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Abstract

We propose an online conformal prediction framework under local differential pri-
vacy to address the emerging challenge of privacy-preserving uncertainty quantifi-
cation in streaming data environments. Our method constructs dynamic, model-free
prediction sets based on randomized binary inquiries, ensuring rigorous privacy
protection without requiring access to raw data. Importantly, the proposed algo-
rithm can be conducted in a one-pass online manner, leading to high computational
efficiency and minimal storage requirements with O(1) space complexity, making
it particularly suitable for real-time applications. The proposed framework is also
broadly applicable to both regression and classification tasks, adapting flexibly
to diverse predictive settings. We establish theoretical guarantees for long-run
coverage at a target confidence level, ensuring statistical reliability under strict
privacy constraints. Extensive empirical evaluations on both simulated and real-
world datasets demonstrate that the proposed method delivers accurate, stable, and
privacy-preserving predictions across a range of dynamic environments.

1 Introduction

Modern decision-making systems are increasingly deployed in streaming environments such as
real-time bidding, health monitoring, and algorithmic trading, where data distributions evolve over
time. In these dynamic settings, reliable uncertainty quantification is essential for ensuring trustwor-
thy predictions and maintaining robustness under distributional shift. Conformal prediction (CP)
[Vovk et al., [2005]] provides a powerful, distribution-free framework for constructing prediction
sets with formal finite-sample coverage guarantees. However, traditional CP methods rely on the
assumption of exchangeability among calibration samples, an assumption that is often violated in
online environments, where data distributions are non-stationary (e.g., due to changing user behavior
during a pandemic). To address the limitations posed by distributional shifts and exchangeability
violations, numerous extensions to CP have been proposed [Tibshirani et al.,|2019, |Le1 and Candes,
2021} [Fannjiang et al.,[2022, Barber et al., 2023 [Plassier et al.,2024]], incorporating techniques such
as weighted quantiles, adaptive calibration, and distributional adjustment.

Among the earliest attempts to bring CP into an online setting, Gibbs and Candes| [2021]] proposed a
method based on online convex optimization that adaptively adjusts prediction thresholds using per-
instance coverage feedback. While this approach marked an important step toward online uncertainty
quantification, it assumes access to true outcome labels at every time step to verify coverage, an
assumption that is incompatible with privacy requirements in potentially sensitive user data such
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as patient records in healthcare or physiological signals from wearable devices. Moreover, the
algorithm requires pre-specified learning rates, which may result in unstable prediction intervals
that are either empty or unbounded in practice. Subsequent efforts have sought to mitigate these
limitations by proposing more stable and adaptive procedures [Zaffran et al., |2022| |/Angelopoulos
et al.} [2023| [Bhatnagar et al.| [2023]] . More recent work [Podkopaev et al., 2024} |Ge et al., 2024,
Angelopoulos et al., 2024} Gibbs and Candes|,|2024] continues to advance online conformal prediction
methodologies to better accommodate the challenges of non-stationary, real-time data streams.

Despite these important developments, existing approaches generally lack built-in privacy protection,
leaving them vulnerable to information leakage in privacy-sensitive applications. As demonstrated by
Angelopoulos et al.|[2022], the conformal calibration step itself can leak private information unless
explicitly privatized. This highlights the need for a principled framework that integrates uncertainty
quantification with rigorous, end-to-end privacy guarantees. Differential Privacy (DP) [Dwork et al.,
2006blla]], one of the most widely used frameworks for privacy-preserving data analysis, provides a
rigorous mathematical definition that guarantees the output of a computation does not reveal sensitive
information about any individual in the dataset. Due to its strong theoretical guarantees and practical
utility, DP has seen widespread adoption across a variety of domains, including healthcare, wearable
sensors, and public sector services [Dankar and El Emam) 2013| [Li et al., [2022} Drechsler, [2023]].
Recent research has focused extensively on the central differential privacy (CDP) model, which
assumes the existence of a trusted server that can securely collect, store, and process raw user data.
This framework has demonstrated effectiveness in a variety of applications, such as deep learning,
federated learning, and synthetic data generation [Abadi et al., 2016| |Adnan et al.| 2022, Ponomareva
et al., 2023 |(Olabim et al., [2024].

Unfortunately, the aforementioned methods based on the CDP model inherently depend on the
assumption of trust in the central curator, making it vulnerable to technical breaches, insider misuse,
and potential privacy violations if the central server is compromised. In contrast, the local differential
privacy (LDP) model eliminates the need for a trusted aggregator by requiring that each user privatize
their data at the source, before any transmission to a server or analyst [Kasiviswanathan et al.| 2011}
Duchi et al., 2018 |He et al., 2023} [Duchi and Ruan, [2024]]. Owing to its strong privacy guarantees,
LDP has been widely adopted in practice by major technology companies such as Google [Erlingsson
et al.L 2014} |Song et al., 2021]], Apple [Tang et al., 2017]], and Meta [Yousefpour et al.| 2021]]. Despite
its practical importance, the literature on CP under rigorous privacy guarantees remains relatively
limited, even in offline settings. For example, |Angelopoulos et al.| [2022] proposed a method for
constructing conformal prediction sets under CDP, but their approach is limited to static calibration
datasets and centralized computation. Recent efforts have attempted to extend privacy guarantees to
federated and decentralized frameworks. Humbert et al.| [2023]] applied the exponential mechanism
within a federated learning paradigm to perform private quantile estimation across distributed clients.
Similarly, [Plassier et al.|[2023] introduced noise into gradient updates to derive private prediction
sets. Although these methods effectively enforce privacy during downstream processing, they fail
to address a critical vulnerability in dynamic environments: the risk of exposure at the time of data
acquisition. This highlights a critical gap in the existing literature, the lack of dynamic, model-
free methods for constructing prediction sets under LDP that enable real-time, privacy-preserving
decision-making.

The goal of this paper is to address the critical challenge outlined above. Specifically, we introduce
an online CP framework under LDP constraints, a unified approach for distribution-free, privacy-
preserving uncertainty quantification in streaming data environments. The overall flowchart of the
proposed framework is illustrated in Our main contributions are summarized as follows:

* We propose a trusted-curator-free algorithm that operates fully online in a single-pass,
under the one-shot interaction model, where each user is inquired exactly once. The
algorithm leverages locally privatized binary feedback to ensure stringent privacy guarantees
without direct access to raw user data. By design, it is both computationally and memory
efficient, achieving constant time and space complexity (O(1) per instance), making it
particularly well-suited for dynamic environments in both regression and classification tasks.

* Our framework is model-agnostic, supporting arbitrary black-box prediction models, in-
cluding those trained under DP. In contrast to most existing methods, our approach provides
the flexibility to construct fully end-to-end privacy-preserving pipelines when the underlying
predictive model trained online is itself private.



* From a theoretical perspective, we provide a rigorous analysis of the algorithm’s LDP
guarantees and show that these extend to the entire prediction pipeline when the pre-trained
model is also DP, thereby achieving full end-to-end privacy protection. In addition, we
establish that the algorithm achieves long-run coverage guarantees at the nominal target
level, regardless of the underlying predictive model.
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Figure 1: The server processes users sequentially in a one-by-one manner. Each user locally computes
their own non-conformity score. Using the private quantile estimate from the previous round, the
server constructs a prediction set for the current user and issues a binary inquiry. Upon receiving the
user’s randomized response, the server updates the private quantile estimate accordingly and proceeds
to the next user in the sequence.

