Task 2 FNA Task 3 Sim Task 3 LLM-J

Mistral 0.64 0.51 0.32 0.38 0.53
Mixtral 0.83 0.55 0.34 0.45 0.69
Llama 0.78 0.49 0.27 0.44 0.63
GPT-3.5 0.82 0.53 0.31 0.47 0.72
GPT-4 0.94 0.68 0.24 0.51 0.76

Table 15: Comparison of model performances across tasks on Neuropathic dataset.

C.9 FINE GRAINED MODEL PERFORMANCE
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Figure 17: Detailed spider plots for Semantic similarity

D FINETUNING AND FEW-SHOT PROMPTING

D.1 FINETUNING

we aim to assess the LLM’s causal reasoning via prompting. Following are the reasons why fine-
tuning is not the most practical solution:
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Figure 18: Detailed spider plots for LLM-as-judge metric

• Pretrained models come with a wealth of general knowledge, which we aim to leverage.
Fine-tuning these models could potentially limit their ability to draw on this broad knowledge
base. We aim to understand the utility of pretrained models, as fine-tuning large models like
GPT-4 is not always feasible.

• The training dataset is too small for fine-tuning. Despite considering a large 52-edged graph:
Insurance, we would have just 27 datapoints or Alarm with 37 datapoint. Additionally:

1. Using the same graph as part of train and test would unfortunately lead to training data
leakage.

2. If we consider different graphs for train and test, there would exist a domain shift in the two
graphs and the model may be overfitted to the domain of the train graph.

However, to illustrate our hypothesis and alleviate the reviewer’s concern, we performed Supervised
Fine-Tuning using QLoRA on the Mistral-7b-Instruct model for hypothesizing in the open world
task. The train set here is all of the graphs minus the respective graph it was tested on. We tested on
Survey, Insurance and Alzheimers graphs. The model was trained to give one best-fit suggestion for
the missing variable.

Insurance Survey Alzheimers

No fine-tuning 0.42 +- 0.03 0.44 +- 0.05 0.34 +- 0.04
Fine-tuned 0.39 +- 0.04 0.39 +- 0.03 0.36 +- 0.07

Table 16: Finetuning results.

From the above results, it is evident that finetuning does not significantly improve over the prompting
results. This is because during training the LLM gets biased towards the domains of training datasets
which are contextually distant from the test domain, given the diversity of datasets chosen. One may
think that training might help the LLM to understand the task, but from prompt-based model output,
it was evident that the LLM can instruction-follow. In summary, we were able to extract the LLM
knowledge via prompting and domain-specific fine-tuning could be closely looked at in the future
works.

D.2 FEWSHOT PROMPTING

Similar to fine-tuning, few-shot learning’s success depends on balancing domain specificity and
generality. To avoid test examples becoming part of the shots, we have to use different domains as
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examples. Given the complexity of the Alarm graph, we decided to use them as a prior. We performed
experiments with 1-shot and 5-shots for the Mixtral 8x7b model. We would like to remind you that

Dataset 0-shot 1-shot 5-shot

Cancer 0.41 0.43 0.46
Survey 0.39 0.38 0.36
Asia 0.66 0.70 0.72
Alzheimer’s 0.31 0.33 0.34
Child 0.53 0.55 0.56
Insurance 0.46 0.42 0.45

Table 17: Fewshot prompting results.

Alarm was a medical dataset which means that providing more examples in a different domain might
hinder the model performance. Drop in performance when changing domain for in-context learning
has been discussed in Kwan et al. (2024) and Gupta et al. (2024).
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Figure 21: Asia DAG
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30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Age

BirthAsphyxia

CO2

CO2Report

CardiacMixing
ChestXray

Disease

DuctFlow

Grunting

GruntingReport

HypDistrib

HypoxiaInO2

LVH

LVHreport

LowerBodyO2
LungFlow

LungParench

RUQO2

Sick

XrayReport

Figure 23: Child DAG
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Figure 24: Insurance DAG
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F PROMPT TEMPLATE

Hello. You will be given a causal graph. The context of the graph [CONTEXT]. Please understand
the causal relationships between the variables - [VERBALISED DAG].

