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ABSTRACT

Out-of-Distribution (OOD) detection is essential for safe deployment; however,
existing detectors exhibit generalization discrepancies and cost concerns. To ad-
dress this, we propose a highly versatile and efficient OOD detector inspired by
the trend of Neural Collapse on practical models, without requiring complete col-
lapse. By analyzing this trend, we discover that features of in-distribution (ID)
samples cluster closer to the weight vectors compared to features of OOD sam-
ples. Additionally, we reveal that ID features tend to expand in space to structure
a simplex Equiangular Tight Framework, which explains the prevalent observa-
tion that ID features reside further from the origin than OOD features. Taking
both insights from Neural Collapse into consideration, our OOD detector utilizes
feature proximity to weight vectors and further complements this perspective by
using feature norms to filter OOD samples. Extensive experiments on off-the-shelf
models demonstrate the efficiency and effectiveness of our OOD detector across
diverse classification tasks and model architectures, mitigating generalization dis-
crepancies and improving overall performance.

1 INTRODUCTION

Machine learning models deployed in practice will inevitably encounter samples that deviate from
the training distribution. As a classifier cannot make meaningful predictions on test samples that
belong to classes unseen during training, it is important to actively detect and handle Out-of-
Distribution (OOD) samples. Considering the diverse and oftentimes time-critical application sce-
narios, an OOD detector should be computationally efficient and can effectively generalize across
various scenarios.

In this work, we focus on post-hoc methods, which address OOD detection independently of the
training process. One line of prior work designs OOD scores over model output space (Djurisic
et al.| 2022} Hendrycks et al.}|2019} Liang et al.||2018| [Liu et al.;|2020} |Sun et al.; {2021} |Sun &
Li,[2022) and another line of work focuses on the feature space, where OOD samples are observed
to deviate from the clusters of ID samples (Lee et al.||2018}|Mahalanobis| 2018} |Sun et al.| 2022}
Tack et al.||2020). While existing research has made strides in OOD detection, they still face two
major challenges: 1) maintaining detection effectiveness across different scenarios, and 2) ensuring
computational efficiency for real-world deployment. For example, both output space and feature
space methods suffer from performance discrepancy across different classification tasks, as shown
in Table (a). Specifically, strong algorithms on CIFAR-10 (Krizhevsky et al.||2009) OOD bench-
marks perform suboptimally on ImageNet (Deng et al.| 2009) OOD benchmarks, and vice versa.
No existing algorithm can simultaneously rank in the top three across two benchmarks, leading to
sub-optimal average performance as shown in Table (b). Such discrepancy is also observed across
different architectures, as shown in Table In addition, feature space methods, which rely on aux-
iliary models, raise efficiency concerns. For example,|Lee et al.|(2018) learns a Gaussian mixture
model from training features and detects OOD based on Mahalanobis distance| Mahalanobis|(2018);
Sun et al.|[(2022) records the training features and measures OOD-ness based on the k-th nearest
neighbor distance to the training features. As shown in|Liu & Qin|(2024), such reliance on auxiliary
models introduces additional cost, posing challenges for time-critical applications.

To this end, we aim to develop an efficient and versatile OOD detector by focusing on the penulti-
mate layer, i.e., the layer before the linear classification head. We take insights from Neural Collapse
(Papyan et al.; [2020), which characterizes the interplay between the linear classification head and
the penultimate layer features in training. Neural Collapse is observed across diverse architectures
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Figure 1: Illustration of our framework inspired by Neural Collapse. Left: On the penultimate
layer, ID samples cluster near their predicted class weight vectors (marked by stars) while OOD sam-
ples reside separated, as shown by UMAP. Middle: ID and OOD samples are separated by pScore
(Equation @) which measures feature proximity to weight vectors. Also, ID samples tend to be
further from the origin, illustrated with L1 norms. Right: ID samples cluster near a simplex Equian-
gular Tight Framework, illustrated with black arrows denoting weight vectors. We detect OOD by
thresholding on pScore, selecting blue-shaded hypercones centered at weight vectors, with OOD
samples outside these areas. We also filter OOD samples characterized by smaller feature norms.
Left & Middle present a CIFAR-10 ResNet-18 classifier with OOD set SVHN. While Neural Col-
lapse does not completely converge (Left), the ID/OOD relationship inspired by the trend remains
valid (Middle). Right depicts our scheme on a three-class classifier with 2D penultimate space.

and classification tasks (see Appendix. While the complete collapse requires strict conditions like
prolonged training, we leverage its early-stage trend observed in (He & Sul|2023) to study practical
models. The effectiveness of prior methods utilizing Neural Collapse in OOD detection|Zhang et al.
(2022);| Ammar et al.|(2023) further supports the prevalence of such trend in practical models.

Particularly, we revisit the observation that ID features tend to form clusters while OOD features
reside apart. While this observation is well-established in prior literature Lee et al.| (2018); |Sun
et al.|(2022);| Tack et al.|(2020), the underlying mechanism remains largely unexplained. Separately,
Neural Collapse reveals that features of each class gradually converge toward a single point during
training. We suggest that the clustering behavior observed in off-the-shelf models can reflect the
trend of Neural Collapse. Inspired by this, we leverage the landscape of Neural Collapse to study:

Where do features of ID samples form clusters?

