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Abstract
Feature selection is a crucial task in settings where
data is high-dimensional or acquiring the full set
of features is costly. Recent developments in
neural network-based embedded feature selection
show promising results across a wide range of ap-
plications. Concrete Autoencoders (CAEs), con-
sidered state-of-the-art in embedded feature selec-
tion, may struggle to achieve stable joint optimiza-
tion, hurting their training time and generalization.
In this work, we identify that this instability is
correlated with the CAE learning duplicate selec-
tions. To remedy this, we propose a simple and
effective improvement: Indirectly Parameterized
CAEs (IP-CAEs). IP-CAEs learn an embedding
and a mapping from it to the Gumbel-Softmax
distributions’ parameters. Despite being simple
to implement, IP-CAE exhibits significant and
consistent improvements over CAE in both gener-
alization and training time across several datasets
for reconstruction and classification. Unlike CAE,
IP-CAE effectively leverages non-linear relation-
ships and does not require retraining the jointly
optimized decoder. Furthermore, our approach
is, in principle, generalizable to Gumbel-Softmax
distributions beyond feature selection.

1. Introduction
Feature selection is a fundamental task in machine learn-
ing and statistics, enabling more parsimonious and inter-
pretable models. It is essential in several applications such
as bioinformatics e.g., gene subset selection, neuroscience
e.g., fMRI analysis, and fluid mechanics e.g., optimal sen-
sor placement. Moreover, feature selection is often used for
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regularization. Unfortunately, finding the optimal selection
is NP-hard (Amaldi & Kann, 1998).

Although a large body of work exists on feature selec-
tion (Cai et al., 2018), due to the success of deep net-
works, neural network-based embedded feature selection
has gained more interest (Balın et al., 2019; Yamada et al.,
2020; Lemhadri et al., 2021). Among those, Concrete Au-
toencoders (CAEs) (Balın et al., 2019), is an established
approach which allows for differentiable feature selection
using a layer consisting of stochastic Gumbel-Softmax dis-
tributed nodes (Maddison et al., 2017; Jang et al., 2017).

In this work, we identify a recurring instability issue of
CAEs (Figure 1, top) which leads to increased training time
and subpar performance. We then show that the instability
correlates with selection of redundant features (Figure 1,
bottom). To remedy this, we propose a simple modification
to indirectly parametrize the Gumbel-Softmax distributions
via a learnable embedding and transformation (Figure 2),
we refer to this alternative as Indirectly Parameterized CAEs
(IP-CAEs) and rigorously verify their empirical effective-
ness. We summarize this paper’s main contributions below.

• We identify training instability in CAE and show it
strongly correlates with redundant features (Figure 1).

• We introduce IP-CAE (Figure 2), a simple and effec-
tive way to alleviate the instability of vanilla CAE
(Figure 5a solid lines), and show it leads to unique
selections (Figure 5a dotted lines), improved accuracy
(Figure 5b) and training time (Table 3). We also study
the update rules of CAE and IP-CAE, showing the lat-
ter learns a transformation of gradients (Section 2.4).

• We propose and compare against Generalized Jensen-
Shannon Divergence (GJSD) regularization (Sec-
tion 2.5) , an explicit, probabilistic approach to mitigate
duplicate selections, and show while GJSD regulariza-
tion is effective, IP-CAE is superior (Tables 1 and 2).

• We demonstrate successful end-to-end training of CAE
architectures for both reconstruction (Table 1) and clas-
sification (Table 2) achieving state-of-the-art results on
multiple datasets.
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Figure 1: CAE Training Instability. For most datasets, the
CAE architecture exhibits a large spike in reconstruction
error that consistently correlates with the unique percentage
(definition 2.1).

• We study the various aspect of IP-CAE and specifically
show that it does not require additional hyperparameter
tuning and that its superior performance is insensitive
to the number of selected features (Figure 7) and the
size of indirect parametrization (Figure 4).

2. Method
In this section we describe the vanilla CAE, discuss its short-
comings and present our proposed improvements to CAE
training. We introduce a new way to indirectly parameterize
the Gumbel-Softmax distributions in CAE, which we call
IP. We further propose a baseline diversity-encouraging reg-
ularization method using the Generalized Jensen Shannon
Divergence (GJSD).

2.1. Concrete Autoencoders (CAE)

The CAE (Balın et al., 2019) architecture is competitive
with state-of-the-art methods in neural network-based em-
bedded feature selection. CAEs consist of two components:
a concrete selection layer that performs differentiable fea-
ture selection on the input features (encoder) and an arbitrary
neural network (decoder). A predictive network is used in
place of the decoder for classification or regression tasks.

The concrete selector layer consists of K independent
Gumbel-Softmax distributed variablesmj (Jang et al., 2017;
Maddison et al., 2017):

mj =
exp{(logαj + gj)/T}∑D

i=1 exp{(logαj,i + gj,i)/T}
, (1)

Concrete
selector

(a) Direct parametrization

Concrete
selector

Indirect parametrization 

(b) Indirect parametrization

Figure 2: Architecture. An overview of the CAE architec-
ture, showcasing Indirect Parametrization (IP). Instead of
directly learning α, we propose to learn an embedding ψ
and a transformation gϕ that output α.

where logαj ∈ RD for j ∈ 1, 2, . . . ,K are the distribu-
tions parameters (logits), gj ∈ RD are i.i.d. standard Gum-
bel distributed (Gumbel, 1954), and T ∈ R+ is a global
temperature that is annealed throughout the training.

