

Abstract— An autonomous machine learning agent was

trained using demonstration data to perform a dexterous

manipulation task using the Dexterity Nexus (DexNex) upper-

limb robot testbed. Denoising Diffusion Probabilistic Models

were used to clone the behavior of the teleoperator. The diffusion

model was able to learn and perform the task, but its

performance was worse than the teleoperation data it was

trained from. The drop in performance is likely a combination

of lack of demonstration data, limitations of the model, and slow

trajectory execution. More demonstration data and more

advanced trajectory execution methods are needed to realize the

full potential of this technology.

This is the first demonstration of an autonomous agent

controlling the DexNex hardware setup, with a task output space

of 21 joint positions. This work is the start of the HAND

Engineering Research Center’s effort to develop autonomous

capabilities for controlling high-degree-of-freedom

manipulators. Characterizing its limitations will inform future

design decisions for developing dexterous systems.

I. INTRODUCTION

This abstract presents our progress in developing an
autonomous manipulation controller for an anthropomorphic
upper-limb robotic system. The system, DexNex (Figure 1),
was developed to be a testbed for experimenting with
advanced hardware, software, controls, and algorithms for
dexterity for the US National Science Foundation HAND
Engineering Research Center [1].

Prior DexNex work has focused on maximizing
teleoperation performance on several benchmarking tasks.
One such task is the Box and Blocks task, where a single hand
is used to grasp and move small cubes from one box to another,
one at a time [2]. The task’s score is how many blocks one can
transfer in a single minute. DexNex teleoperation performance
on Box and Blocks is greatly lacking compared to direct
manipulation by a human, however; an experienced
teleoperator achieves a 15x lower score than typical humans
manipulating directly [1]. Other work by Kuling et al. has
shown a 13.3x reduction or as little as a 4.6x reduction for the
Tactile Telerobot [3, 4], meaning that DexNex performed
worse compared to other similar teleoperation systems.

Research at the HAND Center is exploring two paths: (1)
improving teleoperation performance via improved robot
hands, advanced haptic interfaces, and shared autonomy; and
(2) training autonomous dexterous manipulation policies
based on teleoperation. This abstract describes our initial work
along the latter path.

In recent years much progress has been made in developing
autonomous controllers for robotic systems. Action Chunking
with Transformers uses a novel transformer-based algorithm
to generate robot action sequences for controlling low-cost

manipulators [5]. Google DeepMind’s RT-2 casts actions as
natural language in a vision-language-action model to leverage
existing internet datasets to generate robot trajectories [6].

Denoising Diffusion Probabilistic Models (DDPMs, or
diffusion models) are generative models which are best known
for generating high fidelity realistic images from input text
prompts [7]. The DDPM technique was applied to generate
robot trajectories by Chi et al. with great success [8]. They
used diffusion models to autonomously control Franka Panda
robots to perform 15 different in-simulation and in-real-world
manipulation tasks (e.g., Multimodal Block Pushing, Push-T,
Mug Flipping, and others). In their work, a different agent was
trained for each task, using teleoperation demonstrations of the
task. Their approach outperformed alternative state-of-the-art
autonomous algorithms.

Work by Ze et al. has advanced diffusion models for
dexterous manipulation by incorporating 3d representations of
objects using sparse point clouds [9].

The work described in this abstract adopts the diffusion
model for behavior cloning of teleoperation demonstrations of
the Box and Blocks task. Compared to many other tasks, the
Box and Blocks task is visually complicated because at any
given time, there are more than 40 similar blocks from which
the model must target a viable grasping candidate.

One reason diffusion models were used for this work was
to see if the successes experienced by Chi et al. transfer to
multi-fingered hands and more complex manipulation tasks
[8]. In the future, this abstract’s results can be compared to
alternative methods.

II. SYSTEM OVERVIEW

DexNex is a teleoperation system with an Operator and
Avatar. The Operator is a human teleoperator outfitted with
two HaptX DK2 gloves and a Varjo Aero virtual reality (VR)
headset.

