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ABSTRACT

We propose a novel class of neural differential equation models called mean-
field continuous sequence predictors (MFPs) for efficiently generating continuous
sequences with potentially infinite-order complexity. To address complex inductive
biases in time-series data, we employ mean-field dynamics structured through
carefully designed graphons. By reframing continuous sequence prediction as
mean-field games, we utilize a fictitious play strategy integrated with gradient-
descent techniques. This approach exploits the stochastic maximum principle
to determine the Nash equilibrium of the system. Both empirical evidence and
theoretical analysis highlight the unique advantages of our framework, where
a collective of continuous predictors achieves highly accurate predictions and
consistently outperforms benchmark prior works.

1 INTRODUCTION

Modeling spatiotemporal processes is central to understanding and predicting the behavior of complex
systems that evolve across time and space. Recent work on neural differential equation models (Chen
et al., 2019; Tzen & Raginsky, 2019) has shown that such architectures can effectively capture
spatiotemporal dynamics in a wide range of applications, including generative modeling (Song et al.,
2021), quantitative finance (Cohen et al., 2023), and physics-informed learning (Iakovlev et al.,
2024). However, most of these approaches are formulated and evaluated under fixed, finitely sampled
time grids, and therefore provide only limited theoretical insight into the following question about
inherently continuous sequences: How can we systematically model continuous-time sequences as
the temporal discretization is refined and the effective number of events becomes very large? In this
work, we address this question by directly formulating the data dynamics in continuous time and then
studying their behavior in the regime of increasingly fine temporal granularity. To obtain a tractable
and theoretically grounded framework, we cast the prediction problem into the setting of mean-field
games (Lasry & Lions, 2007), which gives rise to an infinite-dimensional predictive decision-making
model that extends existing neural differential equation approaches (Tzen & Raginsky, 2019) to the
analysis of continuous-time sequences.

The mean-field principle, a core philosophy in various scientific domains including neuro-
science (Faugeras et al., 2009), statistical physics (Negele, 1982), and economics (Carmona, 2020;
Cardaliaguet & Lehalle, 2018), serves as a powerful tool to model and analyze a large number of
interacting agents, who behave in a manner that can be described as tragically rational within the
decentralized coalition to satisfy Nash equilibrium. In this state of the mean-field regime, a continuum
of infinitely many agents individually governs the dynamics of partially observed historical sequential
data and collectively interacts with the others to make optimal group decisions for the prediction
of future events. The foundational principle of this game-theoretic interpretation of the predictive
system can be stated as follows: We reconstruct the continuous-time sequence prediction problem
under the formal lens of mean-field games to gain powerful generalization capabilities in continuous
sequence modeling. Stemming from the principle, we offer two main contributions:

• We extend conventional neural differential equation models by introducing mean-field principles,
providing a new approach for modeling continuous sequences. This framework represents the
stochastic spatiotemporal dynamics of an infinite continuum of agents and is rooted in hypotheses
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Figure 1: (Left). The mean-field predictors are conditioned on a set of labeled past observations {un}n≤N=4 ∼
p(u). Each spatiotemporal dynamic is interconnected via the neural graphon Wα, which leverages inductive
biases tailored for continuous sequential data. (Right). The collective decisions of a coalition of mean-field
predictors are calibrated to approximate (black trajectory) the target future event interval.

from time series analysis (e.g., seasonality). We demonstrate that our proposed method surpasses
state-of-the-art benchmarks in continuous sequence prediction tasks including variants of state-space
models.

• We propose a gradient-based mean-field FBSDE approach that provides feasible computational
complexity for approximating Nash equilibria in mean-field games. Building on the concentration of
empirical measures and the propagation of chaos property in the mean-field regime, our theoretical
findings clarify the number of past observations on the generalization performance of the mean-field
system. We demonstrate that the coalition produces increasingly accurate and reliable predictions.

Problem Setup. Given past observations {yu} in the interval u ∈ O ⊂ T = [0, T ], the primary
objective of the continuous sequence prediction task is to accurately forecast future events {yt}
within the interval t ∈ T \ O. The continuous sequences {yu, yt} : [0, T ] → Rd are continuously
defined and share three notable properties: (1) Irregularity. The temporal granularity between
spatio-temporal states in sequential data varies. (2) Non-uniformity. The cardinality of sequences
exhibits stochastic and non-uniform behavior, fluctuating each time it is sampled from the dataset. (3)
Temporal scalability. The sequential data spans multiple time scales, encompassing both short-term
fluctuations and extended temporal ranges.

2 MEAN-FIELD CONTINUOUS SEQUENCE PREDICTORS

This section starts by introducing a stochastic differential equation model designed to depict infinite-
order continuous signals, incorporating graphon structures for feature interactions.

Definition 2.1. (Mean-field Graphon SDEs) For the Markovian feedback controlsα : T ×Rd×Θ→
Rd (i.e.,α := α(t, x; θ)) and continuous labels v ∼ p(u), we propose the Rd-valued controlled
stochastic differential equations called a mean-field graphon dynamics defined as follows:

dXαu (t) = ⟨Wα[νv(t)](u),ψ⟩(Xαu (t),α)dt+ b(t,Xαu (t),α)dt+ σtdW
u
t , Xαu (0) := yu, (1)

where a probability measure ν := {νv(t)}(v,t)∈O×T serves as a concise representation of the law of
dynamics, and yu ∼ p(u, y) denotes a continuous representation of past observations.

The mean-field dynamics presented in Definition 2.1 involves three terms on the right-hand side, with
an emphasis on important notions (A) mean-field predictors and (B) neural graphons.

(A) Mean-field Predictor. The proposed dynamical system incorporates two types of continuity
encoding: locality (i.e., t) and labeling (i.e., u). The state variable Xαu (t), termed a continuum of
predictors or mean-field predictors (MFPs), represent a continuous set of information flows, each
labeled by u ∼ p(u) and initialized from the past observation, Xαu (0) = yu ∼ p(u, y). For instance,
a continuum of predictors for the sequence of infinite i.i.d labels u∞ := {un ∼ p(u);n ≤ N →∞}
in the mean-field regime Xαu∞

(0) can be interpreted as being conditioned on the past observational
interval, i.e., the support of the label distribution p(u), with their future causal outcomes, producing
Xαu∞

(t) at future event interval being obtained from the dynamics in Eq (1).

The suggested model effectively handles continuous signals by ensuring both input and output are
processed continuously. Within this setting, the closed Markovian control process α(·; θ) ∈ A,
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parameterized by neural networks θ ∈ Θ, neural agents, controls the state dynamics Xαu∞
(t).

Fig 1 depicts illustrative examples of how the proposed mean-field predictors are conditioned
(left), propagated (mid), and utilized to produce future prediction (right). The overarching goal
is then to calibrate the trajectory of predictors by determining the optimal neural agent α∗ that
closely approximates the target future interval, e.g., Et[∥Eu∞Xα

∗

u∞
(t)− yt∥2E ] ≈ 0, where decision

aggregation w : O→ [0, 1] captures the collective behavior of mean-field predictors. Section 3 will
present a systematic algorithm to fulfill this objective.

(B) Neural Graphon. It is widely recognized in the literature that fundamental assumptions of
inductive biases, such as temporal decay, cycles, and seasonality are vital for effective time series
modeling. To incorporate these our mean-field system, we introduce a neural graphon, a graphon
structure parameterized with neural networks, capturing the inherent heterogeneity among predictors.

Definition 2.2. (Neural Graphon) A graphon is a set of symmetric integrable function W : O2 → R
equipped with L2-norm. For a probability measure µ defined on O × Rd with bounded second
moment, we define a measure-valued function Wα[µ](·) : O → Ma and a continuous symmetric
function ψα := ψ(y, x,α) := Hψ(α)Proj(y − x) such that the first term in right-hand side of
Eq (1) is defined as ⟨Wα[µ](u),ψα⟩(y,α) := Ev∼p(v),x∼µ[Wα(u, v)ψα(y, x)] ∈ Rd.

aPlease refer to Section A.2 for the deatils.

Exponential Graphon Cosinusoidal  Graphon

Figure 2: Visualization of Graphons.

For two tuples (x, u) ∼ νu⊗p(u) and (y, v) ∼ νv⊗p(v),
a symmetric function ψ estimates scaled relative dissim-
ilarity between spatial features x and y. The neural agent,
i.e., Hψ(α), then adjusts the importance of dissimilarity
by rescaling projected vectors, i.e.,Proj. Meanwhile, the
neural graphonW encodes a degree of interaction between
temporal variables u and v. Among the various graphon
designs available, we propose two structures informed by
inductive biases specific to continuous time series. Note
that the key distinction from conventional methods is that our approach directly models inductive
biases in the data space Rd, rather than in latent feature spaces, facilitated by the graphon structure.

Exponential Graphon. In the first graphon structure, we incorporate temporal decay (Che et al.,
2018) assumption on spatiotemporal variables, which suggests that the influence of the past event
decreases exponentially as time deviations increase. An example depicted in Fig 2 illustrates an
exponential graphon, highlighting that events occurring close in time often show strong interactions.
Here, the function i.e.,W1 : A → R+ determines the interaction magnitude. Subsequently, we
introduce an exponential graph that diminishes the influence of events that are temporally distant;
Wα(u, v) :=W1(α) exp(−T−1∆u) with ∆u := |u− v|.
Cosinusoidal Graphon. The second graphon is intended to highlight the continuous cyclic as-
sumption (Oreshkin et al., 2020), which characterizes the periodic aspects of time-series data. To
embody this assumption, we conduct an eigen-decomposition of the proposed graphon operator
on L2(O), employing sinusoidal eigen-functions (i.e., {ψl}) and different frequency modes for the
eigenvalues (i.e., {λl}), as suggested by Gao & Caines (2019); W = Id +

∑
k,l∈Z+

λlφl, where
{φl} ⊂ {Id,

√
2 cos 2πk,

√
2 sin 2πk} and {λl} ⊂ {a0, bk/2}. We utilize neural networks to pa-

rameterize the graphon operator, substituting the Fourier coefficients {Id, λl} with equivalent neural
networks, specifically W0,W1,l,W2,l : A→ R+. To illustrate different periodicities, we introduce
f(l) ∈ {1/2, 1/4, 1/8}l≤L, which denotes a pre-determined series of frequencies. Consequently, we
define a cosinusoidal graphon as follows:

Wα(u, v) =W0(α) +
∑

l∈{1,··· ,L}

W1,l(α) cos(·) +W2,l(α) sin(·). (2)

where (·) := 2πf(l)∆u/|O|. Note that we limit the summation to finite modes (i.e., L) for computa-
tional tractability. Fig 2 illustrates periodic interaction magnitudes for a predefined frequency setup.
Further details on the implementation and their analysis can be found in the Appendix.
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3 TRAINING MEAN-FIELD NEURAL NETWORKS

In the prior section, we introduced mean-field continuous sequence predictors based on SDEs that
incorporate spatio-temporal interactions. Given that the mean-field system in Eq (2.1) is characterized
as controlled SDEs with neural agents, we can define the objective function as a stochastic control
problem. More precisely, our main aim is to reduce the cost functional J formulated for training
neural agents for sequence prediction and to derive the value function V:

Definition 3.1. (Cost functional)a For the given neural graphon Wα, and fixed set of admissible
controls A, the cost functional is defined as follows:

V := inf
α∈A
J (να,α) = inf

α∈A
Eα,ν,t

[
∥Eu∼p(u)X

α
u (t)− yt∥2E +Gα

]
. (3)

where Gα := G(Xαu (T ),ν
α) represents the terminal cost at time t = T , and w : O → [0, 1] is a

decision aggregation function, satisfying
∫
w(u)du = 1.

aPlease refer to Section A.4 for the details on the definition.