2 Preliminaries

2.1 Differential privacy

In this subsection, we review the basic concepts and some useful properties of CDP and LDP.

Definition 2.1 (CDP, Dwork et al.|[2006b]]). Let X be the sample space for an individual data, a
randomized algorithm M: X™ — R is (¢,0)-DP if and only if for every pair of adjacent datasets X,
X' C X™ and for any measurable event E C R, the inequality below holds:

Pr(M(X)€e E) <e*-Pr(M(X') € E)+ 4.
When 6 = 0, then M is called pure e-DP.

This definition enforces privacy at the output level and assumes the existence of a trusted curator
with access to the raw dataset. While such an assumption simplifies algorithm design, it does not
eliminate the need for trust or mitigate the risks of internal data exposure. To address this limitation,
LDP is given as follows, which shifts the privacy mechanism to the user side, requiring that data be
randomized before collection, thereby removing the need for any trusted data aggregator. The formal
definition of LDP is given below.

Definition 2.2 (LDP, [Xiong et al.|[2020]). A randomized algorithm M : X — R satisfies (€,0)-LDP
if and only if, for any pair of input individual values x,x' € X, and for every measurable event
E C R, we have

Pr[M(z) € E] <e°-Pr[M(z') € E] + 6.
When 6 = 0, this reduces to pure e-LDP.

LDP ensures privacy at the individual level by requiring each user to randomize their data locally
before sending it to the data collector. LDP supports different interaction models depending on how
users communicate with the server. In this paper, we adopt the one-shot interactive LDP setting [[Cheu
et al., 2019} |[Liu et al., |2023]], wherein each user applies a local randomizer exactly once and transmits
privatized feedback to the server. This design substantially reduces communication overhead while
providing rigorous privacy protection. Specifically, our algorithm assumes that each user is inquired
only once, and the server updates its internal state solely based on the privatized responses it receives.

We now proceed to present several key properties of LDP that characterize how privacy guarantees
are preserved under sequences of operations.



Lemma 2.3. /Xiong et al.|{2020]

Sequential Composition: Suppose n mechanisms {M, ..., M} satisfy e;-LDP, respectively, and
are sequentially applied to the private data. Then, the combined mechanism formed by (M, ..., M)
in some order satisfies (3", €;)-LDP.

Parallel Composition: Suppose n mechanisms {My, ..., M,} satisfy ¢;-LDP fori = 1,2,...,n,
respectively, and are computed on a disjoint subset of the private data. Then, a mechanism formed by
(M1(Dn), ..., M, (D,,)) satisfies max(e;)-LDP.

Postprocessing Property: If mechanism M satisfies e-LDP, then for any mechanism Mo, even if Mo
does not satisfy LDP, the composition Ma(M;(-)) also satisfies e-LDP.

2.2 Problem formulation

In this paper, we consider an online learning framework in which data arrive sequentially as
{(X¢,Y:) }i>1, with X; € X € R?and Y; € Y C R. Classical online CP [Gibbs and Candes|
2021, |Angelopoulos et al., 2023} |Gibbs and Candes| 2024, Podkopaev et al., |2024]] assumes the exis-
tence of a bounded non-conformity score function S; : X' x Y — [0, D] at each time ¢, where the score
S = S1(Xy,Y:) quantifies the discrepancy between the model’s prediction and the observed outcome.

A common example in regression task is the absolute residual score, Sy (X, Y;) = |Y; — fo(Xy)],
where f; : X — R is the predictive model trained in an online manner. The primary goal is to

construct a prediction set C, at each time ¢ such that the long-run empirical coverage converges to a
pre-specified nominal level 1 — «.. Formally, we aim to satisfy:

lim
T— 00

;XT:H(YtECA't(Xt)) —(1=a)|=0. M

where the prediction set is given by: Cy = {y € Y : Sy(,y) < ¢;}, and the threshold ¢ is iteratively

updated via g;r1 = g + n:(I(Y: ¢ C’t(Xt)) — «), with 7; denoting the step size. This update rule is
interpreted as an online (sub)gradient descent algorithm on the quantile pinball loss:

qt+1 = 4t — 77t(%17a(Qta St) (2)
with 01_4(q,S;) = I{g > St} — (1 —a)) (g — Sy).

While these methods achieve distribution-free coverage guarantees, they typically require access to
accurate feedback indicating whether the true outcome Y; lies within the prediction set Cy. In privacy-
sensitive settings, this feedback can inadvertently disclose personal or confidential information,
and users may be unwilling or unable to provide truthful responses. Additionally, the underlying
predictive model ft may itself be vulnerable to privacy attacks. This limitation highlights the need
for a privacy-preserving online CP framework that mitigates information leakage while maintaining
reliable online calibration.

3 Algorithm and main results

In this section, we systematically present our method for constructing online privacy-preserving CP
sets using binary inquiries. As outlined in (Z)), each subgradient 9¢1_,(¢:, St) is purely determined
by the binary indicator variable representing whether the non-conformity score .S; is less than or
equal to the current quantile estimate g;. This inherent binary structure enables us to implement a
local randomization mechanism via randomized response, which directly supports LDP constraints.
Motivated by this, we carefully design the binary inquiry presented to the user to adjust the stochastic
gradient descent process via subgradient without violating privacy conditions. This leads to a modified
update rule in which the deterministic subgradient is replaced with a privatized binary response,
drawn from a locally randomized mechanism. Specifically, upon receiving the privatized binary
feedback L = LRBR(Sy, ¢, 7), as defined in Algorithm[1] where r € (0, 1] is the probability of a
truthful response, the subgradient g; is updated according to:

:{1(r(1a)+0.5(1r)), ifL=1

—(r(1—a)+0.5(1—7)),  otherwise )



[V VR S R

=

This formulation modulates the strength of privacy protection in the update step according to the
response rate r: a smaller value of r corresponds to stronger privacy protection, as it increases the
amount of randomization in the binary feedback mechanism. Notably, in the special case where
r = 1, the mechanism reduces to the non-DP setting, and the update g; degenerates to the standard
subgradient 941 _(qt, St), recovering the standard deterministic subgradient update without any
privacy protection [Podkopaev et al.| [2024]. The complete procedure is summarized in Algorithm T}

Algorithm 1: Locally Randomized Binary Response (LRBR)

Input: local nonconformity score .S, private quantile g, response rate r
u ~ Bernoulli(r)
v ~ Bernoulli(0.5)
if u = 1 then
L return 1{q>S}

else
L return v

In Algorithm[I] generating the random bit v prior to the conditional branch may appear redundant;
however, this design is intentional to prevent side-channel attacks, such as inferring the true value
based on variations in response timing [[Coppens et al., 2009, [Lawson, 2009].