Toward Autonomous Dexterous Manipulation using Diffusion
Policies with a Humanoid Robot

Toby Buckley, Kevin Lynch, J. Edward Colgate

Figure 1. Dexterity Nexus (DexNex) testbed. Left: Operator station. Right:

Avatar station. Only the upper limbs are tracked and mirrored. Feedback is

provided to the user visually and haptically.

The Avatar is an upper-limb humanoid robot. It consists of
two robot arms (ABB GoFa), two robot hands (Shadow
Dexterous Hand), ten robot fingertips (SynTouch BioTac SP)
one robot neck (UFACTORY xArm6), and two 4k RGB
cameras for vision (FLIR Blackfly). There are 66 joints and 58
degrees of freedom (DoF), as each non-thumb digit of each
Shadow hand has an unactuated distal joint.

The Operator’s head, hand, and finger motions are tracked
in Cartesian space and the Avatar’s corresponding robot arms
track the Operator’s motion. The Avatar generates visual and
tactile feedback which are displayed on the Operator’s VR
headset and HaptX Gloves, respectively. For this work,
however, the VR headset was not used.

A. DexNex v0.1

Prior teleoperation results used DexNex version 0.1, which
focused on mimicking the Operator’s motions as closely as
possible with the Avatar [1]. No assistive features were
provided.

B. DexNex v0.2

The work in this abstract used DexNex version 0.2 which
provides some low-level assistive features designed to
overcome some of the difficulties of teleoperating with HaptX
gloves. For example, HaptX glove thimbles make it difficult
for the teleoperator to press their fingers together, so one
assistive feature reduces the distance between the fingertips of
the robot hands relative to those of the HaptX gloves.

III. APPROACH

A. Teleoperation

Demonstrations were collected by teleoperating DexNex
(Figure 2). To restrict the number of Avatar degrees of
freedom and the number of sensory channels, the Avatar neck
was locked into place and its left “eye” camera was used to
provide an overhead view of the workspace. Additionally, a
wrist camera was added to the forearm of the left Shadow
Hand. The teleoperator had a direct view of the working area,
along with a view of a monitor playing the video feed from the
two cameras. The teleoperator was an experienced user of the
system with over 50 hours of training.

The Operator controlled the Avatar’s left arm and parts of
the left hand. To reduce potential collisions, only the wrist,
thumb, first finger, and middle finger were controlled while
the ring finger and pinky were locked in a curled position.

From this, the number of output joint position commands
that the teleoperation software produced was 21 (six GoFa,
two wrist, five thumb, four first finger, four middle finger).

Over the course of collecting demonstrations, the
Operator’s performance improved by adopting a better
strategy for block separation and pickup. Depending on the
distribution of blocks in the box, the teleoperator executed
either a “scooping” strategy, which served to separate adjacent
blocks as well as trap a single block between the robot fingers,
or a “pecking” strategy, which was used to grasp already
separated blocks in the shortest time.

B. Data Processing

Demonstrations were collected as ROS2 bags and post-
processed into Zarr datasets consisting of the joint positions,
fingertip cartesian positions, one tactile value per fingertip, the
left “eye” camera, the wrist camera, and joint position
commands. The datapoints were time-synchronized, and saved
at 100 ms intervals, resulting in 10 Hz data.

Three datasets were produced through the demonstrations.
The first dataset was obtained from a simpler block-transfer
task where just one block was picked from one plate and
placed on another. From this, 54,390 data-points were
generated.

The second dataset was obtained from the Box and Blocks
task using only the overhead camera video, as it was unknown
at the time whether a wrist camera was needed to improve
performance. 101,846 data-points were generated.

Once it was clear that performance would improve with an
additional perspective from a wrist camera, one was added,
and further Box and Blocks demonstrations were performed.
The third dataset produced 160,487 datapoints.

Figure 3. The Box and Blocks task setup. The overhead and wrist

cameras provide the images. The manipulator is controlled by either a

teleoperator during demonstrations or the diffusion model during

evaluation. The Box and Blocks task has the participant transferring as

many blocks, one at a time, from one bin to another in 60 seconds.