To predict future values, mean-field predictors operate by generating a unified measure, specifically
referred to as a temporal marginal of predictors Eu∼p(u)X

α
u (t). Here, the expectation accounts for

the label u by amalgamating weighted outputs (i.e., w) from a range of predictors u ∼ p(u) :=
w#[Unif(O)](u)1, aiming to approximate the target continuous interval {yt}t∈T. Figure 1 (right)
presents a demonstration of the decision-making mechanism. In pursuit of producing target intervals,
neural agents are conditioned to extract the value function V , which describes the state where a
continuum of players unites to collaboratively forecast the most favorable future occurrences.

The difficulty in addressing this problem arises because the neural agent affects the population of
predictors να, which, in turn, persistently alters the individual state variables through interactions
facilitated by the neural graphon. In the literature, these types of problems are typically described
as (graphon) mean-field games (Lasry & Lions, 2007; Caines & Huang, 2021). In this study, we
propose a novel methodology to cast the continuous sequence prediction problem through the
lens of mean-field games. Our main aim is subsequently to identify the most suitable optimal control
α∗ that fosters the optimal response in the recursive interaction between V and να. In our analysis,
we explore the derivation of exact solutions (V,να∗

) from optimal control profiles over time, by
studying the subsequent system of PDEs within the mean-field regime:

Definition 3.2. (Forward-Backward PDE System). For the obtained optimal neural agent α∗, exact
solutions of the value function in Eq (3) can be obtained by solving the following system of PDEs:

∂tV(t, x) + σ2
t /2∆V(t, x) +H(t, x, ∂xV, νu(t),α∗) = 0,

∂tν
α∗

u (t)− σ2
t /2∆ν

α∗

u (t) +∇ ·
[(
bW (x, να

∗

u (t),α∗) + b(t, x,α∗)
)
να

∗

u (t)
]
= 0,

where ∆ and ∇· denotes Laplacian and divergence operators, respectively. The stochastic Hamilto-
nian system H is given by

H(t, xu, a, ν, α) := (bW (xu, ν, α) + b(t, xu, α)) · a + ∥Eu∼p(u)xu − yt∥2,

where bW (x, ν, α) := ⟨Wα[ν](u),ψ⟩(x, α) is the graphon interaction term in Definition 2.2.

A system of decoupled PDEs consists of the Hamilton-Jacobi-Bellman (HJB) equation and the
Fokker-Planck-Kolmogorov (FPK) equation, which individually describes the propagation rules of
the state variable and the value function over time. In mean-field equilibrium states, a set of PDEs
are coupled as the law of the state variables Law(Xαu (t)) matches νu(t) with marginal errors. This
specific mathematical constraint can be formally expressed in the following definition:

1Here, f#µ denotes a push-forward probability measure of µ through function f .
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Figure 3: Illustrative Algorithm of the Gradient System of FBSDEs.

Definition 3.3. (Mean-field ϵ-Nash Equilibrium). We say that a continuous flow of measure νu(·)
is an ε-equilibrium of (graphon) mean-field games if there exists a numerical constant ϵ > 0 such
that the following inequality holds: supu,t

[
W2

2 (νu(t),Law(Xα
∗

u (t))
]
≾ O(ε), where α∗ ∈ A is an

optimal control of the problem in Eq. (3).

The mean-field equilibrium described in Definition 3.3 characterizes a scenario where a continuum
of predictors is not incentivized to modify their policies α∗ to non-optimal counterpart β, which
induces marginal errors, i.e.,J (νβ,β) ≥ J (να∗

,α∗). Here, the law of optimal mean-field pre-
dictors closely approximates the population νu with marginal errors ϵ. This coupling integrates
the Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations, forming a
master equation. Several numerical methods exist to approximate solutions to mean-field games
including fixed-point iterations (Lauriere, 2021), and fictitious play (Min & Hu, 2021). However,
these methodologies are typically constrained to linear quadratic dynamics, leading to computational
intractability when confronting non-linearity (e.g., neural networks). Additionally, numerical simula-
tions for obtaining analytic solutions of this system of PDEs present significant challenges due to
the curse of dimensionality in high-dimensional data spaces. The following section is dedicated to
addressing these issues by leveraging the deep neural architecture.

3.1 GRADIENT SYSTEM OF NEURAL FBSDES

Inspired by computational algorithms designed for fictitious play (Cardaliaguet & Hadikhanloo,
2017), we explore a gradient descent-based algorithm, which enables us to tackle solving MFGs
by fusing deep neural architectures. To be more specific, we propose a gradient system of forward-
backward stochastic differential equations (Bensoussan et al., 2013), which is adapted for reflecting
the update of neural agents with respect to the gradient descent algorithm.

Definition 3.4. (Gradient System of FBSDEs)a. For the fixed flow of measures νu(·) : T→ P2 and
the fixed label u at each stagem, we consider a family of processes (Xu(t),Yu(t),Zu(t)) that solves
forward-backward stochastic differential equations with respect to the proposed graphon system in
Eq (1) given as follows:

dXm,αm
u (t) = bmW dt+ bmdt+ σtdW

u
t , dY

m,αm
u (t) = −Hmdt− Zm

t · dW u
t ,

αm+1 := α (t,Xm,αm
u ; θm − EY,t≤T [γm∇θY

m,αm
u (t)]) , νu = Law(X

m−1,α∗
m−1

u ),

where γm > 0 is a learning rate of the gradient descent at m-th stage, and {αm}m ⊂ A is a
set of admissible neural agents. Then, the triplet can be identified with (Yu(t),Yu(T ),Zu(t)) =
(J ,G, (∂xJ )σ−1

t ).
aFor the detailed description of the FBSDE system, please refer to the Definition A.2

The proposed gradient system can be decomposed by iterating a two-step procedure, i.e., (A) and
(B), over a total of M stages. Fig 3 illustrates the evolution of the mean-field predictors related to
the updated parameters of neural agents αm across different stages m. The details of the two-step
procedure are specified below.

(A) Information Propagation. Initially, the system disseminates the information to a continuum of
players by utilizing the population information of the previous stage, where the forward and backward
system of SDEs propagates information relating to the updated population, νu.

νu ←− Law(X
m−1,α∗

m−1
u ), (Xm

u ,Y
m
u ) ∼ Law(Xm

u |νu)⊗ Law(Ym
u |νu). (4)

Note that the backward dynamics is propagated in reverse direction starting from its terminal state
Yu(T ) = G while the forward dynamics evolve in the forward direction from the initial state. This
shows that the proposed FBSDEs parallel the PDE system described in Definition 3.2.
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(B) Update Control Profiles. In the subsequent step, the neural agent αm is updated with respect to
its parameter θm following the steepest direction of minimizing the values of backward dynamics
Ym

u . The backward dynamics, associated with the cost functional J as described in Proposition A.2,
guide the updates of the parameters, allowing the mean-field predictors to gradually approximate the
target interval. Since we have proposed an iterative algorithm to solve MFGs, the remaining part
aims to provide convergence guarantees and highlight optimality conditions.

Proposition A.4 guarantees that the gradient system in Definition A.2 induces optimal neural agents
α∗, which yield a feasible value function (i.e.,Ym

u (0)
m→∞−−−−→ V) where the optimality of the control

is represented in the sense of the Pontryagin stochastic maximum principle (Yong & Zhou, 2012).
Specifically, we have the following two results:

lim
m→∞

H( ·,αm) ≈ inf
α∈A

H( ·,α), dt⊗ dν, V ≈ Y∞
u (0) = J (να∞ ,α∞). (5)

The result illuminates that a pair (limm→∞α
m = α∗, limm→∞ ν

αm = να
∗
) solves both HJB and

FPK equations in Def 3.2, assuring stochastic optimality. Having obtained the value function, the next
step is to provide an explicit estimation of margin ε in the convergence of mean-field equilibrium.

Convergence to Mean-field Equilibrium. To rigorously analyze the convergence to equilibrium
in a distributional sense, we define two distinct operators, Φ and Ψ :M→M, referred to as the
projector and updater, respectively. Each operator corresponds to one of the two steps mentioned
earlier, as illustrated in Fig. 3:

Φ(ναm) := {Law(Xαm
u (t))|

ν=ν
α∗

m−1
; t ∈ T, u ∈ O}.

Ψ(ναm−1) := {ναm = α∗
m−1;V = J (να

∗
m−1 ,α∗

m−1)}.
It can be easily verified that the composition of these operators at stage m maps the previous state’s
population to the next stage i.e.,Φ ◦ Ψ(νm−1) = νm. Proposition 3.5 asserts that the population
{ναm}m≤M generated by the proposed algorithm begins to converge in the Wasserstein metric as
the stages m increase.

Proposition 3.5. (informal) For arbitrary u ∼ p(u) and t ∈ T, the m-fold of composition Φ ◦ Ψ
induces convergent behavior of squared 2-Wasserstein distance:

W2
2 ([Φ ◦ Ψ]◦m(να1), [Φ ◦ Ψ]◦m(να0)) ≾ sup

t∈T
∥∇θY

m∥E · O(γm, C) := εm
m→∞−−−−→ 0. (6)

where a numerical constant C is dependent on M, b0, C1, Hψ,Lipb and m2, |O|, e−|O|,LipW ,
h(α) = ∥Wα∥g is a cut-norm of the proposed graphons (i.e., exponential, cosinusoidal)

Proposition 3.5 reveals two theoretical implications regarding the convergence property. First, the
proposed gradient system converges in a distributional sense, as the Wasserstein distance between the
populations ([Φ ◦Ψ]◦m(να1) = ναm+1 and ([Φ ◦Ψ]◦m)(να0) = ναm , governed by the gradient
norm of the backward dynamics, is expected to decrease as m increases. In other words, {Φ ◦Ψ}◦m
is a Cauchy sequence in M, ensuring the convergent behavior of the proposed training scheme.
Second, the proposed gradient system ensures the convergence of the dynamics for the upper bounds
ϵm. It is important to note that the inequality in Eq (6) is an equivalent expression of the mean-field
Nash εm-equilibrium described in Definition 3.3. In this context, the neural agent with greater
capacity (i.e., a smaller radius rm of the metric balls in Eq (43)) further tightens the upper bound. In
conclusion, the findings from Proposition 3.5 validate that the proposed gradient system efficiently
utilizes neural networks to solve mean-field games in continuous sequence prediction.

4 SAMPLING MEAN-FIELD PREDICTORS

In this section, we propose the numerical algorithm for sampling the proposed mean-field predictors
and provide a theoretical analysis of the sample complexity error and the asymptotic convergence
of empirical estimation for mean-field predictors. Inspired by the Euler-Maruyama approach for
Mckean-Vlasov type Reisinger & Stockinger (2022), we introduce an Euler-Maruyama method
tailored for graphon-interacting particle systems to sample a series of mean-field predictors.

Algorithm 1 in Section A.5 details the computational procedure for sampling these mean-field
predictors. We assume that α∗ := α(·; θ∗) is nearly optimal, as defined by the ε-Nash equilibrium
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derived from the mean-field gradient system associated with FBSDEs. The infinite-dimensional
characteristics of the proposed system introduce inherent complexity challenges when mean-field
predictors are sampled and applied to finite-dimensional, real-world datasets. When these sampled
mean-field predictions aim to approximate their mean-field limits, an important question regarding
sample complexity surfaces. To thoroughly investigate, we begin by defining the probabilistic
description for both the sampled and model dynamics, as elaborated below:

MFPs in Alg. 1 : νNt :=
1

N

N∑
i

δXn
i (t)

, MFPs with∞-order : µ̂t := Eu∼p(u)[νu(t)]. (7)

where XN
i (t) ∼ νNt is sampled predictors, which can be obtained from implementing the Algorithm 1

and the weighted sum Λt approximates true collective prediction made by mean-field predictors
EuX

α
u (t) ∼ µ̂t in Eq (3).

Proposition 4.1. (Sampling Complexity) For arbitrary u ∈ O, let νNt , µ̂t be probability measures
defined in Eq (7). Then, there exist numerical constants c4, c7, c8, c9 > 0, w > 0 and κ > 0 such that
the probability of squared 2-Wasserstein distance can be controlled as follows:

sup
t∈T

P
[
W2

2 (ν
N
t , µ̂t) ≥ ϵ

]
≤ A(B+ C+D), A :=

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
∨ c9 exp(−4c8),

B :=
e−Nϵ2/4c

ϵ2
, C :=

1

724ϵ
√
N
, D :=

e−Nϵ

N

(
1− 128ωh(α)

N

)−d/8

.