To enable private, adaptive quantile estimation in an online setting, we adopt a coin betting-based
online convex optimization framework [Orabona and Pal, 2016, |Cutkosky and Orabona, 2018|
Podkopaeyv et al.,[2024]. This parameter-free and robust method reformulates the learning process as
a repeated betting game framework, providing regret guarantees even in adversarial environments.
Within this framework, a gambler sequentially bets a fraction A; € [—1, 1] of their current wealth
W;_1 on an outcome ¢; € [—1, 1], which may be adversarially chosen as in [Orabona and Pal,
2016|]. Starting from an initial endowment Wy > 0, the cumulative wealth evolves according to:
Wy =Wy + 22:1 AiW;_1¢;. To adaptively adjust \; based on sequential feedback, we use the

Krichevsky-Trofimov (KT) estimator [Krichevsky and Trofimovl|1981[], which sets: A\; = Zf;} ci/t.
To integrate this with our privatized quantile estimation, we define the feedback as ¢; := —g;, where
gy is the privatized subgradient in equation . The signed bet w; := \;W;_; is then interpreted as
the current privatized estimate of the (1 — «)-quantile, denoted as ¢;. This feedback is used to update
the coin betting procedure at each step. The resulting design enables the algorithm to adaptively refine
its quantile estimate based on privatized, binary feedback while maintaining rigorous LDP guarantees.
We summarize the proposed procedure for the regression task in Algorithm[2} The corresponding
extension to classification tasks is presented in Section [

In our framework, the predicted value Yt will be transmitted to the curator in order to construct the
prediction interval Cy = [Y; — ¢, Yz + ¢¢]. As such intervals inherently disclose the quantile threshold
@+, inquiring the user based on this value does not introduce additional privacy risk. Importantly, g; is
updated via the above proposed mechanism that satisfies LDP, thereby ensuring rigorous individual-
level privacy protection, even when ¢, is externally observable. Specifically, ¢; is estimated via
binary inquiries, which provide several practical advantages. Each inquiry conveys only a single
bit of information, substantially reducing communication overhead and improving transmission
efficiency. In contrast to open-ended inquiries, binary inquiries are more intuitive and cognitively
accessible, thereby enhancing user comprehension and response fidelity [Brown et al.,|1996]. Beyond
communication efficiency, our framework facilitates fully online computation, eliminating the need
to store or re-access historical data. As a result, it significantly reduces memory and computational
demands, making our method particularly well-suited for streaming applications [Lee et al., 2022].

In online learning, regret quantifies the cumulative difference between the learner’s performance
and that of a fixed comparator. Formally, let {g; }7__, denote the sequence of decisions made by the
algorithm. The regret with respect to a fixed comparator g* € R is given by:

T
Rr(g*) ==Y tlq) — bu(q").

We provide the regret bound as follows in Corollary
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Algorithm 2: Binary Private Online Conformal Prediction

Input: Data stream { (X}, Y;)}+>1; Response rate r, € (0, 1); Miscoverage level a € (0,1);
Initialize Wy =1, A1 =0,¢;1 =0

fort=1,2,... do

// Train a predictive model f(-)

Predict V; + fi(X});
// Generate conformal prediction interval
Output: the private prediction interval: C, = [Yt — ¢4, Y, + at);
// Compute nonconformity score (kept locally)
Nonconformity score: S; = |Y; — f/}|,
// Preparing updated rule for next round
Inquiry LRBR response: L <— LRBR(S;, ¢, 7+);
if L = 1 then

| g 1= (ri(1—a) +0.5(1 —r¢));
else

L gt < — (re(1 —a) +0.5(1 — ry));
Update: W < W;_1 — giq4;
Update: A1 = 75 A — t%gt;
Update: g1 < A1 Wy

Corollary 3.1. Let {q;}7_, C R denote the sequence of decisions produced by the proposed
algorithm. Under the coin betting framework with the KT potential, the cumulative regret with respect
to any fixed comparator ¢* € R satisfies the following bound:

T
1
Re(q) =S " 0y(aq) — 6:(q*) < 1+ |q*| - /2T In(1 + CT|q*|) — ,
r(q*) ;f(‘h) +(q%) l¢*| - /2T In( lg*]) T

where C' > 0 is a universal constant, and e denotes the base of the natural logarithm.

Corollary [3.1] establishes a sublinear cumulative regret bound within the coin betting framework.
Specifically, the regret bound of order O(v/T'InT') ensures that the cumulative loss incurred by the
algorithm relative to any fixed comparator g* grows sublinearly over time. Consequently, the average
per-round regret asymptotically converges to zero as T' — c0.

Theorem 3.2. Algorithm/[I]is an (e, 0)-randomizer with € =log (1 +r)/(1 —1)).

Proof. With probability 7, the user returns a truthful binary response indicating whether Sy < ¢;;
otherwise, a fair coin is flipped. This randomized mechanism masks the true response, and the privacy
level € is determined by the worst-case distinguishability between outputs for different true answers.
A full derivation is deferred to Appendix [C.2] O

Theorem 3.3. Algorithmsatisﬁes (maxi<j<¢ €5,0)-LDP, where t > 1.

Proof. By parallel composition and the post-processing property, the guarantee holds. A detailed
argument is deferred to Appendix [C.3] O

Theorems [3.2] and [3.3] establish that the proposed algorithms satisfy rigorous LDP guarantees. The
proposed algorithms ensure that individual-level privacy is preserved at every iteration, without the
need to store or re-access raw data, thereby enabling both privacy protection and memory efficiency
in streaming environments.

Although our algorithm satisfies LDP at the user level, an adversary could still exploit vulnerabilities
in the underlying predictive model to infer sensitive information. To address this concern, we establish
a rigorous form of privacy protection: when the predictive model is dynamically trained under LDP
constraints, our framework also ensures end-to-end privacy guarantees across the entire prediction
pipeline.



Theorem 3.4. Suppose the predictive model satisfies (maxi<;<¢ €5, Maxi<;<¢ 0;)-LDP. The entire

pipeline, mapping private individual data to the final prediction interval Cy inherits LDP guarantees.
Then, Algorithm 2] ensures (maxi<j<;(e; 4 €;), maxi<j<; 6;)-LDP, where t > 1.

Proof. By additionally applying the sequential composition property, the theorem follows. The
complete proof is deferred to Appendix O

We illustrate this process in Figure [I3] which empirically validates the consistency between our
simulation results and the theoretical guarantee established in Theorem [3.4]

Theorem 3.5. Let the target miscoverage level o € (0,1/2) be fixed, and let v € (0, 1] denote the
probability of a truthful response. Suppose that the non-conformity scores are bounded, such that
St € [0,D] forallt = 1,2,..., where D > 0 is a finite constant. Then, the proposed procedure
described in Algorithm 2] satisfies the following long-run coverage guarantee:

T

%Zﬂ(ned)—(ua)

t=1

lim
T— o0

=0. )

Proof. Although each feedback bit is randomized, its expectation coincides with the true subgradient:
E[gt] =7r- (H{St < qt} — (1 — Oé))

Hence, the update rule drives ¢; toward the (1 — «) quantile in expectation. By boundedness of the
scores and stability of the coin-betting update, the prediction sets converge to the desired long-run
coverage. A complete derivation is provided in Appendix O

Theorem [3.5]establishes that the proposed method achieves valid long-run coverage guarantees that
are independent of the underlying predictive model, regardless of whether the model is dynamically
trained with or without privacy constraints. However, because ¢; is defined as the (1 — «)-quantile of
the non-conformity scores, models trained under LDP often exhibit decreased predictive accuracy
due to the injected noise. This typically results in larger non-conformity scores and consequently
wider prediction intervals. To illustrate this effect, we include a representative experiment using the
privately trained predictive model(PTM) from |Abadi et al.|[2016], dynamically trained under LDP
constraints; see Figure@