Prompt 1: Base prompt to describe the causal graph

Hello. You will be given a causal graph. The context of the graph is hypothetical patient monitoring
system in an intensive care unit (ICU). Please understand the causal relationships between the
variables - < anaphylaxis > causes < total peripheral resistance >. < arterial co2 > causes <
expelled co2 >. < arterial co2 > causes < catecholamine >. < catecholamine > causes < heart rate
>. < cardiac output > causes < blood pressure >. < disconnection > causes < breathing tube >.
< error cauter > causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen
saturation >. < error low output > causes < heart rate blood pressure >. < high concentration of
oxygen in the gas mixture > causes < pulmonary artery oxygen saturation >. < heart rate > causes <
heart rate blood pressure >. < heart rate > causes < heart rate displayed on ekg monitor >. < heart
rate > causes < oxygen saturation >. < heart rate > causes < cardiac output >. < hypovolemia
> causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >.
< insufficient anesthesia > causes < catecholamine >. < intubation > causes < lung ventilation
>. < intubation > causes < minute volume >. < intubation > causes < alveolar ventilation >.
< intubation > causes < shunt - normal and high >. < intubation > causes < breathing pressure
>. < kinked chest tube > causes < lung ventilation >. < kinked chest tube > causes < breathing
pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >. <
left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < the intensity level of a breathing machine
>. < sudden blockage in the pulmonary arteries > causes < shunt - normal and high >. < sudden
blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < pulmonary artery
oxygen saturation > causes < oxygen saturation >. < oxygen saturation > causes < catecholamine
>. < shunt - normal and high > causes < oxygen saturation >. < stroke volume > causes < cardiac
output >. < total peripheral resistance > causes < catecholamine >. < total peripheral resistance >
causes < blood pressure >. < alveolar ventilation > causes < arterial co2 >. < alveolar ventilation
> causes < pulmonary artery oxygen saturation >. < lung ventilation > causes < expelled co2 >.
< lung ventilation > causes < minute volume >. < lung ventilation > causes < alveolar ventilation
>. < the intensity level of a breathing machine > causes < breathing tube >. < breathing tube >
causes < lung ventilation >. < breathing tube > causes < breathing pressure >.

Prompt 2: An example of the base prompt for Alarm dataset. Each relationship is enclosed in pointed
brackets,<> followed by a full stop.
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < positive xray >. < individual
has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung
cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual
has either tuberculosis or lung cancer >.Based on your understanding and analytical skills, please
identify what the variable X could most likely be from the given multiple choices. It’s important to
note that you MUST select an option from the provided choices, as one of them is the correct answer.
The choices are: [ visited Asia; weather; book sales; movie rating ]. Please think step by step. Your
answer should be formatted as follows - Answer: X = choice. The choice must be one of the provided
options, and it should be formatted exactly as it appears in the choices. Generating your own options
is not allowed in this task.

Answer: X = visited Asia.My thought process is as follows:The causal graph suggests that X causes
tuberculosis, and tuberculosis is related to lung diseases. Visiting Asia is a possible explanation for
why an individual may have been exposed to tuberculosis, as the disease is more prevalent in some
Asian countries. Therefore, visited Asia is the most likely option for X.

Prompt 3: Out-of-context controlled variable identification, Ground truth variable: visited Asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < y >. < individual has either
tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer > causes <
individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung cancer
>. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has either
tuberculosis or lung cancer >. Based on your understanding and analytical skills, please identify
what the variable X could most likely be from the given multiple choices. It’s important to note that
you MUST select an option from the provided choices, as one of them is the correct answer. The
choices are: [ weather; book sales; movie rating; positive xray; visited Asia ]. Please think step by
step. Your answer should be formatted as follows - Answer: X = choice. The choice must be one of
the provided options, and it should be formatted exactly as it appears in the choices. Generating your
own options is not allowed in this task.

