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Abstract

Reuse of data in adaptive workflows poses challenges regarding overfitting and the
statistical validity of results. Previous work has demonstrated that interacting with
data via differentially private algorithms can mitigate overfitting, achieving worst-
case generalization guarantees with asymptotically optimal data requirements.
However, such past work assumes data is static and cannot accommodate situations
where data grows over time. In this paper we address this gap, presenting the first
generalization bounds for adaptive analysis on dynamic data. We allow the analyst
to adaptively schedule their queries conditioned on the current size of the data,
in addition to previous queries and responses. We also incorporate time-varying
empirical accuracy bounds and mechanisms, allowing for tighter guarantees as
data accumulates. In a batched query setting, the asymptotic data requirements of
our bound grows with the square-root of the number of adaptive queries, matching
prior works’ improvement over data splitting for the static setting. We instantiate
our bound for statistical queries with the clipped Gaussian mechanism, where it
empirically outperforms baselines composed from static bounds.

1 Introduction

The ubiquity of adaptive workflows in modern data science has raised concerns about the risk of
overfitting and the validity of findings [1, 2]. In such adaptive workflows, data is reused over
multiple steps, where the procedure or analysis at any given step may depend on results of previous
steps. Common examples include hyperparameter tuning or model selection on a hold-out set [3–5],
blending of exploratory and confirmatory data analysis [6, 7], and the reuse of benchmark/public
datasets within a research community [8]. While adaptivity can enable more exploratory analysis, it
is not covered by conventional guarantees of generalization and statistical validity, which assume the
analysis is selected independently of the data [9].

A simple approach for enabling adaptive data analysis with generalization guarantees is to collect a
fresh dataset whenever a step in the analysis depends on existing data. This can also be achieved by
randomly splitting a dataset and using a separate split for each step. However, the data requirements
of this approach may be prohibitive, scaling linearly in the number of adaptive steps. A line of work
based on algorithmic stability [9–18] offers a significant improvement over data splitting, with data
requirements that grow asymptotically with the square-root of the number of adaptive steps. The
core result of this line of work is a transfer theorem, which guarantees that the outputs of an adaptive
analysis are close to the expected outputs on the data distribution if (i) the analysis is stable under
small changes to the dataset and (ii) the outputs are close to the empirical average on the dataset.
Differential privacy [19] is commonly adopted as a notion of stability in this work, achieving the
square-root dependence mentioned above, which is asymptotically optimal in the worst case [20, 21].

Most prior work on adaptive data analysis via algorithmic stability assumes a common setting, where
the data is sampled i.i.d. from an unknown distribution and used by a mechanism to estimate an
analyst’s adaptive queries [9, 10, 15]. Generalization bounds are then obtained for a worst-case data
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distribution and a worst-case analyst, who is actively trying to overfit. More recently, variations of
this setting have been studied in an attempt to better reflect how data is used in practice [14, 18,
22, 23]. This includes replacing the assumption of i.i.d. data with weakly correlated data [23], or
replacing a worst-case analyst by a dynamic model [22]. Concurrent work has also made progress on
the former, providing generalization guarantees for correlated data by constraining the analyst to a
class of “concentrated” queries [24].

A limitation of all prior work is the assumption that data is collected before the analysis begins, and
remains static thereafter. However, it is common in practice for data to grow over time, and it may
be undesirable to wait for all data to arrive or to ignore data that arrives after an analysis has begun.
This growing data setting has been studied in the differential privacy literature, both for adaptive
queries [25, 26] and for updating a fixed query whenever a dataset changes [27–30]. In this paper, we
bridge the gap, obtaining the first generalization guarantees for adaptive data analysis (ADA) in the
growing setting. We consider a fully adaptive analyst, who can determine not only the content of
their queries, but also the timing and frequency of their submissions on-the-fly. This schedule can be
conditioned on the current size of the data, as well as all past queries and responses.

To tackle the growing data setting, we introduce definitions and techniques that extend beyond existing
ADA frameworks. A key innovation is our approach to bounding query error, which, following Jung
et al. [15], incorporates a term comparing the query results evaluated on a posterior data distribution
and the true data distribution. Our insight is that for the growing data setting, the posterior distribution
must be marginalized over unseen future data at the time a query is submitted—a crucial departure
from the static setting where the full dataset is known in advance. This yields a transfer theorem
that depends on a corresponding variant of posterior stability. This dynamic nature of the posterior,
whose support grows in a way that depends on the analyst’s adaptive schedule, requires significant
new analytical ideas to prove the conversion from differential privacy to posterior stability, which are
instrumental in obtaining DP-based transfer theorems. This results in an additional factor in the error
bound (compared to the static case for linear queries) proportional to the percentage increase in the
dataset size.

We propose a non-uniform generalization of (ϵ, δ)-differential privacy where the δ parameter varies
for each data point/time step, inspired by personalized privacy [31]. This permits us to obtain tighter
generalization guarantees—the error bound increases as a function of the average δ over all time steps,
rather than the maximum δ under the standard DP definition. These theoretical advances culminate
in new bounds for various query types, including statistical queries, low-sensitivity queries, and
low-sensitivity minimization queries using non-uniform differential privacy as a stability measure.

As a concrete application of our guarantees we consider using the clipped Gaussian mechanism to
answer adaptive statistical queries. To ensure tight privacy accounting when the number of queries at
each time step is chosen adaptively, we leverage a privacy filter [32] which supports fully adaptive
composition. Our bound empirically outperforms baselines composed from bounds for static data. In
a batched query setting, the asymptotic data requirements of our bound grow with the square-root of
the number of adaptive queries for a fixed accuracy goal (assuming the ratio of final to initial data
size is held constant). This improvement matches the improvement of bounds for static data [15] over
the data splitting baseline.

2 Preliminaries

We introduce notation used throughout the paper. The sequence of integers from n1 to n2 inclusive is
denoted by Jn1, n2K, or Jn2K when n1 = 1. Given a sequence x, we refer to the t-th element as xt
and the length as |x|. We use xJt1,t2K to denote the subsequence of x containing elements from index
t1 to t2 inclusive, or xJt2K when t1 = 1. We use capital letters for random variables and lower case
letters for realizations of a random variable. The uniform distribution over a set S is denoted U(S)
and the normal distribution with mean µ and standard deviation σ is denoted N (µ, σ2). The product
distribution of n i.i.d. random variables drawn from D is denoted Dn.

2.1 Formulating Adaptive Data Analysis (ADA) for Growing Data

We propose a new formulation of adaptive data analysis for growing data that builds on prior work
for static data [9, 10, 15].
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M: Mechanism

A: Analyst

𝜋: Transcript

x: Dataset

t: Round

Figure 1: Schematic of our new setting for adaptive data analysis on growing data. The dataset is of
size n0 when the analysis begins, and grows by one data point in each round. The analyst asks queries
adaptively in each round based on past responses, and receives a response from the mechanism before
selecting the next query. The framework reduces to the static data setting when n = n0.

Dataset. Let P be an unknown data distribution over a finite domain X . We consider a growing
dataset X = (X1, X2, . . .), where each data point Xt is drawn i.i.d. from P , and the data points are
indexed in order of arrival. We define the snapshot of X at index t, to be the portion of the data
realized by index t, namely XJtK. We study datasets over a fixed horizon n so that |X| = n.

Analyst and mechanism. We consider an analyst A who would like to estimate queries about the
data distribution P online using the growing dataset X . The analyst asks queries from a fixed query
class Q, such as the class of statistical queries (see Section 2.2). The analyst is prohibited from
accessing X directly, but can instead submit queries to an online mechanism M that returns estimates
using the current snapshot of X . We assume M produces feasible estimates, meaning estimates are
guaranteed to fall within the range of the query. This can be achieved by design [33] or by modifying
M to project infeasible estimates onto the range of the query.

Algorithm 1 Interaction between A and M

1: Wait for M to receive data XJn0−1K
2: Initialize empty transcript Π
3: for Round t ∈ Jn0, nK do
4: Wait for M to receive next data point Xt

5: while Analyst not finished do
6: Generate query: Q ∼ A(Π)
7: Estimate query response: R ∼ M(Q;XJtK)
8: Append (Q,R) to Πt in-place
9: end while

10: end for
11: return Transcript Π

Interaction. Algorithm 1 specifies how the an-
alyst interacts with the mechanism. To begin,
the analyst selects an initial dataset size n0 ≤ n
and waits for the mechanism to receive n0 data
points (lines 1 and 4). The analyst then submits
queries to the mechanism over multiple rounds,
where each round is marked by the receipt of
a new data point (lines 3–10). The rounds are
indexed starting at n0 so that index t coincides
with the size of the growing dataset. The num-
ber of queries asked in a given round t is deter-
mined adaptively by the analyst (line 5). Since
the analyst adaptively controls when each round
terminates, they can force the mechanism to use a stale snapshot of the dataset XJtK even if newer
data points (with indices > t) have arrived and are waiting to be ingested by the mechanism.

Transcript. The interaction yields a transcript Π of the queries submitted in each round and the
estimates produced by the mechanism (lines 2 and 8). The transcript is structured as a sequence of
sequences Π = (Π1,Π2, . . . ,Πn) where Πt = ((Qt,1, Rt,1), . . . , (Qt,kt

, Rt,kt
)) records the query-

estimate pairs from round t in the order they were submitted. We denote the space of possible
transcripts by T =

⋃
k∈S(n,k)

∏n
t=1(Q ×R)kt , where Q is the query class, R is the range of the

queries and S(n, k) = {k ∈ JkKn : (∀t < n0)(kt = 0) ∧
∑n

t=1 kt = k} is the set of possible
allocations of k queries across n rounds.1

Looking ahead, we will be interested in the stability of the transcript under perturbations to the dataset.
It is therefore convenient to interpret the interaction in Algorithm 1 as a random map I(X;A,M) that
takes a growing dataset X ∈ Xn as input and returns a transcript Π ∈ T as output. We view A and
M as parameters of I, and drop the dependence on them where it is clear from context.

1In the definition of S(n, k), the first statement in the predicate accounts for the fact that the analyst does not
begin submitting queries until round n0.
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2.2 Query Classes

Following prior work [10, 15], we consider three query classes. We use q(xJtK) to denote the result
of a query q ∈ Q evaluated on a snapshot xJtK and q(D) to denote the result evaluated on a data
distribution D.

Low-sensitivity queries are defined by a ∆-sensitive function q : X ∗ → [0, 1] that maps a data
snapshot to a scalar on the unit interval. We say q is ∆-sensitive given ∆ = (∆1, . . . ,∆n) ∈ Rn

+, if
for all t ∈ JnK we have |q(xJtK)− q(x̃JtK)| ≤ ∆t for any pair of neighboring snapshots xJtK, x̃JtK ∈
X t that differ on one data point. The result of the query when evaluated on a data distribution D is
q(D) := EX∼D[q(X)].

Statistical queries are a subset of ∆-sensitive queries where each query is of the form q(xJtK) =∑t
τ=1 q̃(xτ )/t for some function q̃ : X → [0, 1]. Since each query is fully specified by q̃, we refer to

q̃ as q when there is no ambiguity. The sensitivity satisfies ∆t ≤ 1/t for all t ∈ JnK.