To address the question, we first demonstrate that as a deterministic effect of Neural Collapse, fea-
tures of training samples will converge towards the weight vectors of the predicted class. Addi-
tionally, Neural Collapse reveals that training features also converge towards a simplex Equiangular
Tight Framework (ETF) (Equation. The spatial structure of an ETF, illustrated in Figure Right,
corresponds to the maximum separation in space achievable by equiangular vectors, requiring the
features to reside sufficiently far from the origin.

The complete convergence landscape of -

Neural Collapse sheds light on the geo- 081

metric structure of ID clusters on practical £

models. Specifically, for ID test samples, & " |

drawn from the same distribution as train-

ing samples, we anticipate a similar trend g %81

of clustering behavior towards the weight Es

vectors and towards an ETF. Conversely, <057 — 0 (R0l
OOD samples do not undergo the same ‘ — OODI{SVHN]

training process, which enables the model 041 | : | : : : : :

to align features with weight vectors and to o P ,terlft?on 125 150 A7 200

expand features to accommodate the spatial ~ Figure 2: Features of ID samples tend to cluster
structure of ETF in Neural Collapse. There-  closer to the predicted class weight vectors, indi-
fore, we do not expect the model to effec-  cated by higher average cosine similarity (Equation][3)
tively align the weight vectors learned from  than OOD. This observation, inspired by the trend of
ID features with unseen OOD features. Nor  Neural Collapse, emerges early in the training of this

do we anticipate the model to posit OOD  CIFAR-10 ResNet-18 classifier, with OOD set SVHN,
features far from the origin to structure an  without requiring convergence.
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ETE. To validate our hypotheses, we trace a model’s training stages in Figure[2] We observe that
ID samples consistently cluster closer to the weight vectors than OOD samples. This observation
emerges early during training, without requiring complete convergence of Neural Collapse. Our ob-
servation is reinforced in the UMAP (MclInnes et al.;2018)) visualization on an off-the-shelf CIFAR-
10 classifier with ResNet-18 backbone in FigureLeft. Here, ID features do not completely collapse
into weight vectors. Nevertheless, ID features cluster near predicted class weight vectors (marked
by stars), whereas OOD features are distant. Combining our observation with (Zhu et al.| |2021),
which show the weight vectors form an ETF, we conclude that ID features are driven to structure the
ETF during training, whereas OOD features lack the incentive to expand in space to form an ETF.
Note that the lack of incentive for OOD features to expand explains the well-established observation
(Tack et al.}|2020; |Huang et al.; [2021}|Sun et al.}|2022) that OOD features tend to reside closer to
the origin, offering an alternative to model confidence view in|Park et al.|(2023).

Based on our understanding, we design an efficient and versatile OOD detector. We first leverage
feature proximity to the weight vectors to characterize ID clustering, bypassing auxiliary models
and reducing the computational cost. Specifically, we define an angle-based proximity score as the
norm of the projection of the weight vector of the predicted class onto the sample feature. As shown
in Figure Middle, our proximity score can effectively separate ID/OOD. A higher score indicates
closer proximity and a lower chance of OOD-ness. Geometrically, thresholding on the score selects
hyper-cones centered at the weight vector, as illustrated in Figure [1| Right. Notably, our proximity
score effectively incorporates class-specific information and brings in performance benefits as well
as efficiency gain. Complementing the proximity score’s contingency on ID clustering, we also
consider feature distance to the origin. Specifically, ID features tend to reside further from the
origin as they expand in space to form an ETF, whereas OOD features tend to reside near the origin,
as illustrated by FigureE]Right. Using the L1 norm as an example metric for distance to the origin,
we observe that ID features can be separated from OOD features, as supported by Figure[I|Middle.
Combining both aspects, we propose Neural Collapse Inspired OOD Detector (NCI).

Notably, prior methods, e.g., KNN|Sun et al.| (2022), focus on ID clustering but do not explicitly
consider feature distance to the origin. Such approaches fall short in scenarios like ImageNet bench-
marks but yield superior performance in CIFAR-10 benchmarks in Table Im Conversely, meth-
ods such as Energy [Liu et al.| (2020), Energy-based ASH Djurisic et al.[(2022), and, Energy-based
Scale|Xu et al.[(2023) inherently utilize feature distance to the origin by considering log-sum-exp
of logits, yet largely overlook ID clustering. These approaches excel in scenarios like ImageNet,
but perform sub-optimally in others, e.g., CIFAR-10. Through the lens of Neural Collapse, we ex-
plain, connect, and complete prior methods under a holistic view, resulting in reduced latency and
generalization discrepancies.

‘We summarize our main contributions below:

* Understanding and Observation: By analyzing ID clustering through the trend of Neu-
ral Collapse, we novelly establish the significance of weight vectors in the clusters. We
also explain the observation that ID features tend to be farther from the origin from a spa-
tial structure perspective. Our understanding and observation do not depend on complete
complete Neural Collapse convergence.

* OOD Detector: We leverage feature proximity to the weight vectors of predicted classes
for OOD detection, integrating class-specific information. Complementary to feature clus-
tering, we propose to detect OOD samples by thresholding the feature distance to the origin.

« Experimental Analysis: We evaluate NCI across diverse classification tasks (CIFAR-10,
CIFAR-100, ImageNet) and model architectures (ResNet, DenseNet |Huang et al.| (2017),
ViT |Dosovitskiy et al.|(2020), Swin|Liu et al.|(2022)). Rather than focusing on individ-
ual benchmarks, NCI reduces the generalization discrepancies and improves the overall
effectiveness. In addition, NCI matches the latency of vanilla softmax-confidence detector.