The established inequality presents the relation between squared 2-Wasserstein distance and the
number of samples N , the dimensionality of the data distribution d. The proof primarily draws on
the findings presented in Bolley et al. (2007). It is important to note that the result also guarantees the
proposed system benefits from the propagation of chaos (Chaintron & Diez, 2022), validating the
asymptotic behavior of the sampled predictions generated by the mean-field predictors:

sup
t∈T

lim
k→∞

W2
2

(
Law

(
Xn

i1 , · · · ,X
n
ik

)
, ⊗{j=1,···k}νj/n(t)

)
≤ Ω(N, k)→ 0

Proposition 4.1, A.5 and the inequality above align with the intuition that as the number of predictors
N increases (and dimensionality d), the sampled dynamics converges more closely to the mean-
field limit µ̂t and νu(t). In particular, the right-hand side of the inequality is influenced by two
exponentially decaying terms, while the other term decreases at a polynomial rate, both showing
short-tailed concentration with respect to the number of past observations. Overall, our theoretical
findings highlight advantages of capitalizing on mean-field games: Rational individuals (i.e., δXn

i (t)
)

satisfying Nash equilibrium and conditioned on partial information (i.e.,Xn
i (0) = yi/n) forms

a coalition (i.e., νNt ), and the group decision is progressively refined to collaboratively solve the
continuous sequence prediction problem. As the coalition size increases, the resulting predictions
become progressively more precise and reliable. In Section 6, we conduct an ablation study to
numerically verify these theoretical findings.

5 RELATED WORK

Neural Differential Equation Models. In recent years, neural differential equation models have
gained attention for their ability to capture the dynamics of complex continuous sequences. Latent
ODEs (Rubanova et al., 2019) extend standard RNNs to handle continuous signals by integrating
neural ODEs with them. Kidger et al. (2020) introduced differential equation models based on
controlled differential equations (Neural CDE) to address a key limitation of neural ODEs, where
solutions depend solely on initial conditions and not on subsequent observations. Recently, Contif-
ormer (Chen et al., 2024) was developed, combining neural ODEs and Transformers into a single
framework. Another line of research integrates stochasticity by utilizing SDEs, particularly for
time-series applications. For instance, Latent SDE (Li et al., 2020) encodes sequential data in the
latent space using neural SDEs, while MaSDE (Park et al., 2023) employs a concept of stochastic
differential games to analyze time series. Koshizuka & Sato (2023) proposed a regularized neural
SDE based on the Lagrangian Schrödinger bridge, and Oh et al. (2024) introduced three stable types
(classes) of neural SDEs: Langevin-type SDE, Linear Noise SDE, and Geometric SDE.
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Figure 4: Ablation studies on EigenWorm dataset. (Left) Sensitivity analysis on the sample complexity. (Right)
Robust analysis on post-intervention of non-informative signals.

Methods MIT Humanoid Robot MIMIC-II Beijing Air Quality
MSE MAE MSE MAE MSE MAE

Neural Laplace 8.11±0.25 17.03±0.33 7.76±0.04 18.70±0.08 3.21±0.12 11.45±0.23
MaSDEs 16.51±0.21 27.89±0.30 8.41±0.06 20.67±0.08 3.47±0.03 13.13±0.07

CRU 32.08±5.07 42.50±3.90 13.09±0.31 24.68±0.47 3.48±0.06 12.76±0.19
Latent SDE 6.01±0.14 15.94±0.14 8.04±0.02 19.63±0.06 3.29±0.03 11.99±0.07

Neural LSDE 6.80±0.14 16.51±0.08 7.93±0.05 19.09±0.07 3.74±0.04 11.98±0.15
CONTIME 6.88±0.29 16.60±0.25 12.29±0.14 25.26±0.12 5.15±0.17 15.86±0.27

Contiformer 5.94±0.23 15.29±0.26 7.90±0.12 19.05±0.18 3.25±0.10 11.48±0.16
S4 5.59±0.16 13.98±0.19 13.24±0.01 24.79±0.30 3.95±0.15 12.35±0.17

Mamba 5.21±0.09 13.71±0.15 13.23±0.02 24.76±0.19 3.68±0.14 11.56±0.24
Jamba 5.13±0.13 13.32±0.20 9.71±0.09 21.37±0.06 4.03±0.10 13.04±0.20

MFPs (Exp.) 3.31±0.30 10.12±0.22 7.51±0.08 18.59±0.11 2.98±0.15 10.06±0.31
MFPs (Cosin.) 3.91±0.07 11.43±0.07 7.51±0.06 18.60±0.10 3.13±0.07 11.38±0.08

Table 1: Mean Squared Errors (MSEs) and Mean Absolute Errors (MAEs) in various continuous sequence pre-
diction tasks. The top and second-top scores in each dataset are highlighted in bold and underlined, respectively.
Each metric is scaled by 10−2.

Mean-field Principles in Generative Models. Recent works utilized the mean-field principle to
model the infinitely many random particles in high-dimensional data space, where they interact with
each other. In Liu et al. (2022), the Schrödinger bridge was incorporated to address mean-field games
in order to approximate data distributions for large populations. Park et al. (2024) introduced the
concept of propagation of chaos to generate data structures with exchangeable high cardinality such
as 3D point clouds.

6 EXPERIMENTAL RESULTS

Datasets. In the experiments, we evaluate our results against benchmarks using the following
datasets: (i) MIT Humanoid Robot (Li et al., 2024), (ii) MIMIC-II (Silva et al., 2012), (iii) Beijing
Air Quality (Zhang et al., 2017), and (iv) EigenWorm (Bagnall et al., 2018). The MIT Humanoid
Robot dataset contains the robot’s state trajectories during various activities, such as running, jogging,
and stepping in place, with 27 features describing these states. The MIMIC-II dataset, from the
PhysioNet Challenge 2012, consists of time series data with 41 features representing the first 48 hours
of a patient’s ICU admission (e.g., SaO2 and cholesterol levels). The Beijing Air Quality dataset
contains time series data for six air pollution indicators, collected from 12 different locations in
Beijing. The EigenWorm dataset comprises six features that characterize worm motion by projecting
their shapes onto the six principal eigenworms, providing continuous sequences of 1500 length. To
ensure consistent training, we apply either min-max and z-score normalization on each data instance.

Benchmarks. Given our focus on continuous sequence modeling, the benchmark baselines consist
of various continuous models, including Neural Laplace (Holt et al., 2022), MaSDEs (Park et al.,
2023), CRU (Schirmer et al., 2022), Latent SDE (Li et al., 2020), Neural LSDE (Oh et al., 2024),
CONTIME (Jhin et al., 2024), and Contiformer (Chen et al., 2024). To further enhance the baselines,
we also incorporate continuous state-space models, such as S4 (Gu et al., 2022), Mamba (Gu & Dao,
2024) and Jamba Lieber et al. (2024). Performance evaluation is carried out using mean squared error
(MSE) and mean absolute error (MAE) metrics. Each model is executed five times, with the average
scores and standard deviations reported.

Quantitative Results. The main table presents a performance comparison with benchmark method-
ologies across three datasets. The results show that the proposed MFPs consistently outperform
other benchmarks by significant margins on all datasets. Notably, conventional neural differential
equation models perform reasonably well on the MIMIC-II and BAQD datasets, where sequences are
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Figure 5: Qualitative results on Prediction (Left) MIT Humanoid Robot dataset (Right) EigenWorm datasets.

irregularly sampled with missing values. However, they exhibit a performance drop on the MIT Hu-
manoid Robot dataset, likely due to their limitations in handling complex spatio-temporal dynamics.
In contrast, state-space models excel on the MIT Humanoid Robot dataset but experience a decline in
performance on the other two datasets, indicating their limitations in dealing with irregularly sampled
sequences. Figure 4 (right) illustrates the qualitative prediction results on the MIT Humanoid Robot
dataset. As shown, our MFPs deliver superior performance compared to the other models.

Methods EigenWorm
MSE MAE

S4 14.16±0.18 28.69±0.21
Mamba 15.79±1.03 29.80±1.06
Jamba 17.63±1.09 31.96±1.04

MFPs 12.52±0.16 26.61±0.29

Table 2: Long-term prediction on EigenWorm.

Ablation Study I: Long-term Prediction.
The first study aims to demonstrate the ef-
ficacy of utilizing mean-field principles for
accurate long-term predictions. We com-
pare the MFPs against variants of state-
space models, recognized for their capa-
bility in managing long-range dependen-
cies Zhan et al. (2024) for long sequences.
Table ?? along with Fig. 4 provide both
quantitative and qualitative comparisons
with benchmarks for long-term prediction tasks using the EigenWorm dataset. Evidently, our
MFPs achieve significant advances over other benchmarks.

Ablation Study II: Sample Complexity. To empirically validate the theoretical results derived in
Section 4, we conduct an ablation study examining how predictive accuracy scales with the number of
sampled predictors. As depicted in Fig. 4 (Left), our results align well with the concentration bounds
formalized in Proposition 4.1, confirming that the empirical error diminishes as the coalition size of
predictors increases. This behavior is consistent with the propagation-of-chaos property of mean-field
systems, whereby larger predictor ensembles more faithfully approximate the infinite-agent limit
distribution. In practice, this translates to monotonic improvements in both MSE and MAE as N
increases from 1 to 16, suggesting that additional predictors systematically enhance stability and
reliability of forecasts. Nevertheless, these gains must be balanced against the computational overhead
introduced during inference.

Ablation Study III: Noise Robustness. We perform a robustness study to assess the impact of
non-informative noisy signal (i.e., white noise) interventions in past observations. Specifically, we
inject the Gaussian random noises with variance σnoise = 0.3 to derive the distributional shift of test
continuous-time sequences and corrupt the test data, p̂(u, y) = p(u, y)⊛N (0d, σnoiseId), where ⊛
is a convolution operation. Fig 4 (right) shows a uniform performance degradation (i.e.,∆) with
an increasing number of past observations corrupted by non-informative noisy signals. As can be
seen, our MFPs exhibit robust performance against noise interventions, as Mamba experiences sharp
declines in accuracy under high levels of noise. Our MFPs under the coalition, trained on the original
clean sequence p(u, y), neutralizes the influence of individuals conditioned on noisy signals p̂(u, y),
thereby preserving the Nash equilibrium, resulting the robust generalization performance.

7 CONCLUSION

This paper introduces mean-field continuous sequence predictors, a novel class of neural SDE model
for the efficient generation of continuous sequences, which can possess infinite-order complexity. We
recast the time-series prediction problem as a mean-field game and adopt a fictitious play approach,
integrated with a gradient-descent-based method, to leverage the stochastic maximum principle
and identify the Nash equilibrium of the system. Both empirical and theoretical results reveal the
distinctive features of our MFPs, where the coalition of a continuum of predictors generates accurate
predictions and consistently surpasses benchmark performance.
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A APPENDIX

A.1 NOTATION TABLE

For convenience and to improve readability, Table 3 summarizes the main symbols used throughout
the paper, together with brief descriptions of their roles in the mean-field formulation and learning
algorithm.

Table 3: Summary of frequently used notation.