The samples are multiplied with the input features
and passed through the decoder network. Using the
reparametrization trick, the parameters are learnable through
backpropagation from the decoder network’s output. By
forming a matrix whose rows contain {mj}kj=1 and denot-
ing it byM ∈ RK×D, we can express the complete subset
selection according to CAE as:

xS =Mx, (2)

where xS ∈ RK . Then, the selected features serve as the
input to an arbitrary neural network fθ the output of which
is used to calculate a loss. MSE and cross-entropy losses
are commonly used for reconstruction and classification
respectively.

Balın et al. (2019) propose exponential annealing from a
starting temperature T0 to a final temperature TB according
to the following annealing schedule which we also use:

T (b) = T0

(
TB
T0

) b
B

, (3)

where b ∈ N is the current epoch and B ∈ N is the total
number of epochs. The authors find that this schedule works
for a broad range of datasets and is not sensitive to the
specific start and end temperatures chosen.

As T → 0, the Gumbel-Softmax samples mj approach
one-hot vectors corresponding to single input features. At
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test time, we evaluate the decoder using discrete input
features selected according to argmaxj logαi,j , where
i ∈ {1, 2, . . . ,K} = [K].

2.2. Challenges of CAE

In principle, it is not guaranteed that the learned parameters
of the Gumbel-Softmax will correspond to distinct input
features at any given point during training. We quantify
the diversity of the Gumbel-Softmax parameters using the
Unique Percentage (UP).

Definition 2.1 (Unique Percentage). For a given set of
Gumbel-Softmax parameters (logits) logα ∈ RK×D:

UP(α) = 100 ·
|{argmaxj logαi,j : i ∈ [K]}|

K
, (4)

is the percentage of unique maximum parameter indices.
Note that D denotes the total number of features and K the
number of selected features.

We empirically demonstrate instability during training of
CAEs (Figure 1, top). Interestingly, our results show that
this instability strongly correlates with the unique percent-
age, consistently across tasks and datasets (Figure 1, bot-
tom).

Furthermore, we empirically establish three more short-
comings of CAEs: (i) a large number of training epochs is
required for CAE to converge to a local minimum, (ii) the
quality of these local minima sometimes exhibit a high vari-
ance, and (iii) an end-to-end optimization of a non-linear
decoder might incur additional instability, especially for
prediction tasks other than reconstruction.

In the next subsection we describe our proposed IP-CAE
which is later shown to alleviate the aforementioned short-
coming of vanilla CAE including instability, unique per-
centange, variance (Figure 5), training time (Table 3), and
non-linear decoder (Figure 6) leading to state-of-the-art
performance for feature selection for both reconstruction
(Table 1) and classification (Table 2) on all datasets consid-
ered.

2.3. Indirect Parametrization

We investigate parameterizing logα ∈ RK×D by trans-
forming an array of learnable parameters Ψ ∈ RK×P with
a network gϕ as follows:

logαi = gϕ(ψi), (5)

where logαi ∈ RD and ψi ∈ RP are the transposed ith
rows of logα and Ψ, respectively. In our experiments, we
let gϕ be a linear network that is shared across stochastic
nodes, i.e. ϕ = (W , b) and:

logαi =Wψi + b, i ∈ [K], (6)

whereW ∈ RD×P and b ∈ RD. This can be interpreted as
a feature embedding with embedding dimensionality P .

2.4. A Comparison Between CAE and IP-CAE

As the difference between CAE and IP-CAE is in how logα
is parameterized, we analyze the differences between the
methods by studying the following update rule based on dif-
ferent parameterizations: logα(t+1)

i ← logα
(t)
i − η∇L,

where L is the gradient of the loss with respect to logα
(t)
i .

CAE can be interpreted as a trivial case of IP, where logα
is directly parameterized by a learnable buffer Ψ ∈ RK×P

with P = D, such that logαi = ψi. In this case, the update
rule for logαi is:

logα
(t+1)
i ← ψi − η∇L (7)

where t is the current optimization step, η is the learning
rate, and ∇L ∈ RD is the gradient of the loss function L
with respect to logα

(t)
i = ψ

(t)
i = ψi.

For simplicity, we consider IP-CAE with P = D and with-
out the bias term, and thus have logαi = Wψi, with the
following update rule (detailed derivations in Appendix D):

logα
(t+1)
i ←Wψi − ηT i∇L (8)

T i =WW T +ψT
i (ψi − ηW

T∇L)I (9)

where ∇L is the gradient of the loss with respect to
logα

(t)
i =W (t)ψ

(t)
i =Wψi, and the step-dependent ma-

trix T i ∈ RD×D represents a learned transformation of the
gradients. The transform affects the gradients in two ways:
a linear transformation represented byWW T that is shared
for all i, and a scaling by ψT

i (ψi − ηW
T∇L) ∈ R, which

is the dot product between ψ(t)
i and ψ(t+1)

i . A geometric in-
terpretation of the dot product is ||ψ(t)

i ||2||ψ
(t+1)
i ||2 cos(θi)

with θi being the angle between the two vectors. Empirically,
we have found that the learned rescaling changes throughout
training, and our results suggest that these changes are ben-
eficial. Because of the interactions betweenW , ϕ, and ∇L,
the effect throughout training may be elaborate. We include
additional experiments exploring the update’s behavior in
Appendix C.