4 Extension to classification tasks

In this section, we extend our framework from regression to multi-class classification problems,
where the response variable takes values in a finite label set ). Unlike regression, where prediction
intervals are centered around scalar estimates, classification requires constructing prediction sets
containing likely class labels. This shift necessitates adapting both the definition of non-conformity

scores and the structure of the prediction region. Given a probabilistic classifier f :RY— [0,1] I,
we define the non-conformity score for a candidate label y € ) as

Sf(Xay) =1 713y(X)7

where p, (X') denotes the predicted probability assigned to class y, typically computed via softmax
over the model’s logits. Intuitively, this score captures the model’s uncertainty about the correctness
of label y: smaller scores correspond to more confident predictions. At each time step ¢, the prediction
set is constructed by including all labels whose non-conformity scores fall below a dynamic quantile
threshold:

I(Xe) ={y € V| 55(Xe,y) < i}

The threshold ¢;, analogous to the conformal quantile used in the regression setting, is updated
sequentially based on privatized binary feedback. To ensure privacy, we adopt the same binary inquiry
strategy as in Section Specifically, the non-conformity score for the true label, S; = S f(Xt, Y:), is
compared against the current threshold g; and the result of this comparison is encoded as a binary
signal, which is privatized using a local binary randomized mechanism. The privatized feedback is
then used to compute a subgradient g; (as defined in Equation (3)), and the sign-reversed quantity
¢y = —gy 1s passed to the coin-betting algorithm to update ¢, in an efficient and privacy-preserving
manner. The complete procedure for the classification task is summarized in Algorithm 3]



Table 1: Coverages and widths for the proposed method, DPCP and DtACI in Example Numbers
in parentheses denote standard deviations for coverage (x10~2) and for width (x10~1).

Method no-privacy e=3 e=1 e=0.5
Coverage Width Coverage Width Coverage Width Coverage Width

Case A

Proposed 0.890 (0.03) 3.43 030) 0.889 (030) 3.42 (0.40) 0.875 (1.00) 3.36 (1200 0.853 2.10) 3.28 2.70)
DPCP  0.900 0.51) 8.29 (1.02) 0.904 0.52) 8.40 1.07) 0.911 0.61) 8.60 (1.48) 0.922 (0.90) 8.95 (2.96)
DtACI  0.897 0.09) 3.47 (0.30) * * * * # %

Case B

Proposed 0.890 (0.05) 4.46 0.96) 0.889 (0.26) 4.44 (1.30) 0.874 (0.90) 4.22 2.91) 0.850 (1.82) 3.83 (5.06)
DPCP  0.900 0.54) 9.00 (145 0.904 0.53) 9.14 1.56) 0.911 0.60) 9.40 2.190 0.923 (0.93) 9.89 (4.55)
DtACI  0.899 (0.07) 4.76 (1.02) * * * * # %

Case C

Proposed 0.890 (0.03) 3.26 030) 0.889 (0.27) 3.26 0.37) 0.875 (1.06) 3.21 (1.03) 0.852 (1.92) 3.11 (1.89)
DPCP 0.900 0.50) 4.43 (0.63) 0.904 051) 4.49 0.60) 0.911 (0.61) 4.60 0.88) 0.920 (1.01) 4.80 (1.99)
DtACI  0.899 0.07) 3.34 (0.27) * * * * * %
Case D

Proposed 0.890 (0.03) 3.26 031y 0.889 (0.22) 3.26 (0.36) 0.875 1.02) 3.21 (1.02) 0.853 (1.90) 3.11 .11
DPCP  0.900 0.53) 3.29 0.41) 0.904 0.53) 3.33 042) 0.911 0.62) 3.40 0.58) 0.922 0.97) 3.53 (1.19)
DtACI  0.899 0.08) 3.34 (0.29) * * * * * %

5 Experiments

We evaluate the finite-sample performance of the proposed estimator by comparing it with two
baselines: DPCP [Angelopoulos et al.,[2022], an offline private conformal method, and DtACI [Gibbs
and Candes|, 2024], an online adaptive method using expert aggregation. For ease of interpretation,
the privacy parameter is set to e = 0.5, 1, 2, 3, with the corresponding values of r provided in Table[4]
We define the miscoverage level as o = 0.1.

Example 5.1 (Regression on Synthetic Data). In this example, we evaluate the proposed method
on the regression task using synthetic data. We generate data similar to [Barber et al.| [2023] via
xy ~N(0,I5) and y; = 2] By + ¢, fort = 1,...,10,000, where 3; € R® and ¢, is from a normal
distribution and independent of z;. We consider four cases. (A) Abrupt shifts with homoskedastic
errors; (B) Abrupt shifts with heteroskedastic errors; (C) Smooth shifts with homoskedastic
errors; (D) No shifts with homoskedastic errors The sample size is set to 10,000. Long-run
coverage and interval width are evaluated over these data points and averaged across 200 simulation
runs. See Appendix [B.1]for data generation.

Table [T|reports coverage and interval width for both methods across four cases at the 90% confidence
level. In drifting environments that are closer to real-world data streams, the proposed method
achieves slightly lower but comparable coverage to DPCP, while producing substantially narrower
intervals. Specifically, DPCP’s widths more than double in Cases A and B and increase by over
40% in Case C. This is expected, as DPCP operates in a fixed-sample offline setting and constructs
conservative intervals without adapting to distributional shifts. In contrast, our online method updates
intervals in real time, allowing for more efficient and adaptive inference. In the static setting without
distributional shifts, as in Case D, DPCP’s higher coverage becomes more favorable. For DtACI,
which is designed for online settings without privacy constraints, we compare it under the no-
privacy scenario. The proposed method again yields shorter intervals while maintaining comparable
performance, with slightly lower coverage.

We compare the computational efficiency of the three methods. Table [2]shows that DtACI, with six
experts, requires approximately 100 times more computation time due to its complex update rules,
and DPCP requires approximately 10 times.

The left panel of Figure 2] shows instant coverage, instant width, long-run coverage, and long-run
width for DtACI with initialization values «; € {0.1,0.9}, and for the proposed method under
varying privacy levels. DPCP is omitted as it is an offline method. All methods exhibit coverage
oscillations around the target level of 1 — «, with noticeable drops at change points but rapid recovery



thereafter. Lower e values result in slightly larger fluctuations. Initially, smaller e values lead to
lower long-run coverage, but all methods eventually converge to the target level. A similar pattern
is observed for instant width and long-run width. The results also show that DtACI is sensitive to
initialization and requires each expert to adjust predictions based on interval coverage, leading to
frequent feedback requests. As the number of experts increases, this can cause user fatigue and raise
privacy concerns, limiting its use in privacy-sensitive settings. In contrast, the right panel of Figure 2]
shows that the proposed method is robust to initialization, demonstrating consistent performance
across different settings. Results for Case B in Figure[d Case C in Figure[5] and Case D in Figure 6]
of the Appendix exhibit similar patterns.

Table 2: Computational time (in seconds) of the proposed method, DPCP and DtACI.

Method T=5000 T=10000 T=15000 T=20000 T=25000

DtACI 3.46 7.03 11.17 14.84 19.34
DPCP 0.931 1.003 1.077 1.234 1.378
Proposed 0.037 0.069 0.100 0.133 0.167
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Figure 2: Results for Case A in Example[5.1] Left panels: comparison of methods by instant coverage,
instant width, long-run coverage, and long-run width. Right panels: impact of initialization settings
(Wo, A1) for the proposed method with € = 3.