Symbol Meaning

T = [0, T ] Global time horizon of a sequence instance
O ⊂ T Past observation interval used as input
u Time label for past observations, u ∈ O
t Prediction time index, t ∈ T
p(u) Distribution of observation times on O
p(u, y) Joint distribution of times and observed values
yu, yt Observed value at time u or t
d Data dimension of each observation
Xα

u (t) Mean field predictor at (u, t) under control α
νu(t) Law of Xα

u (t) at time t for label u
να Flow of laws {νu(t)}u,t induced by control α
µ̂t Mean field limit obtained by averaging over u at time t
N Number of sampled predictors used in the finite system
νNt Empirical law of N predictors at time t
P2(Rd) Probability measures with finite second moment on Rd

Wα(u, v) Neural graphon weight between labels u and v
ψα(y, x) Feature interaction function between states y and x
b(t, x, α) Drift of the controlled SDE at (t, x)
σt Diffusion scale of the SDE at time t
Wt Brownian motion driving the stochastic dynamics
α(t, x; θ) Feedback control policy parameterized by θ
θ Trainable neural network parameters
A Set of admissible control policies
Λt Aggregated prediction obtained by averaging over labels u
J(να, α) Cost functional of the mean field control problem
V (t, x) Value function associated with the control problem
H(t, x, a, ν, α) Stochastic Hamiltonian in the Pontryagin principle
W2(·, ·) 2-Wasserstein distance on P2(Rd)
Wt,M(·, ·) Generalized Wasserstein distance between flows of laws
Φ Projector operator that updates the state law forward in time
Ψ Updater operator that refines the control via FBSDE
m Fictitious play or gradient descent iteration index
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A.2 MATHEMATICAL BACKGROUNDS AND DEFINITIONS

This section includes brief summary of the mathematical backgrounds, omitted notations and defini-
tions in the manuscript. Throughout, bold-face notation will be employed without loss of generality
to omit subscript and superscript indices of mathematical entities where suitable for the sake of
simplicity.

Generalized Wasserstein Distance. Recall the definition of space for probability measures that
consist of generic path measures with finite second moments,

M̂ := {ν = (νu : u ∈ O) ∈ [C([0, T ],Rd)]O; u 7→ νu ∈ P(C([0, T ],Rd) is measurable},

M̃ := {ν; sup
u∈O

∫
∥Xu(·)∥2dνu(Xu(·)) <∞}.

For the arbitrary elements µ,ν ∈M := M̂ ∩ M̃, let us considerM equipped with the generalized
2-Wasserstein metric as

Wt,M(µ,ν) := sup
u∈O

[
inf
Π

E
(
sup
s≤t
∥Xu(s)−Yu(s)∥2

)]1/2
,

{
Law(Xu) = P−1

u ◦ µ,
Law(Yu) = P−1

u ◦ ν, (8)

where Π is a coupling between two probability measures and Pu denotes a canonical projection onto
the interval O. Followed by the Kantorovich-Rubinstein duality, definition in Eq (8) can be further
modified as

LWt,M(µ,ν) ≥ sup
u∈O

sup
f∈Lip(L)

∣∣∣∣ ∫
Rd

fd(µu,t − νu,t)
∣∣∣∣, µ,ν ∈M. (9)

Note that the inner supremum is taken over a family of L-Lipschitz real-valued continuous functions.

Cut Norm of Graphon. The cut-norm measures the discrepancy between two graphons over all
possible cuts of the square of O. Formally, for a graphon W : O×O→ R+, the cut-norm is defined
as:

∥W∥g := sup
A,B⊂O

∣∣∣∣ ∫
A×B

W (u, v)dudv

∣∣∣∣, (10)

where the supremum is taken over all measurable subsets A and B. The definition illustrates that
the cut-norm quantifies the maximum deviation of W from zero over any rectangle O2. Given the
definition, one defines the metric called cut distance:

dqg(W1,W2) = ∥W1 −W2∥qg (11)

The cut distance measures how close two graphons are after optimally aligning their domains. If the
cut distance between two graphons W1 and W2 is small, the graphs they represent are structurally
similar.

(Exponential AM-GM Inequality). For the arbitrary random variables X,Y and positive constants
a, b > 0, the expectation can be decomposed as follows:

E[exp(aX2 + bY 2)] ≤
(
2E[exp(2X2)]

)1/2 (
2E[exp(2X2)]

)1/2
. (12)

(Arithmetic AM-GM Inequality). For arbitrary positive constants x, y, w > 0, we have

xy ≤ ωx+
1

4ω
y. (13)
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A.3 ASSUMPTION

Without additional information, we make the following assumptions in this paper.

1. (H1). There exists a finite collection of intervals {Ok; k ∈ {1, · · · , N}} for arbitrary
N ∈ N+ such that ∪Nk Ok = O. Then we assume the following:

• For each k, the initial datum of the graphon system is set with the data distribution νu:
Ok ∋ u 7→ µu(0) := νu ∈ P2, where the mapping assigns to independent measures.

2. (H2). For each k and Ok ∋ u, there exists a constant C1 such that we have probability
νu,s[supx∈Rd\Y(ω)∥x−Y∥−p ≤ C1] almost surely for all p ∈ N+, and the second moment
(i.e.,m2) of νu,s is bounded.

3. (H3). The Lipschitz constants of the functions in modeling of graphons W(·) : L2(νu(t)) ⊃
A→ R+ are bounded above. The parameterized Markovian feedback controls are Lipschitz
in parameters:

|W(·)(α)−W(·)(β)| ≤ LipW ∥α− β∥νu(t), (14)

{∥α− β∥νu(t), ∥α(t, x, θα)− α(t, x, θβ)∥} ≤ Lipθ∥θα − θβ∥E (15)

The drift function is Lipschitz continuous and dissipative, ensuring that the constant c1 is
well-defined.

∥(b, bW )(t, x,α)− (b, bW )(t, y,β)∥ ≤ Lipb(∥x− y∥E + ∥α− β∥νu(t)). (16)

c1 := inf
x,y
−(x− y) · [(b, bW )(x)− (b, bW )(y)] /∥x− y∥2E (17)

4. (H4). The maximal rank of embedding of neural agents in A is d′.

T× Rd ×Θ 7→ α ∈ A ↪→ L2(ν). (18)

A.4 PROOFS

A.4.1 STOCHASTIC OPTIMAL CONTROL, MEAN-FIELD FBSDES

Before presenting the main proofs, this section offers a detailed analysis of how the proposed
mean-field games can be formulated.

Weak Formulation of Mean-field Games. We start by explicating on the rigorous definition of
forward mean-field dynamic in Eq. (1) cost functional in Eq. (3) and gradient system of FBSDEs in
Propsoition A.2, followed by a brief summary of how forward-backward SDEs are formulated in the
context of stochastic optimal control problems. To this end, let us first define the primitive process
X̄t, which solves the following SDE for a fixed label u:

dX̄u(t) = σtdB
u
t , X̄0(t) = yt. (19)

where Bu
t is a Brownian motion under probability measure P. Given the square of volatility term σ2

t
is bounded below some constant, we introduce the probability measure Pµ,α, which can be derived
by the following Radon-Nikodym derivative:

dPµ,α

dP
= E

(∫ (·)

0

σ−1
t

(
bW (X̄u(t),ν,α) + b(t, X̄u(t),α)

)
· dBu

t

)∣∣∣∣
t=T

. (20)

where E denotes a Doléans-Dade exponential of a martingale. Applying Girsanov’s theorem, we have
the Brownian motion Wµ,α under the probability measure Pµ,α:

W u,µ,α
t = Bu

t −
∫
T
σ−1
s

(
bW (X̄u(s),ν,α) + b(s, X̄u(s),α)

)
ds. (21)

Then, the primitive process can be rewritten as follows almost surely Pµ,α,

dX̄u(t) =
(
bW (X̄u(t),ν,α) + b(t, X̄u(t),α)

)
dt+ σtdW

u,µ,α
t . (22)
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By suppressing the objects in upper-scripts for simplicity, with the notation W u
t = W u,µ,α

t and
Xu(t) = X̄u(t), one can recover the original mean-field forward SDE defined in Eq (1). Note that
this formulation reveals that the process X̄u(t) is a weak solution under Pµ,α, and the cost functional
can be posed as follows:

J (να,α) =
∫
T
Eα,ν

[
∥Eu∼p(u)X

α
u (t)− yt∥2E +G(Xαu (T ),ν

α)
]
dt, (23)

where the expectation Eα,ν is taken with respect to Pµ,α. Note that the cost functional in Eq. (3) is
an alternative form of Eq. (23). Next, we reformulate the approximation of mean-field games with
graphon in the probabilistic sense. Let α = α(t, x; θ) := α̂(t, x, µ̄, ē) := α̂ be an extended control
with fixed arguments µ̄, ē. For the fixed να

∗

u a.e., u ∼ vUnif associated with the optimal control α̂∗,
let us consider a Hamiltonian-Jacobi-Bellman equation (HJBE), having a classical value function V:

∂tV(t, x) +
1

2
Tr[σ2

t ∂
2
xxV(t, x)] +H

(
t, x,να

∗

u , ∂xV(t, x), α̂∗(t, x,να
∗

u , ∂xV(t, x))
)
= 0, (24)

Then, forward-backward SDEs associated with the Hamiltonian system in (24) can be described in
the Proposition A.1:

Proposition A.1. (Weak Formulation: Forward-Backward SDEs I) (Carmona & Delarue, 2013)
For the fixed flow of measures νu(·) : T→ P2 and the fixed label u, let (Xu(t),Yu(t),Zu(t)) be a
family of processes that solves forward-backward stochastic differential equations with respect to the
proposed graphon system in Eq (1) given as follows:

dXu(t) = (bW (Xu(t), νu, α̂
∗) + b(t,Xu(t), α̂

∗)) dt+ σtdW
u
t , (25)

dYu(t) = −H(t,Xu(t),Yu(t), νu, α̂
∗)dt+ Zu(t) · dW u

t . (26)

where bW (x, ν, α) := ⟨Wα[ν](u),ψ⟩(x, α) is the graphon interaction term, and terminal constraint
is given as Yu(T ) = G(XT ,νT ). Then, under the mild assumption (e.g., smooth boundness of ∂xV
and ∂xxV), there exist solutions of stochastic optimal control of the following minimization problem:

inf
α∈A
J (να,α) = Yu(0). (27)

For the closed Markovian control such as neural control introduced in Section 2, the solution to adjoint
process Zu(t) can be defined as stated in Definition A.2. By rewriting forward-backward SDEs in
Eq (25) and Eq (26) for non-optimal neural controls α (i.e., neural networks) which are updated via
gradient descent, we can recover the proposed gradeint system of FBSDEs in Definition 3.2.

Definition A.2. (Gradient System of FBSDEs). For the fixed flow of measures νu(·) : T→ P2 and
the fixed label u at each stagem, we consider a family of processes (Xu(t),Yu(t),Zu(t)) that solves
forward-backward stochastic differential equations with respect to the proposed graphon system in
Eq (1) given as follows:

dXm,αm
u (t) = bW (Xm,αm

u (t), νu,αm)dt+ b(t,Xm,αm
u (t),αm)dt+ σtdW

u
t , (28)

dYm,αm
u (t) = −H(t,Xm,αm

u (t),Ym,αm
u (t), νu,αm)dt− Zm

t · dW u
t , (29)

αm+1 := α (t,Xm,αm
u ; θm − EY,t≤T [γm∇θY

m,αm
u (t)]) ∈ A, (30)

νu = Law(X
m−1,α∗

m−1
u ), (31)

where γm > 0 is a learning rate of gradient descent, and A is a set of admissible neural agents.
Then, we have (Yu(t),Yu(T ),Zu(t)) = (J ,G, (∂xJ )σ−1

t ).
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A.4.2 ANALYSIS ON STOCHASTIC OPTIMALITY AND CONVERGENCE

Stochastic Optimality. In the following, we introduce the second type of forward-backward SDEs,
which is based on the principles of stochastic maximum principle:

Proposition A.3. (Stochastic Maximum Principle: Forward-Backward SDEs II) (Bensoussan
et al., 2013) For the fixed flow of measures νu(·) : T → P2 and the fixed label u, let
(Xu(t),Y

MP
u (t),ZMP

u (t)) be a family of processes that solves forward-backward stochastic dif-
ferential equations with respect to the proposed graphon system in Eq (1) given as follows:

dXu(t) = (bW (Xu(t), νu, α̂
∗) + b(t,Xu(t), α̂

∗)) dt+ σtdW
u
t ,

dYMP
u (t) = −∂xH(t,Xu(t),Y

MP
u (t), νu, α̂

∗)dt+ ZMP
t · dW u

t .

