
 

 

Abstract— An autonomous machine learning agent was 

trained using demonstration data to perform a dexterous 

manipulation task using the Dexterity Nexus (DexNex) upper-

limb robot testbed. Denoising Diffusion Probabilistic Models 

were used to clone the behavior of the teleoperator. The diffusion 

model was able to learn and perform the task, but its 

performance was worse than the teleoperation data it was 

trained from. The drop in performance is likely a combination 

of lack of demonstration data, limitations of the model, and slow 

trajectory execution. More demonstration data and more 

advanced trajectory execution methods are needed to realize the 

full potential of this technology.  

This is the first demonstration of an autonomous agent 

controlling the DexNex hardware setup, with a task output space 

of 21 joint positions. This work is the start of the HAND 

Engineering Research Center’s effort to develop autonomous 

capabilities for controlling high-degree-of-freedom 

manipulators. Characterizing its limitations will inform future 

design decisions for developing dexterous systems.  

I. INTRODUCTION 

This abstract presents our progress in developing an 
autonomous manipulation controller for an anthropomorphic 
upper-limb robotic system. The system, DexNex (Figure 1), 
was developed to be a testbed for experimenting with 
advanced hardware, software, controls, and algorithms for 
dexterity for the US National Science Foundation HAND 
Engineering Research Center [1]. 

Prior DexNex work has focused on maximizing 
teleoperation performance on several benchmarking tasks. 
One such task is the Box and Blocks task, where a single hand 
is used to grasp and move small cubes from one box to another, 
one at a time [2]. The task’s score is how many blocks one can 
transfer in a single minute. DexNex teleoperation performance 
on Box and Blocks is greatly lacking compared to direct 
manipulation by a human, however; an experienced 
teleoperator achieves a 15x lower score than typical humans 
manipulating directly [1]. Other work by Kuling et al. has 
shown a 13.3x reduction or as little as a 4.6x reduction for the 
Tactile Telerobot [3, 4], meaning that DexNex performed 
worse compared to other similar teleoperation systems. 

Research at the HAND Center is exploring two paths: (1) 
improving teleoperation performance via improved robot 
hands, advanced haptic interfaces, and shared autonomy; and 
(2) training autonomous dexterous manipulation policies 
based on teleoperation. This abstract describes our initial work 
along the latter path.  

In recent years much progress has been made in developing 
autonomous controllers for robotic systems. Action Chunking 
with Transformers uses a novel transformer-based algorithm 
to generate robot action sequences for controlling low-cost 

manipulators [5]. Google DeepMind’s RT-2 casts actions as 
natural language in a vision-language-action model to leverage 
existing internet datasets to generate robot trajectories [6]. 

Denoising Diffusion Probabilistic Models (DDPMs, or 
diffusion models) are generative models which are best known 
for generating high fidelity realistic images from input text 
prompts [7]. The DDPM technique was applied to generate 
robot trajectories by Chi et al. with great success [8]. They 
used diffusion models to autonomously control Franka Panda 
robots to perform 15 different in-simulation and in-real-world 
manipulation tasks (e.g., Multimodal Block Pushing, Push-T, 
Mug Flipping, and others). In their work, a different agent was 
trained for each task, using teleoperation demonstrations of the 
task. Their approach outperformed alternative state-of-the-art 
autonomous algorithms. 

Work by Ze et al. has advanced diffusion models for 
dexterous manipulation by incorporating 3d representations of 
objects using sparse point clouds [9]. 

The work described in this abstract adopts the diffusion 
model for behavior cloning of teleoperation demonstrations of 
the Box and Blocks task. Compared to many other tasks, the 
Box and Blocks task is visually complicated because at any 
given time, there are more than 40 similar blocks from which 
the model must target a viable grasping candidate.  

One reason diffusion models were used for this work was 
to see if the successes experienced by Chi et al. transfer to 
multi-fingered hands and more complex manipulation tasks 
[8]. In the future, this abstract’s results can be compared to 
alternative methods. 

II. SYSTEM OVERVIEW 

DexNex is a teleoperation system with an Operator and 
Avatar. The Operator is a human teleoperator outfitted with 
two HaptX DK2 gloves and a Varjo Aero virtual reality (VR) 
headset. 
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Figure 1. Dexterity Nexus (DexNex) testbed. Left: Operator station. Right: 

Avatar station. Only the upper limbs are tracked and mirrored. Feedback is 

provided to the user visually and haptically. 