Remark on Convergence of Neural Collapse & NCI Effectiveness. Complete convergence of
Neural Collapse for ID samples often requires strict conditions unmet in practice. However, NCI
does not depend on convergence; instead, it leverages the trend of Neural Collapse, which we empir-
ically validate on practical models. Additionally, the effectiveness of prior methods utilizing Neural
Collapse in OOD detection (Zhang et al.;|2022||Ammar et al.}|2023) further supports the prevalence
of the trend of Neural Collapse in practical models. We extensively validated the effectiveness of
NCI on practical models without convergence requirement.
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Remark on NCI Performance. NCI does not focus on individual benchmarks. While NCI may
not achieve the best performance on every benchmark, existing detectors exhibit larger generaliza-
tion discrepancies. NCI mitigates the discrepancies, achieving the best overall performance across
all benchmarks. Additionally, NCI incurs minimal latency and enhances computational efficiency.

2 PROBLEM SETTING

We consider a data space X, a class set C, and a classifier f : X — C, which is trained on samples
i.i.d. drawn from joint distribution Pxc. We denote the marginal distribution of Py¢ on X as pin,
And samples drawn from P" are In-Distribution (ID) samples. In practice, the classifier f may
encounter £ € X yet is not drawn from P¥". We say such samples are Out-of-Distribution (OOD).

In this work, we focus on detecting OOD samples from classes unseen during training, for which
the classifiers cannot make meaningful predictions. The OOD detector D : X — {ID,00D} is
1D ifs(x) > 7
OOD ifs(x) <7
design and 7 is the threshold. Considering the diverse application scenarios, an ideal OOD detector
should be efficient and generalizable. In this work, we leverage insights from Neural Collapse to
achieve reduced computational costs and minimize generalization discrepancies.

commonly constructed as: D(x) = { , where s : X — R is a score function of

3 OOD DETECTION THROUGH THE LENS OF NEURAL COLLAPSE

In this section, we re-examine the observation in Lee et al. (2018);|Sun et al.|(2022) that ID features
tend to form clusters while OOD features deviate from the clusters. We suggest understanding the
clustering phenomenon can reflect the trend of the Neural Collapse (Papyan et al.|[2020), which
does not necessitate complete Neural Collapse convergence. Leveraging the landscape revealed by
Neural Collapse, we examine:

Where do features of ID samples form clusters?

Through analytical and empirical study, we hypothesize and validate with pre-trained models that
(1) ID features tend to cluster closer to the weight vectors compared to OOD features; (2) ID clusters
tend to reside further from the origin, as necessitated by their spatial structure. From our understand-
ing, we develop a post-hoc OOD detector with enhanced efficiency and effectiveness.

3.1 NEURAL COLLAPSE: CONVERGENCE OF TRAINING FEATURES

Neural Collapse, first observed in/Papyan et al.|(2020), occurs on the penultimate layer across canon-
ical classification settings. To formally introduce the concept, we use h; . to denote the penultimate
layer feature of the 74, training sample with ground truth / predicted label ¢, Neural Collapse is
framed in relation to

* the feature global mean, pg = Ave; ch; ., where Ave is the average operation;

* the feature class means, p. = Ave;h; ., Ve € C;

o the within-class covariance, Ty = Ave; (hi . — pre) (P — pe)Ts

* the between-class covariance, X5 = Ave. (e — pa)(pe — pna)’;

* the linear classification head, i.e. the last layer of the NN, arg max.c¢ 'wfh + b, where

w, and b, are parameters corresponding to class c.

Neural Collapse comprises four inter-related limiting behaviors:
(NC1) Within-class variability collapse: 3y — 0

(NC2) Convergence to a simplex Equiangular Tight Frame (ETF):
e = pellz = llpe — pell2l =0, Ve,
(e — pa)" (pe — o) _) C| 1 (D

60,0’ -
e — pellzllpe — pellz €] -1 Icl -1
where . .+ is the Kronecker delta symbol.
(NC3) Convergence to self-duality:
we _ He — MG =0
[well2 [[1e — pell2

4
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(NC4) Simplification to nearest class center:

argmaxw_. h + b, — argmin ||k — pcl|2
ceC ceC

We first remark on (NC2) that an ETF achieves the maximum separation possible for globally cen-
tered equiangular vectors|Papyan et al.|(2020) and extends in space, as visualized in Figure Right.
Since training features converge towards an ETF, they need to have sufficient norms to accommodate
the spatial arrangement.

We next build on (NC1) and (NC3) to demonstrate in the following that training features converge

towards the weight vectors of the linear classification head, up to a scaling factor.