Figure 2. An outline of the diffusion model. (a) Two images are input to

the visual encoder. (b) The state (joint positions, haptics, and fingertip

positions), are input to the UNet. (c) actions (waypoints of joint
positions) are input to the UNet. (d) The images are passed through

separate ResNet-18 visual encoders. (e) A UNet outputs the predicted

noise.

C. Machine Learning Policy

Chi et al. open-sourced their software on GitHub which
provides several diffusion models ready to be used [8]. Our
work uses their hybrid architecture, consisting of both state
and images as inputs (Figure 3). The input images are fed
through a visual encoder, ResNet-18, to produce image
features [10]. A noise level from one to 100 is then randomly
generated. Noisy actions are calculated from the input actions
and noise level. The image features, along with the state, noisy
actions, and noise level are fed through a 1d CNN-based UNet
[11] which outputs the predicted noise level present in the
noisy actions.

The image inputs were a single RGB overhead camera
view, cropped and resized to 192x192 pixels, and the RGB
wrist camera, resized to 192x192 pixels.

Most default settings for the diffusion model were kept,
with some customization to the training parameters. Details of
the training parameters are provided in Table 1. No pre-trained
network weights were used.

When using the policy during real-time control, if the
execution speed differs from the demonstration speed, there is
a risk of experiencing “distributional shift”. That is, the input
data may differ from what the diffusion model was trained on
which may lead to suboptimal output trajectories. To avoid this
issue, the policy is restricted to planning given the current state
and image only (𝑛𝑏_𝑜𝑏𝑠_𝑠𝑡𝑒𝑝𝑠: 1).

D. Co-Training

Co-training is when a policy is trained on a combination of
data relevant to the problem at hand along with other data.
Prior work has shown that co-training improves the
performance of agents when problem-specific data is limited,
as is often the case when doing real-world manipulation tasks
[12].

Co-training was implemented by assembling each training
batch with samples from the three available datasets. Each

batch consisted of 25% dataset one, 25% dataset two, and 50%
dataset three.

E. Trajectory Execution

During evaluation, the diffusion policy outputs a 16-
waypoint-long trajectory. Each waypoint of the trajectory
contains a list of joint positional commands, absent of
timestamps. A trajectory timer then uses a timing parameter
(dt) and the distance problem formula (𝑑 = 𝑟𝑡) to determine
the average speed of each trajectory segment. If the speed is
greater than a max velocity, then that segment is slowed down
accordingly. The resultant dt is used to calculate each
waypoint’s timestamp. By changing the dt value, trajectory
execution can be sped up or slowed down.

The final trajectory is sent to a ROS2-Control Joint
Trajectory Controller which ingests the trajectory and outputs
joint commands at the appropriate time. The joint trajectory
controller also ensures that all joints reach the same waypoint
at the same time, enforcing synchronization of joint positions
between arm and hand.

The joint trajectory controller is set to position-only mode
which does a simple time-based linear interpolation between
waypoints. Position mode produces continuous positions but
discontinuous velocities (and further derivatives).

The output joint positional commands are passed through
a low-pass-filter per-joint to smooth the discontinuous
velocities experienced when transitioning between line
segments in the position-mode joint trajectory controller.

The final joint position commands are passed to the
respective hardware drivers for each component.

IV. RESULTS

Table 2 shows our preliminary results. The natural body
results were computed from 8 human participants, each
performing just one trial. The expert teleoperator did 10 trials
of the standard Box and Blocks task from which the average
time per block transfer and standard deviation were
computed.

The diffusion policy was co-trained for 195 epochs,
where each epoch consisted of 1000 gradient descent steps,
and checkpoints of the policy weights were saved every 15
epochs. Because policy behavior can vary throughout
training, three checkpoints, from epochs 75, 105, and 195,
were tested and qualitatively evaluated. The best performing
checkpoint was then tested over 10 trials with a slightly
modified task end-condition: when the policy failed to grasp
a block three times in a row, the trial was ended.