For the progressively measurable admissible Markovian neural control β under the mild assumption
(e.g., smooth boundness of ∂xV and ∂xxV), there exists a constant τSMP > 0 such that the following
inequality holds:

J (να̂
∗
, α̂∗) + τSMP

∫
T
∥α̂∗ − β∥νdt ≤ J (νβ,β). (32)

Remark. Note that the backward dynamics YMP
u differs from the original backward dynamics Yu in

Definition (A.2) as the dynamics is designed to be associated with Pontryagin stochastic maximum
principle. This principle plays a central role in the proof of Proposition A.4, demonstrating the
stochastic optimality of neural agents in the following section.

In what it follows, we demonstrate that the stochastic optimality of the proposed gradient system can
be guaranteed under the specific conditions required for constructing the control set in Prop A.4.

Proposition A.4. (Maximum Principle of Graphon Mean-field System) Assume that there exists a
constant KH such that ∥∂α∥H∥E∥∞,ν ≤ KH . Then, there exists a convex set of admissible neural
agents αm ∈ A such that the following relation holds:

DαJ (ναm ,αm) := lim
ε→0

d

dε
J [αm + ε(αm −αm−1)]

m→∞−−−−→ 0. (33)

Furthermore, the sequence of control profile {αm} leads to the minimization of the stochastic
Hamiltonian system in terms of Pontryagin maximum principle:

lim
m→∞

H(t,Xm
u (t),Ym,MP

u (t), νu,αm) = inf
α∈A

H(t,Xu(t),Y
MP
u (t), νu,α), dt⊗ dP− a.e. (34)

where the population is set to νu = Ψ(ναm−1) := Ψ(ν
αm−1
u ). In other words, the value function can

be derived by the proposed gradient system of FBSDEs:

V := inf
α∈A
J (να,α) = lim

m→∞
J (ναm ,αm). (35)

Proof. We divide the proof into two separate steps.

1. Computation of Gâteaux derivative DαJ . The aim of the first step is to provide an explicit
computation of the Gâteaux derivative of cost functional (value function) with respect to the neural
agent. To achieve this, we introduce the variation equation iu and its associated gradient system of
SDEs with fixed β:

dYm,MP
u (t) = −∂xH(t,Xm

u (t),Ym,MP
u (t), νu, α̂m)dt+ Zm,MP

t · dW u
t , (36)

diu(t) = [(∂xbW + ∂xb)iu(t)]dt+ [(∂αbW + ∂αb)βm]dt, (37)

dju(t) := d[iu(t) ·Ym,MP
u (t)]dt ∈ Rd. (38)

Let Υα(m, ϵ) := αm + ϵβm represent the infinitesimal changes of the admissible neural agent αm

in the direction of βm := αm−1 −αm. To feasibly select the convex combination Υα(m, ϵ) for any
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m and ϵ ∈ [0, 1], both neural agents need to lie within some convex set Am. For now, we assume that
there exists a convex set Am that includes α and β. The explicit form of this set will be clarified in
the subsequent step. Given the definition, we compute the derivative as follows:

DαJ (ναm ,αm) =
d

dϵ
J (νΥα(m,ϵ),Υα(m, ϵ))|ϵ=0

= E
[∫

T
[iu(t)∂xf + βm∂αf ]dt+ iu(T )∂xG

]
,

(39)

where we denote f(t, x, α) = ∥Eu[x
α(t)]− yt∥2. While iu(T )∂xG can be identified with ju(T ), we

apply the product rule to the third dynamics dju in Eq (38) to have variational form to induce ju(T ):

dju(t) = [Yu(t) · diu(t)]dt+ [iu(t) · dYMP
u (t)]dt+Tr[dYMP

u (t)⊗ diu(t)]

=

∫ T

0

YMP
u (t) · (∂xbW + ∂xb)βm +YMP

u (t) · (∂αbW + ∂αb)iu(t)dt

=

∫ T

0

∂xG · (∂xbW + ∂xb)βm + ∂xG · (∂αbW + ∂αb)iu(t)dt.

(40)

Combining Eq (39) with Eq (40), and Cauchy–Schwarz inequality gives explicit form for the Gâteaux
derivative of objective functional.

DαJ (Υα(m, ϵ)) = E
[∫

T
∂αH(t,Xm

u ,Y
m,MP
u (t),Ψ(ναm−1),αm)dt · βm

]
≤ E

[∫
T
∥∂αH(t,Xm

u ,Y
m,MP
u (t),Ψ(ναm−1),αm)∥E · ∥βm∥Edt

]
≤
∣∣∣∣∥∂αHm∥E

∣∣∣∣
∞ ·
∣∣∣∣∥βm∥E

∣∣∣∣
1
,

(41)

where ∥·∥p denotes Lp-norm, and the last inequality is obtained by applying Hölder’s inequality with
the conjugate pair (p =∞, q = 1). Then, we have∣∣∣∣∥βm∥E

∣∣∣∣
1
=
∣∣∣∣∥αm −αm−1∥E

∣∣∣∣
1
:=
∣∣∣∣∥α(t,Xm

u , θ
m)− α(t,Xm

u , θ
m−1)∥E

∣∣∣∣
1

≤ γm−1LipαEδθYm−1, δθY
m−1 := ∥∇θY

m−1,αm−1
u (t)∥E .

(42)

2. Construction of A. Next, we define the explicit form of the control set Am. The constructed
control set must meet two conditions: (1) it must be convex, and (2) the right-hand side of the
inequality in Eq (41) must converge. For properly dealing with the first condition, let us consider a
metric ball Bm in L1 space as follows:

Bm := B(αm−1, rm) ∈ L1, (43)

rm := ru,t,m = εγm−1LipαδθY
m−1
u (t), ε ∈ [0, 1]. (44)

Since any arbitrary metric ball is convex and the calculated reverse direction of gradient guarantees
local minimum at each stage, the setup of the proposed metric ball ensures the well-definedness of
Gâteaux derivative in Eq (41) and local optimality at each stage m.

Let λmmax(α) be an eigenvalue with respect to the principal direction of Hessian for cost func-
tional, i.e.,HessθJ (να,α(·; θ)). Consider another control set Cm := {αm−1;λ

m−1
max (αm−1) ≤

(γm−1)−1}. The conventional analysis of gradient descent gives the following inequality on Cm:

EYm,αm ≤ EYm−1,αm−1 − 1

2

(
2γm−1 − (γm−1)2λm−1

max (αm−1)
)
(EδθYm−1)2. (45)

While the second term in right-hand side of Eq (45) is non-negative, the sequence of expec-
tations for the backward dynamics is non-increasing, demonstrating that limm→∞DαJ ≤
limm→∞ EδθYm−1 = 0 when the infinite sequence {αm} lies within limm→∞ Cm. To inherit afore-
mentioned properties lying in both control profiles for all m, we define Am :=

⊔
m≥m (Bm ∩ Cm),

where A = limm→∞ Am. The result directly follows from findings in the stochastic maximum
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principle (SMP) (Carmona et al., 2018; Bensoussan et al., 2013), ensuring the equivalence of the
following relation:

E∂αH(·,α∗) · βm = 0 ←→ α∗ = arg inf
α∈A

H(·,α). (46)

Note that this equivalence relation is applicable only when A is constructed in the manner previously
specified.

A.4.3 CONVERGENCE OF GRADIENT SYSTEM OF FBSDES, MEAN-FIELD EQUILIBRIUM

As we have formally defined the stochastic optimal control problem and established the corresponding
optimality conditions, this section delves into the detailed rationale of how the proposed gradient
descent-based FBSDEs achieve the Nash equilibrium. We will prove Proposition 3.5 through the
following steps:

1. For the arbitrary probability measures (i.e.,µβ,να) associated with fixed Markovian con-
trolsα and β, we first establish that the upper bounds of the generalized Wasserstein distance
remain stable when two measure-valued operators Φ and Ψ are composed repeatedly:

Wt,M([Φ ◦Ψ]◦m(µβ), [Φ ◦Ψ]◦m(να))
m≥M−−−−→ 0. (47)

2. Consequently, we reparameterize reference measures (µβ,να) with the laws of inferred
mean-field forward dynamics in Eq 1 at subsequent stages (i.e.,να

m

,να
m+1

), proving the
convergence towards mean-field Nash equilibrium.

Proposition 3.5. With the assumptions explored in the previous proof, for the fixed label u ∼ p(u),
the m-fold of composition Φ ◦Ψ induces convergent behavior of generalized Wasserstein distance:

W2([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2 ≤ sup
t∈T
Wt,M([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2

≤ lim
M→∞

C(T )M (supt supm rm)M − 1

C(T )(supt supm rm)− 1
+

(C ′T )M

M !
sup
t∈T
Wt,M(να1 ,να0)2

M→∞−−−−→ 0. (48)

where a numerical constant C is dependent on b0, C1, Hψ,Lipb,m2, |O|, e−|O|, h,LipW . In other
words, [Φ ◦Ψ]◦m is a Cauchy sequence onM, and the proposed gradient system converges.

Proof. Recall the definition of controlled graphon system that the particle dynamics at time t with
distinctive controls α and β can be presented as follows:

Xν,αu (t) = Xν,αu (0) +

∫ t

0

⟨Wα[νv,s],ψ⟩(Xαu (s))ds+
∫ t

0

b(s,Xαu (s),α)ds+

∫ t

0

σsdW
u
s ,

Xµ,βu (t) = Xµ,βu (0) +

∫ t

0

⟨Wβ[µv,s],ψ⟩(Xβu (s))ds+
∫ t

0

b(s,Xβu (s),β)ds+

∫ t

0

σsdW
u
s .

Given the dynamics above, the property of measure projection Ψ induces the upper bound of
generalized Wasserstein distance as follows:

Wt,M(Φ(µβ),Φ(να))2 ≤ E
[
sup
s≤t
∥Xµ,βu (s)−Xν,αu (s)∥2

]
≤ b0E

[ ∫ t

0

∫
O
∥
∫
Rd

ψ(Xµ,βu (s),Y)Wβ(u, v)dµv,s(Y)

−
∫
Rd

ψ(Xν,αu (s), Ŷ)Wα(u, v)dνv,s(Ŷ)∥2dvUnifds

]
+ b0E

[∫ t

0

∥b(s,Xµ,αu (s),α)− b(s,Xν,βu (t),β)∥2ds
]

≤ 3b0 (I + II + III) + b0IV,
(49)
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where the first and second inequalities are induced from Holder’s inequality and the Burkholder-
Davis-Gundy (Chaintron & Diez, 2022) with some constant b0 > 0. Following the assumptions in
Section A.3 and the modeling of graphons in Section 2, the first term (i.e., I) can be upper-bounded
in the following estimation.

I := E

[∫ t

0

∫
O

∣∣∣∣∣∣∣∣∫
Rd

[
ψ(Xν,αu (s), Ŷ)−ψ(Xµ,βu (s), Ŷ)

]
Wα(u, v)dνv,s(Ŷ)

∣∣∣∣∣∣∣∣2 dvUnifds

]

≤ Lip(ψ)2E
[∫ t

0

∫
O
W 2
α(u, v)

∫
Rd

∣∣∣∣Xν,αu (s)−Xν,βu (s)
∣∣∣∣2 dνv,s(Ŷ)dvUnifds

]
.