Answer: Answer: X = visited Asia. My thought process is as follows:1. The graph shows that X
causes tuberculosis, which suggests that X is a variable related to healthcare or medicine. 2. The
graph also shows that bronchitis causes dyspnoea-laboured breathing, which further supports the
idea that X is a variable related to healthcare or medicine. 3. The graph shows that individual
has either tuberculosis or lung cancer causes y, which suggests that X could be a variable related
to diagnosing or treating lung diseases. 4. The graph shows that smoking cigarettes causes lung
cancer and bronchitis, which suggests that X could be a variable related to smoking or lung health. 5.
Based on the above observations, it seems unlikely that X would be weather, book sales, or movie
rating.6. Visited Asia is a variable that could potentially relate to healthcare or medicine, particularly
if the patient has traveled to a region with a high prevalence of tuberculosis or other lung diseases.7.
Therefore, based on the information provided in the graph, it seems most likely that X = visited Asia.

Prompt 4: In-context controlled variable identification, Ground truth variable: visited asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < x > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured breathing
>. < individual has either tuberculosis or lung cancer > causes < positive xray >. < individual
has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < lung cancer >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < lung
cancer >. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has
either tuberculosis or lung cancer >. Using your causal knowledge, can you suggest what variable
X most likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions.
Finally, return your answer (without reasoning) in the following format: <Answer> [first suggestion,
second suggestion, third suggestion .. and so on] </Answer> No explanations, no reasoning, just
answers as a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer>
[A, B, C, D, E] </Answer>

Answer: <Answer> [HIV/AIDS, Chronic respiratory conditions, Pneumonia, Exposure to asbestos,
Silicosis] </Answer>
Reasons:
1. HIV/AIDS: It is known to weaken the immune system, making the individual more susceptible to
infections like tuberculosis.
2. Chronic respiratory conditions: These can make an individual more susceptible to lung diseases
like tuberculosis.
3. Pneumonia: It is a lung infection that can lead to serious conditions like tuberculosis if not treated
properly.
4. Exposure to asbestos: Long-term exposure to asbestos can lead to lung diseases including lung
cancer and tuberculosis.
5. Silicosis: It is a lung disease caused by inhalation of silica dust, leading to inflammation and
scarring of the lung tissue, making the individual more susceptible to tuberculosis.

Prompt 5: Hypothesizing missing variable in open world, Ground truth variable: Visted Asia
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Prompt: Hello. You will be given a causal graph. The context of the graph is different aspects of
a patient’s health related to lung diseases. Please understand the causal relationships between the
variables - < visited asia > causes < tuberculosis >. < bronchitis > causes < dyspnoea-laboured
breathing >. < individual has either tuberculosis or lung cancer > causes < positive xray >. <
individual has either tuberculosis or lung cancer > causes < dyspnoea-laboured breathing >. < x >
causes < individual has either tuberculosis or lung cancer >. < smoking cigarettes > causes < x
>. < smoking cigarettes > causes < bronchitis >. < tuberculosis > causes < individual has either
tuberculosis or lung cancer >. Using your causal knowledge, can you suggest what variable X most
likely? Give 5 suggestions for what variable X could be. Give reason for your suggestions. Finally,
return your answer (without reasoning) in the following format: <Answer> [first suggestion, second
suggestion, third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as
a list as described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C,
D, E] </Answer>

Answer: <Answer> [Lung Cancer, Chronic Obstructive Pulmonary Disease, Emphysema, Pneu-
monia, Asthma] </Answer>
Reasons:
1. Lung Cancer: Smoking is a major cause of lung cancer and lung cancer can lead to tuberculosis
or other lung diseases.
2. Chronic Obstructive Pulmonary Disease: Smoking is a leading cause of COPD and it can lead to
other lung diseases including tuberculosis and lung cancer.
3. Emphysema: It is a type of COPD often caused by smoking and can lead to other lung diseases.
4. Pneumonia: Smoking increases the risk of pneumonia and pneumonia can lead to other lung
diseases.
5. Asthma: Smoking can trigger asthma attacks and severe asthma can lead to other lung diseases.