Example 5.2 (Classification on synthetic data). We also conduct a classification study using
synthetic data, encompassing three distribution shift scenarios plus one no shift environment. The
findings are generally similar to those in the regression setting. To save space, we relegate the detailed
results to Appendix [B.2]

Example 5.3 (Regression on Real Data). We use the ELEC2 dataset [Harries et al.l [{1999]. As
shown in Figure[TT]of the Appendix, lower € values lead to slightly larger fluctuations in coverage.
Nevertheless, the long-run coverage stabilizes around 1 — « within the first quarter of the data stream
for all methods. Similar patterns are observed in the width and long-run width. Further details are
provided in Appendix B3]

Example 5.4 (Classification on Real Data). We assess the classification performance of our method
using the real WISDM dataset [Kwapisz et al.,[2011]], a benchmark for smartphone-based activity
recognition. We focus on two representative users — User 10 and User 14 — who completed 5
and 4 activity types, respectively, forming two independent tasks. For each task, we construct a
time-indexed data stream and implement the model ft using XGBoost. Rolling coverage is calculated
using a sliding window of 200 points to capture short-term fluctuations, while long-run coverage
reflects the cumulative average over all time steps. Set size [Angelopoulos et al., 2022] indicates the
number of classes included in the prediction set, representing model uncertainty. Lower values at a
given coverage level indicate better performance.



Figure [3|shows the results for both users under varying privacy settings of DtACI and the proposed
method. Patterns are generally consistent with the simulation studies. With stronger privacy (e — 1),
rolling coverage shows increased variability due to amplified noise. Long-run coverage initially
decreases but gradually converges to the target level. For set size, lower € values slightly increase the
occurrence of larger sets, indicating increased uncertainty. However, small and medium-sized sets
remain dominant overall. DtACI is also sensitive to the initial setting of «, initially deviating more
but ultimately aligning with the non-private and low-noise settings.
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Figure 3: Evaluation of method performance in terms of coverage and set size for User 14 (top), and
User 10 (bottom).

6 Conclusion and Limitations

This paper proposes a novel and practical framework for online conformal prediction under LDP.
By combining randomized binary feedback with a coin-betting update scheme, the method enables
one-pass, model-free prediction set construction with formal privacy guarantees. It supports both
regression and classification, and operates efficiently in streaming settings with constant memory.
Despite its strengths, several limitations remain. First, Theorem 3.5 provides only asymptotic
coverage guarantees; deriving non-asymptotic bounds under LDP is an important direction for future
work. Second, our approach employs standard nonconformity scores, which are broadly applicable
but may yield conservative prediction sets. Incorporating ideas from recent methods such as CP-
Gen [Bai et al.| [2022]], which learn data-adaptive scores via constrained ERM, could lead to more
efficient prediction sets while preserving valid coverage. Another promising direction is to extend
our framework to multivariate private online conformal prediction, building on recent advances such
as [Xu et al., [2024]] and [Braun et al., 2025]. Such extensions would broaden the applicability of
private online conformal prediction to high-dimensional and structured data streams.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The abstract and introduction clearly state the main claims, including the
development of an online LDP-based conformal prediction framework (Section [3) and its
extension to classification tasks (Section [)). Section [3]introduces the proposed method
within a regression setting, providing theoretical guarantees for privacy, regret, and long-run
coverage, with complete proofs in the Appendix. Experimental validation in Section [5]
further supports these claims, with additional results included in the appendix.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed framework are discussed in Section [f]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results, including privacy guarantees, regret analysis, and long-run
coverage, are presented in Section [3] with complete assumptions stated. Detailed proofs are
provided in the Appendix[C]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental procedures, including data sources (WISDM, Elec2), data
preprocessing steps, and evaluation metrics, are fully detailed in Section[5|and Appendix[B.1]
and[B.3] Algorithmic procedures and parameter configurations are clearly specified in
Algorithms|[1] 2} and[3] ensuring comprehensive reproducibility of all reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

15



(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation code and detailed instructions for reproducing the experi-
mental results will be provided in the Supplemental Material submitted alongside the paper.
The datasets used (WISDM [Kwapisz et al.,|2011]], Elec2 [Harries et al., [1999])) are publicly
accessible and well-documented in the cited references, making them easy to locate and
access.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and testing details are fully specified in Section[5|and Appendix[B.1]
[B.2] and[B.3] Detailed parameter settings and experimental procedures are also provided in
the supplemental material to ensure reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The statistical significance of the experimental results is assessed through
coverage rates (1 - «) and interval widths, as shown in multiple figures (e.g., Figures [2] [ ).
The 0.9 coverage line is clearly marked to illustrate the target coverage level. Additionally,
Tables [T]and [3] provide comprehensive comparisons of coverage rates and interval lengths
across different methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experiments were conducted on a laptop equipped with 16GB RAM and
an AMD Ryzen 9 7940HX processor with Radeon Graphics. The runtime comparison
between the proposed method and DtACI is provided in Table [2] ensuring a consistent
hardware configuration for fair comparison and reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research strictly adheres to the NeurIPS Code of Ethics, as the study is
based on publicly available datasets (WISDM [Kwapisz et al., 2011]], Elec2 [Harries et al.
1999]) and does not involve any sensitive or personally identifiable information. All data
usage and analysis are conducted in compliance with data usage guidelines and ethical
standards.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: Both potential positive and negative societal impacts of the proposed method
are discussed in Section[Il

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The study does not release any new datasets, models, or assets that pose
potential risks for misuse. All experiments are conducted using publicly available datasets
without sensitive or potentially harmful content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly mentioned and cited all assets used in this paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper proposes a new algorithm for online private conformal predic-
tion, but no new assets such as datasets, models, or code repositories are released. All
experimental implementations are based on existing publicly available datasets.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve crowdsourcing or research with human subjects, as
all experiments were conducted using synthetic data and publicly available datasets without
human participation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA ]

Justification: This study does not involve human subjects or crowdsourcing data collection,
and therefore no IRB approval or equivalent ethical review was required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods and experimental framework of this research do not involve
the use of Large Language Models (LLMs). The proposed methodology is based solely
on online LDP mechanisms and adaptive quantile updates, without utilizing LLMs as
components in any theoretical or empirical development.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Algorithm for classification under binary private online conformal
prediction

Algorithm 3: Binary Private Online Conformal Prediction (Classification)

Input: Data stream { (X}, Y;)}+>1; Response rate r, € (0, 1); Miscoverage level a € (0,1);
Initialize Wy =1, A\ =0,¢; =0

fort=1,2,... do

// Train a predictive model f(:)

Compute probability vector: p;(X¢) < fi(X;), where py(X;) = [p1,:(X¢), ..., Dy, (Xe)];

// Generate conformal prediction set

Output: the private prediction set: Iy(X;) = {y € V | 1 — py +(X:) < @t }s

// Calculate nonconformity score (kept locally)

Nonconformity score: Sy = 1 — Py, +(X¢);

// Preparing updated rule for next round

Inquiry LRBR response: L < LRBR(St, g¢,74);
if L = 1 then

| gt 1—(re(1—a)+0.5(1—r));
else

| gt —(re(1 —a) +0.5(1 —ry));
// Update wealth and quantile estimate
Update: Wy < Wi_1 — g1q4;
Update: A1 = g A — t%gt;
Update: g1 < A1 W3

B Additional Results

B.1 Regression Setting

Data generation for regression. Similar to[Barber et al.|[2023]], we generate data via z; ~ N (0, I5)
and y; = x;rﬁt +e,fort =1,...,10,000, where 3; € R® and ¢, is a Gaussian noise. We consider
the following four scenarios:

(1) Abrupt regime shifts. We define three fixed coefficient vectors:
ﬂ(l) = (172717()’0)7 6(2) = (077177277150)7 /6(3) = (070517271)a

and assign 3; = 5U) for three consecutive segments of ¢. Under this setting, we consider two noise
variants: Case (A) uses homoskedastic noise £; ~ N(0, 1), and Case (B) uses heteroskedastic noise
er = a7y - e with 7, ~ N(0,1).