(50)

Given the fixed control α = ᾱ, optimizing the last inequality requires estimating the (local) Lipschitz
continuity of positional encoding ψ:

Lip(ψ(·, Ŷ)) ≤ sup
x∈Rd\{Ŷ}

∥∇ψ(x, Ŷ)∥

≤ Hψ(ᾱ) sup
x∈Rd\{Ŷ}

a−2

∣∣∣∣∣∣∣∣
(
Id −

2(x− Ŷ )⊗E (x− Ŷ )

a2

)∣∣∣∣∣∣∣∣. (51)

where a = ∥x − Ŷ ∥ and ⊗E denotes the Euclidean outer product. Following by the assumption
(H2), Grönwall’s inequality with the fact that spec(∇ψ) := λ1 ≤ max(1,−1)a−2, we have

I ≤ C2
1H

2
ψ(ᾱ)h(β)E

[∫ t

0

sup
r≤s

∣∣∣∣Xν,αu (r)−Xν,βu (r)
∣∣∣∣2 ds] . (52)

Since each component ψi possesses the same spectral norm as ψ, the second term can be upper-
bounded with the improved definition of generalized Wasserstein distance in Eq (9):

II := E

[∫ t

0

∫
O

∣∣∣∣∣∣∣∣∫
Rd

ψ(Xµ,βu (s), Ŷ)Wβ(u, v)d[νv,s − µv,s](Ŷ)

∣∣∣∣∣∣∣∣2 dvUnifds

]

≤ d|O|C2
1E

[
sup
u∈O

max
i∈{1,··· ,d}

∫ t

0

∣∣∣∣∫
Rd

ψi

C1
(Xµ,βu (s), ·)Wβ(u, v)d[νv,s − µv,s]

∣∣∣∣2 ds
]

≤ d|O|C2
1h(β)

∫ t

0

Ws,M(µβ,να)2ds.

(53)

Regarding the third term (i.e., III), we have

III := E

[∫ t

0

∫
O

∣∣∣∣ ∣∣∣∣ ∫
Rd

ψ(Xµ,βu (s), Ŷ)|Wβ −Wα|dνv,s(Ŷ )

∣∣∣∣ ∣∣∣∣2dvUnifds

]

≤ (2C2
1m2Hψ + 1)

∫ t

0

∫
O2

|Wβ −Wα|2dv⊗2
Unif(u, v)ds

≤ (2C2
1m2Hψ + 1)|T|d2g(Wβ,Wα).

(54)

The upper-bound of last term can be directly obtained by the Lipschitz condition.

IV := E
[∫ t

0

∥b(s,Xµ,αu (s),α)− b(s,Xν,βu (t),β)∥2ds
]

≤ LipbE
[∫ t

0

sup
r≤s

∣∣∣∣Xµ,αu (r)−Xν,βu (r)
∣∣∣∣2 ds]+ Lipb

∫ t

0

sup
r≤s
∥α− β∥2νu(s)

ds.

(55)
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By replacing each term with numerical constants C3, C4, C5 in the aggregation of all four terms, we
finally have the following upper-bounds related to dg,WM and L2-norm:

E
[
sup
s≤t
∥Xµ,βu (s)−Xν,αu (s)∥2

]
≤ 3b0 (I + II + III) + b0(IV)

≤ b0(3C1Hψ(ᾱ)h(β) + Lipb)︸ ︷︷ ︸
:=log(C3/t)

E
[∫ s

0

sup
r≤s

∣∣∣∣Xν,αu (r)−Xν,βu (r)
∣∣∣∣2 dr]

+ (6b0C
2
1m2Hψ + 3b0)|T|︸ ︷︷ ︸

:=C4

d2g(Wβ,Wα)

+ max(3b0d|O|C1h(β),Lipb)︸ ︷︷ ︸
:=C5

(∫ t

0

sup
r≤s
∥α− β∥2νu(r)

+Ws,M(µβ,να)2ds

)
. (56)

Applying Grönwall’s inequality to the above result in Eq (56) and the first inequality in Eq (49) shows
that there exists a constant C ′ = 3max(C3, C4, C5) such that

Wt,M(Φ(µβ),Φ(να))2 ≤ C ′
(
d2g(Wβ,Wα) +

∫ t

0

sup
r≤s
∥α− β∥2νu(r)

+Ws,M(µβ,να)2ds

)
.

(57)
Next, the aim is to show the upper-bound of d2g, ∥α−β∥2ν andW·,M. To proceed, let us first examine
the upper bounds of the cut norms for both exponential and cosinusoidal graphons as follows:

sup
A,B

∣∣∣∣∫
A×B

Wα(u, v)dudv

∣∣∣∣2 ≤ h(α) =

{
W 2

0 + 2W0(W1,l +W2,l) + (2/L)(
∑

lW1,l +W2,l)
2

(T/2)W 2
1

(
e−2T−1|O| − 1

)
.

(58)

Modifying the upper-bound in Eq (58) by replacing Wα with δW :=Wα −Wβ, one can derive the
following

d2g(Wβ,Wα) = ∥δW∥2g ≤ max
(
11LipW , (T/2)(e−2T−1|O| − 1)

)
∥α− β∥2ν . (59)

At each stage {m}1≤m≤M with the given sequence of probability measures {ναm}1≤m≤M , we
substitute Φ(µβ) and Φ(να) in Eq (57) with Φ ◦Ψ(ναm+1) and Φ ◦Ψ(ναm), respectively. Then,
one can derive the following relation:

Wt,M(Φ ◦Ψ(ναm),Φ ◦Ψ(ναm−1))2 =Wt,M(Law(X
να∗

m+1
,α∗

m+1),Law(Xνα∗
m

,α∗
m))2

≤ C ′
(
d2g(Wα∗

m+1
,Wα∗

m
) +

∫ t

0

sup
r≤s
∥α∗

m+1 −α∗
m∥νu(r) +Ws,M(να

∗
m+1 ,να

∗
m)2ds

)
.

≤ C ′
(
max

(
t+ 11LipW , t+ (T/2)(e−2T−1|O| − 1)

))
sup
t
∥α(t, ·, θm+1)− α(t, ·, θm)∥2νu(t)

+ C ′
∫ t

0

Ws,M(να
∗
m+1 ,να

∗
m)2ds

≤ C ′
(
max

(
t+ 11LipW , t+ (T/2)(e−2T−1|O| − 1)

))
︸ ︷︷ ︸

:=C(t) ≤ C(T )

(
sup
t
rm

)

+ C ′
∫ t

0

Ws,M(να
∗
m+1 ,να

∗
m)2ds,

where the radius of metric ball (i.e., rm := ru,t,m) was defined in the proof of Proposition A.4. In
the first equality, the controls α are replaced with their optimal profiles α∗ following the definition
of the operator Ψ in. To set up the subsequent stage, we substitute a pair of controls (α∗

m+1,α
∗
m)

with (αm+1,αm) again. Next, we show the stability of the result obtained above for M -th stage by
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observing the upper bound of M -fold of the operator composition.

Wt,M([Φ ◦Ψ]◦M (να1), [Φ ◦Ψ]◦M (να0))2

≤ C(t) sup
t

rm + C ′
∫ t

0

Ws0,M([Φ ◦Ψ]◦M−1(να1), [Φ ◦Ψ]◦M−1(να0))2ds0
)

...

≤
M∑

m=1

(C(t) sup
t

rm)m + (C ′)M
∫ s0

0

· · ·
∫ sM

0

Wsm,M(ναm+1 ,ναm)2d[ΠM ](s0, · · · sM ).

(60)

where dΠm := ds0 ⊗ · · · ⊗ dsm denotes m-product of Lebesgue measures {dsm}1≤m≤M . Finally,
we deduce that the supremum of the left-hand side can be controlled by

lim
M→∞

sup
t∈T
Wt,M([Φ ◦Ψ]◦m(να1), [Φ ◦Ψ]◦m(να0))2 ≤

+
C(T )M (supt supm rm)M − 1

C(T )(supt supm rm)− 1
+

(C ′T )M

M !
sup
t∈T
Wt,M(να1 ,να0)2 −→ 0. (61)

where the learning rate γm is chosen such that supt supm rm ≤ 1 remains sufficiently small, and the
last term in the inequality can be derived by modifying the following

sup
t∈T
Wt,M(Φ◦m(να1),Φ◦m(να0))2 ≤ (C ′)M

∫ T

0

(T − s)
(m− 1)!

Ws,M(να1 , να0)2ds. (62)

The inequality in Eq (61) demonstrates that the sequence of operator compositions {[Φ◦Ψ]◦m}m≤M :
M→M forms a Cauchy sequence, confirming the convergence of the proposed gradient system in
the distributional sense.

A.4.4 SAMPLING ERRORS OF MEAN-FIELD PREDICTORS

Though not presented in the manuscript, the following result implies key theoretical conclusions: It
demonstrates that the estimation errors for the neural agent, introduced by the sampled mean-field
predictors (empirical measure) at the m-th gradient descent step, are kept within acceptable margins.

Proposition A.5. (Worst-case Estimation Error of Neural Agents) Let Qn := Qn(u, t) =
(1/n)

∑
i δXα

ui
(t) and Q := νu(t) be empirical laws of mean-field predictors and their corresponding

mean-field limit. Then, the worst-case estimation error can be upper bounded with probability at
least 1− δ:

sup
αm∈A

∣∣∣∣∣∣∣∣ ∫ αmd(Qn −Q)

∣∣∣∣∣∣∣∣2
E

≤

√
32T 3(1 +m2)2

n
ln

(
1

δ

)

+ 4

(√
32

n
2(3d−2)/2

(
εγm−1Lipα∥∇θY

m−1,αm−1
u (t)∥E

)d/2 d+ 2

4(d− 2)

)(d/2+2)−1

. (63)

Remark. While the admissible control set A guarantees the diminishing behavior of
∥∇θY

m−1,αm−1
u (t)∥E , the second term in Eq (63) approaches zero as m becomes large, even

when n is small.

Proof. The proof follows the standard convergence analysis of empirical processes. Let us fix the
temporal variable t and the labels of mean-field predictors u. Then, one can show that the supremum
of Euclidean norm can be decomposed as follows:

d∑
j

sup
πj◦α∈Aj

m

|EQn
πj ◦αm − EQπj ◦αm| ≤

d∑
j

sup
g∈Aj

m

|EQn
g − EQg| := ΓAj

m
(QN,Q), (64)
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where ΓAj
m

denotes the integral probability metric (Müller, 1997) with respect to the set Aj
m which

consists of j-th component of neural agents at m-th stage. Note that the the supremum in the
second term is taken for all function g lying in the set of parameterized function, i.e., neural agent.
Let us define p, q : (Rd)n → R such that (Xαu1

(t), · · · ,Xαun
(t))

p7−→ supg |(1/n)
∑

i g(X
α
ui
(t)) −

EQg|, and (Xαu1
(t), · · · ,Xαun

(t))
q7−→ Eσ supg |(1/n)

∑
i σig(X

α
ui
(t))| where {σi}i≤n is a set of

i.i.d Rademacher random variables. Then both p and q satisfies the following inequality:

sup
t

max
i∈{1,···n}

∣∣(p, q)(Xαu1
(t), · · · ,Xαui−1

(t), x′,Xαui+1
(t), · · ·Xαun

(t))

− (p, q)(Xαu1
(t), · · · ,Xαun

(t))
∣∣ ≤ 4T supx,tα(t, x; θ)

n
. (65)

Following by the McDiarmid’s inequality with respect to p, we have two concentration inequalities:

exp

(
−nε2

8T 2 supx,tα(t, x; θ)
2

)
≥

{
P(p− Ep ≥ ε)
P(q− Eq ≥ ε). (66)

By applying the symmetrization inequality (Wellner et al., 2013), we have the following inequality
with probability at least 1− δ

ΓAj
m
(QN,Q) ≤ EΓAj

m
(QN,Q) +

√
8T 2 supx,tα(t, x; θ)

2

n
ln

(
1

δ

)

≤ 2ẼEσ

 sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣+
√

8T 2 supx,tα(t, x; θ)
2

n
ln

(
1

δ

)
≤ 2Eσ

[
sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣
]

︸ ︷︷ ︸
Rm(Aj

m,{Xα
un

(t)})

+

√
32T 3(1 +m2)2

n
ln

(
1

δ

) (67)

where the outer expectation is taken with respect to the randomness of mean-field predictors in the
second line, and we apply McDiarmid’s inequality in Eq (66) again to derive the last line. With the
covering number of the Hilbert space for the L2-norm, we get

Rm(Aj
m, {Xαun

(t)}) ≤ Eσ

[
sup
g∈Aj

m

∣∣∣∣ 1n
n∑
i

σig(X
α
ui
(t))

∣∣∣∣
]

≤ inf
ϵ>0

{
2ϵ+

√
32

n

∫ ∞

ϵ/4

√
H(τ,Aj

m,L2(Qn))