Theorem 3.1. (NC1) and (NC3) imply that for any sample i and its predicted class c, we have
(hi,c - HG) — >\wc (2)

in the Terminal Phase of Training, where \ = ”HC_ITGHZ

We||2
Proof. Considering that (h; . — ptc)(hi e — pe)? is positive semi-definite for any i and c. Xy — 0
thus implies (R . — pe) (Ric — pe)” — 0and h; . — p. — 0, Vi, c. With algebraic manipulations,

we have hi.— pa e — Ba

e —palla e — pal:

Applying the triangle inequality, we have
|hi,c_l14G’ o _We o hic—pe  pec—pe |4 _ _HeTHG
e = pellz llwell2” ™ lpe —pellz 1e —pellz lwellz [lpre — pell2

Since both terms on the RHS converge to 0, as demonstrated by equation and (NC3), it follows
that the LHS also converges to 0. O

— 0, Vi,c 3)

“4)

3.2 TREND OF NEURAL COLLAPSE AND GEOMETRIC STRUCTURE OF THE ID CLUSTERS

While the complete collapse occurs during the Terminal Phase of Training (TPT) where training
error vanishes and the training loss is trained towards zero, it is observed in|He & Su|(2023) that the
trend of Neural Collapse establishes in the early stages of training. We thus suggest that the cluster-
ing behavior of ID features observed in off-the-shelf models can reflect a trend of Neural Collapse,
corresponding to the within-class variability collapse (NC1). Such a trend does not necessitate a
complete convergence and the prevalence of the trend in practical models is supported by the effec-
tiveness of prior OOD detector which leverages Neural Collapse (Zhang et al.||2022} /Ammar et al.}
2023). In light of this, we leverage the landscape of Neural Collapse revealed in Theorem and
(NC2) to examine the geometry of ID feature clusters.

Since ID test samples are drawn from the same distribution as the training samples, we anticipate
a similar pattern in their features. Specifically, we expect ID features to cluster towards the weight
vectors of their predicted class during training. Additionally, we expect ID features to reside near a
simplex Equiangular Tight Frame (ETF), thereby acquiring sufficient norm. Conversely, OOD sam-
ples are unseen during training and do not undergo the process of iterative adjustment, which drives
the Neural Collapse phenomenon. Thus we expect the model to be less effective in aligning the
OOD samples with weight vectors, placing OOD further from the weight vectors than ID features.
Meanwhile, we do not expect the model to effectively align the OOD samples with an ETF.

In Figure we validate our hypothesis across the training process of a CIFAR-10 classifier with
ResNet-18 backbone. In Figure we compute over the ID set (CIFAR-10) and OOD set (SVHN)
the average cosine similarity between the centered feature h; — e and the weight vector w,. of the
predicted class ¢, i.e., (hi — pc) - we

[hi — pall2llwells

We observe that ID features have higher similarity scores and cluster closer to the weight vectors
than OOD features. This relative relationship emerges early in training, without requiring full con-
vergence. We further reinforce our observation in Figure Left where we visualize ID features,
OOD features, and weight vectors of a CIFAR-10 classifier with UMAP(Mclnnes et al.||2018). ID
features are color-coded to align with the weight vectors (marked by stars) of their predicted classes,

Avg; (5
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revealing a distinct clustering pattern near the weight vectors. Conversely, OOD features reside fur-
ther away. While ID features don’t fully collapse onto weight vectors, showing incomplete Neural
Collapse, the emerging trend still holds, and the ID/OOD relationship remains valid.

Additionally, we combine our observation with (Zhu et al.||2021), showing that the weight vectors
form an ETF during training. Our observed proximity to the weight vectors thus also validates the
clustering of ID features near an ETF and the divergence of OOD from this structure. The lack of
structure and incentives to extend in space explains the relatively smaller norm of OOD features.

3.3 OUT-OF-DISTRIBUTION DETECTION

Based on our understanding, we design an efficient and versatile OOD detector. Specifically, we
propose to detect OOD based on feature proximity to the weight vectors of the predicted class.
For the proximity metric, we avoid Euclidean-based metrics as they require estimating the scaling
factor A\ in Equation |2| This estimation tends to be imprecise for general classifiers which may
cease training prior to convergence, resulting in suboptimal performance of Euclidean-based metrics
shown in Appendix Instead, we design an angle-based metric, adjusted for class-wise difference.
Specifically, we propose to quantify the proximity as the norm of projection of the weight vector w,
onto the centered feature h — pu, where ¢ corresponds to the predicted class, i.e.,

pScore = cos(we, b — pa)llwe|2, (6)

where cos(w.,h — pg) = % A higher pScore indicates closer proximity to the

weight vector and thus a lower chance of OOD-ness. Geometrically, thresholding on pScore selects
infinite hyper-cones centered at the weight vectors, as illustrated in FigureE]Right. Within the same
predicted class, pScore is proportional to the cosine similarity. Across different classes, pScore
adapts to class-wise difference by selecting wider hyper-cones for classes with larger weight vectors,
which tend to have larger decision regions. As shown in Appendix B} our pScore with class-wise
adjustment outperforms vanilla cosine similarity. Notably, our pScore incorporates class-specific
information into characterizing ID clustering by using the weight vectors of the predicted class. This
brings in additional gain in detection effectiveness, as we shall see in Section[4]

While pScore enhances efficiency and effectiveness, its performance is intrinsically contingent on
the strength of ID clustering. Such contingency, widely exhibited by clustering-based methods |Lee
et al.| (2018);|Sun et al.|(2022); | Tack et al.| (2020), poses challenges on classifiers with less pro-
nounced ID clustering, such as ImageNet ResNet-50 in Section To mitigate such discrepancy,
we complement pScore by considering the distance of ID clusters to the origin. Specifically, we
enhance our proximity score by incorporating feature norms to filter out OOD near the origin, as
illustrated in Figure Right. Taking L1 norm as an example, we define our detection score as
pScore + al|h||1, where « controls the filtering strength and can be selected from a validation set
as detailed in Section We refer readers to Sectionfor the effect of different orders of p-norm.
Thresholding on the detection score, we have Neural Collapse Inspired OOD Detector (NCI): A
lower score indicates a higher chance of OOD-ness.