Minimization queries are solutions to parameter optimization problems defined by a data-dependent
loss function. Due to space constraints, we discuss them in Appendix A.

2.3 Generalization and Stability

Algorithm 1 may fail to generalize if the mechanism leaks detailed information about the dataset
that is exploited by the analyst when selecting queries. The degree of leakage is related to the
stability of the interaction under perturbations to the dataset. Roughly speaking, a more stable
interaction leaks less information and is more likely to generalize. In Section 3, we will derive
generalization guarantees that depend on the stability of the interaction. In preparation, we now
define how generalization and stability will be measured. For clarity of exposition, we focus on
low-sensitivity and statistical queries here, and extend to minimization queries in Appendix A.

Consider the mechanism’s response R to query Q in round t, for which the “true” answer to the
query is the expected value on the data distribution, denoted Q(Pt). We measure generalization of R
in terms of the absolute difference |R−Q(Pt)|, which we refer to as the distributional error. Our
generalization guarantee for the analysis as a whole, takes the form of a high probability bound on
the worst-case distributional error that holds jointly over all rounds, as defined below. Note that we
consider bounds on the error αt that vary as a function of the round index t, which permits the bound
to improve as the dataset grows.
Definition 2.1. Let αt ≥ 0 for all t ∈ Jn0, nK and β ≥ 0. A mechanism M is ({αt}, β)-
distributionally accurate if with probability 1 − β over the randomness in the dataset X ∼
Pn and transcript Π ∼ I(X;A,M), the largest distributional error in the t-th round satisfies
max(Q,R)∈Πt

|R − Q(Pt)| ≤ αt, and this holds jointly for all t ∈ Jn0, nK, for any analyst A
and any data distribution P .

When deriving distributional accuracy bounds in the next section, we make use of a related accuracy
bound that compares the mechanism’s responses to raw empirical estimates evaluated on the current
data snapshot. Consider again the mechanism’s response R to query Q in round t, where the raw
estimate using snapshot XJtK is denoted Q(XJtK). We define the snapshot error of R to be the
absolute difference |R−Q(XJtK)|.2 By analogy with Definition 2.1, we then define the following
accuracy bound using snapshot error.
Definition 2.2. Let αt ≥ 0 for all t ∈ Jn0, nK and β ≥ 0. A mechanism M is ({αt}, β)-snapshot
accurate3 if with probability 1− β over the randomness in the dataset X ∼ Pn and transcript Π ∼
I(X;A,M), the largest snapshot error in the t-th round satisfies max(Q,R)∈Πt

|R−Q(XJtK)| ≤ αt,
and this holds for all t ∈ Jn0, nK, for any analyst A and any data distribution P .

As previously mentioned, our generalization guarantees depend on the stability of the interaction. We
adapt the notion of posterior stability introduced by Jung et al. [15] to the growing data setting. For a
query Q in round t, it measures stability in terms of the absolute difference between the “true” answer

2R and Q(XJtK) do not generally coincide, since the mechanism may inject noise in its estimates.
3Cummings et al. [25] adopt a similar definition of accuracy for a DP mechanism operating on a growing

dataset. However their definition assumes a non-adaptive analyst and holds for a worst-case dataset, whereas
ours holds for a worst-case adaptive analyst assuming the growing dataset is drawn from Pn.
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Definition 2.2
Snapshot accuracy

Lemma 3.1
Posterior accuracy

Lemma B.1
Resampling Lemma

Theorem 3.2
PS transfer theorem

Definition 2.3
Posterior stability

Theorem 3.6
DP transfer theorem

Lemma 3.5
DP to PS conversion

Theorem 3.4
DP transfer theorem

Lemma 3.3
DP to PS conversion

Theorem A.3
DP transfer theorem

Definition 2.4
Differential privacy

Statistical
queries

∆-sensitive
queries

Min.
queries

Bounded
queries

Figure 2: Outline of results in Section 3. Arrows indicate key dependencies, and dashed boxes
indicate results that hold for a particular class of queries.

evaluated on the data distribution Pt, and the answer evaluated on the posterior data distribution
Qt

Π := Pt | Π. As in the static setting, the posterior data distribution is conditioned on the full
transcript Π at the end of the interaction, however unlike the static setting, the distribution is only
taken over the data available up to round t.

Definition 2.3 ([15]). Let ϵ, δ ≥ 0. An interaction I( · ; · ,M) is (ϵ, δ)-posterior stable, or (ϵ, δ)-PS
for short, if with probability 1 − δ over the randomness in the dataset X ∼ Pn and transcript
Π ∼ I(X;A,M), we have max(Q,R)∈Πt

|Q(Pt)−Q(Qt
Π)| ≤ ϵ for all t ∈ Jn0, nK, and this holds for

any analyst A and any data distribution P .

We will show that posterior stability follows from differential privacy [19]. We consider a variation of
the standard definition of differential privacy, where the level of privacy/stability varies non-uniformly
over data points. Similar definitions have been used in dynamic data settings [34, 35] to facilitate
tighter privacy accounting. We have the same motivation here—by bounding the δ parameter for each
data point separately, we can obtain tighter generalization bounds.

Definition 2.4. Let ϵ ≥ 0 and δ : JnK → [0, 1]. An interaction I( · ; · ,M) is (ϵ, δ)-differentially
private, or (ϵ, δ)-DP for short, if for all analysts A, all rounds t ∈ JnK, all pairs of neighboring
growing datasets (x,x′) ∈ Nt differing on the t-th data point, and all measurable events E ⊆ T :

P(I(x;A,M) ∈ E) ≤ eϵ P (I(x′;A,M) ∈ E) + δ(t).

We consider a bounded neighboring relation, meaning thatNt contains pairs of datasets (x,x′) where
x can be obtained from x′ by replacing the t-th data point. We note that this non-uniform privacy
definition includes the standard (uniform) definition as a special case: in particular, (ϵ, δ)-DP implies
(ϵ,maxt δ(t))-DP. We refer the reader to Appendix D for discussion and results on non-uniform DP.

As a stability measure for adaptive data analysis, DP has several advantages. First, DP can be
interpreted as a privacy guarantee, not merely a bound on stability. Second, DP has been widely
studied in statistics and machine learning for almost two decades, so there are established private
mechanisms for common data analysis and learning tasks. Third, DP supports composition which
simplifies privacy accounting of the interaction. For example, one could instantiate a privacy filter [32,
36] for a differentially private query-answering mechanism with target privacy parameters ϵ and δ.
This then allows for adaptive selection of the analyst’s queries, the mechanism’s algorithm, and the
privacy parameters for individual queries, noting that the interaction may be forced to terminate early
to ensure it satisfies (ϵ, δ)-DP. The post-processing property of DP is essential for this accounting to
work, as the analyst’s selection of the next query is viewed as post-processing on the mechanism’s
private estimates to previous queries. As a result, the analyst does not accrue an additional cost to
privacy/stability, even in the worst case.

3 Generalization Guarantees for ADA on Growing Data

In this section, we present generalization guarantees for ADA in the growing data setting. Figure 2
provides an outline of our key results, where the generalization guarantees (a.k.a. transfer theorems)
are shaded in blue. Due to space constraints, we present selected results here and defer proofs and
technical results to Appendix B.

Recall that our aim is to obtain generalization guarantees in the form of high probability bounds on
worst-case distributional accuracy. Our proof technique is based on Jung et al. [15], whose bounds
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for static data outperform prior work [9, 10]. The core idea of the proof involves decomposing the
distributional error into two terms using the triangle inequality:

|r − q(Pt)| ≤ |r − q(Qt
π)|+ |q(Qt

π)− q(Pt)|. (1)

Rather than comparing the response r to query q with the true value q(Pt) directly, we instead
compare r and q(Pt) with an intermediate value q(Qt

π), which is the expectation of the query on the
posterior distribution of the snapshot at round t conditioned on the final transcript π. This intermediate
value is chosen to align with the definitions of snapshot accuracy and posterior stability, which we
have adapted for the growing data setting.

We obtain worst-case probabilistic bounds on each term in (1) separately: a bound on the first term
follows indirectly from snapshot accuracy and a bound on the second term follows directly from
posterior stability. The bound we obtain for the first term is stated below.
Lemma 3.1. Suppose M is ({αt}, β)-snapshot accurate for [0, 1]-bounded queries. Then for any
c > 0, with probability 1− β

c with respect to the randomness in the dataset X ∼ Pn and transcript
Π ∼ I(X;A,M), we have for all t ∈ Jn0, nK that max(Q,R)∈Πt

|R−Q(Qt
Π)| ≤ αt + c.

The proof relies on an elementary observation stated in Lemma B.1 of Appendix B: that the joint
distribution on datasets and transcripts does not change when the entire dataset is resampled from the
posterior distribution Qn

Π in the final round n. At first glance, this observation may not seem useful,
as the expectation of the query in (1) is taken with respect to the posterior distribution of the data
available at round t when the query was submitted Qt

Π, not the posterior distribution of the entire
datasetQn

Π. However it turns out this is not a problem: Since the event of interest does not depend on
data points received after the round t⋆ when the worst-case deviation from the posterior expectation
occurs, we can apply Lemma B.1 and marginalize over the remaining data points.

Combining Lemma 3.1 with posterior stability yields our first generalization guarantee.
Theorem 3.2 (PS transfer theorem). Suppose M is an ({αt}, β)-snapshot accurate mechanism for
[0, 1]-bounded queries and I( · ; · ,M) is an (ϵ, δ)-posterior stable interaction. Then for every c > 0,
M is ({α′t}, β′)-distributionally accurate for α′t = αt + c+ ϵ and β′ = β

c + δ.

When the error bounds {αt} are constant, we recover the same bound as Jung et al. [15, Theorem 4],
albeit for the more general growing data setting.

We now turn to deriving generalization guarantees using differential privacy as a measure of stability.
These guarantees are derived by first converting differential privacy (DP) to posterior stability (PS)
in a way that exploits the structure of the query class, and then invoking Theorem 3.2. These steps
are visualized in Figure 2, where the DP to PS conversion results in Lemmas 3.3 and 3.5 lead to
generalization guarantees in Theorems 3.4 and 3.6.

We begin with a conversion result for statistical queries.
Lemma 3.3. An (ϵ, δ)-DP interaction I( · ; · ,M) for statistical queries is (ϵ′, δ′)-PS for ϵ′ =
eϵ − 1 + 2c

∑n
t=1 δ(t)/n0, δ′ = 1/c and any c > 0.

If ϵ and c are both constant, then the scaling of the lower bound ϵ′ as a function of the final dataset
size n depends on the functional form of

∑n
t=1 δ(t). In the worst case where δ(t) is uniform, we see

that ϵ′ grows linearly in n. In the static setting, where n = n0 and δ(t) = δ, this factor disappears
and we recover the result of Jung et al. [15, Lemma 7]. Combining this lemma with Theorem 3.2
yields a generalization guarantee for statistical queries.
Theorem 3.4. Suppose M is an ({αt}, β)-snapshot accurate mechanism and I( · ; · ,M) is an (ϵ, δ)-
DP interaction for statistical queries. Then for any constants c, d > 0, M is (α′t, β

′)-distributionally
accurate for α′t = αt + eϵ − 1 + 2c

∑n
t=1 δ(t)/n0 + d and β′ = β/d+ 1/c.