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n

∫ ∞

ϵ/4

(
2rm
τ

)d/2

dτ

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n
(2rm)d/2(ϵ/4)−d/2+1(d/2− 1)−1

}

≤ inf
ϵ>0

{
2ϵ+

√
32

n
2(3d−2)/2rd/2m ϵ−d/2−1(d− 2)−1

}

= 4

(√
32

n
2(3d−2)/2

(
εγn−1LipαδθY

m−1
u (t)

)d/2 d+ 2

4(d− 2)

)(d/2+2)−1

,

(68)

where we assume the data dimensionality is d > 2. The second line is a direct consequence of
Theorem 16 (von Luxburg & Bousquet, 2004), the second inequality can be derived from the fact that
Qn is an empirical measure, and Aj

m is a metric ball of radius rm embedded on finite-dimensional
Hilbert space following by (H4). By setting d = d′, the last result comes from the definition of
radius rm.
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Proposition 4.2. (Sampling Complexity) Let νNt , µ̂t probability measures defined in Eq (7). Then,
there exist numerical constants c, c7, c8, c9 > 0, w > 0 and κ > 0 such that the probability of squared
2-Wasserstein distance can be controlled as follows:

P
[
W 2

2 (ν
N
t , µ̂t) ≥ ϵ

]
≤ A

(
1

ϵ2
e−Nϵ2/4c +

1

N
e−Nϵ

(
1− 128ωh(α)

N

)−d/8

+
1

724ϵ
√
N

)
, (69)

A = max

(
c9,

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
, c9 exp(−4c8)

)
, (70)

where u ∈ O, t ∈ T is arbitrary and h(α) = ∥Wα∥g is a cut-norma of the proposed graphons (i.e.,
exponential, cosinusoidal).

aEq. 58 clarifies the explicit upper-bound of the cut-norm for the proposed graphons.

Remark. The approach used in the proof to establish the concentration bound is largely inspired
by the series of works on the measure concentration (Bolley et al., 2007; Budhiraja & Fan, 2017;
Bayraktar & Wu, 2022; Bayraktar et al., 2023; Bayraktar & Wu, 2023), with slight modifications
tailored to the structure of the proposed mean-field system. We intentionally omit some parts of the
proofs in this work that have already been covered in the reference.

Proof. We divide the proof into separate steps.

1. Estimation of Concentration Inequality. For the controlled mean-field system via neural agents
α, fix the the population να and its related control Xν,αu = Xu and let u = i/n for the moment.
First, let us define the following probability measures:

νnt :=
1

n

n∑
i

δXn
i (t)

, ν̄nt :=
1

n

n∑
i

δX(i/n)(t), µ̂t =

∫
νu(t)p(du), µ̄

n
t =

1

n

n∑
i

νu=i/n(t). (71)

Then, we analyze the law of difference between the following two mean-field dynamics:

Xu(t) = Xu(0) +

∫ t

0

⟨Wα[νv,s],ψ⟩(Xu(s))ds+

∫ t

0

b(s,Xu(s),α)ds+

∫ t

0

σsdW
u
s ,

Xn
i (t) = X(i/n)(0) +

∫ t

0

⟨Wα[δv,s],ψ⟩(Xn
i (s))ds+

∫ t

0

b(s,Xn
i (s),α)ds+

∫ t

0

σsdW
(i/n)
s .

Given that fact that the expectation of Ito’s differential for mean-square error can be expressed as
dI∥A(t)∥2 = 2⟨A(t),mA⟩dt + 2σA(t)dWt + σ2dt where R+ ∋ σ and mA are compensate and
martingale part of A(t), we get

dI∥X(i/n)(t)−Xn
i (t)∥2E = 2δX(t) ·

(
b(s,Xn

i (s),α)− b(s,Xi/n(s),α)
)
dt

≤

 1

n

n∑
j=1

Wα

(
i

n
,
j

n

)
ψα(X

n
i (t),X

n
j (t))− Ê

[
Wα

(
i

n
, v

)
ψα(X(i/n)(t), x)

]
· 2δX(t)dt

(72)

where we denote Ê := Ev∼p(v),x∼νv=j/n(t) and p(v) := w#[Unif(O)], δX(t) := X(i/n)(t)−Xn
i (t).

Then, the dissipativity assumption gives

dI∥δX(t)∥2E ≤ I + II + III + IV (73)

For simplicity let us denoteW i,j :=Wα(i/n, i/j), andW i,v :=Wα(i/n, v). Using the dissipativity
of the proposed drift function. For the second first, one can get

I := 2δX(t) ·
(
b(s,Xn

i (s),α)− b(s,Xi/n(s),α)
)
≤ −c1∥δX(t)∥2E (74)

xxv



Published as a conference paper at ICLR 2026

By adding and subtracting new terms, we have

II :=

 1

n

n∑
j

W i,j
[
ψα(X

n
i ,X

n
j )−ψα(X(i/n) −X(j/n))

] · δX(t)

≤ Lipb
n

n∑
j

|δX(t)|
(
|δX(t)|+ |Xn

j (t)−X(j/n)(t)|
) (75)

Similarly, the second term can be upper-bounded as follows:

III :=

 1

n

n∑
j

W i,j
[
ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X

n
i , ·)

] · δX(t)

≤ |δX(t)| · ∥W i,j∥∞∥F i
III∥2E .

(76)

By adding and subtracting the term Wi,jEψα(Xi/n(t), ·), the fourth term can be improved as

IV :=

 1

n

n∑
j

[
W i,j

∫
ψα(Xi/n(t), ·)dνi/n(t)−

∫
W i,vψα(Xi/n(t), ·)dνv(t)

] · δX(t)

≤ 1

n

n∑
j

∥W i,j∥∞
(
C1W2(νi/n(t), νv(t)) + n2dg(W

i,j ,W i,v)
)

≤ |δX(t)| · ∥W i,j∥∞∥F i
IV∥2E

n→∞−−−−→ 0.
(77)

Note that the last inequality tends to zero for large enough n. Aggregating all the terms and using the
fact that g′(t) ≤ ag(t) + b implies g(t) ≤

∫
e−a(t−s)bds and d/dt∥g(t)∥2E ≤ (1/2)g(t)−1/2ġ(t),

where g(t) := (1/n)
∑n

i ∥δX(t)∥2E and a = (2Lipb − c1), b := b(F i
III,F i

IV), we have

W2
2 (ν

n
t , ν̄

n
t ) ≤

1

n

n∑
i

∥δX(t)∥2E

≤
∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∣∣∣∣∥F i
III∥2E + ∥F i

IV∥2E
∣∣∣∣2
)
ds.

≤
∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∥F i
III∥2E + ∥F i

IV∥2E

)
ds︸ ︷︷ ︸

:=V+VI

(78)

where the first inequality follows from the estimation of Wasserstein distance for empirical measures,
and the last inequality can be derived by applying AM-GM inequality.

P
[
W 2

2 (ν
n
t , µ̂t) ≥ ϵ

]
≤ P

[
W 2

2 (ν̄
n
t , µ̂t)︸ ︷︷ ︸

:=VII

≥ ϵ/2
]
+ P[V ≥ ϵ/4] + P[VI ≥ ϵ/4]︸ ︷︷ ︸

=0, n≫N

, (79)

where the last term vanishes for small enough ϵ, with large N .
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2. Estimation of Exponential eλexp∥Xu(t)∥2
E . In this step, we derive the upper bound of the exponen-

tial for the square norm of mean-field predictors. We first apply the Ito’s lemma to eλexp∥Xu(t)∥2
E for

arbitrary scalar λexp > 0 and observe that

dIe
λexp∥Xu(t)∥2

E = λexpe
λexp∥Xu(t)∥2

E
(
2Xu · (b+ bW )dt+ σt(d+ 2λexp∥Xu(t)∥2E)dt+ σtdBu

)
.

(80)

where gradient and Laplace of exponential can be calculated as ∇eλexp∥Xu(t)∥2
E = 2λexpe

λexp∥Xu(t)∥2
E

and ∆eλexp∥Xu(t)∥2
E = 2λexpe

λexp∥Xu(t)∥2
E (d+ 2λexpe

λexp∥Xu(t)∥2
E ). Taking expectation on both sides

with the dissipative condition, we can show that there exist constants c2 = 2λexp(−c1 + σtλexp),
c3 = λexpσtd that directly gives following two inequalities

dIE[eλexp∥Xu(t)∥2
E ] ≤ E

[
eλexp∥Xu(t)∥2

E
(
c2∥Xu(t)∥2E + c3

)]
dt+ E

[∫
Msdt

]
, (81)

sup
t≤T
∥Xu(t)∥2E ≤ sup

t≤T
∥yu∥2 +Nt + c1

∫ t

0

∥Xu(s)∥2Eds ≤ c4e
c1T . (82)

where the second inequality is a direct consequence of Grownall’s inequality, and Mt and Nt denote
some martingale. Applying Grownall’s inequality again, we have the desired result.

dIE[eλexp∥Xu(t)∥2
E ] ≤ (c5 + c6E[eλexp∥Xu(t)∥2

E ])dt, (83)

E[eλexp∥Xu(t)∥2
E ] ≤ (exp(λexp∥yu∥2E) + c5) exp(c6T ) ≤ (e7)

2. (84)

where we used inequality ea + eb ≤ exp (max(a, b) + ln(1 + exp(−|a− b|)) = (e7)
2 such that

a = λexp∥Xu(t)∥2E + c6T , b = ln c5 + c6T . Note that the upper-bound of the term exp(λexp∥yu∥2E)
at initial time t = 0 determines the exponential integrability of the right-hand side above.

3. Estimation of Probability P[V ≥ ϵ/4]. By the exponential Markov inequality with some constant
λ > 0, Jensen’s inequality, we obtain

P[V ≥ ϵ/4] := P

[∫ t

0

e−(4Lipb−2c1)(t−s)

(
sup
i′,j′
∥W i′,j′∥2∞

1

n

n∑
i

∥F i
III∥2E

)
ds > ϵ/4

]

≤ 1

n

n∑
i

e−λϵ/4E
[ ∫ t

0

e−(4Lipb−2c1)(t−s)

· exp

λh(α)∥ 1
n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)∥2E

 ds

]
.

(85)

Note that ∥ψα(x, y)∥E ≤ Lipψ(∥x∥E + ∥y∥E) have linear growth for all x, y ∈ Rd by the
assumptions.