NCI has O(P) complexity, where P is the penultimate layer dimension. The complexity theoreti-
cally ensures computational scalability of NCI on large models. Empirically, NCI maintains infer-
ence latency comparable to the vanilla softmax-confidence detector, as we shall see in Section

4 EXPERIMENTS

In this section, we extensively evaluate NCI across classification tasks: CIFAR-10, CIFAR-100 (see
App.@, ImageNet, as well as model architectures: ResNet, DenseNet (see App.@, ViT, Swin. We
compare NCI against thirteen baseline methods. While NCI may not achieve the best performance
on individual benchmarks, it mitigates the exisitng generalization discrepancies and achieves the
best overall performance with minimal latency. Following the OpenOOD benchmark |Zhang et al.
(2023), we evaluate on six OOD sets for CIFAR-10 and CIFAR-100 classifiers and five for ImageNet
classifiers. Performance is evaluated using two widely recognized metrics: the False Positive Rate
at 95% True Positive Rate (FPR95) and the Area Under the Receiver Operating Characteristic Curve
(AUROC). Lower FPR95 and higher AUROC values indicate better performance. We also report
the per-image inference latency (in milliseconds) evaluated on a Tesla T4 GPU. In our experiments,
other than the ablation study in Section we use the L1-norm as the filtering term and select the
filtering strength o from {1074,1073, 70~ 2,10~!} based on a validation set generated per pixel
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Table 1: NCI reduces discrepencies and improves overall performance on CIFAR-10 and ImageNet
benchmarks with minimal latency. CIFAR-10 uses ResNet-18 and ImageNet uses ResNet-50.

CIFAR-10 OpenOOD Benchmark ImageNet OpenOOD Benchmark

CIFAR-100 TIN MNIST SVHN Texture Place365 AVG | SSB-hard NINCO iNaturalist Texture Openlmage-O AVG
Evaluation under FPRY5 |

MSP * 53.08 4327 23.64 2582 3496 4247 37.20| 7449 56.88 4334 6087 50.13 57.14
ODIN 77.00 7538 23.83 68.61 67.70 7036 63.81| 76.83 68.16 3596 4924 46.67 5538
Energy* | 66.60 56.08 24.99 35.12 51.82 54.85 4824| 76.54 60.58 3130 4577 38.09 50.46
MDS 91.87 92.66 130 7434 76.07 9416 38.11| 95.19 91.86 8423 7331 90.77 87.07
KNN 37.64 30.37 20.05 22.60 24.06 30.38 27.38| 83.36 5839 40.80 1731 4427 4882
ViM 49.19 4049 1836 1929 21.14 4143 31.65| 8041 6229 30.68 10.51 32.82 43.34
fDBD* | 6136 49.04 37.44 56.99 3630 32.11 4554| 7728 52.13 22.00 36.05 29.94 4348
GradNorm | 9454 94.89 85.41 91.65 98.09 92.46 92.84| 7824 79.54 32.03 4327 6846 60.31
NECO 72.63 6247 1552 30.16 60.12 56.08 49.50| 72.31 55.08 27.05 4825 3342 4722
ReAct 6740 59.71 33.77 5023 51.42 4420 51.12| 77.55 5582 1672 29.64 32.58 4246
DICE 73.71  66.37 30.83 36.61 6242 77.19 57.85| 77.96 6690 3337 4428 47.83 52.03
ASH 8731 8625 70.00 83.64 84.59 77.89 81.61| 73.66 52.97 14.04 1526 29.15 37.02
Scale 86.10 83.64 35.12 68.59 8490 66.14 70.75| 67.72 51.86 9.52 17.51 28.17 34.96
NClwhofilter®| 5192 43,54 32.63 28.92 26.53 34.01 36.26| 82.14 5641 24.11 3432 3094 4558

NCI 51.83  43.60 32.64 29.01 26.54 3399 36.27| 73.29 53.86 1431 2379 3098 39.25
Evaluation under AUROC 1

MSP* 18719 88.87 92.63 91.46 89.89 88.92 89.83| 72.09 79.95 88.41 8243 8486 81.55
ODIN 8218 83.55 9524 84.58 86.94 85.07 86.26| 71.74 77.77 91.17 89.00 88.23 83.58

Methods

CIFAR-10 Strong

ImageNet Strong

=11}
g Energy* | 8636 88.80 9432 91.79 89.47 89.25 90.00| 72.08 79.70 90.63 88.70 89.06 84.04
S MDS | 6129 5957 99.17 66.56 7740 5247 69.41| 4392 5541 61.82 79.94 60.80 60.38
& KW 8973 9156 9426 92.67 93.16 91.77 92.18| 62.57 79.64 8641 97.09 87.04 8255
£ VIM 8775 89.62 9476 94.50 95.15 89.49 91.88| 65.54 78.63 89.56 97.97 90.50 84.44
DBD* | 87.18 89.11 90.80 8745 90.54 91.09 89.36| 70.66 82.60 93.70 92.11 91.17 86.05
, GmdNom | 5443 5537 6372 5391 5207 60.50 $6.66| 7190 74.02 93.89 92.05 8482 83.33
£ NECO |8550 8823 96.12 9224 88.56 89.54 90.03| 7479 8242 9243 89.18 90.80 85.93
4 ReAct 18503 8829 9281 89.12 8938 9035 89.32| 7303 8173 9634 9279 9187 8715
%, DICE 7701 7967 9037 90.02 8189 7467 8227| 7013 7601 9254 92.04 8826 83.80
£ OASH 17411 7644 8316 7346 7745 79.89 7741| 7289 8345 97.07 9690 9326 8871