Next we consider low-sensitivity queries, where we obtain the following DP to PS conversion result.
Lemma 3.5. An (ϵ, δ)-DP interaction I( · ; · ,M) for ∆-sensitive queries is (ϵ′, δ′)-posterior stable
for ϵ′ = eϵ maxτ1∈Jn0,nK τ1∆τ1−minτ2∈Jn0,nK τ2∆τ2+4c (

∑n
t=1 δ(t))maxτ3∈Jn0,nK ∆τ3 , δ′ = 1/c

and any c > 0.

We see that the lower bound on the posterior stability depends on the extreme values of the sensitivity
and the sensitivity weighted by dataset size. It is interesting to apply this lemma to statistical queries,
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which are a subset of ∆-sensitive queries with ∆t ≤ 1/t. We find ϵ′ = eϵ − 1 + 4c
∑n

t=1 δ(t)/n0,
which is looser than Lemma 3.3 by a factor of 2 in the last term. We again point out that the bound
reduces to Jung et al. [15, Lemma 15] in the static case, where n = n0 and δ(t) = δ. By combining
this lemma with Theorem 3.2 we obtain a generalization guarantee for low-sensitivity queries.
Theorem 3.6. Suppose M is an ({αt}, β)-snapshot accurate mechanism and I( · ; · ,M) is
an (ϵ, δ)-DP interaction for ∆-sensitive queries. Then for any constants c, d > 0, M is
({α′t}, β′)-distributionally accurate for α′t = αt + eϵ maxτ1∈Jn0,nK τ1∆τ1 −minτ2∈Jn0,nK τ2∆τ2 +

4c (
∑n

t=1 δ(t))maxτ3∈Jn0,nK ∆τ3 + d and β′ = β/d+ 1/c.

Finally, we provide a generalization guarantee for minimization queries in Theorem A.3 of Ap-
pendix A.

4 Application: Gaussian Mechanism

In this section, we instantiate our generalization guarantees for statistical queries using the Gaussian
mechanism. We focus on the Gaussian mechanism since it is simple to describe, it is easily adapted
for growing data, and it is known to be optimal for answering a small number of queries k ≪ n2 on
a static dataset of size n [10].4 For ease of exposition, we assume the number of queries asked in
each round is fixed before the analysis begins, while the queries themselves are adaptively chosen.
This simplifies the privacy accounting and makes for a more direct comparison with prior work in the
static setting [15]. In Appendix C.2, we remove this assumption, presenting a guarantee for the more
general setting where the analyst adaptively decides how many queries to ask in each round. This
guarantee relies on fully adaptive composition via a privacy filter [32]. All proofs for this section can
be found in Appendix C.

4.1 Generalization Guarantee

We begin by defining the Gaussian mechanism for growing data. We also include a clipped variant
that produces feasible estimates to [0, 1]-bounded queries (see Section 2.1).
Definition 4.1. The Gaussian mechanism perturbs an estimate to a query q based on snapshot xt

by adding Gaussian noise with round-dependent standard deviation σt > 0. Specifically, we have
M(q;xt) = q(xt)+ z with z ∼ N (0, σ2

t ). The clipped Gaussian mechanism composes the Gaussian
mechanism with the function clip[0,1](x) = max(0,min(x, 1)) as a post-processing step.

We now analyze privacy for the clipped Gaussian mechanism. The result below is obtained using
zero-concentrated differential privacy (zCDP, see Definition D.3), as it provides sharp composition
bounds for the Gaussian mechanism [37]. After proving that the interaction satisfies ρ-zCDP, we
convert to (ϵ, δ)-DP using Corollary D.9, which generalizes a result of Canonne, Kamath, and Steinke
[38, Corollary 13] to non-uniform privacy parameters.
Lemma 4.2. Consider an interaction I(·; ·,M) where M is the ordinary or clipped Gaussian mech-
anism. Suppose the analyst decides to submit kτ statistical queries in round τ ∈ Jn0, nK before
I(·; ·,M) is executed. Then I(·; ·,M) satisfies (ϵ, δ)-DP for any ϵ > 0 and δ(t) ≤ ψ(γ⋆,ρ(t), ϵ),
where ρ(t) =

∑n
τ=n0

kτ1[t≤τ ]/2σ
2
ττ

2, ψ(γ, ρ, ϵ) = e(γ−1)(γρ−ϵ)
(
1− γ−1

)γ
/(γ − 1) and

γ⋆ = argminγ∈(1,∞) ψ
(
γ,maxt∈JnK ρ(t), ϵ

)
.

Next we analyze snapshot accuracy. The bound depends on the inverse CDF of the Gaussian
distribution, which is related to the inverse complementary error function erfc−1.
Lemma 4.3. For any β ∈ (0, 1), the clipped Gaussian mechanism with σt ∝ αt is ({αt}, β)-snapshot
accurate for k queries with

αt√
2σt

= erfc−1

(
2− 2

(
1− β

2

) 1
k

)
< erfc−1

(
β

k

)
.

Combining Lemmas 4.2 and 4.3 with Theorem 3.4 yields the following generalization guarantee.
4In the regime where k ≫ n2, a variant of the private multiplicative weights mechanism for growing data

can be used instead [25].
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Figure 3: Comparison of the number of adaptive statistical queries that can be answered with error
tolerance α = 0.1 and uniform coverage probability 1 − β = 0.95 using a growing dataset with
growth ratio n/n0 = 3 in a batched query setting. The number of queries (vertical axis) is plotted as
a function of the final dataset size n (horizontal axis), bound (curve style) and the number of query
batches b (horizontal panel). The right-most panel (b = 1), represents the static baseline setting where
the analyst forgoes intermediate responses and submits all queries only after the entire dataset of size
n has arrived.

Theorem 4.4. Suppose the conditions of Lemma 4.2 hold and assume σt = σ > 0. Then the clipped
Gaussian mechanism is (α′, β′)-distributionally accurate for k statistical queries for any β′ ∈ (0, 1)
and α′ = minσ,β,ϵ∈Θ λ(σ, β, ϵ), where

λ(σ, β, ϵ) =
√
2σ erfc−1

(
β

k

)
+ eϵ − 1 +

β

β′
+

2
∑n

τ=1 δ(τ)

n0β′
+

2

β′

√
2β
∑n

τ=1 δ(τ)

n0
,

Θ = {(σ, β, ϵ) ∈ R3 : σ > 0, 0 < β < 1, ϵ ≥ 0} and δ(·) is defined in Lemma 4.2.

4.2 Empirical Comparison with Alternative Guarantees

We empirically compare our generalization bounds for growing data with baselines composed from
bounds for static data. When instantiating the bounds, we must specify how many queries kt are
submitted in each round t.5 For simplicity, we assume k queries are evenly split into b batches, with a
batch being submitted every T = (n− n0)/b rounds.6 Concretely, for b > 1 we assume kt = k/b
for t ∈ {n0, n0 + T, n0 + 2T, . . . , n} and kt = 0 otherwise. This setting represents a middle ground
between two extremes: where all k queries are submitted in the initial round or final round. To
provide a strong baseline from prior work, we treat the b = 1 case specially: it represents the static
data setting, where the analyst waits for all n data points to arrive before submitting all k queries in a
single batch at the final round t = n.

We consider the following generalization bounds:

• Ours-N. Theorem 4.4 with non-uniform privacy.
• Ours-U. Theorem 4.4 with uniform privacy (expression δ(t) is replaced by maxτ∈JnK δ(τ) in our

bounds).
• JLNRSS. Proposition C.4 in Appendix C.3. Composes the static bound of Jung et al. [15,

Theorem 13] over query batches using a fresh static dataset for each query batch, thereby yielding
a worst-case guarantee over all queries. The static bound depends on parameters that are optimized
under the constraints β = δ and c = d.

• JLNRSS+. A tighter variant of JLNRSS that differs in two aspects: (1) the parameters are
optimized without imposing the simplifying constraints mentioned above, and (2) the conversion
from zCDP to (ϵ, δ)-DP is based on the tighter result that we use (Corollary D.9).

• Split. An analogue of the sampling splitting baseline from prior work [10, 15] adapted for growing
data. It splits incoming data points into samples of size ⌊n/k⌋ and answers each query using a
fresh sample. Unlike the other methods, this method may respond with a delay if a query arrives
before a fresh sample is ready. Since there is no data reuse, a generalization bound follows directly
from Hoeffding’s bound and the union bound (see Appendix C.4).
5Since the bounds are worst case with respect to the analyst and data distribution, no simulation is necessary.
6When division by b yields a remainder r, we distributed r evenly across the first r batches/rounds.
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Figure 3 plots the number of adaptive queries k that can be answered as a function of the final dataset
size n while guaranteeing a confidence interval around estimates of α′ = 0.1 with uniform coverage
probability 1−β′ = 0.95, following the empirical settings of Jung et al. [15]. When varying n, we set
the initial dataset size n0 = n/3 to maintain a constant growth ratio. This choice models a practical
scenario where a substantial dataset is available before adaptive analysis begins, which is necessary to
obtain non-vacuous guarantees in a fully adaptive setting. To present the tightest possible guarantees
for each method, we follow the approach of Jung et al. [15] and numerically optimize over the free
parameters of the bounds (e.g., σ, β, ϵ for Ours-N and Ours-U) for each point plotted. Our primary
goal is to compare generalization guarantees under data reuse, so the resulting privacy parameters
may vary slightly between points. We note, however, that the optimal values were found to be stable
in practice, varying only beyond the first significant figure (e.g., σ ≈ 0.008, β ≈ 10−5, ϵ ≈ 0.04).

We observe quadratic growth in n for Ours-U and Ours-N, linear growth in n for Split and slower
quadratic growth in n for JLNRSS and JNLRSS+. In this regime, Ours-N generally outperforms
the other bounds, which is not surprising as JLNRSS in particular is not optimized for growing data
b > 1. We provide additional results in Appendix E examining the error for a fixed number of queries;
the effect of b; and a setting where n0 is fixed and the growth ratio varies.

5 Related Work

Various methods have been proposed in the statistics community for adaptive analysis of static
data. For instance, α-investing and related methods can be used to control false discovery rates for
sequential hypothesis testing [39, 40]. Another line of work aims to ensure statistical validity when
model selection and significance testing are performed on the same dataset [41–43]. However, these
methods are specialized and place restrictions on the analyst [9].

Our paper builds on a body of work exploiting a connection between stable algorithms and gen-
eralization for adaptive data analysis [5, 9–18]. Dwork et al. [9] were first to establish a transfer
theorem showing that differentially private algorithms are sufficient to guarantee high-probability
bounds on the worst-case error of an adaptive analysis. In subsequent work [10, 15], simpler proofs
of the transfer theorem were given that achieve sharper bounds, while covering a broader range
of queries. Recent work has obtained bounds that improve on the worst case, by conditioning on
data/queries [11, 14, 18] or constraining the analyst [22]. In a similar spirit, concurrent work also
constrains the analyst’s queries, which in turn allows them to provide guarantees for certain classes
of correlated, non-i.i.d. data [24]. Lower bounds have also been studied exploiting connections to
cryptography [20, 21, 44]. However, all of this prior work is limited to static data.