(2) Smooth concept drift. We let 3; evolve linearly over time:
t—1
n—1’

where Sstart = (1,2,1,0,0) and Beng = (0,0,1,2,1). The noise is homoskedastic with ; ~
N(0,1), denoted as Case (C).

(3) Fixed environment. We keep the coefficient vector fixed throughout the whole stream:

By =(1,2,1,0,0), Vt=1,...,10,000,

B = (1 - O‘t)Bstart + afend, Q=
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with homoskedastic noise ¢; ~ A/(0, 1). This is denoted as Case (D).

Figures [@}f5] present the simulation results for Case B and Case C, respectively. The general character-
istics of the proposed method are consistent with those observed in Case A, though some differences
arise due to the distinct data generation settings. In Case B, the heteroskedastic noise structure leads
to more pronounced fluctuations and wider intervals compared to Case A. Conversely, in Case C and
Case D, the absence of abrupt regime shifts results in relatively stable coverage and interval width
throughout the data stream.
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Figure 4: Simulation results for regression in Case B, comparing different methods in terms of
instant coverage, instant width, long-run coverage, and long-run width. The results are averaged over
200 runs, excluding the first 200 data points.
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Figure 5: Simulation results for regression in Case C, comparing different methods in terms of
instant coverage, instant width, long-run coverage, and long-run width. The results are averaged over
200 runs, excluding the first 200 data points.

B.2 Classification Setting

Data generation for classification. We evaluate our method under four scenarios, each generating a
data stream {(z¢, y; )}, where 2, ~ N(0,I,) and y; € {0, ..., K — 1} is drawn from the softmax
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Figure 6: Simulation results for regression in Case D, comparing different methods in terms of
instant coverage, instant width, long-run coverage, and long-run width. The results are averaged over
200 runs, excluding the first 200 data points.

model: ®
ex , T
P(yt — k | xt) _ p(< t t>)

S exp (B, 2))

. . k . .
For each scenario, the coefficient vectors B,g ) evolve linearly over time as:

t—1
t(k) =(1- at)ﬁs(tlzr)t + atﬂiﬁ, = m

Smooth Drift (Case 1) In this setting, we consider K = 3 classes and p = 3 features. Classes 0
and 1 drift symmetrically along the first feature, while class 2 remains fixed. The coefficient vectors
are defined as follows:
0 0 1 1 2
s(tar)‘t = [_L an]a 5;,3 = [17 Ou 0]? Bs(tazl = [17 0; 0]7 ﬂe(mi = [_L 070]7 ﬁig ) = [07 Ou 1]
Amplified Drift (Case 2) This setting is a variant of the Smooth Drift scenario but with doubled

drift magnitude. The number of classes and features remains the same (X = 3,p = 3). The
coefficient vectors are defined as:

o = [-2,0,0], 89 =12,0,0, BLk=1[200], BY=[-200, B> =0,02].

Class Emergence (Case 3) This setting introduces a new class that gradually emerges by activating
a specific feature, while the other classes remain fixed. Here, we consider K = 4 classes and p = 5
features. The coefficient vectors are defined as:

0 =12,0,0,0,0, BY =1[-2,0000, B%=]0,0,2,0,0,
& =10,0,0,0,0], A% =10,0,0,0,4].

end

No Drift (Case 4) As a control setting, we consider no drift: all classes remain fixed (K = 3,p =
3):

B =[-1,0,0, BY =[1,0,0, 8% =10,0,1].
Figure [7]shows the coverage and set size of the prediction sets for the outcome labels. For a fixed
coverage level, a smaller set size indicates higher efficiency. The observed patterns align closely with
those in the regression setting. For DtACI, initialization is particularly sensitive. When the initial a;
is set equal to the target miscoverage level v = 0.1, the initial prediction sets are relatively large and
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Table 3: Coverages and set sizes for the proposed method , DPCP and DtACI in Example
Numbers in parentheses denote standard deviations for coverage (x 10~2) and for width (x10~1).

Method no-privacy e=3 e=1 e=0.5

Coverage size Coverage size Coverage size Coverage size

Case 1

Proposed 0.890 0.02) 2.17 (0.16) 0.889 (0.24) 2.17 0.20) 0.875 (1.05) 2.16 (0.55) 0.854 2.09) 2.11 (1.02)
DPCP  0.900 042) 2.19 0.149) 0.902 041y 2.20 0.15) 0.905 0.44) 2.22 0.17) 0.911 (0.53) 2.25 (0.24)
DtACI  0.901 0.08) 2.20 (0.15) * * * * # %
Case 2

Proposed 0.890 0.03) 1.69 0.16) 0.889 (0.25) 1.69 0.22) 0.875 (1.04y 1.70 0.62) 0.853 2.03) 1.67 (1.16)
DPCP 0.901 042) 1.72 0.16) 0.902 042) 1.73 0.16) 0.906 0.44) 1.74 0.18) 0.911 (0.52) 1.77 (0.23)
DtACI  0.901 0.08) 1.73 (0.16) * * * * # %
Case 3

Proposed 0.890 0.02) 1.71 0.19 0.889 (0.23) 1.72 0.25) 0.875 (1.04y 1.77 (094 0.852 (1.86) 1.75 (1.62)
DPCP 0.900 0.42) 1.74 ©0.199 0.901 042) 1.75 0.19) 0.905 0.45) 1.78 0.22) 0.910 (0.54) 1.81 (0.32)
DtACI  0.900 0.08) 1.75 (0.19) * * * * * %
Case 4

Proposed 0.890 (0.02) 1.92 0.17) 0.889 (0.23) 1.92 (0.22) 0.875 0.97) 1.92 (0.60) 0.855 (1.95) 1.89 (1.13)
DPCP 0.901 043) 1.95 0.18) 0.903 (0.43) 1.96 (0.19) 0.906 (0.48) 1.98 (0.23) 0.912 0.61) 2.01 (0.32)
DtACI  0.901 0.08) 1.96 (0.16) * * * * * %

maintain coverage around 0.9 throughout. In contrast, when o; = 0.9, the smaller initial sets result
in lower initial coverage. For the proposed method, coverage fluctuates around 1 — «, with slightly
larger fluctuations under smaller € values. For long-run coverage, smaller e values initially result in
lower coverage and set size due to the added noise from randomized responses. Nevertheless, all
methods eventually converge to the nominal coverage level. Given the data configuration, where

the coefficient vectors 5150) and Bél) initially move closer together and then diverge, the set size first
increases and then decreases.