 
 



 

 

The Avatar is an upper-limb humanoid robot. It consists of 
two robot arms (ABB GoFa), two robot hands (Shadow 
Dexterous Hand), ten robot fingertips (SynTouch BioTac SP) 
one robot neck (UFACTORY xArm6), and two 4k RGB 
cameras for vision (FLIR Blackfly). There are 66 joints and 58 
degrees of freedom (DoF), as each non-thumb digit of each 
Shadow hand has an unactuated distal joint.  

The Operator’s head, hand, and finger motions are tracked 
in Cartesian space and the Avatar’s corresponding robot arms 
track the Operator’s motion. The Avatar generates visual and 
tactile feedback which are displayed on the Operator’s VR 
headset and HaptX Gloves, respectively. For this work, 
however, the VR headset was not used. 

A. DexNex v0.1 

Prior teleoperation results used DexNex version 0.1, which 
focused on mimicking the Operator’s motions as closely as 
possible with the Avatar [1]. No assistive features were 
provided.  

B. DexNex v0.2 

The work in this abstract used DexNex version 0.2 which 
provides some low-level assistive features designed to 
overcome some of the difficulties of teleoperating with HaptX 
gloves. For example, HaptX glove thimbles make it difficult 
for the teleoperator to press their fingers together, so one 
assistive feature reduces the distance between the fingertips of 
the robot hands relative to those of the HaptX gloves. 

III. APPROACH 

A. Teleoperation 

Demonstrations were collected by teleoperating DexNex 
(Figure 2). To restrict the number of Avatar degrees of 
freedom and the number of sensory channels, the Avatar neck 
was locked into place and its left “eye” camera was used to 
provide an overhead view of the workspace. Additionally, a 
wrist camera was added to the forearm of the left Shadow 
Hand. The teleoperator had a direct view of the working area, 
along with a view of a monitor playing the video feed from the 
two cameras. The teleoperator was an experienced user of the 
system with over 50 hours of training. 

The Operator controlled the Avatar’s left arm and parts of 
the left hand. To reduce potential collisions, only the wrist, 
thumb, first finger, and middle finger were controlled while 
the ring finger and pinky were locked in a curled position.  

From this, the number of output joint position commands 
that the teleoperation software produced was 21 (six GoFa, 
two wrist, five thumb, four first finger, four middle finger). 

Over the course of collecting demonstrations, the 
Operator’s performance improved by adopting a better 
strategy for block separation and pickup. Depending on the 
distribution of blocks in the box, the teleoperator executed 
either a “scooping” strategy, which served to separate adjacent 
blocks as well as trap a single block between the robot fingers, 
or a “pecking” strategy, which was used to grasp already 
separated blocks in the shortest time. 

B. Data Processing 

Demonstrations were collected as ROS2 bags and post-
processed into Zarr datasets consisting of the joint positions, 
fingertip cartesian positions, one tactile value per fingertip, the 
left “eye” camera, the wrist camera, and joint position 
commands. The datapoints were time-synchronized, and saved 
at 100 ms intervals, resulting in 10 Hz data.  

Three datasets were produced through the demonstrations. 
The first dataset was obtained from a simpler block-transfer 
task where just one block was picked from one plate and 
placed on another. From this, 54,390 data-points were 
generated. 

The second dataset was obtained from the Box and Blocks 
task using only the overhead camera video, as it was unknown 
at the time whether a wrist camera was needed to improve 
performance. 101,846 data-points were generated. 

Once it was clear that performance would improve with an 
additional perspective from a wrist camera, one was added, 
and further Box and Blocks demonstrations were performed. 
The third dataset produced 160,487 datapoints.  

 
Figure 3. The Box and Blocks task setup. The overhead and wrist 

cameras provide the images. The manipulator is controlled by either a 

teleoperator during demonstrations or the diffusion model during 

evaluation. The Box and Blocks task has the participant transferring as 

many blocks, one at a time, from one bin to another in 60 seconds. 

 
 
 

 
Figure 2. An outline of the diffusion model. (a) Two images are input to 

the visual encoder. (b) The state (joint positions, haptics, and fingertip 

positions), are input to the UNet. (c) actions (waypoints of joint 
positions) are input to the UNet. (d) The images are passed through 

separate ResNet-18 visual encoders. (e) A UNet outputs the predicted 

noise. 