While there is no prior work on adaptive analysis of dynamic data, this setting has been studied in
differential privacy. One line of work is known as differential privacy under continual observation [27,
28], where the goal is to repeatedly estimate a fixed function of a dataset whenever new data arrives.
An elementary task in this setting is estimating the number of ones in a binary stream, which
can be solved using the binary mechanism [27, 28]. More recently, alternative mechanisms have
been proposed that achieve tighter error bounds [29, 30] while also maintaining computational
efficiency [45]. These counting mechanisms have been used as a primitive to tackle other tasks
including frequency estimation [46, 47], learning [29, 48] and graph spectrum analysis [49]. A
second line of work studies differential privacy for more general kinds of adaptive queries on
dynamic data [25, 26]. Cummings et al. [25] design mechanisms for growing data that call black-box
mechanisms for static data on a schedule. Qiu and Yi [26] go beyond growing data, designing
mechanisms that estimate adaptive linear queries on datasets where items may be inserted or deleted
over time. Our paper provides generalization guarantees for many of these mechanisms.

Several works have obtained generalization bounds for adaptive data analysis that do not rely on
differential privacy. While differential privacy yields accuracy bounds that hold with high probability,
one can also study weaker bounds that hold on average via connections to information theory [10, 50,
51]. Concepts from computational learning theory, such as Rademacher complexity, have also been
used to obtain data-dependent generalization bounds for adaptive testing [52]. However, estimating
data-dependent bounds on Rademacher complexity may be computationally challenging.

Connections have been made between adaptive data analysis and seemingly disparate areas. Steinke,
Nasr, and Jagielski [53] develop a method for privacy auditing that runs the algorithm under audit
once on a single dataset rather than many times on adjacent datasets. The analysis of their method
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relies on generalization bounds for adaptive data analysis tailored for uniformly distributed binary
data. Liu et al. [54] use static and dynamic analysis to estimate the adaptivity of a program to assist
in bounding its generalization error.

6 Conclusion

This paper extends the current understanding of generalization in adaptive data analysis to dynamic
scenarios where data arrives incrementally over time, a setting increasingly relevant in many data-
driven fields. Our approach builds on and extends the tightest known worst-case generalization
guarantees for static data [15] by incorporating time-varying accuracy bounds and addressing the
additional complexity introduced by data growth. Compared with bounds for static data, our bounds
incorporate an additional factor proportional to the data growth, associated with the stability of the
analysis as measured by differential privacy. We instantiate our bounds for three query classes and
demonstrate an empirical improvement over baselines for adaptive statistical queries answered with
the clipped Gaussian mechanism.

There are various opportunities to extend our work. While it is conventional to assume i.i.d. data
when studying generalization, as we have done here, it would be interesting to consider non-i.i.d.
growing data where the data distribution evolves over time. This may require bounds that depend on
the rate of evolution, akin to bounds that depend on the correlation for non-i.i.d. data in the static
setting [23]. Another practical direction is to tighten our (mostly) worst-case bounds by conditioning
on the actual queries and data realized in the analysis. This could be informed by similar work for
the static setting [11, 14, 18]. Finally, we believe there are opportunities to design new differentially
private mechanisms for different kinds of adaptive queries on dynamic data, as there has been limited
work in this area to date [25, 26].
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A Results for Minimization Queries

In this appendix, we provide a generalization guarantee for the class of low-sensitivity minimization
queries. Queries in this class are parameterized by a loss function L : X ∗ ×Θ→ [0, 1], where the
first argument is a data snapshot and the second argument is a set of parameters from a parameter
space Θ. We require that L is ∆-sensitive in its first argument, meaning for all t ∈ JnK and all θ ∈ Θ
we have |L(xJtK, θ)−L(x′JtK, θ)| ≤ ∆t for any pair of neighboring snapshots xJtK,x

′
JtK ∈ X

t. When
evaluated on a snapshot, the result of the query is q(xJtK) ∈ argminθ∈Θ L(xJtK, θ). When evaluated
on a data distribution D, the result is q(D) ∈ argminθ∈Θ EX∼D[L(X, θ)].

The definitions of distributional and snapshot accuracy that appear in Section 2.3 must be adapted for
minimization queries. Minimization queries require a different treatment because the output of the
query is not scalar-valued in general, but rather a set of parameters θ ∈ Θ. We use the loss function
L associated with the query to measure the distributional and snapshot accuracy as defined below.

Definition A.1. Let αt ≥ 0 for all rounds t ∈ Jn0, nK and β ≥ 0. A mechanism M is ({αt}, β)-
distributionally accurate if for all analysts A and data distributions P

P
X∼Pn,Π∼I(X;A,M)

(
n⋃

t=n0

⋃
(L,θ)∈Πt

{∣∣∣∣ E
X̃∼Pt

[L(X̃, θ)]−min
θ̃∈Θ

E
X̃∼Pt

[L(X̃, θ̃)]

∣∣∣∣ ≥ αt

})
≤ β.

Definition A.2. Let αt ≥ 0 for all rounds t ∈ Jn0, nK and β ≥ 0. A mechanism M is ({αt}, β)-
snapshot accurate if for all analysts A and data distributions P

P
X∼Pn,Π∼I(X;A,M)

(
n⋃

t=n0

⋃
(L,θ)∈Πt

{∣∣∣∣L(XJtK, θ)−min
θ̃∈Θ

L(XJtK, θ̃)

∣∣∣∣ ≥ αt

})
≤ β.

Following prior work [10, 15], we obtain a generalization guarantee for ∆-sensitive minimization
queries by applying Theorem 3.6 to a related set of 2∆-sensitive scalar-valued queries.

Theorem A.3. Suppose M is an ({αt}, β)-snapshot accurate mechanism and I( · ; · ,M) is an
(ϵ, δ)-DP interaction for ∆-sensitive minimization queries. Then for any constants c, d > 0, M is
({α′t}, β′)-distributionally accurate for α′t = αt+2eϵ maxτ1∈Jn0,nK τ1∆τ1−2minτ2∈Jn0,nK τ2∆τ2+

8c
∑n

t=1 δ(t)maxτ3∈Jn0,nK ∆τ3 + d and β′ = β/d+ 1/c.

Proof. We begin by defining a mapping f : Qmin × Θ → Qls × [0, 1] that takes a ∆-sensitive
minimization query-estimate pair (L,W ) ∈ Qmin × Θ and returns a 2∆-sensitive scalar-valued
query-estimate pair (q, r) ∈ Qls × [0, 1]:

f(L,W ) = (q, r) with q(x) := L(x,W )− min
W ′∈Θ

L(x,W ) and r := 0.
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Since f does not depend on the dataset, we can apply it to all pairs in the minimization query transcript
Π to yield a transformed transcript Π′ that also satisfies (ϵ, δ)-DP by the post-processing guarantee
(Theorem D.6). It is straightforward to see that the transformed transcript Π′ is ({αt}, β)-snapshot
accurate iff the original transcript Π is.

Next, observe that the probability of interest can be upper-bounded using Jensen’s inequality to swap
the order of the minimization and expectation operations:

P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(L,W )∈Πt

{∣∣∣∣ E
X′∼Pt

[L(X ′,W )]− min
W ′∈Θ

E
X′∼Pt

[L(X ′,W ′)]

∣∣∣∣ > α′t

})

≤ P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(L,W )∈Πt

{∣∣∣∣ E
X′∼Pt

[
L(X ′,W )− min

W ′∈Θ
L(X ′,W ′)

]∣∣∣∣ > α′t

})

= P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(q,r)∈Π′

t

{∣∣∣∣r − E
X′∼Pt

[q(X ′)]

∣∣∣∣ > α′t

})
.

In the last line above, we have rewritten the event in terms of the transformed transcript Π′. Applying
Theorem 3.6 upper bounds this probability by β′, completing the proof.

B Proofs for Section 3

Lemma B.1 (Resampling Lemma [15]). Let E ⊆ Xn × T be any event. Then
P

X∼Pn,Π∼I(X)
((X,Π) ∈ E) = P

X∼Pn,Π∼I(X),X′∼QΠ

((X ′,Π) ∈ E) .

Proof. The result follows by writing the probabilities as expectations, invoking the definition of QΠ,
and using the fact that x and x′ can be swapped without changing the expectation:

P
X∼Pn,Π∼I(X),X′∼QΠ

((X ′,Π) ∈ E) =
∑

x,π,x′

P(X = x,Π = π) P
X′∼Qπ

(X ′ = x′)1[(x′,π)∈E]

=
∑
π,x′

P(Π = π)P(X = x′ | Π = π)1[(x′,π)∈E]

=
∑
x,π

P(X = x,Π = π)1[(x,π)∈E]

= P
X∼Pn,Π∼I(X)

((X,Π) ∈ E) .

Lemma 3.1. Suppose M is ({αt}, β)-snapshot accurate for [0, 1]-bounded queries. Then for any
c > 0, with probability 1− β

c with respect to the randomness in the dataset X ∼ Pn and transcript
Π ∼ I(X;A,M), we have for all t ∈ Jn0, nK that max(Q,R)∈Πt

|R−Q(Qt
Π)| ≤ αt + c.

Proof. Given a transcript π ∈ T , let a round-query-estimate tuple that achieves the largest αt-adjusted
posterior error be denoted

t⋆, q⋆, r⋆ ∈ argmax
t∈Jn0,nK,(q,r)∈πt

|r − q(Qt
π)| − αt,

where we have omitted the dependence on π. We use this definition to write the probability of interest
in terms of a single event, which we then express as a union of two independent (since αt⋆ + c > 0)
events corresponding to the branches of the absolute value function:

P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(q,r)∈Πt

{
|r − q(Qt

Π)| > αt + c
})

= P
X∼Pn,Π∼I(X)

(
|r⋆ − q⋆(Qt⋆

Π )| − αt⋆ > c
)

= P
X∼Pn,Π∼I(X)

(
r⋆ − q⋆(Qt⋆

Π )− αt⋆ > c
)
+ P

X∼Pn,Π∼I(X)

(
q⋆(Qt⋆

Π )− r⋆ − αt⋆ > c
)
.(2)

14



Observe that the first term in (2) can be bounded as follows:

P
X∼Pn,Π∼I(X)

(
r⋆ − q⋆(Qt⋆

Π )− αt⋆ > c
)

= P
X∼Pn,Π∼I(X)

(
E

X′∼QΠ

[
r⋆ − q⋆(X ′Jt⋆K)− αt⋆

]
> c

)
(3)

≤ P
X∼Pn,Π∼I(X)

(
E

X′∼QΠ

[
max{r⋆ − q⋆(X ′Jt⋆K)− αt⋆ , 0}

]
> c

)
≤ 1

c
E

X∼Pn,Π∼I(X)

[
E

X′∼QΠ

[
max{r⋆ − q⋆(X ′Jt⋆K)− αt⋆ , 0}

]]
(4)

≤ 1

c
E

X∼Pn,Π∼I(X)

[
P

X′∼QΠ

(
r⋆ − q⋆(X ′Jt⋆K)− αt⋆ > 0

)]
(5)

=
1

c
P

X∼Pn,Π∼I(X),X′∼QΠ

(
r⋆ − q⋆(X ′Jt⋆K)− αt⋆ > 0

)
=

1

c
P

X∼Pn,Π∼I(X)

(
r⋆ − q⋆(XJt⋆K)− αt⋆ > 0

)
(6)

where line (3) follows from the definition of qt,j(Qt
Π); line (4) follows from Markov’s inequality;

line (5) follows from the fact that r − q(X ′JtK)− αt ≤ 1 for a [0, 1]-bounded query and mechanism;
and line (6) follows from Lemma B.1. By symmetry, a similar bound holds for the second term in (2).