Success was defined as any trial which ended with at-
least one block transferred. The diffusion policy’s success

Table 2. Time per block-transfer in the Box and Blocks task for direct

human manipulation (natural body), an expert teleoperator, and the

diffusion policy. The diffusion policy is far slower due to several failure
modes the policy exhibits, as well as slowed down trajectory execution.

Success rate was determined by whether at-least 1 block was transferred

before a trial ended.

Box and Blocks

Method

Natural Body
Expert

Teleoperator
Diffusion Policy

Time Per Block (s) 0.9 (SD=0.13) 6.7 (SD=0.75) 60.2 (SD=32.6)

Success Rate 100% 100% 80%

Table 1. Model and training parameters for the diffusion model. For a full explanation of parameters, refer to [8]. D-Params and V-Params are listed in

millions. V-Features: number of output values from the visual encoder.

Model &

Training

Parameters

Parameter Name

Overhead
Camera

Resolution

Wrist
Camera

Resolution

State
Input Length

Horizon
Nb

Obs
Steps

D-
Params

V-
Params

V-
Features

Batch
Size

D-
Iters
Train

D-
Iters Eval

Value 3x192x192 3x192x192 35 16 1 276 22 160 64 100 100

rate was 80%, while for natural body and expert teleoperator
it was 100%.

From only the successful trials, the diffusion policy’s
average time per block transfer and standard deviation were
computed.

On average, the diffusion policy transfers one block
every 60.2 seconds. This is 9x slower than the expert
teleoperator that the policy was trained to imitate.

Qualitatively, observations were made about the policy’s
performance and how to improve it. Behavior varied
significantly depending on which checkpoint was evaluated.

Initial checkpoints were dangerous to execute as they
produced non-smooth trajectories.

Apart from that, earlier checkpoints showed the ability to
pick high potential blocks but were worse at generating
smooth trajectories and worse at successfully finishing
grasps of blocks.

Later checkpoints exhibited very smooth trajectories but
were poor at the overall strategy of picking blocks. For each
grasp attempt, it would target a location nearer to the center
of the box (i.e., the average of all pick locations) and would
attempt to pick non-existent blocks at that spot repeatedly.

This is indicative of overfitting to the data, since the
policy had low training loss but could not generalize to
unseen states (i.e., states seen during evaluation).

V. DISCUSSION

This work presented the development of a first attempt at
an autonomous diffusion policy tasked with replicating
teleoperation behavior to accomplish the Box and Blocks task.
The diffusion policy has a decent success rate and block-
transfer rate, but further work is needed to improve policy
performance. The authors believe performance comparable
and even surpassing teleoperation is possible. To realize this,
advancements must be made to the system.

One reason for the expert teleoperator vs. diffusion policy
performance gap is due to the teleoperator’s demonstration
instructions and endurance. During demonstrations, they were
instructed to minimize mistakes by moving slowly and
deliberately. In addition, they could easily move at full speed
during their trials, but when tasked with collecting
demonstrations for upwards of 60 minutes per session, they
quickly became tired. So, the average movement speed in the
training data is far slower than the expert teleoperator’s trials.

Teleoperator fatigue may be addressed by training several
users and swapping between them during demonstration data
collection sessions.

To improve policy intelligence, first, more varied
demonstration data spanning a larger space of the policy’s
distribution must be collected from which to learn desirable
behavior and recovery behaviors.

Second, different and larger neural net architectures can be
experimented with. For instance, the default architecture does
not have a persistent memory, only an optional history of
previous observations. Incorporating a form of memory like a

recurrent neural network may yield more intelligent behavior.
For tasks with high visual complexity like Box and Blocks,
more advanced visual encoders which preserve more spatial
information may also be beneficial.

Third, co-fine-tuning with open-source robotic datasets,
such as the Open X-Embodiment, should be incorporated as it
has been shown to improve task performance [6, 13].