Thus, simply changing the parameterization of logαi from
ψi to Wψi significantly changes the update rule to trans-
form all gradients by WW T and scale specific gradients
by the dot product between the current and next step of
ψi. Clearly, IP-CAE is a generalization of CAE, as CAE
corresponds to the special case with a fixedW = I .

2.5. Generalized Jensen-Shannon Divergence

Since the aforementioned challenges of CAE (Section 2.2),
particularly its instability, is strongly correlated with re-
duced unique percentage (Figure 1), we propose a direct
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mechanism to encourage diversity of selected features by
using the GJSD as a regularization, which will serve as an
important baseline in our empirical study. We later show
its effectiveness in comparison to the vanilla CAE but IP
remains superior (Tables 1 and 2).

Definition 2.2 (Generalized Jensen–Shannon Div.). The
GJSD for K categorical distributions {pi}Ki=1, and weights
w is given by:

DGJS({pi}Ki=1) =

K∑
i=1

wiDKL

(
pi ||

K∑
j=1

wjpj

)
, (10)

where DKL denotes the Kullback–Leibler divergence.

GJSD has previously been employed to measure the diver-
sity among the mixture components (Kviman et al., 2022;
2023) and that can be utilized as a loss function (Englesson
& Azizpour, 2021; Hendrycks et al., 2019). As the goal is to
learn distinct Gumbel-Softmax distributions that converge
to unique features, maximizing the DGJS can help prevent
duplicate selections by encouraging diverse distributions.
While we are concerned with Gumbel-Softmax distributions,
they can be approximately treated as categoricals. We ex-
ploit this by calculating an approximate GJSD with the prob-
ability vectors S(logαi) of our Gumbel-Softmax distribu-
tions, where S(z) = exp {[z1, . . . , zK ]}/

∑K
i=1 exp {zi}

is the softmax function. We assume equal weights for the
mixture components, i.e. wi ≡ 1/K.

Using definition 2.2, we define our regularized loss function

Lλ(·, logα) = L(·)− λDGJS({S(logαi)}Ki=1), (11)

where λ > 0 is a parameter controlling the regularization
and L(·) is the non-regularized loss (e.g. MSE for recon-
struction and cross-entropy for classification).

3. Related Work
Feature selection methods are broadly categorized into three
paradigms: filter methods, wrapper methods, and embedded
methods (Guyon & Elisseeff, 2003). While filter meth-
ods treat each feature independently and do not account
for interactions between them, wrapper methods select fea-
tures based on a black-box model. Finally, embedded meth-
ods perform feature selection as part of the model, usually
through learning the feature selection throughout fitting the
model.

Next we describe recent state-of-the-art methods used for
neural network-based embedded feature selection.

Feature selection using STGs Yamada et al. (2020), sim-
ilarly to CAE, use stochastic nodes to sample features dur-
ing training to perform differentiable joint optimization of

feature selection and model. While CAE models the se-
lection using K categorical nodes in the concrete selector
layer, Stochastic Gaussian Gates (STGs) uses D Bernoulli
nodes, each for one input feature, where K denotes the
desired number of optimal features, and D denotes the to-
tal number of input features. The authors propose a novel
reparametrization for Bernoulli variables using thresholded
Gaussian variables to allow for differentiable learning. The
use of Bernoulli gates is closely related to the Bernoulli-
Gaussian model for linear regression with feature selection
and ℓ0 regularization.

LassoNet Lemhadri et al. (2021) extend the popular Lasso
(Tibshirani, 1996) method for regression. Although the clas-
sic Lasso has been efficient and useful for embedded feature
selection in linear models, it is challenging to generalize it to
neural network models (Cui & Wang, 2016). The LassoNet
architecture achieves this by introducing residual connec-
tions from the input layer to the output of the network and
applying an ℓ1 penalty term to that layer. The design princi-
ple is such that it allows for a feature to be selected by the
model if and only if it also gets selected by the residual layer.
The authors model this principle as an explicit constraint
in the optimization problem and propose a projected proxi-
mal gradient optimization algorithm to ensure the constraint
satisfiability during the process.

In Section 4 we demonstrate state-of-the-art performance of
IP-CAE compared to the methods listed above.

Other feature selection methods Deep Lasso
(Cherepanova et al., 2023) is another generalization
of the Lasso, different from LassoNet. Instead of penalizing
the weights directly, the authors suggest penalizing the
gradient and recovering the classic Lasso as a special case
of their method. Another approach is training sparse neural
networks where the sparse input layer naturally performs
feature selection (Louizos et al., 2018; Sokar et al., 2022).
Although not trivially extended to neural networks, sparse
priors formalize and extend the Lasso approach (Carvalho
et al., 2009; Ročková & George, 2018). Deep Knockoffs
(Romano et al., 2020) use deep generative models to
enhance knockoff machines (Barber & Candès, 2015), a
powerful method for statistical variable selection. Selecting
measurements in compressed sensing, an important
problem in medical imaging, has seen the development of
similar methods to those in feature selection (Bakker et al.,
2020; Huijben et al., 2019). Finally, instance-wise feature
selection extends the problem of global feature selection to
predict selections per sample, providing a hard, thresholded
explanation of the network’s prediction (Yoon et al., 2018;
Chen et al., 2018).

End-to-end learnable EEG channel selection Strypsteen
& Bertrand (2021) focus on a unified approach for select-
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Table 1: Reconstruction Error. Mean normalized Frobenius norm for the reconstruction task. The values are an average of
10 repetitions ± 1 standard deviation.