Substituting these bounds in (2) gives

P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(q,r)∈Πt

{
|r − q(Qt

Π)| > αt + c
})

≤ 1

c
P

X∼Pn,Π∼I(X)

(
|r⋆ − q⋆(XJt⋆K)| − αt⋆ > 0

)
(7)

≤ 1

c
P

X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(q,r)∈Πt

{|r − q(XJtK)| > αt}

)
(8)

≤ β

c
, (9)

where line (7) follows from the independence of the events in the two terms; line (8) follows since
the starred round-query-estimate tuple may not achieve the largest αt-adjusted snapshot error; and
line (9) follows from the definition of ({αt}, β)-snapshot accuracy.

Theorem 3.2 (PS transfer theorem). Suppose M is an ({αt}, β)-snapshot accurate mechanism for
[0, 1]-bounded queries and I( · ; · ,M) is an (ϵ, δ)-posterior stable interaction. Then for every c > 0,
M is ({α′t}, β′)-distributionally accurate for α′t = αt + c+ ϵ and β′ = β

c + δ.

Proof. Given a transcript π ∈ T , let a round-query-estimate tuple that achieves the largest αt-adjusted
distributional error be denoted

t⋆, q⋆, r⋆ ∈ argmax
t∈Jn0,nK,(q,r)∈πt

|r − q(Pt)| − αt,

where we have omitted the dependence on π. Using this definition, we express the probability of
interest in terms of a single event, and then obtain an upper bound using the triangle inequality and
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the union bound:

P
X∼Pn,Π∼I(X)

(
n⋃

t=n0

⋃
(q,r)∈Πt

{|r − q(Pt)| > αt + c+ ϵ}

)

= P
X∼Pn,Π∼I(X)

(
|r⋆ − q⋆(Pt⋆)| − αt⋆ > c+ ϵ

)
≤ P

X∼Pn,Π∼I(X)

(
|r⋆ − q⋆(Qt⋆

Π )| − αt⋆ + |q⋆(Qt⋆

Π )− q⋆(Pt⋆)| > c+ ϵ
)

≤ P
X∼Pn,Π∼I(X)

(
|r⋆ − q⋆(Qt⋆

Π )| − αt⋆ > c
)

+ P
X∼Pn,Π∼I(X)

(
|q⋆(Qt⋆

Π )− q⋆(Pt⋆)| > ϵ
)
. (10)

We can upper bound the two probabilities in (10) by maximizing the LHS of the inequalities with
respect to t⋆, q⋆, r⋆ ∈

⋃n
t=n0
{(t, q, r) : (q, r) ∈ Πt}. Then Lemma 3.1 upper bounds the first

probability by β
c and Definition 2.3 bounds the second probability by δ, giving the required result.

Lemma 3.3. An (ϵ, δ)-DP interaction I( · ; · ,M) for statistical queries is (ϵ′, δ′)-PS for ϵ′ =
eϵ − 1 + 2c

∑n
t=1 δ(t)/n0, δ′ = 1/c and any c > 0.

Proof. Given a transcript π ∈ T , let the round-query-estimate tuple that achieves the largest absolute
difference be denoted

t⋆, q⋆, r⋆ ∈ argmax
t∈Jn0,nK,(q,r)∈πt

|q(Qt
π)− q(Pt)|,

where we have omitted the dependence on π.

Define for any α > 0, x ∈ X , t ∈ JnK, z ∈ [0, 1/n0]:

Π(α) =
{
π ∈ T : q⋆(Qt⋆

π )− q⋆(Pt⋆) > α
}
,

X+(π) =

{
x ∈ X : P

X′∼Qπ,t∼UJn0,t⋆K

(X ′τ = x) ≥ P
X∼P

(X = x)

}
,

B+(α) =
⋃

π∈Π(α)

(X+(π)× {π}),

Π+(α, x) = {π ∈ T : (x, π) ∈ B+(α)},
Π+(α, x, z, t) =

{
π ∈ Π+(α, x) : t ≤ t⋆, 1 > zt⋆

}
.

Fix any α > 0 and let δ̃ =
∑n

t=1 δ(t). Suppose PX∼Pn,Π∼I(X)

(
|q⋆(Qt⋆

Π )− q⋆(Pt⋆)| > α
)
>

1
c , which implies either PX∼Pn,Π∼I(X)

(
q⋆(Qt⋆

Π )− q⋆(Pt⋆) > α
)

> 1
2c or

PX∼Pn,Π∼I(X)

(
q⋆(Pt⋆)− q⋆(Qt⋆

Π ) > α
)
> 1

2c . Without loss of generality assume

P
X∼Pn,Π∼I(X)

(
q⋆(Qt⋆

Π )− q⋆(P) > α
)
= P(Π ∈ Π(α)) >

1

2c
. (11)

From the definition of Π(α), we have

αP(Π ∈ Π(α)) <
∑

π∈Π(α)

{q⋆(Qt⋆

π )− q⋆(Pt⋆)}

=
∑

π∈Π(α)

{
E

X′∼Qπ

[q⋆(X ′Jt⋆K)]− E
X∼Pn

[q⋆(XJt⋆K)]
}

=
∑

π∈Π(α)

{
E

X′∼Qπ,t∼UJt⋆K

[q⋆(X ′t)]− E
X∼P

[q⋆(X)]
}
, (12)
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where we have used linearity of statistical queries in the last line. Expanding out the difference of
expectations, we have

E
X′∼Qπ,t∼UJt⋆K

[q⋆(X ′t)]− E
X∼P

[q⋆(X)]

=
∑
x∈X

q⋆(x)

{
1

t⋆

t⋆∑
t=1

P(X ′t = x | Π = π)− P(X = x)

}

≤
∑

x∈X+(π)

{
1

t⋆

t⋆∑
t=1

P(X ′t = x | Π = π)− P(X = x)

}
(13)

=
∑

x∈X+(π)

P(X = x)

P(Π = π)

{
1

t⋆

t⋆∑
t=1

P(Π = π | X ′t = x)− P(Π = π)

}
(14)

where (13) follows by dropping negative terms from the sum and using the boundedness of statistical
queries, and (14) follows from Bayes’ theorem.

Putting (14) in (12) and swapping the order of the sums gives

αP(Π ∈ Π(α))

<
∑

π∈Π(α)

∑
x∈X+(π)

P(X = x)

{
1

t⋆

t⋆∑
t=1

P(Π = π | X ′t = x)− P(Π = π)

}

=

n∑
t=1

∑
x∈X

P(X = x)
∑

π∈Π+(α,x)

1

t⋆
1[t≤t⋆] {P(Π = π | X ′t = x)− P(Π = π)}

=

n∑
t=1

∑
x∈X

P(X = x)
∑

π∈Π+(α,x)

∫ 1
n0

0

1[ 1
t⋆

>z] dz 1[t≤t⋆] {P(Π = π | X ′t = x)− P(Π = π)}

=

n∑
t=1

∑
x∈X

P(X = x)

∫ 1
n0

0

{
P(Π ∈ Π+(α, x, z, t) | X ′t = x)− P(Π ∈ Π+(α, x, z, t))

}
dz

≤
n∑

t=1

∑
x∈X

P(X = x)

∫ 1
n0

0

{
(eϵ − 1)P(Π ∈ Π+(α, x, z, t)) + δ(t)

}
dz (15)

=
∑
x∈X

P(X = x)

{
(eϵ − 1)P(Π ∈ Π+(α, x)) +

δ̃

n0

}

= (eϵ − 1)P(Π ∈ Π(α)) +
δ̃

n0

<

(
eϵ − 1 +

2cδ̃

n0

)
P(Π ∈ Π(α)) (16)

where (15) follows from Lemma B.2, and (16) follows from (11). This is a contradiction for
α ≥ eϵ − 1 + 2cδ̃/n0.

Lemma 3.5. An (ϵ, δ)-DP interaction I( · ; · ,M) for ∆-sensitive queries is (ϵ′, δ′)-posterior stable
for ϵ′ = eϵ maxτ1∈Jn0,nK τ1∆τ1−minτ2∈Jn0,nK τ2∆τ2+4c (

∑n
t=1 δ(t))maxτ3∈Jn0,nK ∆τ3 , δ′ = 1/c

and any c > 0.

Proof. Given a transcript π ∈ T , let a round-query-result tuple that achieves the largest absolute
difference be denoted

t⋆, q⋆, r⋆ ∈ argmax
t∈Jn0,nK,(q,r)∈πt

|q(Qt
π)− q(Pt)|,

where the dependence on π is omitted.
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Let ++ denote the concatenation operator, such that for any pair of sequences x and y of length
n and m respectively, we have x++y := (x1, . . . , xn, y1, . . . , ym). Let ∆⋆ = maxt∈Jn0,nK ∆t and
δ̃ =

∑n
t=1 δ(t). For any α ≥ 0, τ, t ∈ JnK, x ∈ Xn and z ∈ [0, 2∆⋆], define

v(q, τ,xJtK) := E
X′∼Pmax{τ−t,0}

[
q(xJtK++X ′)

]
Π(α) :=

{
π ∈ T : q⋆(Qt⋆

π )− q⋆(Pt⋆) > α
}
,

Π(α, z,xJtK) :=
{
π ∈ Π(α) : 1[t≤t⋆]

(
v(q⋆, t⋆,xJtK)− v(q⋆, t⋆,xJt−1K) + ∆t⋆

)
> z
}
.