Prompt 6: Hypothesizing missing variable in open world, Ground truth variable: Lung cancer
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. < x > causes < expelled
co2 >. < x > causes < x3 >. < x3 > causes < x2 >. < x1 > causes < blood pressure >. <
disconnection > causes < x7 >. < error cauter > causes < heart rate displayed on ekg monitor >.
< error cauter > causes < oxygen saturation >. < error low output > causes < heart rate blood
pressure >. < high concentration of oxygen in the gas mixture > causes < x9 >. < x2 > causes
< heart rate blood pressure >. < x2 > causes < heart rate displayed on ekg monitor >. < x2 >
causes < oxygen saturation >. < x2 > causes < x1 >. < hypovolemia > causes < left ventricular
end-diastolic volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia
> causes < x3 >. < intubation > causes < x5 >. < intubation > causes < minute volume >. <
intubation > causes < x4 >. < intubation > causes < shunt - normal and high >. < intubation >
causes < breathing pressure >. < kinked chest tube > causes < x5 >. < kinked chest tube > causes
< breathing pressure >. < left ventricular end-diastolic volume > causes < central venous pressure
>. < left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < x6 >. < sudden blockage in the pulmonary
arteries > causes < shunt - normal and high >. < sudden blockage in the pulmonary arteries >
causes < pulmonary artery pressure >. < x9 > causes < x8 >. < x8 > causes < x3 >. < shunt -
normal and high > causes < x8 >. < stroke volume > causes < x1 >. < total peripheral resistance
> causes < x3 >. < total peripheral resistance > causes < blood pressure >. < x4 > causes < x >.
< x4 > causes < x9 >. < x5 > causes < expelled co2 >. < x5 > causes < minute volume >. <
x5 > causes < x4 >. < x6 > causes < x7 >. < x7 > causes < x5 >. < x7 > causes < breathing
pressure >. Using your causal knowledge, can you suggest what variable X most likely? Give 5
suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
answer (without reasoning) in the following format: <Answer> [first suggestion, second suggestion,
third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as a list as
described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E]
</Answer>

Answer: <Answer> [ventilation rate, respiratory effort, airway resistance, lung compliance, alveolar
gas exchange] </Answer>
Reasons for the answer:
1. **Ventilation Rate**: The variable X causes both expelled CO2 and another variable (X3), which
indirectly influences heart rate, blood pressure, and oxygen saturation. The rate of ventilation directly
affects the amount of CO2 expelled from the body, making it a plausible candidate for X.
2. **Respiratory Effort**: This suggestion is based on the relationship between X and expelled CO2,
as well as the influence of X on another variable (X3) that affects cardiovascular and respiratory
parameters. Respiratory effort, which encompasses the work of breathing, could affect CO2 expulsion
and have downstream effects on the cardiovascular system.
3. **Airway Resistance**: Airway resistance could be a candidate for X because it directly influences
the amount of CO2 that can be expelled (a function of airflow) and could also affect other physiological
variables through its impact on ventilation efficiency.
4. **Lung Compliance**: Lung compliance, or the ease with which the lungs can expand, directly
affects ventilation and, consequently, the expulsion of CO2. It could also indirectly influence other
variables in the graph through its impact on gas exchange efficiency.
5. **Alveolar Gas Exchange**: This process directly determines the amount of CO2 expelled and
could influence the variable X3, affecting cardiovascular parameters. Efficient gas exchange is crucial
for maintaining appropriate oxygen and CO2 levels in the blood, impacting heart rate, blood pressure,
and oxygen saturation.
These suggestions are not explicitly mentioned in the input graph but are closely related to the
physiological processes and outcomes described. They offer plausible explanations for the causal
relationships involving the variable X, considering the context of patient monitoring in an ICU setting.

Prompt 7: Hypothesizing missing variable in open world #1 Ground truth variable: arterial CO2
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G ASSUMPTIONS

The causal sufficiency of G, by definition, implies that for every pair of variables within V, all
common causes are also included within V. Extending this assumption to G∗, we assume that the
partial graph inherits causal sufficiency for its given that all edges among these variables are preserved
as in G. This preservation ensures that the observed relationships within V ∗ are not confounded
by omitted common causes. Since the faithfulness of G ensures that the observed conditional
independencies among variables in V are accurately reflected by the causal structure represented
by E. By maintaining the same set of edges E in G∗ for the subset V ∗, we uphold the faithfulness
assumption within the partial graph.