 
 
 



 

 

C. Machine Learning Policy 

Chi et al. open-sourced their software on GitHub which 
provides several diffusion models ready to be used [8]. Our 
work uses their hybrid architecture, consisting of both state 
and images as inputs (Figure 3). The input images are fed 
through a visual encoder, ResNet-18, to produce image 
features [10]. A noise level from one to 100 is then randomly 
generated. Noisy actions are calculated from the input actions 
and noise level. The image features, along with the state, noisy 
actions, and noise level are fed through a 1d CNN-based UNet 
[11] which outputs the predicted noise level present in the 
noisy actions. 

The image inputs were a single RGB overhead camera 
view, cropped and resized to 192x192 pixels, and the RGB 
wrist camera, resized to 192x192 pixels. 

Most default settings for the diffusion model were kept, 
with some customization to the training parameters. Details of 
the training parameters are provided in Table 1. No pre-trained 
network weights were used. 

When using the policy during real-time control, if the 
execution speed differs from the demonstration speed, there is 
a risk of experiencing “distributional shift”. That is, the input 
data may differ from what the diffusion model was trained on 
which may lead to suboptimal output trajectories. To avoid this 
issue, the policy is restricted to planning given the current state 
and image only (𝑛𝑏_𝑜𝑏𝑠_𝑠𝑡𝑒𝑝𝑠: 1).  

D. Co-Training 

Co-training is when a policy is trained on a combination of 
data relevant to the problem at hand along with other data. 
Prior work has shown that co-training improves the 
performance of agents when problem-specific data is limited, 
as is often the case when doing real-world manipulation tasks 
[12]. 

Co-training was implemented by assembling each training 
batch with samples from the three available datasets. Each 

batch consisted of 25% dataset one, 25% dataset two, and 50% 
dataset three. 

E. Trajectory Execution 

During evaluation, the diffusion policy outputs a 16-
waypoint-long trajectory. Each waypoint of the trajectory 
contains a list of joint positional commands, absent of 
timestamps. A trajectory timer then uses a timing parameter 
(dt) and the distance problem formula (𝑑 = 𝑟𝑡) to determine 
the average speed of each trajectory segment. If the speed is 
greater than a max velocity, then that segment is slowed down 
accordingly. The resultant dt is used to calculate each 
waypoint’s timestamp. By changing the dt value, trajectory 
execution can be sped up or slowed down. 

The final trajectory is sent to a ROS2-Control Joint 
Trajectory Controller which ingests the trajectory and outputs 
joint commands at the appropriate time. The joint trajectory 
controller also ensures that all joints reach the same waypoint 
at the same time, enforcing synchronization of joint positions 
between arm and hand. 

The joint trajectory controller is set to position-only mode 
which does a simple time-based linear interpolation between 
waypoints. Position mode produces continuous positions but 
discontinuous velocities (and further derivatives). 

The output joint positional commands are passed through 
a low-pass-filter per-joint to smooth the discontinuous 
velocities experienced when transitioning between line 
segments in the position-mode joint trajectory controller. 

The final joint position commands are passed to the 
respective hardware drivers for each component. 

IV. RESULTS 

Table 2 shows our preliminary results. The natural body 
results were computed from 8 human participants, each 
performing just one trial. The expert teleoperator did 10 trials 
of the standard Box and Blocks task from which the average 
time per block transfer and standard deviation were 
computed. 

The diffusion policy was co-trained for 195 epochs, 
where each epoch consisted of 1000 gradient descent steps, 
and checkpoints of the policy weights were saved every 15 
epochs. Because policy behavior can vary throughout 
training, three checkpoints, from epochs 75, 105, and 195, 
were tested and qualitatively evaluated. The best performing 
checkpoint was then tested over 10 trials with a slightly 
modified task end-condition: when the policy failed to grasp 
a block three times in a row, the trial was ended.  

Success was defined as any trial which ended with at-
least one block transferred. The diffusion policy’s success 

Table 2. Time per block-transfer in the Box and Blocks task for direct 

human manipulation (natural body), an expert teleoperator, and the 

diffusion policy. The diffusion policy is far slower due to several failure 
modes the policy exhibits, as well as slowed down trajectory execution. 

Success rate was determined by whether at-least 1 block was transferred 

before a trial ended. 