Using the definition of differential privacy, observe that∑
π∈Π(α)

P(Π = π |X = x)1[t≤t⋆]
(
v(q⋆, t⋆,xJtK)− v(q⋆, t⋆,xJt−1K) + ∆t⋆

)
=

∑
π∈Π(α)

P(Π = π |X = x)

∫ 2∆⋆

0

1[1[t≤t⋆](v(q⋆,t⋆,xJtK)−v(q⋆,t⋆,xJt−1K)+∆t⋆ )>z] dz

=

∫ 2∆⋆

0

P(Π ∈ Π(α, z,xJtK) |X = x) dz

≤
∫ 2∆⋆

0

(
eϵ P(Π ∈ Π(α, z,xJtK) |X = rep(x, t, x′)) + δ(t)

)
dz

= eϵ
∑

π∈Π(α)

P(Π = π |X = rep(x, t, x′))1[t≤t⋆]
(
v(q⋆, t⋆,xJtK)− v(q⋆, t⋆,xJt−1K) + ∆t⋆

)
+ 2∆⋆δ(t) (17)

where rep(x, t, x′) denotes the dataset obtained from x by replacing the t-th data point with x′ ∈ X .
Taking the expectation of inequality (17) with respect to X ∼ Pn and X ′ ∼ P , and summing over
t ∈ JnK, we have

n∑
t=1

E
X∼Pn

[ ∑
π∈Π(α)

P(Π = π |X)1[t≤t⋆]
(
v(q⋆, t⋆,XJtK)− v(q⋆, t⋆,XJt−1K) + ∆t⋆

)]

≤
n∑

t=1

E
X∼Pn,X∼P

[
eϵ

∑
π∈Π(α)

P(Π = π |X)

× 1[t≤t⋆]
(
v(q⋆, t⋆, rep(x, t, x′))− v(q⋆, t⋆,xJt−1K) + ∆t⋆

)
+ 2∆⋆δ

]
(18)

≤
n∑

t=1

E
X∼Pn

[
eϵ

∑
π∈Π(α)

P(Π = π |X)1[t≤t⋆]∆t⋆ + 2∆⋆δ(t)

]
(19)

≤ eϵ max
t∈Jn0,nK

t∆t P(Π ∈ Π(α)) + 2∆⋆δ̃ (20)

where (18) follows since (X, X ′) and (rep(X, t,X ′), Xt) have the same distribution, and (19)
follows since X ′ is independent of Π and EX∼P [v(q

⋆, t⋆, rep(X, t,X))] = v(q⋆, t⋆,XJt−1K).

Subtracting
∑

π∈Π(α) t
⋆∆t⋆ from both sides of inequality (20), we have

n∑
t=1

E
X∼Pn

 ∑
π∈Π(α)

P(Π = π |X)1[t≤t⋆]
(
v(q⋆, t⋆,XJtK)− v(q⋆, t⋆,XJt−1K)

)
≤
(
eϵ max

t∈Jn0,nK
t∆t − min

t∈Jn0,nK
t∆t

)
P(Π ∈ Π(α)) + 2∆⋆δ̃.

Now fix α = eϵ maxt∈Jn0,nK t∆t − mint′∈Jn0,nK t
′∆t′ + 4cnmaxt′′∈Jn0,nK ∆t′′ . Suppose

P(|q⋆(Qt⋆

Π )− q⋆(Pt⋆)| > α) > 1
c . Then it must be that either P(q⋆(Qt⋆

Π )− q⋆(Pt⋆) > α) > 1
2c or
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P(q⋆(Pt⋆)− q⋆(Qt⋆

Π ) > α) > 1
2c . Without loss of generality, assume

P(q⋆(Qt⋆

Π )− q⋆(Pt⋆) > α) = P(Π ∈ Π(α)) >
1

2c
.

But this leads to a contradiction since

αP(Π ∈ Π(α))

<
∑

π∈Π(α)

P(Π = π)
(
q⋆(Qt⋆

π )− q⋆(Pt⋆)
)

= E
X∼Pn

 ∑
π∈Π(α)

P(Π = π |X)
(
q⋆(XJt⋆K)− q⋆(Pt⋆)

)
=

n∑
t=1

E
X∼Pn

 ∑
π∈Π(α)

P(Π = π |X)1[t≤t⋆]
(
v(q⋆, t⋆,XJtK)− v(q⋆, t⋆,XJt−1K)

)
≤
(
eϵ max

t∈Jn0,nK
t∆t − min

t′∈Jn0,nK
t′∆t′

)
P(Π ∈ Π(α)) + 2∆⋆δ̃

≤ P(Π ∈ Π(α))

(
eϵ max

t∈Jn0,nK
t∆t − min

t′∈Jn0,nK
t′∆t′ + 4c∆⋆δ̃

)

Lemma B.2 (Lemma 21, [15]). If I( · ; · ,M) is (ϵ, δ)-differentially private, then for any eventE ∈ T ,
any index t ∈ JnK and value x ∈ X :

P
X∼Pn,Π∼I(rep(X,t,x))

[Π ∈ E] ≤ eϵ P
X∼Pn,Π∼I(X)

[Π ∈ E] + δ(t)

where rep(X, t, x) is the dataset obtained from X by replacing the t-th data point with x.

Proof. This follows from expanding the definitions

P
X∼Pn,Π∼I(rep(X,t,x))

[Π ∈ E] =
∑

x∈Xn

P
X∼Pn

[X = x] P
Π∼I(rep(x,t,x))

[Π ∈ E]

≤
∑

x∈Xn

P
X∼Pn

[X = x]

(
eϵ P

Π∼I(x)
[Π ∈ E] + δ(t)

)
(21)

= eϵ P
X∼Pn,Π∼I(X)

[Π ∈ E] + δ(t)

where (21) follows from the definition of differential privacy.

C Proofs for Section 4

C.1 Generalization Guarantees Assuming Fixed Privacy Parameters

Lemma 4.2. Consider an interaction I(·; ·,M) where M is the ordinary or clipped Gaussian mech-
anism. Suppose the analyst decides to submit kτ statistical queries in round τ ∈ Jn0, nK before
I(·; ·,M) is executed. Then I(·; ·,M) satisfies (ϵ, δ)-DP for any ϵ > 0 and δ(t) ≤ ψ(γ⋆,ρ(t), ϵ),
where ρ(t) =

∑n
τ=n0

kτ1[t≤τ ]/2σ
2
ττ

2, ψ(γ, ρ, ϵ) = e(γ−1)(γρ−ϵ)
(
1− γ−1

)γ
/(γ − 1) and

γ⋆ = argminγ∈(1,∞) ψ
(
γ,maxt∈JnK ρ(t), ϵ

)
.

Proof. We begin by bounding the privacy of the interaction using zero-concentrated differential
privacy (zCDP), as defined in Definition D.3. When releasing an estimate to a single statistical
query in round τ , the Gaussian mechanism satisfies ρ-zCDP with ρ(t) = 1[t≤τ ]/2σ

2
ττ

2, where
we have used 1/τ2 as an upper bound on the sensitivity of the query [37, Proposition 1.6]. By
post-processing (see Theorem D.5), clipping the output of the Gaussian mechanism does not accrue
an additional privacy loss, nor does the analyst’s choice of the next query conditioned on the previous
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releases. Now by advanced composition (see Theorem D.4), the interaction satisfies ρ-zCDP with
ρ(t) =

∑n
τ=n0

kτ1[t≤τ ]/2σ
2
ττ

2. We note that in order to apply this theorem, we have relied on the
fact that the privacy parameters are non-adaptive, which is true when the kt’s are fixed in advance.
Finally we convert from ρ-zCDP to (ϵ, δ)-DP using Corollary D.9.

Lemma 4.3. For any β ∈ (0, 1), the clipped Gaussian mechanism with σt ∝ αt is ({αt}, β)-snapshot
accurate for k queries with

αt√
2σt

= erfc−1

(
2− 2

(
1− β

2

) 1
k

)
< erfc−1

(
β

k

)
.

Proof. Let kt denote the number of queries asked in round t. Let j ∈ {1, . . . , kt} index the queries
asked in round t and Zt,j

iid.∼ Normal(0, σt) denote the Gaussian noise added by the mechanism to
the j-th query in round t.

We begin with the observation that

P
(

max
t∈Jn0,nK

max
j∈JktK

(−Zt,j − αt) ≥ 0
)
= 1− P

(
max

t∈Jn0,nK
max
j∈JktK

(−Zt,j − αt) < 0
)

= 1−
n∏

t=n0

kt∏
j=1

P(Zt,j ≥ −αt)

= 1−
n∏

t=n0

kt∏
j=1

(
1− 1

2
erfc

(
αt√
2σt

))

= 1−
(
1− 1

2
erfc

(
αt√
2σt

))k

, (22)

where the last equality follows from the fact that αt/σt is constant with respect to t. By symmetry,
this equality also holds under the replacement Zt,j → −Zt,j .

Conditioning on the number of queries kt asked in each round t, we have with respect to the joint
distribution on the dataset X and transcript Π that

P

(
n⋃

t=n0

⋃
(q,r)∈Πt

{
|q(XJtK)− r| ≥ αt

} ∣∣∣∣∣
n⋂

t=n0

{|Πt| = kt}

)

= P
(

max
t∈Jn0,nK

max
j∈JktK

{
|qt,j(XJtK)− clip[0,1](qt,j(XJtK) + Zt,j)| − αt

}
≥ 0
)

≤ P
(

max
t∈Jn0,nK

max
j∈JktK

{|Zt,j | − αt} ≥ 0
)

≤ P
(

max
t∈Jn0,nK

max
j∈JktK

{−Zt,j − αt} ≥ 0
)
+ P

(
max

t∈Jn0,nK
max
j∈JktK

{Zt,j − αt} ≥ 0
)

= 2

(
1−

(
1− 1

2
erfc

(
αt√
2σt

))k
)
, (23)

where the last line follows from (22). Note that the bound only depends on the total number of queries
k, not the number of queries asked at each time step kt, thus it serves as a bound on the probability
conditioned on the event

∑n
t=n0
|Πt| = k. The result follows by setting (23) equal to β and solving

for αt/
√
2σt.

Theorem 4.4. Suppose the conditions of Lemma 4.2 hold and assume σt = σ > 0. Then the clipped
Gaussian mechanism is (α′, β′)-distributionally accurate for k statistical queries for any β′ ∈ (0, 1)
and α′ = minσ,β,ϵ∈Θ λ(σ, β, ϵ), where

λ(σ, β, ϵ) =
√
2σ erfc−1

(
β

k

)
+ eϵ − 1 +

β

β′
+

2
∑n

τ=1 δ(τ)

n0β′
+

2

β′

√
2β
∑n

τ=1 δ(τ)

n0
,

Θ = {(σ, β, ϵ) ∈ R3 : σ > 0, 0 < β < 1, ϵ ≥ 0} and δ(·) is defined in Lemma 4.2.
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Proof. Combining Lemmas 4.2 and 4.3 and Theorem 3.4 implies the clipped Gaussian mechanism is
(α′, β′)-distributionally accurate for β′ = β/d+ 1/c and

α′ =
√
2σ erfc−1

(
β

k

)
+ eϵ − 1 +

2c
∑n

τ=1 δ(τ)

n0
+ d

for any c, d > 0 and 0 < β < 1. We select the free parameters to minimize α′. Eliminating c using
the constraint β′ = β/d+ 1/c and minimizing with respect to d analytically gives:

α′ =
√
2σ erfc−1

(
β

k

)
+ eϵ − 1 +

2
∑n

τ=1 δ(τ)

n0β′
+
β

β′
+

2

β′

√
2β
∑n

τ=1 δ(τ)

n0

Minimizing this expression with respect to the remaining free parameters gives the required result.