MODEL MNIST MNIST-
FASHION

ISOLET COIL-20 SMARTPHONE
HAR

MICE
PROTEIN

STG 2.42E-02 ±
2.70E-06

1.80E-02 ±
2.84E-06

7.00E-03 ±
1.96E-06

5.00E-03 ±
6.75E-06

4.00E-03 ±
3.04E-06

1.17E-02 ±
6.43E-05

LASSONET 1.98E-02 ±
9.02E-06

1.96E-02 ±
4.23E-06

7.40E-03 ±
4.25E-06

6.24E-03 ±
5.42E-06

4.01E-03 ±
1.29E-06

1.16E-02 ±
4.45E-05

CAE 1.48E-02 ±
1.31E-04

1.36E-02 ±
1.17E-04

5.42E-03 ±
6.25E-05

4.21E-03 ±
7.69E-05

3.03E-03 ±
6.45E-05

8.71E-03 ±
2.61E-04

GJSD 1.45E-02 ±
1.14E-04

1.23E-02 ±
9.26E-05

4.86E-03 ±
4.52E-05

2.80E-03 ±
2.85E-05

2.57E-03 ±
3.50E-05

8.23E-03 ±
2.99E-04

IP-CAE 1.36E-02 ±
5.35E-05

1.17E-02 ±
3.15E-05

4.38E-03 ±
1.28E-05

2.48E-03 ±
1.39E-05

2.03E-03 ±
2.75E-05

6.90E-03 ±
1.25E-04

Table 2: Classification Accuracy. Top-1 accuracy for the classification task. The values are an average of 10 repetitions ±
1 standard deviation.

Model MNIST MNIST-
Fashion

ISOLET COIL-20 Smartphone
HAR

Mice Protein

STG 92.29 ±0.30 80.85 ±0.27 84.95 ±0.31 96.80 ±0.25 88.80 ±0.08 68.24 ±1.11
LassoNet 90.06 ±0.33 78.28 ±0.36 84.33 ±0.28 89.37 ±0.47 92.44 ±0.11 77.12 ±0.80
CAE 83.10 ±1.23 73.19 ±0.82 75.82 ±2.31 80.70 ±2.93 82.72 ±0.80 63.10 ±6.51
GJSD 84.38 ±1.50 74.13 ±0.64 77.56 ±0.82 82.10 ±3.72 84.78 ±1.04 68.43 ±7.75
IP-CAE 94.07 ±0.37 82.68 ±0.80 91.85 ±0.55 97.92 ±0.57 93.71 ±0.62 94.26 ± 1.48

ing channels in electroencephalogram (EEG) recordings.
They employ a concrete layer for feature selection and pro-
pose a heuristic regularization to penalize duplicate channel
selections and show its effectiveness. We found that its per-
formance requires careful tuning of three hyperparameters.

Learning randomly perturbed structured predictors for
direct loss minimization Indelman & Hazan (2021) pro-
pose learning the variance of the Gumbel noise perturbation
in structured prediction. Although random perturbations are
useful, they may mask the underlying signal during learning.
By learning the variance of the perturbation noise, Indelman
& Hazan (2021) achieve superior performance to both fixed
and zero noise settings.

4. Experiments
In this section, we evaluate our proposed method on several
datasets. Table 4 in Appendix A provides an overview of
the datasets used. Across all experiments, we perform an
ablation of the standard CAE, only IP, only the GJSD term,
and both IP and the GJSD term. The hyperparameter P in
Ψ = RK×P controlling the embedding dimension of the
IP selector layer, is not tuned in our experiments. Instead,
we simply set P = D, where D is the number of features
for each dataset. The regularization strength hyperparam-
eter for GJSD, λ, was tuned in {0, 0.0005, 0.005, 0.05}.

Following CAE, we use a fixed learning rate of 0.001
with the Adam optimizer with moving-average coefficients
β = (0.9, 0.999) and no weight decay, for all experiments
and datasets. We train every model for 200 epochs, and
select the weights corresponding to the best validation loss
for test set evaluation. In all experiments, unless otherwise
specified, we use an MLP with one hidden layer of 200
nodes for the decoder network. For the hidden activation,
we use LeakyReLU with a slope of 0.2. For all experiments,
we perform 10 repetitions and report the mean quantity. Any
confidence intervals correspond to one standard deviation.

MNIST and MNIST-Fashion (LeCun et al., 1998; Xiao
et al., 2017) consist of 28× 28 greyscale images depicting
digits and clothing items respectively. The supervised clas-
sification task is to predict the item from the pixel values.

ISOLET (Fanty & Cole, 1990) consists of preprocessed
speech data of test subjects speaking all 52 letters of the
English alphabet. The supervised classification task is to
predict the spoken letter from the 617-dimensional speech
data.

COIL-20 (Nene et al., 1996) consists of 32× 32 greyscale
images depicting 20 items, photographed on a rotating
turntable at 5-degree increments (72 photos per item). The
supervised classification task is to identify the item given
the image.
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Figure 3: IP parametrizations. Validation results for CAE
compared against three parametrizations of the linear IP
weights on the ISOLET dataset.

Smartphone Dataset for Human Activity Recognition
(Anguita et al., 2013) consists of sensor data collected from
30 subjects performing 6 activities while wearing a smart-
phone. The classification task is to predict the action from
the sensor signals.