E

exp
λh(α)∣∣∣∣ 1

n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)
∣∣∣∣2
E


≤ E

[
exp

(
2λh(α)Lipψ

n

∣∣∣∣X(i/n)

∣∣∣∣2
E
+ 2λh(α)

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)]

≤
(
2E
[
exp

(
4λh(α)Lipψ

n

∣∣∣∣X(i/n)

∣∣∣∣2
E

)])1/2
(
2E

[
exp

(
2ζ

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)])1/2

(86)

where the last inequality can be derived by applying exponential AM-GM inequality
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E

[
exp

(
2ζ

∣∣∣∣∣∣∣∣ 1nFψ
∣∣∣∣∣∣∣∣2
E

)]
= E

[
exp

(∣∣∣∣∣∣∣∣2√ζn Z

∣∣∣∣∣∣∣∣
E

· ∥Fψ∥E
)]

≤ E

[
exp

(
ω

∣∣∣∣∣∣∣∣2√ζn Z

∣∣∣∣∣∣∣∣2
E

+
1

4ω
∥Fψ∥2E

)]

≤
(
2E
[
exp

(
8ωζ

n2
∥Z∥2E

)])1/2 (
2E
[
exp

(
(10n) · Lipψ∥Fψ∥2E

)])1/2
exp(c4e

c1T )

≤ 2c7

(
1− 16ωζ

n2

)− d
4

· exp(c4ec1T ),

(87)

where Z ∼ N (0, Id) is a standard Gaussian random vector. The last inequality is a direct consequence
of the property of the moment generation function. The second line can be deduced from the fact
that the discretized predictors X(i/n) and X(j/n) are i.i.d with the selection of ω > 0, λexp and ζ
satisfying the following:

1

4ω
∥Fψ∥2E ≤ n · Lipψ

(
5∥X(i/n)∥2E + exp(c4e

c1T )
)

(88)

λexp := max

(
4λh(α)Lipψ

n
, (10n)Lipψ

)
. (89)

ζ := 2λh(α) > 0 (90)

By aggregating all the terms, we finally have

E

exp
λh(α)∣∣∣∣ 1

n

n∑
j

ψα(X(i/n),X(j/n))− Eνj/n(t)ψα(X(i/n), ·)
∣∣∣∣2
E


≤ 2c

3/2
7

(
1− 16ωζ

n2

)− d
8

· exp(c4e
1
2 c1T )

(91)

Thus, the probability of V larger than threshold ϵ/4 can be written as follows:

P[V ≥ ϵ/4] ≤ 2

κn
e−nϵc

3/2
7

(
1− 16ωζ

n2

)− d
8

· exp(c4e
1
2 c1T )

(
eκT − 1

)
, (92)

κ = −(4Lipb − 2c1), λ = 4n. (93)

4. Estimation of Probability P[VII ≥ ϵ/2]. Now, it remains to establish the upper bound of the
probability related to VII. We modify the standard estimation of concentration probabilities of
empirical measures as outlined in Bolley (2010). By the triangle inequality, the probability can be
decomposed as

P
[
VII ≥ ϵ

2

]
≤ P

 sup
h∆≤t≤(h+1)∆

0≤h≤M̄−1

W2
2 (ν̄

n
t , ν̄

n
h∆) ≥

ϵ

6

+P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̄

n
h∆) ≥

ϵ

6

]
(94)

where the temporal interval can be also decomposed as T = [0,∆]∪ [∆, 2∆]∪· · ·∪ [(M−1)∆, T ] ⊆⋃M−1
h=0 [h∆, (h+ 1)∆]. The first term of the right-hand side above can be bounded as

P

[
sup

h∆≤t≤(h+1)∆

W2
2 (ν̄

n
t1 , ν̄

n
t2) ≥

ϵ

6

]
≤ P

[
1

n
sup

0≤t1≤t2≤t
∥Xi/n(t1)−Xi/n(t2)∥2E ≥

ϵ

6

]

≤ exp

(
−n sup

ζ>0

(
ϵζ − logE exp

(
ζ sup
0≤t1≤t2≤t

∥Xi/n(t1)−Xi/n(t2)∥2E
))) (95)

The first line is induced as any measures νn(·) are empirical, and the next line can be induced by using
Chebyshev’s exponential inequality and the independence of the mean-field predictor. Denoting
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δX(i/n) := sup0≤t1≤t2≤t∥Xi/n(t1) −Xi/n(t2)∥2E for any t1 ≤ t2T, we can further improve the
right hand side by showing

E exp
(
ζδX(i/n)

)
≤ exp(ζ2c8) exp(2ζδX(i/n)) ≤ exp(ζ2c8)

(
1 + Ĉ∆

)
, (96)

where we used the fact that ax ≤ a2b+ 2ax for all a, b, x ≥ 0. In order to show the upper bound of
the first term in the last inequality (96), we used the result (4.6) Bolley (2010) tailored to our case
under the assumption made in Section A.3 for fixed u and α. Combining results, we have

P

 sup
h∆≤t≤(h+1)∆

0≤h≤M̄−1

W2
2 (ν̄

n
t , ν̄

n
h∆) ≥

ϵ

6

 ≤ M̄ exp

(
−n sup

ζ>0

(
ϵζ − ζ2c8 − log(1 + Ĉ∆)

))

≤ M̄ exp

(
−nϵ

2

4c8
− log(1 + Ĉ∆)

)
≤ c9
ϵ2

exp

(
−nϵ

2 + 1

4c8

)
,

{
∆ = exp(4c−1

8 )Ĉ−1,

M̄ ≤ c9/ϵ
2.

(97)

For the second term of the right-hand side in (94), we first apply Boole’s inequality of events to have

P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̂h∆) ≥

ϵ2

36

]
≤

→0,n≫N︷ ︸︸ ︷
P

[
sup

0≤h≤M̄−1

W2
2 (µ̄

n
h∆, µ̂h∆) ≥

ϵ2

72

]

+ P

[
sup

0≤h≤M̄−1

W2
2 (ν̄

n
h∆, µ̄

n
h∆) ≥

ϵ2

72

]

≤ M̄ϵ

(72)4
√
n
≤ c9

(72)4ϵ
√
n
.

(98)

The second inequality can be deduced by the result of Theorem 1.5 Bolley (2010) with d ≤ d′ =

4, (0, 1) ∋ δ̂ = 2, p = 2, q = 4. Then, there exists a constant n0 > 0 such that n ≥ n0 max
(
ϵ−16, ϵ

)
for any ϵ > 0 and

sup
t∈T
i≤N

P
[
W 2

2 (δX(i/n)(t)), ν(i/n)(t) ≥
ϵ2

72

]
≤ ϵ

(72)4
√
n
. (99)

where the quantity in (100) can be derived by proceeding similarly as in Step 2.

sup
t∈T
i≤N

E
[
∥X(i/n)(t)∥4E

]
≤ ∞ (100)

The first term in the first inequality is direct consequence of following result:

E
[
∥X(i/n)(t)−X(i/n)(s)∥2E

]
∝ |t− s|2. (101)

Combining all the results for the probability bounds of V, VII for deduce the upper bound in (79),

P
[
W 2

2 (ν
n
t , µ̂t) ≥ ϵ

]
≤ c9

(72)4ϵ
√
n
+

c9
ϵ2

exp(−4c8) exp
(
−nϵ

2

4c8

)
+

2

κn
e−nϵc

3/2
7

(
1− 128ωh(α)

n

)− d
8

· exp(c4e
1
2 c1T )

(
eκT − 1

)
. (102)

By setting A as follows, the proof is complete.

A = max

(
c9,

2c
3/2
7

κ
exp(c4e

1
2 c1T )

(
eκT − 1

)
, c9 exp(−4c8)

)
. (103)
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A.5 ALGORITHM

Algorithm 1 Sampling Mean-field Continuous Sequence Predictors
while t ∈ T do ▷ Graphon Mean-field Euler-Maruyama Sampling

while i ≤ N do
{yui}i≤N ∼ p(u, y), ∆t ∼ p(∆t), U ∼ Unif(O), t ∼ p(t).
αi = α(t,Xn

i ; θ
∗),Wij = Wαi(⌈nui⌉ /n, ⌈nvj⌉ /n),ψij = ψαi

(
Xn

i (t),X
n
j (t)

)
. (104)

Xn
i (t+∆t) = Xn

i (t) +
1
n

∑n
j Wijψij∆t + b(t,X

n
i ,αi)∆t +N (0d, σt∆tId). (105)

end while ▷ Predict Subsequent Future Event
if t ∈ T \O then

Λt+∆t =
∑K

i w(U, ⌈nui⌉ /n)Xn,αi
i (t+∆t) ≈ Eu∼p(u)X

α
u (t+∆t)

end if
end while

Graphon Mean-field Euler-Maruyama Sampling. Algorithm 1 describes a discretization of the
proposed infinite-order mean-field system. For a set of sampled temporal states, the proposed
sampling method in Eq. (104) firstly projects the original graphon Wα and interaction functions ψ
onto their discrete counterparts Wij and ψij , which are referred to as step graphons Fabian et al.
(2023) and step interactions in the literature. In the second phase, once the projections have been
obtained, the Euler-Maruyama method is utilized to sample the trajectories of mean-field SDEs,
effectively propagating information. In the prediction interval i.e.,T \O, the aggregation function w
is utilized to integrate the sampled particles, facilitating the generation of a forecast.

Continuity of Temporal States. It is worth noting that every temporality integrated into the proposed
framework is completely non-uniform, as minimal temporal granularity (i.e.,∆t), local and global
temporal states (i.e., u, t) are distributed to their corresponding probability densities defined on the
continuous interval, resulting continuous representations of sequences. To operate in the described
continuous setting, the neural network architecture in our framework is temporally resolution-free,
which differs by exiting benchmarks, e.g., Contiformer. The following list summarizes
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Figure 6: Parallel Computation in Sampling Mean-field Predictors

A.6 EXPERIMENTAL DETAILS

Experimental Setup. We consider T := [0, T ] as the entire temporal interval for each sequence
instance and use the first α% of observations, [0, (αT/100)], to predict the remaining (1 − α)%,
[(αT/100), T ]. For this study, T is set to 100 for the MIT Humanoid Robot dataset, 48 for MIMIC-II,
72 for the Beijing Air Quality dataset, and 1200 for Eigenworm, with α = 80 in all cases. For every
dataset we construct such input output windows on the continuous trajectories and apply per-feature
z-score normalization using statistics computed on the training split, which are then reused for
validation and test, and all models are evaluated primarily by mean squared error (MSE) on the
prediction horizon. Our MFP is trained with the Adam optimizer using batch size 128 and learning
rate 10−4; the neural graphon and control networks together contain on the order of one million
parameters, while competing methods use the architectures and hyperparameters recommended in
their original papers rather than being artificially matched by parameter count. All models, including
baselines, are trained for 10 000 epochs without early stopping, and reported results are averaged over
multiple runs with different random seeds on a single GPU. In our mean-field game interpretation, the
fictitious-play index m coincides with the number of Adam gradient steps on the control parameters
α, so that these 10 000 epochs realize 10 000 fictitious-play updates and provide a high-resolution
approximation of the HJB component in Eq. (5) for this high-dimensional setting.

Model Architecture. In each forward step of Xu(t) from t to t+∆t, a neural network takes Xu(t), t,
and u as inputs and outputs b(·,α),W (α), and w. In the first stage of the neural network, Xu(t) and
t are concatenated into a single vector, which is then projected into a hidden vector via a multilayer
perceptron (MLP). This hidden vector is subsequently passed through a computation block consisting
of several MLP layers with skip connections. Finally, after the computation block, the hidden vector
is projected into b(·,α), W (α), and w using respective MLPs. In our architecture, each MLP is
composed of two linear layers, with a Swish activation function positioned between them.

To process the labeling information u in the neural network, we apply adaptive normalization (Peebles
& Xie, 2023). Specifically, instead of using fixed scale and shift parameters in the normalization
layers of α(.; θ), we regress these parameters based on u. The adaptive normalization layers are
placed between MLP layers. We find that this conditioning mechanism effectively incorporates the
labeling information, outperforming the approach of simply concatenating u into input vectors.

After obtaining outputs from the neural networks, we evaluate bW(·,α) for forward evaluation of
SDEs. To derive bW(·,α), we compute an exponential or cosine graphonW using u and v where v <
t. Next we calculate the projection Proj(x−y) := (x−y)/∥x−y∥with x = Xu(t) and y = Xv<t(t).
These values are then integrated into with W (α) using Eq (2) into Wα and ψα, finally leading
to bW(·,α) =

∑
v<t ψα(Xu(t),Xv(t))Wα(u, v). After forward evaluation, we utilize w to

aggregate predictors by applying softmax. (i.e., Λt =
∑

v<t Softmax(w(u, v); {w(t, u)}u<t)Xu(t)
where Softmax(x ∈ S;S) represents the value of x after applying the softmax operation to the entire
set S which includes x.)

Parallel Computation. Since the direct application of Alg. 1 is computationally intractable for large
particle count N , we introduce novel parallel computing to efficiently sample proposed mean-field
predictors, as described in Fig ??. At each step of forward evaluation, given all predictors Xαu , each
predictor can be processed independently using Eq (1). In other words, no predictor needs to wait for
the others to complete their forward evaluation. By taking advantage of this property, at time t, we
store all predictors with u ≤ t in the shared memory and forward predictors one step in parallel. This
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parallel implementation significantly decreases empirical computation time by reducing the number
of iterations for forward evaluation fromO(SN) toO(S) where S is the number of steps for forward
evaluation and N is the number of sampled observations.
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