H NDE AND NIE

Average Treatment Effect (ATE) quantifies the expected change in the outcome vy caused by the unit
change of the treatment vt. ATE is part of the causal do-calculus introduced by Pearl (2009). We
consider binary causal DAGs, i.e., each variable can either take 0 or 1 as values.

ATE = E[vy|do(vt = 1)]− E[vy|do(vt = 0)]

where the do(·) operator, represents an intervention. The E[vy|do(vt = 1)] represents the expected
value of the outcome variable vy when we intervene to set the treatment variable vt to 1 (i.e., apply
the treatment), and E[vy|do(vt = 0)] represents the expected value of vy when we set vt to 0 (i.e., do
not apply the treatment).

H.1 MEDIATION ANALYSIS

Mediation analysis is implemented to quantify the effect of a treatment on the outcome via a third
variable, the mediator. The total mediation effect can be decomposed into the Natural Direct Effect
(NDE) and the Natural Indirect Effect (NIE). The Natural Direct Effect (NDE) is the effect of the
treatment on the outcome variable when not mediated by the mediator variable. The Natural Indirect
Effect (NIE) is the effect of the treatment variable on the outcome variable when mediated by the
mediator variable.

NDE = E[vt=1, vm=0 − vt=0, vm=0]

Here, NDE is calculated by comparing the expected outcome when the treatment variable is set to
1 and the mediator is fixed at the level it would take under the control treatment vt = 0, with the
expected outcome when both the treatment and the mediator are set to the control level.

NIE = E[vt=0, vm=1 − vt=0, vm=0]