Mice Protein Expression (Higuera et al., 2015) consists
of protein expressions from two groups of mice; control
and trisomic mice. The supervised classification task is to
predict the label consisting of the group, stimulation, and
treatment of the mice. 7 proteins have missing values for
one or more mice and these values were imputed with the
average protein expression level of examples belonging to
the same class of mice, following the dataset authors.

Reconstruction Error We train end-to-end and report the
reconstruction error as the normalized Frobenius norm ∥X−
X̂∥F /D.

Classification Accuracy We train end-to-end and report the
classification in a supervised setting and report the top-1
accuracy.

4.1. Improved Training and Generalization with IP

Figure 5 shows a significant improvement in training stabil-
ity and convergence speed in both reconstruction and dis-
criminative tasks. The curves represent our improved model
(IP-CAE) with the original (CAE) across six common fea-
ture selection benchmarks. Each training was repeated for
10 random initializations, and the lines represent the mean
validation loss (Figure 5a) and accuracy (Figure 5b), with
one standard deviation indicated by the line width. Further-
more, IP-CAE converges to a lower validation error and
higher accuracy than the original CAE. We also observe a
significant speedup on all datasets (Table 3).

100 101 102 103
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5
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Re
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 e
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1e
-3

] IP-CAE
CAE

Figure 4: Varying P. Test set performance on ISOLET for
varying size of IP P . The mean reconstruction error with
CAE is included as a horizontal line.

Table 3: Speedup. The mean speedup of IP-CAE compared
to CAE, in terms of IP-CAE surpassing the performance of
CAE (on validation data) trained for 200 epochs.

DATASET RECON. ER-
ROR

ACCURACY

MNIST 3.00× 4.00×
MNIST-FASHION 3.38× 4.60×
ISOLET 3.83× 18.77×
COIL-20 4.15× 25.68×
SMARTPHONE HAR 4.15× 3.70×
MICE PROTEIN 2.53× 12.92×

While we do not tune P, we include an ablation of the setting
of P for one dataset, Isolet, in Figure 4. We conclude that
the IP is not sensitive to a specific setting of P so long as
it is sufficiently large, i.e. P ≈ D. We find that the bias
term in IP (Equation (6)) is redundant and does not affect
performance.

To verify that this effect applies in general and not just for a
specific setting of K, we vary K in {25, 50, 75, 100, 125}
on the ISOLET dataset. Figure 7 in Appendix B confirms
that the results are valid regardless of K.

As a lower bound on performance, we include a compari-
son with the proposed GJSD regularization method which
explicitly encourages unique selections. We find that such
explicit encouragement outperforms CAE, but is not as ef-
fective as IP.

4.2. Special Cases of IP-CAE

As addressed in Section 2.4, CAE is a special case of IP-
CAE withW = I and P = D. Two additional special cases
of IP-CAE that preserve the learning rate scaling properties
(Appendix D) in the update rule while offering even simpler
formulations are as follows:
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Figure 5: Training Comparison. Comparisons CAE and IP-CAE for (a) reconstruction error, (b) accuracy on the validation
data throughout training. For IP-CAE, we let P = D. The mean unique percentages (definition 2.1) is shown by the dotted
lines.

Single Scalar. The first alternative formulatesW asW =
wI , where w is a single learnable scalar parameter. This
approach simplifies the complexity ofW to a single degree
of freedom.

Diagonal Matrix. The second alternative representsW as
W = diag(w), with w being a vector of learnable parame-
ters.

Our empirical analysis, presented in Figure 3, contrasts
these two simplified forms of W with the full matrix ver-
sion and the standard CAE configuration. Both the scalar
and diagonal versions demonstrate enhancements over CAE
in stability and final performance. This improvement under-
scores the significance of the learning rate scaling property,
as maintained in these simpler forms.

Most notably, allowingW to be a full matrix results in the
most pronounced improvements in terms of training effi-
ciency. This observation strongly suggests that theWW T

term in the gradient transformation (Equation (9)) plays
a significant role in the model’s ability to learn complex
embeddings to represent features.

4.3. Hidden Layers

It is worth noting that the main promise of neural network-
based embedded feature selection is that it can be non-linear.
We observe that for the original CAE, training is unstable
with spikes in validation error, hindering a smooth conver-
gence to the optimal solution. The problem worsens for
decoders with multiple hidden layers. This is illustrated
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Figure 6: Hidden Layers. Results for varying decoder architectures on the ISOLET dataset, with and without IP. Three
architectures are considered; linear, one hidden layer with 200 nodes, and two hidden layers with 200 nodes each. Unlike
the original CAE, IP-CAE benefits significantly from additional decoder capacity. Boxes are quartiles and whiskers are
min-max.

in Figure 6, where we investigate this issue for a linear de-
coder, an MLP decoder with one hidden layer, and an MLP
decoder with two hidden layers. Our improved parameteri-
zation results in a smooth descent into a final validation loss
that is lower than for the original CAE regardless of decoder
complexity, and thus allows for the joint optimization of
feature selection and non-linear decoders.

4.4. Comparison with STG and LassoNet

For completeness, we compare the test performance of the
vanilla and IP-CAE with other baselines such as STG and
LassoNet, in both reconstruction and classification settings
in Tables 1 and 2. Unlike CAEs, both STG and LassoNet
cannot optimize for a specific number of selected features di-
rectly, instead, they require the hyperparameter λ, which de-
notes the strength of regularization, to be specified, which in
turn affects the number of selected features. LassoNet also
requires an additional hyperparameterM , which denotes the
hierarchy coefficient, however, following (Lemhadri et al.,
2021) we use M = 10 for all the datasets. We run extensive
ablations over the hyperparameter λ and choose the value
that returns 50 feature selections for all our datasets (with
the exception of MICE, where we have 10 feature selec-
tions). For STG and LassoNet, we use a single hidden layer
MLP with 200 dimensions and ReLU activation during fea-
ture selection. Later, we retrain a single hidden layer MLP
with 200 dimensions and ReLU from scratch to report the
test accuracy, for each dataset.