Scale 80.57 83.86 93.19 86.06 83.48 88.89 86.01| 77.34 8537 98.02 96.75 9395 90.28
NCIwo filter| 8793 89.66 91.50 90.81 92.18 90.74 90.47| 66.81 80.20 92.67 91.87 90.51 84.41
NCI 87.92 89.65 9150 90.80 92.17 90.74 90.46| 73.90 83.46 96.95 96.63 92.98 88.56

(a) NCI ranks top-three in both benchmarks, while baselines show greater variability. 1 and | denotes better

performance. Bold marks best, underline 2nd / 3rd. Methods with * are hyperparameter-free. Scores, except
for the most recent baselines — £DBD, NECO, ASH, Scale — are from OpenOOD |Zhang et al.|(2023).

Performance MSP NECO KNN ViM ASH Scale  NCI (ours)
CIFAR-10 Latency 0.53 0.70 1.95 0.70 0.53 0.53 0.54
ImageNet Latency 6.85 9.55 10.31 9.55 7.02 7.01 6.84

Avg AUROC 85.69 87.98 87.38 88.16 83.06 88.15 89.51

(b) NCI improves the overall performance while reducing latency compared to strong baselines. AUROC
averaged across CIFAR-10 and ImageNet benchmarks in Table with per image latency reported.

from Gaussian N (0, 1), following |Sun et al.| (2021);|Sun & Li|(2022). For detailed setups, please
see Appendix [A] Our method and all baselines are post-hoc methods, while all models used are
off-the-shelf and do not require complete Neural Collapse Convergence.

4.1 MITIGATING DISCREPENCIES ACROSS CLASSIFICATION TASKS

We first assess the performance of NCI and baselines across CIFAR-10 and ImageNet classification
tasks. The two tasks provide an ideal test bed for evaluating versatility, as they drastically differ in
input resolution, number of classes, and classification accuracy. We use ResNets from OpenOOD
Zhang et al.| (2023): ResNet-18 for CIFAR-10 (95.06% accuracy) and ResNet-50 for ImageNet
(76.65% accuracy). Based on validation results, we set the filter strength « of the L1-norm to 10~2
for CIFAR-10 experiments and 10~ for ImageNet experiments.
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Table 2: NCI reduces discrepencies and improves overall performance on ImageNet benchmarks
across ViT B/16 and Swin v2 classifiers. Bold marks best, underline 2nd

ImageNet OpenOOD Benchmark (ViT B/16) ImageNet OpenOOD Benchmark (Swin v2)
SSB-hard NINCO iNaturalist Texture Openlmage-O AVG |SSB-hard NINCO iNaturalist Texture Openlmage-O AVG
Evaluation under FPR95 |

KNN 63.41 39.71 6.84 43.12 1830 3428 | 90.88 83.16 76.88 60.43 67.14  75.70
ViM 5191 37.10 5.67 39.29 17.51  30.30 | 90.34 83.89 70.98 65.90 68.68  75.96
ASH 48.78 4542 11.00 42.37 20.33 3558 | 93.80 93.93 87.58 97.27 91.14 92.74
Scale 45.07 32.04 549 40.59 13.15 27.27 | 90.74 7572 48.73 95.10 64.55 7597
NClwiofilter | 50.94 30.68 593  46.61 1492  29.81 | 86.77 73.11 4798 7530 5930 69.67
NCI 46.73 33.79 6.08  42.09 14.79  28.79 | 85.58 72.06 4525 71.53 54.72  65.83
Evaluation under AUROC
KNN 81.48 90.00 98.67 96.23 96.23  91.44 | 62.50 69.74 7835 85.19 67.14  75.88
ViM 87.39 92.56 9898 90.80 96.82  93.31 | 60.99 7230 8336 79.61 82.52  75.76
ASH 90.60 90.88 98.04 95.97 9597 93.14 | 58.87 58.28 58.18 46.18 6132 56.57
Scale 89.67 9323 9896 97.20 97.20  94.09 | 62.48 7897 88.88 67.08 86.14  76.71
NCIwlofilter | 87.16 93.15 98.87  96.80 96.80  93.26 | 64.53 76.73 88.07 79.63 85.39  78.87
NCI 88.86 92.88 98.79 96.83 96.83 93.64 | 67.53 78.99 89.68 81.43 87.42  80.97

(a) NCI boosts Swin v2 while maintaining ViT effectiveness compared to baselines, even without filtering.