Lastly, since performance is directly correlated with
average hardware velocity, if we assume quasi-static dynamics
then simply running faster will lead to better scores. A more
advanced online trajectory generator (OTG) is needed for
quicker trajectory execution. During run-time, the robot is
non-stationary when it receives a new trajectory. To maximize
velocity, a smooth transition is needed from old to new
trajectories. This problem can be cast as a series of two-point
boundary-value-problem (BVP) where we specify the start and
end position and velocity. Potential solutions are cubic
polynomial fitting, time-optimal-trajectory-generation, or
using a BVP solver like MATLAB’s bvp4c [14].

As the HAND Engineering Research Center evolves, we
are hopeful that this work and additional research will reveal
insights into which hardware and software are most effective
at autonomous dexterous manipulation.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation under Grant No. 2330040. The
authors thank Russ Tedrake, Adam Wei, and Davin Landry for
help and fruitful discussions.

REFERENCES

[1] Toby Buckley, J. Edward Colgate. "Dexterous Manipulation with a

Bi-Manual Anthropomorphic Teleoperation Robot", 3rd Workshop
Toward Robot Avatars, IROS 2024

[2] Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the

Box and Block Test of manual dexterity. The American journal of

occupational therapy. 1985 Jun 1;39(6):386-91.

[3] Irene A. Kuling, Kaj Gijsbertse, Bouke N. Krom, Kees J. van

Teeffelen, and Jan B. F. van Erp. “Haptic feedback in a teleoperated

box & blocks task,” in Ilana Nisky, Jess Hartcher-O’Brien, Micha ël
Wiertlewski, and Jeroen Smeets, editors, Haptics: Science,

Technology, Applications, pages 96–104, Cham, 2020. Springer

International Publishing

[4] Jeremy A. Fishel, Toni Oliver, Michael Eichermueller, Giuseppe

Barbieri, Ethan Fowler, Toivo Hartikainen, Luke Moss, and Rich

Walker. “Tactile telerobots for dull, dirty, dangerous, and inaccessible
tasks,” in 2020 IEEE International Conference on Robotics and

Automation (ICRA), pages 11305–11310, 2020.

[5] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn.

Learning fine-grained bi-manual manipulation with low-cost

hardware. RSS, 2023

[6] Brohan A, Brown N, Carbajal J, et al. RT-2: vision-language-action

models transfer web knowledge to robotic control. In: Proceedings of
The 7th Conference on Robot Learning. 2023. p. 2165–2183

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion

probabilistic models. In Advances in Neural Information Processing

Systems, Vol. 33. 6840–6851.

[8] Chi C, Xu Z, Feng S, et al. Diffusion policy: Visuomotor policy

learning via action diffusion. The International Journal of Robotics

Research. 2024;0(0). doi:10.1177/02783649241273668

[9] Ze, Yanjie & Zhang, Gu & Zhang, Kangning & Hu, Chenyuan &

Wang, Muhan & Xu, Huazhe. (2024). 3D Diffusion Policy:

Generalizable Visuomotor Policy Learning via Simple 3D
Representations. 10.15607/RSS.2024.XX.067.

[10] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June
2016; pp. 770–778.

[11] Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional

Networks for Biomedical Image Segmentation. In: Navab, N.,
Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing

and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015.

Lecture Notes in Computer Science(), vol 9351. Springer, Cham.
https://doi.org/10.1007/978-3-319-24574-4_28

[12] Wei, Adam, et al. "Empirical Analysis of Sim-and-Real Cotraining Of

Diffusion Policies For Planar Pushing from Pixels." arXiv preprint

arXiv:2503.22634 (2025).

[13] A. O’Neill et al., "Open X-Embodiment: Robotic Learning Datasets

and RT-X Models : Open X-Embodiment Collaboration0," 2024 IEEE

International Conference on Robotics and Automation (ICRA),
Yokohama, Japan, 2024, pp. 6892-6903, doi:

10.1109/ICRA57147.2024.10611477.

[14] Kunz, Tobias, and Mike Stilman. "Time-optimal trajectory generation

for path following with bounded acceleration and velocity." Robotics:

Science and Systems VIII (2012): 1-8.

https://doi.org/10.1007/978-3-319-24574-4_28