We used the official code repositories of STG and LassoNet
for all our experiments. For STG, during and after feature
selection, the networks were trained for 100 epochs for all

datasets. For LassoNet, during feature selection, we used the
default setting from the official repository to train the initial
dense network for 1000 epochs followed by 100 epochs
of training for each sparse network in the iterative process
(increasing λ). After feature selection, we again run 100
epochs of network training with the corresponding selected
features for all datasets.

For both CAE and IP-CAE, we refrain from retraining the
decoder, but instead directly evaluate it using the jointly
learned decoder. We chose this approach because it aligns
with the core principle of embedded feature selection, which
is to utilize features non-linearly and jointly optimize for
feature selection and the non-linear training objective.

We demonstrate that CAE falls behind STG and LassoNet
by a significant margin both for reconstruction and classifi-
cation. But IP-CAE significantly outperforms them in test
accuracy (Table 2) and reconstruction error (Table 1) on all
datasets. Additionally, being a stochastic method, CAE is
prone to high variance. This problem is reduced slightly in
IP-CAE on most datasets, as shown in Figure 5.

5. Discussion
In this paper, we addressed the practical challenges of train-
ing CAEs. We proposed IP-CAEs which implicitly alleviate
redundant features and instability. Our approach achieves
state-of-the-art reconstruction error and accuracy for all
datasets considered, up to 20 times faster than vanilla CAE.

While, in this paper, we establish the empirical effectiveness
of IP-CAE across a wide range of datasets and tasks, and
argue for it from the lens of implicit overparametrization,
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the remarkable results motivates the need for a more formal
study as a future direction.

With the goal of understanding IP-CAE’s success, we intro-
duced GJSD regularization, which forces unique selections.
This baseline significantly improves CAE in every dataset
and task, but falls behind IP, as well as LassoNet and STG.
This, interestingly, indicates that the effect of IP cannot
be solely attributed to removing duplicate features. IP and
GJSD are not exclusive and can be combined, but we found
that adding GJSD regularization to IP-CAE not to improve
results significantly.

Finally, the IP method we present is, in principle, gener-
alizable to Gumbel-Softmax distributions beyond feature
selection which is left for future work.

Impact Statement
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of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
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A. Experimental Details
In this appendix, we provide a detailed description of the
experimental setup.

A.1. Datasets

Table 4 provides an overview of all datasets used in experi-
ments, the type of data, number of samples N , features D,
selected features K, and classes C.

A.2. Clarification of hyperparameters

We use the same temperature annealing schedule as CAE,
and the same maximum temperature T0 = 10 and minimum
temperature TB = 0.01. We searched the regularization
strength hyperparameter of the GJSD term in {5.00E-04,
5.00E-03, 5.00E-02} for both reconstruction and classifica-
tion. The optimal settings found are listed in Table 5.

A.3. Code

The source code is available at https://github.com/
Alfred-N/IP-CAE.

We have taken considerable care to ensure the ease of repro-
ducibility of all our results. For each dataset, we have in-
cluded a configuration file named <dataset>/base.yaml
which contains the necessary hyperparameters to run CAE
exactly as we did in our paper for the reconstruction
task. To run with our proposed IP, simply specify the
--dim_ip optional argument when executing our training
script, which refers to the dimensionality of the IP vectors,
namely P . Example: python src/main_pl.py

--config=configs/ISOLET/base.yaml

--dim_ip=617. The setting of dim_ip (P ) used
throughout all our experiments with IP was configured to
match the feature dimensions of each dataset, D, which
can be found in Table 1 of the main report. Similarly, the
corresponding configs for the classification task can be
found as <dataset>/classification.yaml.

We log training metrics with WandB. To start tracking
without a WandB account, simply run src/main_pl.py

and select option (1)Private W&B dashboard, no

account required when prompted. Note that this re-
quires an internet connection. To run offline, select option
(4)Don’t visualize my results.

To further facilitate reproducibility, we include a script,
src/fs_datasets.py, for downloading all datasets used
in this paper, which includes functions that return the exact
train/test/validation splits that were used. The data will be
automatically downloaded into --data_root_dir when
running src/main_pl.py.

For all of our experiments that we repeated for 10 seeds, we

used fixed seeds {11, 22, 33, 44, 55, 66, 77, 88, 99, 1010}.
Thus, all results can be reproduced exactly and deterministi-
cally if specifying the (integer) argument --seed.

Finally, --IP_weights flag can be used to specify different
weight options of IP such as scalar, diag or shared.
Note that the general version of IP we describe in the main
paper refers to the shared option.

A.4. Data and preprocessing

For COIL-20 we use the version of the dataset provided by
(Li et al., 2017). For MNIST and Fashion-MNIST, we use
the versions provided in Torchvision. For the other datasets,
ISOLET, Smartphone HAR, and Mice protein we use the
version provided at UCI (Fanty & Cole, 1990; Anguita et al.,
2013; Higuera et al., 2015).