Here, NIE is calculated by comparing the expected outcome when the treatment variable is set to 1
and the mediator is allowed to change as it would under the treatment, with the expected outcome
when the treatment variable is set to 1 but the mediator is fixed at the control level.
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Prompt: Strictly follow the format mentioned otherwise you will be disqualified.’, ’ello. You will
be given a causal graph. The context of the graph is hypothetical patient monitoring system in
an intensive care unit (ICU) Please understand the causal relationships between the variables - <
anaphylaxis > causes < total peripheral resistance >. < Alveolar Gas Exchange > causes <
expelled co2 >. < Alveolar Gas Exchange > causes < x2 >. < x2 > causes < x1 >. < x >
causes < blood pressure >. < disconnection > causes < x6 >. < error cauter > causes < heart rate
displayed on ekg monitor >. < error cauter > causes < oxygen saturation >. < error low output >
causes < heart rate blood pressure >. < high concentration of oxygen in the gas mixture > causes
< x8 >. < x1 > causes < heart rate blood pressure >. < x1 > causes < heart rate displayed on
ekg monitor >. < x1 > causes < oxygen saturation >. < x1 > causes < x >. < hypovolemia >
causes < left ventricular end-diastolic volume >. < hypovolemia > causes < stroke volume >. <
insufficient anesthesia > causes < x2 >. < intubation > causes < x4 >. < intubation > causes
< minute volume >. < intubation > causes < x3 >. < intubation > causes < shunt - normal and
high >. < intubation > causes < breathing pressure >. < kinked chest tube > causes < x4 >.
< kinked chest tube > causes < breathing pressure >. < left ventricular end-diastolic volume >
causes < central venous pressure >. < left ventricular end-diastolic volume > causes < pulmonary
capillary wedge pressure >. < left ventricular failure > causes < previous medical history >. <
left ventricular failure > causes < left ventricular end-diastolic volume >. < left ventricular failure
> causes < stroke volume >. < the amount of time using a breathing machine > causes < x5 >.
< sudden blockage in the pulmonary arteries > causes < shunt - normal and high >. < sudden
blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < x8 > causes < x7 >.
< x7 > causes < x2 >. < shunt - normal and high > causes < x7 >. < stroke volume > causes
< x >. < total peripheral resistance > causes < x2 >. < total peripheral resistance > causes <
blood pressure >. < x3 > causes < Alveolar Gas Exchange >. < x3 > causes < x8 >. < x4 >
causes < expelled co2 >. < x4 > causes < minute volume >. < x4 > causes < x3 >. < x5 >
causes < x6 >. < x6 > causes < x4 >. < x6 > causes < breathing pressure >. Using your causal
knowledge, can you suggest what variable X most likely? Give 5 suggestions for what variable X
could be. Give reason for your suggestions. Finally, return your answer (without reasoning) in the
following format: <Answer> [first suggestion, second suggestion, third suggestion .. and so on]
</Answer> No explanations, no reasoning, just answers as a list as described earlier. For example, if
the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [cardiac output, heart function, blood flow, vascular resistance, cardiac cycle]
</Answer>
Reasons for the answer:
1. **Cardiac Output**: The variable X causes blood pressure and is caused by stroke volume. In
physiological terms, cardiac output is a primary factor influencing blood pressure, as it represents the
volume of blood the heart pumps per minute. Since stroke volume (the amount of blood pumped by
the left ventricle of the heart in one contraction) contributes to cardiac output, it’s logical to suggest
"cardiac output" as a potential identity for X.
2. **Heart Function**: Given that X is related to blood pressure and influenced by stroke volume,
it’s reasonable to infer that X pertains to the overall function of the heart. Heart function encompasses
various aspects of how the heart works, including pumping efficiency, which directly affects blood
pressure.
3. **Blood Flow**: Since X has a direct relationship with blood pressure and an indirect relationship
with factors affecting the heart’s pumping ability, "blood flow" could be a plausible suggestion. Blood
flow is crucial for maintaining blood pressure and is inherently linked to the heart’s ability to pump
blood effectively.
4. **Vascular Resistance**: X’s impact on blood pressure and its connection to total peripheral
resistance suggest that it might involve vascular resistance. Vascular resistance is the resistance that
must be overcome to push blood through the circulatory system and is a key determinant of blood
pressure.
5. **Cardiac Cycle**: The cardiac cycle involves all the events related to the flow of blood through
the heart during one complete heartbeat, including systole (contraction) and diastole (relaxation).
Given X’s influence on blood pressure and its relationship with stroke volume, considering the cardiac
cycle as a potential identity for X makes sense, as it encompasses the mechanisms affecting blood
pressure regulation.

Prompt 8: Hypothesizing missing variable in open world #2 Ground truth variable: cardiac output
41
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. << Alveolar Gas Exchange
> causes < expelled co2 >. < < Alveolar Gas Exchange > causes < x1 >. < x1 > causes < x >.
< Cardiac Output > causes < blood pressure >. < disconnection > causes < x5 >. < error cauter
> causes < heart rate displayed on ekg monitor >. < error cauter > causes < oxygen saturation >.
< error low output > causes < heart rate blood pressure >. < high concentration of oxygen in the
gas mixture > causes < x7 >. < x > causes < heart rate blood pressure >. < x > causes < heart
rate displayed on ekg monitor >. < x > causes < oxygen saturation >. < x > causes < Cardiac
Output >. < hypovolemia > causes < left ventricular end-diastolic volume >. < hypovolemia >
causes < stroke volume >. < insufficient anesthesia > causes < x1 >. < intubation > causes <
x3 >. < intubation > causes < minute volume >. < intubation > causes < x2 >. < intubation >
causes < shunt - normal and high >. < intubation > causes < breathing pressure >. < kinked chest
tube > causes < x3 >. < kinked chest tube > causes < breathing pressure >. < left ventricular
end-diastolic volume > causes < central venous pressure >. < left ventricular end-diastolic volume
> causes < pulmonary capillary wedge pressure >. < left ventricular failure > causes < previous
medical history >. < left ventricular failure > causes < left ventricular end-diastolic volume >. <
left ventricular failure > causes < stroke volume >. < the amount of time using a breathing machine
> causes < x4 >. < sudden blockage in the pulmonary arteries > causes < shunt - normal and high
>. < sudden blockage in the pulmonary arteries > causes < pulmonary artery pressure >. < x7
> causes < x6 >. < x6 > causes < x1 >. < shunt - normal and high > causes < x6 >. < stroke
volume > causes < Cardiac Output >. < total peripheral resistance > causes < x1 >. < total
peripheral resistance > causes < blood pressure >. < x2 > causes < < Alveolar Gas Exchange >.
< x2 > causes < x7 >. < x3 > causes < expelled co2 >. < x3 > causes < minute volume >. <
x3 > causes < x2 >. < x4 > causes < x5 >. < x5 > causes < x3 >. < x5 > causes < breathing
pressure > Using your causal knowledge, can you suggest what variable X most likely? Give 5
suggestions for what variable X could be. Give reason for your suggestions. Finally, return your
answer (without reasoning) in the following format: <Answer> [first suggestion, second suggestion,
third suggestion .. and so on] </Answer> No explanations, no reasoning, just answers as a list as
described earlier. For example, if the suggestions are A,B,C,D,E then - <Answer> [A, B, C, D, E]
</Answer>