Figures[8and[9]present the results for Case 2 and Case 3, respectively. In terms of instant coverage and
long-run coverage, the patterns across Cases 1, 2, and 3 are generally consistent. Regarding set size
and long-run set size, the trend in Case 2 is similar to that in Case 1, with set size initially increasing
and then decreasing due to class overlap during the drift process. In contrast, Case 3 exhibits a
consistently decreasing trend in set size, gradually stabilizing over time as the class distributions
remain more separable, allowing the prediction sets to contract and stabilize. Figure [T0] shows the
results for Case 4. Under the No Drift scenario, compared with Case 1, the set sizes of all three
methods decrease and their coverage remains stable overall, which is as expected. As summarized in
Table[3] the results are similar to those in the regression setting: DPCP achieves higher coverage at
the cost of larger set sizes. However, we emphasize that DPCP is an offline method and cannot be
deployed in an online environment.

B.3 Elec2

For the purpose of evaluating the proposed method, we utilize the Elec2 dataset, which provides a
comprehensive record of electricity demand in New South Wales, Australia [Harries et al.,|1999]. The
dataset, compiled by the University of New South Wales, is well-suited for forecasting applications
and has been widely employed in prior studies for time-series prediction tasks. We employ AR(3)
to serve as the base forecasting model and aim to construct confidence intervals for the electricity
demand. Rolling coverage refers to the short-term coverage calculation over a sliding window of
recent data points, capturing immediate fluctuations and reflecting the model’s localized response
to data variability. In contrast, long-run coverage accumulates coverage over the entire data stream,
providing a comprehensive view of overall performance stability.

As shown in Figure [T ] rolling coverage and long-run coverage are generally stable, with coverage
oscillating around the target level of 1 — a and no noticeable drops. In the proposed method, higher
privacy protection (e = 1) results in slightly increased fluctuations in rolling coverage, while the
long-run coverage is initially lower but quickly converges to match other settings.
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Figure 7: Simulation results for classification in Case 1, comparing different methods in terms of
instant coverage, instant set size, long-run coverage, and long-run set size. Results are averaged over
200 runs; the first 200 points are excluded.
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Figure 8: Simulation results for classification in Case 2, comparing different methods in terms of
instant coverage, instant set size, long-run coverage, and long-run set size. Results are averaged over
200 runs; the first 200 points are excluded.

Regarding width, all methods exhibit fluctuations, capturing inherent data variability. Long-run width,
however, remains relatively stable, gradually decreasing over time, suggesting that the algorithm
becomes more stable as it accumulates more calibration data.

B.4 Comparison of PTMs and Non-Private Models

In this section, we investigate the impact of model privatization on interval width and coverage by
comparing privately trained models and non-private models under Case A; see Figure[I2} While the
long-run coverage remains unaffected, privately trained models typically exhibit lower predictive
accuracy than non-private models, leading to higher non-conformity scores S; and consequently
wider prediction intervals.
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Figure 9: Simulation results for classification in Case 3, comparing different methods in terms of

instant coverage, instant set size, long-run coverage, and long-run set size. Results are averaged over
200 runs; the first 200 points are excluded.
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Figure 10: Simulation results for classification in Case 4, comparing different methods in terms of

instant coverage, instant set size, long-run coverage, and long-run set size. Results are averaged over
200 runs; the first 200 points are excluded.

B.5 Simulation of privacy allocation under parallel composition

We further investigate the impact of varying privacy budgets. The results in Figure obtained
under Case A, are consistent with the theoretical guarantees established in Theorems and
Specifically, we observe that the performance under randomly drawn €; € [0.5, 3] is similar to that
under the fixed value e = 3. This is expected because the theoretical privacy bound depends on
max; €, which, in the random case, is very likely to be close to the upper bound of 3.
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Figure 11: Results for the Elec2 dataset, comparing different methods in terms of rolling cover-
age/width and long-run coverage/width. The rolling metrics are computed using a sliding window of
size 200, and the first 200 data points are excluded.
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Figure 12: Comparison of instant coverage, instant interval width, long-run coverage, and long-run
width between privately-trained models (PTMs) and non-private models in Case A. The results are
averaged over 200 runs. The first 200 data points are excluded to mitigate initialization effects.

C Proof

C.1 Proof of Corollary[3.1]

The stated regret bound is derived by applying the Krichevsky—Trofimov (KT) potential within the
coin betting framework. In our setting, the LRBR mechanism produces privatized feedback signals
g+ that are uniformly bounded in magnitude, i.e., |g;| < 1. Crucially, the coin betting framework
does not require the feedback signals to be exact subgradients; it only necessitates boundedness.
Therefore, the general regret bound established in[Orabona and Pal| [2016] remains applicable, and
directly implies the result stated in Corollary [3.1]
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Figure 13: Simulation results in Case A, illustrating the impact of varying privacy budgets (e;)
under both private and non-private settings. The four panels compare instant coverage, instant width,
long-run coverage, and long-run width, demonstrating how privacy parameters affect the predictive
intervals over time. These results provide empirical support for the theoretical guarantees stated in

Theorems 3.3 and 3.4]

C.2 Proof of Theorem

Algorithm[T]investigates the relationship between the inquiry value ¢ and the user’s binary response,
controlled by the response rate r. Let the true label be defined as I(g > S) € {0, 1}, where S is the
non-conformity score. Due to local randomization, the output does not necessarily match the ground
truth. The conditional probability of outputting “1” given that the truth is “1” is

1+7
2 )
which occurs either when the user responds deterministically with v = 1 (with probability r), or

when the individual is randomized (u = 0) and v = 1 (with probability (1 — r)/2). Similarly, the
probability of outputting “1” given that the truth is “0” is

Pr[Output = 1 | Truth = 1] =

1—1r
2 b

which corresponds to the randomized case where © = 0 and v = 1.

Pr[Output = 1 | Truth = 0] =

This yields the following likelihood ratio:
Pr[Output =1 |Truth=1] (1+7r)/2 147

Pr[Output =1 | Truth=0] (1—-7r)/2 1—7’
and symmetrically,
Pr[Output =0 | Truth=0] 147
Pr[Output = 0 | Truth =1] 1 -7~
We have completed the proof of this theorem.

C.3 Proof of Theorem 3.3

At the first iteration, Algorithm [2]is inquired via Algorithm [T using response rate 1, which induces
an (e1, 0)-local randomizer. By the post-processing property in Lemma the output of the first
iteration in Algorithm 2] remains (e, 0)-LDP. At the second iteration, the algorithm takes as input the
privatized outputs from the first iteration, along with a new response obtained using rate 75, which
corresponds to an (e, 0)-local randomizer. Since the responses originate from disjoint individuals
and each individual is inquired only once, the parallel composition in Lemma[2.3|ensures that the
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second iteration satisfies (max{e, €2 },0)-LDP. Using the same argument repeatedly, we conclude
that after ¢ iterations, the entire Algorithm 2|satisfies (max; <j<t €j, 0)-LDP, as each iteration involves
a disjoint individual and only post-processed privatized outputs are used. We have completed the
proof of this theorem.