C.2 Generalization Guarantees Assuming Adaptive Privacy Parameters

In this appendix, we instantiate generalization guarantees for the clipped Gaussian mechanism where
we allow the analyst to adaptively select how many queries to ask in each round. This is in contrast
with the results of Section 4.1, where we assume the number of queries asked in each round is fixed
before interacting with the data. To support a fully adaptive analyst, we rely on a privacy filter,
which provides differential privacy guarantees when both the mechanisms and privacy parameters are
selected adaptively. Generally speaking, a privacy filter is an algorithm that continually monitors the
privacy parameters of mechanisms as they are composed. At any point, it can force the composition
to terminate to ensure it satisfies a pre-specified level of privacy.

We use a privacy filter proposed by Whitehouse et al. [32] for approximate zero-concentrated
differential privacy (zCDP). It achieves the same rates as advanced composition [37] assuming the
privacy level is specified upfront. The filter does not support non-uniform privacy accounting—where
the privacy loss is estimated separately for each data point /individual. We therefore resort to uniform
accounting, which results in looser generalization bounds. We expect the filter could be adapted to
support non-uniform privacy accounting, in a similar way to the Rényi filter proposed by Feldman
and Zrnic [36].

To incorporate Whitehouse et al.’s privacy filter for an adaptive analysis using the clipped Gaussian
mechanism, we require additional monitoring as shown in Algorithm 2. Lines 1 and 4 track the
running privacy level ρ̄ using the same additive rule as advanced composition for zCDP. If releasing a
response to a query would not exceed the target privacy level (line 5), then a response to the query is
released (line 7) and the analysis continues, otherwise the mechanism is terminated (line 9).

Algorithm 2 Composition of Clipped Gaussian Mechanisms with zCDP Privacy Filter
Input: target privacy level ρ

1: ρ̄← 0
2: for Round t ∈ Jn0, nK do
3: while Analyst has another query q do
4: ρ̄← ρ̄+ 1

2σ2
t t

2

5: if ρ̄ ≤ ρ then
6: Sample noise: z ∼ N (0, σ2

t )
7: Return response to query: r ← clip[0,1](q(xJtK) + z)
8: else
9: TERMINATE

10: end if
11: end while
12: end for

Lemma C.1. Consider an interaction I(·; ·,M) where M is a composition of clipped Gaussian
mechanisms tracked by a privacy filter that satisfies ρ-zCDP, as described in Algorithm 2. Then the
interaction satisfies ρ-zCDP, with the possibility that it may terminate early. It also satisfies (ϵ, δ)-DP
for any ϵ ≥ 0 with δ ≤ infγ∈(1,∞) e

(γ−1)(γρ−ϵ)(1− γ−1)γ/(γ − 1).
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Proof. We recall that the Gaussian mechanism satisfies 1/(2σ2
t t)-zCDP for a statistical query with

sensitivity ∆ ≤ 1/t [37, Proposition 1.6]. By post-processing for zCDP, clipping the result of the
Gaussian mechanism and selecting a query as a function of the result (and past results) does not
accrue an additional cost to privacy. Hence, by fully adaptive composition for the zCDP privacy filter
[32, Theorem 1], the interaction satisfies ρ-zCDP. Finally, we convert from ρ-zCDP to (ϵ, δ)-DP to
obtain the final result [38, Corollary 13].

Combining Lemma C.1 with Lemma 4.3 and Theorem 3.4 yields the following generalization
guarantee. We note that this essentially matches the guarantee for the more constrained setting where
the number of queries in each round is fixed upfront (Theorem 4.4).

Theorem C.2. Consider an interaction I(·; ·,M) where M is a composition of clipped Gaussian
mechanisms tracked by a zCDP privacy filter that satisfies (ϵ, δ)-DP. Suppose M answers k statistical
queries without terminating and assume σt = σ > 0. Then M is (α′, β′)-distributionally accurate
for k statistical queries with

α′ = min
(σ,β,ϵ)∈Θ

√
2σ erfc−1

(
β

k

)
+ eϵ − 1 +

2nδ

n0β′
+
β

β′
+

2

β′

√
2βnδ

n0

where Θ is defined in Theorem 4.4 and δ is defined in Lemma C.1.

Proof. The proof is similar to the proof of Theorem 4.4.

C.3 Generalization Guarantees using the Static Bound of Jung et al. [15]

In this appendix, we derive a generalization guarantee for the setting considered in Section 4.2 by
composing a bound for static data due to Jung et al. [15]. In doing so, we will obtain the bound that is
labeled JLNRSS in the empirical results of Section 4.2. For completeness, we begin by restating Jung
et al.’s result below, with some minor changes in notation. In particular, we make the dependence of
the bound on the dataset size n and number of queries k explicit, since we will apply the bound to
multiple batches, each with a different value of n and k.

Theorem C.3. Consider ADA on a static dataset of size n—i.e., an instantiation of Algorithm 1 with
n0 = n − 1. The clipped Gaussian mechanism can be used to answer k statistical queries while
satisfying (α(n, k, β), β)-distributional accuracy for any β ∈ (0, 1) with

α(n, k, β) = min
σ,δ>0

√2σ erfc−1
(
δ

k

)
+ exp

 k

2n2σ2
+

√√√√ 2k

n2σ2
log

( √
πk√

2nσδ

)− 1 + 6
δ

β

 .

We note that an improved bound can be obtained by (1) not constraining β′ = δ and c = d in the
proof and (2) using a tighter conversion from zCDP to approximate DP based on Canonne, Kamath,
and Steinke [38] in place of Bun and Steinke [37]. This improved bound is used in the approach
labeled JLNRSS+ in Section 4.2.

We now turn to the batched setting described in Section 4.2. Recall that the data arrives in b batches,
which we index by ℓ ∈ JbK. We let nℓ denote the size of the ℓ-th data batch, and kℓ denote the number
of queries asked by the analyst after the batch arrives. Since the ℓ-th data batch is static while the
analyst asks the kℓ queries, we can bound the worst-case distributional accuracy for the entire analysis
by applying a static bound on each batch, and taking the union bound.

Proposition C.4. Consider ADA on growing data in the batched setting. The clipped Gaussian mech-
anism can be used to answer k statistical queries while satisfying (α′, β′)-distributional accuracy for
any β′ ∈ (0, 1) with α′ = maxℓ∈JbK α(nℓ, kℓ, β

′/b), where α(·, ·, ·) is as defined in Theorem C.3.

Proof. Let X ∼ Pn and Π ∼ I(X;A,M). It is convenient to refer to the queries and responses in the
transcript Π using two indices: the batch ℓ ∈ JbK when the query was asked and the number j ∈ JkℓK
of the query within batch ℓ. Adopting these indices, we say that the clipped Gaussian mechanism
is (α′, β′)-distributionally accurate if with probability 1− β′ over the randomness in X and Π, we
have that maxℓ∈JbK maxj∈JkℓK|Rℓ,j −Qℓ,j(Pnℓ)| ≥ α′ for any data distribution P and analyst A.
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Now we obtain an upper bound on the probability of interest by replacing the error α′ with a lower
bound for each batch ℓ, and finally applying the union bound:

P
X∼Pn,Π∼I(X)

(
max
ℓ∈JbK

max
j∈JkℓK

|Rℓ,j −Qℓ,j(Pnℓ)| ≥ max
ℓ′∈JbK

αnℓ′ ,kℓ′

)

= P
X∼Pn,Π∼I(X)

(
max
ℓ∈JbK

{
max
j∈JkℓK

|Rℓ,j −Qℓ,j(Pnℓ)| − max
ℓ′∈JbK

αnℓ′ ,kℓ′

}
≥ 0

)

≤ P
X∼Pn,Π∼I(X)

(
max
ℓ∈JbK

{
max
j∈JkℓK

|Rℓ,j −Qℓ,j(Pnℓ)| − αnℓ,kℓ

}
≥ 0

)

= P
X∼Pn,Π∼I(X)

(
b⋃

ℓ=1

{
max
j∈JkℓK

|Rℓ,j −Qℓ,j(Pnℓ)| ≥ αnℓ,kℓ

})
≤ b(β′/b).

C.4 Generalization Guarantees for Data Splitting

Data splitting is a simple method for mitigating the risk of overfitting when conducting an adaptive
analysis. It involves randomly splitting an i.i.d. dataset into disjoint chunks, and using a fresh chunk
whenever a step in the analysis depends on existing data. Data splitting has been used as a baseline in
prior work for static data [10, 14, 15] and can be adapted for growing data by splitting the data into
chunks as data points arrive. There is a limitation in the growing setting: it may be necessary to delay
a step in the analysis if sufficient data has not yet arrived to create a fresh chunk of the desired size.
This is not a limitation of our approach (Algorithm 1) which can respond to queries without delay at
any time. For completeness, we provide a high probability worst-case generalization bound for data
splitting below.
Proposition C.5. Data splitting is (α, β)-distributionally accurate when used to answer k adaptive
statistical queries for any α, β ≥ 0 such that

∑k
j=1 e

−2bjα2

= β
2 , where nj is the (predetermined)

size of the split used to answer the j-th query. In particular, if a dataset of size n is split evenly across
the k queries so that nj = n/k ∈ N then n = k

2α2 log
2k
β .

Proof. We write (qj , rj) to refer to the j-th query-estimate pair in the flattened transcript. We also
define mj =

∑j−1
j′=1 nj′ to be the number of data points used by the mechanism prior to answering

the j-th query. By the union bound and Hoeffding’s bound we have

P
X∼Pn,Π∼I(X)

(
k⋃

j=1

{|rj − qj(P)| ≥ α}

)

= P
X∼Pn,Π∼I(X)

(
k⋃

j=1

{∣∣∣∣∣∣ 1nj
mj+nj∑
t=mj

qj(Xt)− E
X∼P

[qj(X)]

∣∣∣∣∣∣ ≥ α
})

≤
k∑

j=1

P
X∼Pn,Π∼I(X)

(∣∣∣∣∣∣ 1nj
mj+nj∑
t=mj

{
qj(Xt)− E

X∼P
[qj(X)]

}∣∣∣∣∣∣ ≥ α
)

≤
k∑

j=1

2e−2bjα
2

D Results for Non-uniform Privacy Parameters

In this appendix, we prove key results for differential privacy with non-uniform privacy parameters.
Although many of the results are identical to the uniform case, we were unable to find proofs in
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the literature. We begin by extending the definitions of approximate differential privacy (approx.
DP) and zero-concentrated differential privacy (zCDP) to the non-uniform setting. Then we prove
composition and post-processing for these definitions in Appendix D.1, and a conversion theorem
from zCDP to approx. DP in Appendix D.2.

Informally, differential privacy (DP) is a bound on how distinguishable the outputs of a randomized
algorithm will be when run on two neighboring datasets. Ordinarily, the bound on distinguishability
holds uniformly over all neighboring datasets, which means the level of privacy is the same for all
records in the dataset. However, in some scenarios it may be tolerable for the privacy guarantee
to vary non-uniformly over records—e.g., where individuals have different privacy preferences, or
where privacy is permitted to decay as records age. Non-uniform privacy definitions have been
studied using pure DP as a foundation, which is known as personalized DP [31, 34]. Below, we
extend this idea to approximate DP, by upgrading the δ parameter from a constant to a function δ(·)
that varies for each record index.