Answer: <Answer> [patient anxiety level, patient consciousness level, patient pain level, patient
respiratory rate, patient skin temperature] </Answer>
Reasons for the answer:
1. **Patient Anxiety Level**: The variable X influences heart rate, blood pressure, oxygen satura-
tion, and cardiac output, which are all physiological parameters that can be affected by a patient’s
psychological state, such as anxiety. Anxiety can lead to increased heart rate and blood pressure,
changes in oxygen saturation, and alterations in cardiac output due to the body’s stress response.
2. **Patient Consciousness Level**: Consciousness level can impact heart rate, blood pressure,
and oxygen saturation due to the brain’s control over these vital signs. Changes in consciousness
level, such as becoming more alert or lapsing into unconsciousness, can significantly affect these
parameters, which are all influenced by variable X.
3. **Patient Pain Level**: Pain can cause physiological responses that include increased heart rate,
elevated blood pressure, changes in oxygen saturation due to hyperventilation or altered breathing
patterns, and potentially affect cardiac output as the body reacts to the stress of pain.
4. **Patient Respiratory Rate**: Given that X influences expelled CO2 and is affected by alveolar
gas exchange, it’s plausible that X could relate to the patient’s respiratory rate. Respiratory rate
directly impacts alveolar gas exchange, which in turn affects expelled CO2 levels, oxygen saturation,
and indirectly influences heart rate and blood pressure through changes in blood chemistry.
5. **Patient Skin Temperature**: While not directly related to the cardiovascular or respiratory
systems, skin temperature can be an indirect indicator of changes in these systems. For example,
changes in cardiac output and peripheral resistance can affect blood flow to the skin, thereby influenc-
ing skin temperature. Variable X’s impact on cardiac output and blood pressure suggests it could also
indirectly affect skin temperature.
These suggestions are based on the understanding that variable X has a broad impact on both
cardiovascular and respiratory parameters, indicating it could be a factor that influences or reflects
the overall physiological state of the patient.