C.4 Proof of Theorem 3.4

Notice that the first iteration is required to train a predictive model that satisfies (¢, d1)-LDP, and is
simultaneously inquired using Algorithmwith response rate 1, inducing an (ey, 0)-local randomizer.
By the post-processing property and sequential composition stated in Lemma[2.3] the output of the
first iteration in Algorithmpreserves (141, 1)-LDP. Using the same arguments as in the proof of
Theorem3.3] after ¢ iterations, the entire procedure remains (maxi<;<¢(€; +¢;), max; <;<¢ d;)-LDP
via post-processing, sequential composition, and parallel composition in Lemma[2.3] The proof of
this theorem is completed.

C.5 Proof of Theorem[3.5]
To simplify the notation, we define the constant c as

c=r(l—a)+05(1—r). Q)

Step 1. The feedback term g; is defined as

(l1-¢ ifL=1
= \=e, fL=0"

The LRBR mechanism generates L via the sampling steps u ~ Bernoulli(r) and v ~ Bernoulli(0.5).
Thus, the probabilities for L = 1 and L = 0 are given by
PL=1)=r-T{¢g>S}+(1-7r)-05 PL=0)=1-P(L=1).

The expectation of the feedback term is E[g;] = (1 —¢)-P(L = 1)+ (—¢) - P(L = 0),which expands
to E[g:] = r - I{q: > St} + 0.5(1 — ) — c. Substituting the definition of ¢ from (), the expression

simplifies to
Elg)) =7 ({g: > S¢} — (1 — ).

The cumulative sum of expectations over T steps is therefore 23:1 Elg:] = Zle T
(I{g: > St} — (1 — «)) . Rewriting the above using the coverage indicator I{Y; € C;} = I{q; > S:},

we obtain
S Elgl=r-Y (e} - (1-a)).
t=1

t=1

Since r > 0 is a constant, our objective reduces to proving

T
. 1 A
330 -l o
which is equivalent to establishing
li ! E =0
t=1
Step 2. We assume that the nonconformity scores satisfy S; € [0, D] forall t = 1,2,3,.... (a).

Suppose that for some ¢t > 1, the predicted radius ¢; exceeds the upper bound D, i.e., ¢ > D.
Given that ¢; = \; - W;_1 and the wealth is nonnegative (W;_; > 0), it follows that A; > 0.
The probability that L = 1is 0.5(1 +7) > 0.5. When L = 1, wehave gy = 1 — ¢ > 0,
which implies Wy = Wi_1(1 — Asge) < Wiq and Appq = tfl/\t — t%gt < A;. Consequently,
Gt+1 = M1 Wi < qq, indicating a reduction in the predicted radius. The mechanism introduces
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a persistent downward tendency when ¢; > D, and the radius eventually returns to the admissible
range. This prevents unbounded growth.

(b). Suppose that for some ¢ > 1, we have ¢, > 0 but ¢, 1 < 0. This implies that there must exist
some k such that ¢, > 0. Indeed, since ¢ > 0, it follows that \; > 0, while ¢;; < 0 implies

Ae+1 < 0. Hence,
t 1

LA W
t+ 1 t t+ 1gta

which gives g; > 0. Given that S;11 > 0, the probability that L = 0is 0.5(1 + r) > 0.5, and when
L =0, we have g;+1 = —c < 0. Consequently,

t+1 1 1
2 T eI T M T e

When a < 0.5, we have g¢ + g;11 = 1 — 2¢ < 0, which implies A;y2 > 0. Therefore, there exists
some k > 2 such that Ay > 0, and hence ¢, > 0. This shows that temporary excursions into the
negative region are corrected by the update rule, ensuring that the radius remains nonnegative in the
long run. Next, consider the update rule:

Y i i :
i=19i
= — 1— E s
di+1 t+ 1 < 2 ngz)
— t—1 t—1 t
Z:—i 9i 2 : gt 2 : D i1 9i
t+ 1 p 9i4qi t+ 1 s 9iqi + 9tqt t+ 1
n 1 t—1 t
=T 1% + i1 <9t + gt ;:1 9iqi + gtqt ;:1 gi) )

so the increment is

0> Nyt =

Atg2 = (9t + gt41)-

=1 ¢
1
Qi1 =G = T <—Qt — gt 9 ) 9 + e Zgl> :

i=1 i=1

According to [Orabona and Pal, 2016\ [Podkopaev et al.,[2024], we have the bound

t
Z q:9i

i=1

t
—Dt < Z%’gi <1l =
i=1

< Dt+1,

so the absolute increment satisfies:

1
Combining this with ¢; = 0 € [0, D] and the analysis in (a) and (b), we conclude that |¢;| < 3D + 1,
i.e., the update sequence is uniformly bounded.

Step 3. We begin by asserting the following statement:
1 X
TZ&—)O, as T — oo. 6)
t=1

We proceed by contradiction. Suppose the above does not hold. That is, there exists a constant € > 0
such that

Tl
1
VT, 3T > T - = Zgi > e,
=1

According to the KT framework, the update of ¢;4; depends on the cumulative feedback up to time ¢,

t
Do W = 1w
Gt+1] = [Ae1 Wi | ;gz !
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For some index T”, we can lower bound the update as
T/
1 T'e
’ = —— i . ’ > _— 7.
|CIT +1‘ T + 1 iE:1 g; WT = T 1 WT
We now invoke the KT framework’s lower bound on the wealth process W; [Orabona and Pal, 2016]:

: 2
1 t (1
Wy> ——=exp| - | - i

Substituting into the previous inequality yields

| > T’ € T,
qT’+1_T,+1 KﬁT/eXp 45 .

This implies that for any T, there exists 7" > T such that the above inequality holds. Since the
T’
1
becomes unbounded as 7" — oo. This contradicts the assumption that |gr 1| is bounded. Thus, the

initial assumption is false, and the convergence stated in (6)) is established.

exponential term exp ) grows exponentially as 7/ — oo, it follows that the sequence |gr/1|

Step 4. We now prove that

T
1
— E R
T; [gt] T—00 0

by invoking the Dominated Convergence Theorem (DCT). From (6), we have already shown the
result

T
1
Ar =72 00

By construction, g; € {1 — ¢, —c}, hence

lgt]| < M :=max{|]l —¢|, |c|]} <1 = |Ap|<1 VT >1. @)

Choose the constant random variable Y = 1. Since E[Y] = 1 < oo, and (7)) gives the domination
|Ar| <Y. Combining (6) and (7) with DCT yields

lim E[A7] =E [Tlim AT} = E[0] = 0.
—00

T—o0

Since the sum in A7 is finite, expectation and summation commute:E[A7] = + Zthl E[gy]. It then

follows that

T
1
T ZE[gt] —0, asT — 0.
t=1
Since the absolute value is applied to the cumulative sum rather than each individual term, we obtain

T
ZE[Qt]

Thus, the convergence of the expected feedback sequence establishes the desired convergence of the

coverage error as
1 N
=y {viet}-(1-a

t=1

—0, asT — oo.

1
T

lim =0.
T— o0

This completes the proof.
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D Conversion table

Table 4: Conversion table between r and ¢

T € T €

0 0.00 0.5 1.10
0.05 0.10 0.55 1.24
0.1 0.20 0.6 1.39
0.15 0.30 0.65 1.55
0.2 0.40 0.7 1.73
025 051 0.75 195
0.3 0.62 0.8 2.20
035 0.73 0.85 251
04 0.85 0.9 2.94
045 097 0.95 3.66
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