Methods

Performance KNN ViM ASH Scale  NCI (ours)
Avg AUROC 83.66 84.84 74.86 85.40 87.31

(b) NCI improves the overall performance. AUROC averaged across two architectures in Table

Datasets For CIFAR-10 experiments, We follow the OpenOOD split of ID test set and evaluate on
the OpenOOD benchmarks, including CIFAR-100 Krizhevsky et al.|(2009), Tiny ImageNet|Le &
Yang|(2015), MNIST |Deng|(2012), SVHN |Netzer et al.|(2011), Texture (Cimpoi et al.|[2014), and
Places365 (Zhou et al.||2017). For ImageNet experiments, we follow the OpenOOD split of ID
test set and evaluate on the OpenOOD benchmarks, including SSB-hard|Vaze et al.|(2021), NINCO
Bitterwolf et al.| (2023), iNaturalist (Van Horn et al.} 2018), Texture (Cimpoi et al.| [2014), and
Openlmage-O|Wang et al.|(2022).

Baselines In Table we compare our method with thirteen baselines. Some baselines focus more
on the CIFAR-10 Benchmark while others focus more focused on the Imagenet Benchmark. There-
fore, we categorize the baselines, besides the vanilla confidence-based MSP (Hendrycks & Gimpell
2016)), into two groups: the “CIFAR-10 Strong” baselines, including ODIN (Liang et al.||2018),
Energy (Liu et al.}|2020), Mahalanobis (Lee et al.|[2018), KNN(Sun et al.}|2022), ViM (Wang et al.|
2022), and £DBD|Liu & Qin|(2023); the “ImageNet Strong” baselines, including GradNorm (Huang
et al.| 2021), NECO |/Ammar et al.|(2023), React (Sun et al.}|2021), Dice (Sun & Lil|2022), ASH
Djurisic et al.[(2022), Scale|Xu et al.|(2023). See Appendix for details of the baselines.

Performance Table shows that NCI consistently ranks top-three across benchmarks, whereas
baselines exhibit greater variability. To assess overall performance, we averaged AUROC across
benchmarks, which are of a similar range. Table highlights that NCI improves overall perfor-
mance compared to strong baselines on individual benchmarks. Further, NCT is as efficient as MSP,
as shown in Table|1H}| which enhances efficiency compared to strong baselines. This aligns with
the analysis in Section|3|and Appendix [C] We highlight the following pairs of comparison:

* NCI v.s. NCI w/o filter: On the CIFAR-10 classifier, strong ID clustering allows our method
to rank top-3 without filtering. Conversely, on the ImageNet ResNet-50, weaker ID clustering
(see Appendix |E) makes norm-based filtering crucial for reducing generalization discrepancy.
Complete Neural Collapse occurs on neither model while NCI remains effective.

* NCI v.s. KNN: Compared to KNN, NCI significantly reduces the latency (Table. Notably, without
filtering, our hyperparameter-free score outperforms KNN with tuned parameters on most bench-
marks (Table[1a| Table[2a] & Table[8), highlighting the benefit of using class-specific information.

* NCI v.s. ASH/ Scale: Compared to both, NCI delivers competitive performance on ImageNet
and significantly improves CIFAR-10, enhancing overall performance ( Table . Also, ASH and
Scale introduce in a small delay on the ImageNet benchmark due to activation sorting, with larger
activation dimensions likely widening the latency gap on larger models.

'"Running time of KNN on ImageNet are copied from Table 4 in[Sun et al.|(2022).
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Table 3: NCI improves the overall performance, averaged across Table Table& Table
Performance KNN ViM ASH Scale NCI (ours)

Avg AUROC
Across ANl Benchmarks 86.06 85.96 81.24 86.8 88.57

* NCI v.s. NECO: NECO (Ammar et al.;|2023) is motivated by Neural Collapse. Like NCI with fil-
tering, NECO uses max-logit and incorporates distance to the origin. However, NECO exclusively
analyzes features, requiring expensive matrix multiplication and leading to higher inference la-
tency (Table [Ib). Conversely, NCI explores the interplay between features and the classification
head, integrating class-specific information to improve both efficiency and effectiveness.

4.2 MITIGATING DISCREPANCIES ACROSS ARCHITECTURES

Next, we study two transformer-based models: ViT B/16 |Dosovitskiy et al.| (2020) and Swin-v2
Liu et al.|(2022), both finetuned on ImageNet, achieving an accuracy of 81.14% and 82.94% re-
spectively. We follow the setup of the OpenOOD ImageNet Benchmark in Section Based on
validation results, we set the filter strength o of the L1 norm to 10723 for both classifiers. In Table[i_l
we observe strong baselines suffer on Swin v2, echoing the observations in |/Ammar et al.| (2023).
Conversely, our NCI, even without filtering, improves baseline performance on Swin v2. Filtering
further enhances the performance, leading to improved overall performance (Table .

We further aggregate in Tablewith experiments on ResNet (Table and DenseNet (Table and
report the average AUROC in Table NCT significantly boosts the overall performance.

4.3 ABLATION ON THE FILTERING EFFECT

In Table [4| we assess different orders of p-norm as the filtering term, compared to the L1 norm
used so far. To ensure a fair comparison, we report the best performance from the filter strengths
{1074,1073,1072,10~!}. The rest of the setup follows the ImageNet benchmarks in Section
As shown in Table (4] filtering with L1 norm achieves the best performance across OOD datasets,
aligning with prior observations |Huang et al.| (2021); |Park et al.|(2023). Meanwhile, we observe
that in rare scenarios, e.g., a ResNet-18 on CIFAR-10, the L1 norm cannot effectively characterize
OOD’s proximity to the origin, leading to no extra performance gain compared to simply threshold-
ing on pScore. In these cases, our algorithm benefits from its ability to automatically select a low
filter strength based on validation results, effectively disregarding the filtering term.