We identified a potential bug in the preprocessing of the
Mice Protein dataset used by CAE. They impute missing
values with a ”filling value” of −105 and then take column
averages of each protein expression and replace the filling
value. The expression levels are generally in the order of
magnitude of 100 to 101, which means the average is domi-
nated by the filling value rather than the signal. Additionally,
they overwrite the same array they use to calculate averages
on the fly instead of inputting the data in a new array.

We instead use the imputation method described by the
authors of the Mice Protein dataset (Higuera et al., 2015),
which means averaging missing protein expression values
with the average expression corresponding to that protein
for the same class of mice.

Additionally, CAE computes their min-max scaling based
on the statistics of the full dataset. We instead calculate the
min-max scaling statistics only on the training split and then
use them to scale the validation and test split accordingly.

A.5. Compute infrastructure

We used an external cluster with T4 and A40 GPUs. Each
model was trained on a single GPU.

B. Additional Experiments
In this section, we provide additional experiments that were
left out of the paper due to the space limit.

B.1. Extended training

We compare the convergence with an increased number of
epochs in the ISOLET dataset. We increase the number of
epochs to 1000 (from 200 in our other experiments). This
way, the annealing schedule of the temperature is stretched
over a longer period, which means a longer exploration
phase with high randomness.
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Table 4: Datasets. An overview of the datasets used. The number of samples N includes both training and test data. For
MNIST and MNIST-Fashion, the data used is a random subset of the full data.

NAME INPUT TYPE SAMPLES (N ) FEATURES (D) SELECTED (K) CLASSES (C)
MNIST GRAYSCALE IMAGE 10500 784 50 10
MNIST-FASHION GRAYSCALE IMAGE 10500 784 50 10
ISOLET SPEECH 7797 617 50 26
COIL-20 GRAYSCALE IMAGE 1440 1024 50 20
SMARTPHONE HAR SENSOR TIME SERIES 10299 561 50 6
MICE PROTEIN PROTEIN EXPRESSION 1080 77 10 8

Table 5: GJSD settings. Optimal settings of the GJSD
regularization strength hyperparameter λ using the original
CAE parametrization.

DATASET CLASSIFICATION RECONSTRUCTION
MNIST 5.00E-02 5.00E-02

MNIST-FASHION 5.00E-02 5.00E-02
SMARTPHONE HAR 5.00E-02 5.00E-03

COIL-20 5.00E-02 5.00E-02
ISOLET 5.00E-02 5.00E-03

MICE PROTEIN 5.00E-02 5.00E-03

Table 6: Extended Training. The mean test set perfor-
mance on ISOLET for CAE and IP-CAE trained for 200
and 1000 epochs. The mean is computed using ten repeti-
tions.

MODEL EPOCHS RECON. ERROR ACCURACY
CAE 200 0.067 75.8
CAE 1000 0.054 91.0
IP-CAE 200 0.054 91.9
IP-CAE 1000 0.053 91.4

As mentioned by the CAE authors: ”if the temperature is
held low, the concrete selector layer is not able to explore
different combinations of features and converges to a poor
local minimum”.

We find that this longer training drastically improves CAE,
which converges to higher accuracy, lower reconstruction er-
ror and higher unique percentage, see Table 6. However, IP-
CAE trained for 200 epochs still outperforms CAE trained
for 1000 epochs. We emphasize that this is for illustrative
purposes. Training for five times as many epochs is not an
efficient solution to CAEs’ undesirable training behavior.
Interestingly, we observe that CAE does not achieve 100%
unique selections for classification on the ISOLET dataset,
which seems to limit the resulting accuracy.

B.2. Number of selected features

B.3. Embedding dimensionality

Here, we provide additional experiments showcasing the
effect of the parameter P on the ISOLET dataset. As evi-

Table 7: Runtime. The average time in minutes of training
for 200 epochs, with and without IP.

DATASET CLASSIFICATION RECONSTR.
CAE IP-CAE CAE IP-CAE

MNIST 8.55 8.73 8.74 8.86
MNIST-FASHION 8.67 8.82 8.71 8.87

SMART. HAR 5.47 5.71 5.07 5.15
COIL-20 5.28 5.67 4.95 5.40
ISOLET 6.10 6.21 5.85 5.94

MICE PROTEIN 4.14 4.41 3.55 3.63

dent from the results, IP-CAE outperforms CAE even when
using a smaller number of parameters. We call this setting
underparameterized. Naturally, as the number of parameters
decreases further, the IP-CAE performs worse than the CAE
at a certain point. The training seems to improve with P ,
but not necessarily the end result if trained to convergence.

B.4. Learning rate warmup

We use a warmup phase with a linearly increasing learning
rate from 10−6 to 10−3 for the first {25, 50, 75, 100} epochs
out of 200. This reduces the spike in validation loss but leads
to worse results (Figure 9a). Our interpretation is that the
lower learning rate causes the model to learn less during the
critical early exploration phase, a phase that is critical to
finding optimal minima (Balın et al., 2019).

B.5. Weight decay

We consider weight decay with parameters
{10−4, 10−3, 10−2, 10−1}, all of which yield worse
results (Figure 9b). This is consistent with Bora et al.
(2019), where no weight decay is used.