Prompt 9: Hypothesizing missing variable in open world #3 Ground truth variable: Heart rate42
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Prompt: Hello. You will be given a causal graph. The context of the graph is hypothetical patient
monitoring system in an intensive care unit (ICU) Please understand the causal relationships between
the variables - < anaphylaxis > causes < total peripheral resistance >. << Alveolar Gas Exchange
> causes < expelled co2 >. < < Alveolar Gas Exchange > causes < x >. < x > causes <Patient
Respiratory Rate>. < Cardiac Output > causes < blood pressure >. < disconnection > causes
< x4 >. < error cauter > causes < heart rate displayed on ekg monitor >. < error cauter >
causes < oxygen saturation >. < error low output > causes < heart rate blood pressure >. <
high concentration of oxygen in the gas mixture > causes < x6 >. <Patient Respiratory Rate>
causes < heart rate blood pressure >. <Patient Respiratory Rate> causes < heart rate displayed on
ekg monitor >. <Patient Respiratory Rate> causes < oxygen saturation >. <Patient Respiratory
Rate> causes < Cardiac Output >. < hypovolemia > causes < left ventricular end-diastolic
volume >. < hypovolemia > causes < stroke volume >. < insufficient anesthesia > causes < x
>. < intubation > causes < x2 >. < intubation > causes < minute volume >. < intubation >
causes < x1 >. < intubation > causes < shunt - normal and high >. < intubation > causes <
breathing pressure >. < kinked chest tube > causes < x2 >. < kinked chest tube > causes <
breathing pressure >. < left ventricular end-diastolic volume > causes < central venous pressure >.
< left ventricular end-diastolic volume > causes < pulmonary capillary wedge pressure >. < left
ventricular failure > causes < previous medical history >. < left ventricular failure > causes < left
ventricular end-diastolic volume >. < left ventricular failure > causes < stroke volume >. < the
amount of time using a breathing machine > causes < x3 >. < sudden blockage in the pulmonary
arteries > causes < shunt - normal and high >. < sudden blockage in the pulmonary arteries >
causes < pulmonary artery pressure >. < x6 > causes < x5 >. < x5 > causes < x >. < shunt
- normal and high > causes < x5 >. < stroke volume > causes < Cardiac Output >. < total
peripheral resistance > causes < x >. < total peripheral resistance > causes < blood pressure >. <
x1 > causes < < Alveolar Gas Exchange >. < x2 > causes < x6 >. < x3 > causes < expelled
co2 >. < x3 > causes < minute volume >. < x3 > causes < x1 >. < x3 > causes < x4 >. <
x4 > causes < x3 >. < x4 > causes < breathing pressure > Using your causal knowledge, can
you suggest what variable X most likely? Give 5 suggestions for what variable X could be. Give
reason for your suggestions. Finally, return your answer (without reasoning) in the following format:
<Answer> [first suggestion, second suggestion, third suggestion .. and so on] </Answer> No
explanations, no reasoning, just answers as a list as described earlier. For example, if the suggestions
are A,B,C,D,E then - <Answer> [A, B, C, D, E] </Answer>

Answer: <Answer> [oxygen delivery, arterial blood gas, lung compliance, blood oxygen level,
respiratory efficiency] </Answer>
Reasons for the answer:
1. **Oxygen Delivery**: Given that "alveolar gas exchange" causes "X" and "X" in turn affects
"patient respiratory rate," it’s logical to infer that "X" could be related to how effectively oxygen is
being delivered throughout the body. Oxygen delivery is a critical aspect of respiratory function and
would directly impact respiratory rate.
2. **Arterial Blood Gas (ABG)**: ABG tests measure the levels of oxygen and carbon dioxide in the
blood and can indicate how well oxygen is being transported and carbon dioxide is being expelled,
which are functions influenced by alveolar gas exchange. Since "X" is caused by "alveolar gas
exchange" and affects "patient respiratory rate," it’s plausible that "X" could involve the measurement
or state of arterial blood gases.
3. **Lung Compliance**: This refers to the elasticity or flexibility of the lungs, which directly
impacts alveolar gas exchange and, consequently, the respiratory rate. Since "X" is linked to both
"alveolar gas exchange" and "patient respiratory rate," it could suggest a relationship with the
mechanical properties of the lung, such as compliance.
4. **Blood Oxygen Level**: This is a direct outcome of effective alveolar gas exchange and would
naturally influence the patient’s respiratory rate as the body adjusts to maintain adequate oxygenation.
Given the causal links mentioned, "X" could very well represent the level of oxygen present in the
blood.
5. **Respiratory Efficiency**: This encompasses how effectively the respiratory system can supply
oxygen to and remove carbon dioxide from the body. It’s influenced by alveolar gas exchange and
directly affects the respiratory rate, making it a plausible candidate for "X."
These suggestions are not explicitly mentioned in the input graph but are logically inferred based on
the described causal relationships and a basic understanding of respiratory physiology.

Prompt 10: Hypothesizing missing variable in open world #4 Ground truth variable: catecholamine.
This repeats until all of the mediators are hypothesized.
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