Table 4: Ablation on filtering norm on ImageNet OpenOOD Benchmark with ResNet-50 backbone.
AUROC score is reported (higher is better). Bold denotes the best result. Filtering with L1 norm
outperforms alternative choice of norms across OOD datasets.

SSB-hard NINCO iNaturalist  Texture Openlmage-O
Filtering w/ Linf 66.81 80.20 92.66 91.87 90.51
Filtering w/ L2 69.12 81.44 93.96 92.77 91.73
Filtering w/ L1 73.90 83.46 96.95 96.63 92.98

We also test the sensitivity of NCI to filtering strength « in Table add. As shown on the ImageNet
ResNet50 benchmark, performance remains stable for o values within the same scale. Given this in-
sensitivity, we select hyperparameters from four scales {10~%,1073,1072, 107!} without extensive
finetuning in this work.

Table 5: Sensitivity of NCI to filtering strength. Average AUROC on ImageNet ResNet-50 Bench-
mark reported. Performance remains stable within the same scale.

Filtering Strength o 0.6 x10-3 0.8 x 10-3 1.0 x10-3 1.2 x 10-3 1.4 x 10-3
Avg AUROC 88.27 88.55 88.59 88.50 88.23
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We further apply L1-norm based filtering to KNN to see if this perspective can mitigate the discrep-
ancy of clustering-based methods in general. In Table we report the the best performance of KNN
from filter strengths {10~%,1073,1072,10~'}. We observe a significant performance gain from
adding the filter, which further validates our understanding of ID clustering landscape from Neural
Collapse. Note that our method outperforms the standalone L1 norm as well as KNN, before and
after filtering.

Table 6: Effectiveness of our filtering scheme on KNN. Performance gain validates our understanding
of ID clustering landscape. NCI outperforms KNN and standalone L1 norm. AUROC reported (higher
is better). Bold highlights the best result.

SSB-hard NINCO iNaturalist Texture Openlmage-O AVG

L1 68.80 68.28 90.86 88.16 78.47 7891
KNN 62.57 79.64 86.41 96.49 87.04 82.43
KNN + L1 64.29 81.76 92.76 97.85 90.17 86.37
NCIw/o L1 66.81 80.20 92.67 91.87 90.51 84.41
NCI 73.90 83.46 96.95 96.63 92.98 88.56

5 RELATED WORK

OOD Detection Extensive research has focused on OOD detection algorithms. One line of work
is post-hoc and builds upon pre-trained models. For example, Hendrycks et al.|(2019);|Liang et al.
(2018); [Liu et al.|(2020);|Sun et al.[(2021);|Sun & Li|(2022);|Liu & Qin|(2023); Xu et al.|(2024)
design OOD score over the output space of a classifier. Meanwhile, |[Lee et al.|(2018) and [Sun
et al.|(2022) measure OOD-ness from the perspective of ID clustering in feature space. Our work
extends the observation that ID features tend to cluster from the perspective of Neural Collapse.
While existing work is more focused are certain classification tasks than others, our proposed OOD
detector is tested to be highly versatile.

Others (Sharifi et al.||2024} Patil et al., 2024} |Zhu et al.||2024) explore the regularization of OOD
detection in training. For example, DeVries & Taylor|(2018); Hsu et al.| (2020) propose OOD-
specific architecture whereas|Huang & Li/(2021); [Wer et al.|(2022) design OOD-specific training
loss. In particular, |Tack et al.|(2020) brings attention to representation learning for OOD detection
and proposes an OOD-specific contrastive learning scheme. Our work does not belong to this school
of thought and is not restricted to specific training schemes or architecture.

Neural Collapse Neural Collapse was first observed in |Papyan et al.|(2020). During Neural Col-
lapse, the penultimate layer features collapse to class means, the class means and the classifier
collapses to a simplex equiangular tight framework, and the classifier simplifies to adopt the nearest
class-mean decision rule. Further work provides theoretical justification for the emergence of Neu-
ral Collapse (Han et al.}, 2021} Mixon et al.}|2020}| Zhou et al.||2022}|Zhu et al.}[2021). In addition,
Zhu et al.|(2021) derives an efficient training algorithm drawing inspiration from Neural Collapse.
Our concurrent work /Ammar et al.| (2023) also leverages insights from Neural Collapse for OOD
detection. However, they tackle from the subspace perspective and largely overlook class-specific
information revealed by Neural Collapse, which is essential for our work.

6 CONCLUSION

This work leverages insights from Neural Collapse to propose a novel OOD detector. Specifically,
we study the phenomenon that ID features tend to form clusters whereas OOD features reside far
away. Inspired by the trend of Neural Collapse prevalent on practical models, we hypothesize and
validate that ID features tend to cluster near weight vectors. We also explain why ID features tend to
reside further from the origin and complement our method from this perspective. Experiments show
the effectiveness of our method on practical models without requiring the complete convergence of
Neural Collapse. Further, our method improves the overall performance with minimal latency across
diverse benchmarks. We hope our work can inspire future work to explore the interplay between
features and weight vectors for OOD detection and other research problems such as calibration and
adversarial robustness.

Note that we report our run of KNN here to ensure a fair evaluation of the filtering effect. Our results are
very similar to the OpenOOD results reported in Table with only marginal differences.
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