Box and Blocks 

Method 

Natural Body 
Expert 

Teleoperator 
Diffusion Policy 

Time Per Block (s) 0.9 (SD=0.13) 6.7 (SD=0.75) 60.2 (SD=32.6) 

Success Rate 100% 100% 80% 

 
 
 

Table 1. Model and training parameters for the diffusion model. For a full explanation of parameters, refer to [8]. D-Params and V-Params are listed in 

millions. V-Features: number of output values from the visual encoder. 

Model & 

Training 

Parameters 

Parameter Name 

Overhead 
Camera 

Resolution 

Wrist 
Camera 

Resolution 

State 
Input Length 

Horizon 
Nb 

Obs 
Steps 

D-
Params 

V-
Params 

V-
Features 

Batch 
Size 

D-
Iters 
Train 

D-
Iters Eval 

Value 3x192x192 3x192x192 35 16 1 276 22 160 64 100 100 

 
 
 



 

 

rate was 80%, while for natural body and expert teleoperator 
it was 100%.  

From only the successful trials, the diffusion policy’s 
average time per block transfer and standard deviation were 
computed. 

On average, the diffusion policy transfers one block 
every 60.2 seconds. This is 9x slower than the expert 
teleoperator that the policy was trained to imitate.  

Qualitatively, observations were made about the policy’s 
performance and how to improve it. Behavior varied 
significantly depending on which checkpoint was evaluated.  

Initial checkpoints were dangerous to execute as they 
produced non-smooth trajectories. 

Apart from that, earlier checkpoints showed the ability to 
pick high potential blocks but were worse at generating 
smooth trajectories and worse at successfully finishing 
grasps of blocks.  

Later checkpoints exhibited very smooth trajectories but 
were poor at the overall strategy of picking blocks. For each 
grasp attempt, it would target a location nearer to the center 
of the box (i.e., the average of all pick locations) and would 
attempt to pick non-existent blocks at that spot repeatedly.  

This is indicative of overfitting to the data, since the 
policy had low training loss but could not generalize to 
unseen states (i.e., states seen during evaluation). 

V. DISCUSSION  

This work presented the development of a first attempt at 
an autonomous diffusion policy tasked with replicating 
teleoperation behavior to accomplish the Box and Blocks task. 
The diffusion policy has a decent success rate and block-
transfer rate, but further work is needed to improve policy 
performance. The authors believe performance comparable 
and even surpassing teleoperation is possible. To realize this, 
advancements must be made to the system.  

One reason for the expert teleoperator vs. diffusion policy 
performance gap is due to the teleoperator’s demonstration 
instructions and endurance. During demonstrations, they were 
instructed to minimize mistakes by moving slowly and 
deliberately. In addition, they could easily move at full speed 
during their trials, but when tasked with collecting 
demonstrations for upwards of 60 minutes per session, they 
quickly became tired. So, the average movement speed in the 
training data is far slower than the expert teleoperator’s trials. 

Teleoperator fatigue may be addressed by training several 
users and swapping between them during demonstration data 
collection sessions.  

To improve policy intelligence, first, more varied 
demonstration data spanning a larger space of the policy’s 
distribution must be collected from which to learn desirable 
behavior and recovery behaviors. 

Second, different and larger neural net architectures can be 
experimented with. For instance, the default architecture does 
not have a persistent memory, only an optional history of 
previous observations. Incorporating a form of memory like a 

recurrent neural network may yield more intelligent behavior. 
For tasks with high visual complexity like Box and Blocks, 
more advanced visual encoders which preserve more spatial 
information may also be beneficial. 

Third, co-fine-tuning with open-source robotic datasets, 
such as the Open X-Embodiment, should be incorporated as it 
has been shown to improve task performance [6, 13]. 

Lastly, since performance is directly correlated with 
average hardware velocity, if we assume quasi-static dynamics 
then simply running faster will lead to better scores. A more 
advanced online trajectory generator (OTG) is needed for 
quicker trajectory execution. During run-time, the robot is 
non-stationary when it receives a new trajectory. To maximize 
velocity, a smooth transition is needed from old to new 
trajectories. This problem can be cast as a series of two-point 
boundary-value-problem (BVP) where we specify the start and 
end position and velocity. Potential solutions are cubic 
polynomial fitting, time-optimal-trajectory-generation, or 
using a BVP solver like MATLAB’s bvp4c [14]. 

As the HAND Engineering Research Center evolves, we 
are hopeful that this work and additional research will reveal 
insights into which hardware and software are most effective 
at autonomous dexterous manipulation. 
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