B.6. Runtime

We report the average run time on a T40 GPU in Table 7.
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Figure 7: Varying K. Test set performance for (a) reconstruction and (b) classification while varying the number of features
selected K with and without IP on ISOLET.
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Figure 9: Conventional training modifications. An interesting question is whether the problems discussed in this work
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C. IP-CAE Updates
In this appendix, we include additional plots showing how components of the IP-CAE update change over time (Figure 10).
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Figure 10: IP-CAE Update. Components of the update rule related to (a) α, (b) ψ, and (c)W for each step throughout
training for classification on ISOLET. In (a), the value is compared to its equivalent in the vanilla CAE.

D. Update Rules for IP-CAE
In this appendix, we derive the update rules for IP-CAE.

Full Weight Matrix. With a fullW matrix, we have logα
(t+1)
i =W (t+1)ψ

(t+1)
i and:

W (t+1) ←W − η∇WL (12)

ψ
(t+1)
i ← ψi − η∇ψi

L (13)

Thus, to derive the update rule for logα(t+1)
i we need to first derive∇WL and∇ψi

L, which are the gradients of the loss
with respect toW and ψi, respectively. We have:

∇WL =

∇W 1,1
L . . . ∇W 1,D

L
...

∇WD,1
L . . . ∇WD,D

L

 (14)

=

(∇Wψi
L)T (∇W 1,1

Wψi)
T . . . (∇Wψi

L)T (∇W 1,D
Wψi)

T

...
(∇Wψi

L)T (∇WD,1
Wψi)

T . . . (∇Wψi
L)T (∇WD,D

Wψi)
T

 (15)

=

(∇Wψi
L)T1 ψi,1 . . . (∇Wψi

L)T1 ψi,D
...

(∇Wψi
L)TDψi,1 . . . (∇Wψi

L)TDψi,D

 (16)

= (∇Wψi
L)ψT

i (17)

The step between Equation (15) and Equation (16) becomes clearer by studying the gradient∇W j,k
Wψi:

(∇W j,k
Wψi)l = ∇W j,k

D∑
m=1

W l,mψi,m =

{
ψi,k, if j and l are the same
0, otherwise

(18)

Thus, the full gradient∇W j,k
Wψi ∈ RD is a vector with all zeros except in component j where it is ψi,k. Thus, the dot

product (∇Wψi
L)T (∇W j,k

Wψi)
T will only have a single non-zero term corresponding to (∇Wψi

L)jψi,k.
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Similarly, for∇ψi
L, we have:

∇ψi
L =

∇ψi,1
L

...
∇ψi,D

L

 (19)

=

(∇Wψi
L)T (∇ψi,1

Wψi)
T

...
(∇Wψi

L)T (∇ψi,D
Wψi)

T

 (20)

=

 (∇Wψi
L)T [W 1,1, . . . ,WD,1]

T

...
(∇Wψi

L)T [W 1,D, . . . ,WD,D]T

 (21)

=W T (∇Wψi
L) (22)

Now, we can express the update rule:

logα
(t+1)
i =W (t+1)ψ

(t+1)
i (23)

= (W − η∇WL)(ψi − η∇ψi
L) (24)

= (W − η(∇Wψi
L)ψT

i )(ψi − ηW
T (∇Wψi

L)) (25)

=Wψi − ηWW T (∇Wψi
L) (26)

− η(∇Wψi
L)ψT

i ψi + η2(∇Wψi
L)ψT

i W
T (∇Wψi

L) (27)

=Wψi − η(WW T +ψT
i (ψi − ηW

T (∇Wψi
L))I)(∇Wψi

L) (28)
=Wψi − ηT i∇Wψi

L (29)

which is the same as in Equation 9.

Scalar Weight. With a scalar weight w, we have logα
(t+1)
i = w(t+1)ψ

(t+1)
i and:

w(t+1) ← w − η∇wL (30)

ψ
(t+1)
i ← ψi − η∇ψi

L (31)

Thus, to derive the update rule for logα(t+1)
i we need to first derive∇wL and ∇ψi

L. We have:

∇wL = (∇wψi
L)T (∇wwψi) = (∇wψi

L)Tψi (32)

and:

∇ψi
L =

∇ψi,1
L

...
∇ψi,D

L

 (33)

=

(∇wψi
L)T (∇ψi,1

wψi)
T

...
(∇wψi

L)T (∇ψi,D
wψi)

T

 (34)

=

(∇wψi
L)T [w, 0, . . . , 0]T

...
(∇wψi

L)T [0, . . . , 0, w]T

 (35)

= w(∇wψi
L) (36)
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Now, we can express the update rule:

logα
(t+1)
i = w(t+1)ψ

(t+1)
i (37)

= (w − η∇wL)(ψi − η∇ψi
L) (38)

= (w − η(∇wψi
L)Tψi)(ψi − ηw(∇wψi

L)) (39)

= wψi − ηw2(∇wψi
L) (40)

− η((∇wψi
L)Tψi)ψi + η2w((∇wψi

L)Tψi)(∇wψi
L) (41)

= wψi − η(w2 − ηw(∇wψi
L)Tψi)(∇wψi

L)− η((∇wψi
L)Tψi)ψi (42)

= wψi − ηw(w − η∇wL)(∇wψi
L)− η(∇wL)ψi (43)

= wψi − η(ww(t+1)(∇wψi
L) + (∇wL)ψi) (44)

Thus, with a scalar weight w the update rule takes on a slightly different form compared to the full matrix W . One
interpretation is that the standard gradients∇wψi

L are still scaled, but now by w(t)w(t+1) and furthermore, differently from
the full matrix case, the gradients are also translated by (∇wL)ψi.
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