Definition D.1 (Approximate DP). Let ϵ ≥ 0 and δ : JnK → [0, 1]. A randomized mechanism
M : Xn → Y satisfies (ϵ, δ)-differential privacy or (ϵ, δ)-DP for short, if for all indices i ∈ JnK,
all pairs of neighboring datasets (x,x′) ∈ Ni differing on the i-th entry, and all measurable events
E ⊆ Y:

P(M(x) ∈ E) ≤ eϵ P(M(x′) ∈ E) + δ(i).

Note that this definition depends on Ni, the set of neighboring datasets that differ on the i-th
record. One could consider unbounded neighboring datasets, in which case Ni would consist of
pairs of datasets (x,x′) such that x′ can be obtained from x by adding or removing the i-th record.
Alternatively, one could consider bounded neighboring datasets, where the pairs of datasets (x,x′)
in Ni are such that x′ can be obtained from x by changing the i-th record.

Next, we define a non-uniform variant of zero-concentrated differential privacy (zCDP). However,
we must first define the privacy loss distribution, since it is used to measure indistinguishability for
zCDP.

Definition D.2 (Privacy loss distribution). Let P and Q be probability distributions on Y .7 Define
fP∥Q : Y → R such that fP∥Q(y) = log(P (y)/Q(y)). The privacy loss random variable is given by
Z = fP∥Q(Y ) for Y ← P . The distribution of Z is denoted by PrivLoss(P∥Q).

The standard definition of zCDP bounds the moment generating function of the privacy loss random
variable Z = PrivLoss(M(x)∥M(x′)) uniformly over pairs of neighboring datasets, in terms of a
scalar ρ [37]. We upgrade the scalar ρ to a function ρ(·) that varies for each record index.

Definition D.3 (Zero-concentrated DP). Let ρ : JnK→ [0,∞). A randomized mechanism M : Xn →
Y satisfies ρ-zero-concentrated differential privacy or ρ-zCDP for short, if for all indices i ∈ JnK and
all pairs of neighboring datasets (x,x′) ∈ Ni that differ on the i-th entry, the privacy loss distribution
PrivLoss(M(x)∥M(x′)) is well-defined and

∀τ ≥ 0, E
Z←PrivLoss(M(x)∥M(x′))

(exp(τZ)) ≤ exp(τ(τ + 1)ρ(i)).

D.1 Composition and post-processing

We need a composition theorem for ρ-zCDP to analyze the privacy of successive applications of the
clipped Gaussian mechanism in Lemma 4.2. We show that ρ-zCDP composes in the obvious way: by
adding the ρ privacy parameters pointwise.

Theorem D.4 (Composition for ρ-zCDP). Let randomized mechanism M1 : X ⋆ → Y1 satisfy
ρ1-zCDP. Let M2 : X ⋆ × Y1 → Y2 be such that, for all y ∈ Y1, the restriction M2(·, y) : X ⋆ → Y2
satisfies ρ2-zCDP. Define M : X ⋆ → Y1 × Y2 such that Y1 ← M1(x), Y2|Y1 ← M2(x, Y1) and
M(x) = (Y1, Y2). Then M satisfies ρ-zCDP with ρ(i) = ρ1(i) + ρ2(i) for all i ∈ JnK.

Proof. We adapt the proof of Steinke [55]. Fix i ∈ JnK and neighboring datasets (x,x′) ∈ Ni

that differ on the i-th entry. Fix τ ≥ 0. Let Z ← PrivLoss(M(x)∥M(x′)) where we conceal the
dependence on i. We must prove E(exp(τZ)) = exp(τ(τ + 1)(ρ1(i) + ρ2(i))).

7For simplicity we assume Y is discrete, so that we don’t have to worry about measure theory.
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The privacy loss distribution for M can be decomposed as follows8:

fM(x)∥M(x′)(y1, y2) = log
P(M(x) = (y1, y2))

P(M(x′) = (y1, y2))

= log
P(M1(x) = y1)P(M2(x, y1) = y2)

P(M1(x′) = y1)P(M2(x′, y1) = y2)

= log
P(M1(x) = y1)

P(M1(x′) = y1)
+ log

P(M2(x, y1) = y2)

P(M2(x′, y1) = y2)

= fM1(x)∥M1(x′)(y1) + fM2(x,y1)∥M2(x′,y1)(y2).

Hence
E

Z←PrivLoss(M(x)∥M(x′))
(exp(τZ))

= E
Y1←M1(x),Y2←M2(x,Y1)

(
exp(τfM(x)∥M(x′)(Y1, Y2))

)
= E

Y1←M1(x)

(
exp(τfM1(x)∥M1(x′)(Y1)) E

Y2←M2(x,Y1)
(exp(τfM2(x)∥M2(x′)(Y2)))

)
≤ E

Y1←M1(x)

(
exp(τfM1(x)∥M1(x′)(Y1)) sup

y1∈Y1

E
Y2←M2(x,y1)

(exp(τfM2(x)∥M2(x′)(Y2)))

)
= E

Z1←PrivLoss(M1(x)∥M1(x′))
(exp(τZ1)) · sup

y1∈Y1

E
Z2←PrivLoss(M2(x,y1)∥M2(x′,y1))

(exp(τZ2))

≤ exp(τ(τ + 1)ρ1(i)) · exp(τ(τ + 1)ρ2(i))

= exp(τ(τ + 1)(ρ1(i) + ρ2(i)))

as required.

We require post-processing of ρ-zCDP to perform privacy accounting of the entire interaction between
the analyst and mechanism in 4.2. In essence, we model the adversary as a post-processing operation
applied to previous responses from the clipped Gaussian mechanism, which selects the next query.
We demonstrate below that post-processing holds in the non-uniform setting.
Theorem D.5 (Post-processing for ρ-zCDP). Let M0 : Xn → Y be a randomized mechanism that
satisfies ρ-zCDP and let f : Xn → Z be an arbitrary randomized mapping. Define the post-processed
mechanism M : Xn → Z such that M(x) = f(M0(x)). Then M also satisfies ρ-zCDP.

Proof. Fix i ∈ JnK and neighboring datasets (x,x′) ∈ Ni that differ on the i-th entry. Fix τ ≥ 0.
Applying Lemma 20 of Steinke [55], we have

E
Z←PrivLoss(M(x)∥M(x′))

(exp(τZ)) ≤ E
Z0←PrivLoss(M0(x)∥M0(x′))

(exp(τZ0)) .

Now the right-hand side is ≤ exp(τ(τ + 1)ρ(i)) since M0 is ρ-zCDP, as required.

We also show that post-processing holds for non-uniform approximate DP. This result is used to
prove generalization guarantees for minimization queries in Theorem A.3, which can be regarded as
post-processed low sensitivity queries.
Theorem D.6 (Post-processing for (ϵ, δ)-DP). Let M0 : Xn → Y be a randomized mechanism
that satisfies (ϵ, δ)-DP and let f : Xn → Z be an arbitrary randomized mapping. Define the
post-processed mechanism M : Xn → Z such that M(x) = f(M0(x)). Then M also satisfies
(ϵ, δ)-DP.

Proof. We adapt the proof of Dwork and Roth [56]. First consider a deterministic mapping f . Fix
i ∈ JnK and neighboring datasets (x,x′) ∈ Ni that differ on the i-th entry. Fix any event E ⊆ O and
let G = {o ∈ O : f(o) ∈ E}. We then have

P(M(x) ∈ E) = P(M0(x) ∈ G)
≤ eϵ P(M0(x

′) ∈ G) + δ(i)

= eϵ P(M(x′) ∈ E) + δ(i),

8We again assume that Y is discrete for simplicity, however the result holds more generally.
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which completes the proof for a deterministic mapping. To extend the result to a random mapping,
we can write f as a mixture of deterministic mappings. The result then follows, since a mixture of
(ϵ, δ)-DP mechanisms is also (ϵ, δ)-DP.

D.2 Converting zero-concentrated DP to approximate DP

It is convenient to analyze the privacy of the interaction I(X;A,M) for the clipped Gaussian mecha-
nism using ρ-zCDP, since it provides tighter accounting than (ϵ, δ)-DP. However, we ultimately need
to convert to (ϵ, δ)-DP in order to obtain a generalization guarantee using Theorem 3.4. Canonne,
Kamath, and Steinke [38] provide a conversion result from ρ-zCDP to (ϵ, δ)-DP when the privacy
parameters are uniform. Here we generalize their result to non-uniform privacy parameters.

We begin by generalizing Lemma 9 of Canonne, Kamath, and Steinke [38]. This is a technical result
that lower bounds δ(i) in terms of an expectation involving the privacy loss random variable.
Lemma D.7. Let ϵ ≥ 0 and δ : JnK → [0,∞). A randomized mechanism M : X ⋆ → Y satisfies
(ϵ, δ)-DP if and only if

δ(i) ≥ E
Zi←PrivLoss(M(x)∥M(x′))

(
max

{
0, 1− eϵ−Zi

})
for all indices i ∈ JnK and neighboring datasets (x,x′) ∈ Ni.

Proof. Fix i ∈ JnK and neighboring datasets (x,x′) ∈ Ni. Let Zi ← PrivLoss(M(x)∥M(x′)) and
Z ′i ← PrivLoss(M(x′)∥M(x)). Our goal is to prove that

sup
E⊆Y

P(M(x) ∈ E)− eϵ P(M(x′) ∈ E) = E(max{0, 1− eϵ−Zi}).

For any E ⊆ Y , we have

P(M(x′) ∈ E) = E
(
1[M(x′)∈E]

)
= E

(
1[M(x)∈E]e

−Zi
)
.

Thus for all E ⊆ Y , we have

P(M(x) ∈ E)− eϵ P(M(x′) ∈ E) = E
(
1[M(x)∈E]

)
− eϵ E

(
1[M(x)∈E]e

−Zi
)

= E
(
1[M(x)∈E](1− eϵ−Zi)

)
.

The worst event is E = {y ∈ Y : 1− eϵ−Zi > 0} . Thus

sup
E⊆Y

P(M(x) ∈ E)− eϵ P(M(x′) ∈ E) = E
(
1[1−eϵ−Zi>0](1− eϵ−Zi)

)
= E(max{0, 1− eϵ−Zi})

as required.

We can then use this lemma to generalize Proposition 12 of Canonne, Kamath, and Steinke [38],
which converts Rényi DP to approximate DP. This is a step towards our final goal of converting
zCDP to approximate DP, since zCDP is equivalent to enforcing Rényi DP over a range of privacy
parameters.
Proposition D.8. Let M : X ⋆ → Y be a randomized mechanism. Let α ∈ (1,∞) and ϵ ≥ 0.
Suppose Dα(M(x)∥M(x′)) ≤ ρ(i) for all indices i and neighboring datasets (x,x′) ∈ Ni, where
Dα(P∥Q) is the Rényi divergence of order α of distribution P from distribution Q. Then M is
(ϵ, δ)-differentially private for

δ(i) =
e(α−1)(ρ(i)−ϵ)

α− 1

(
1− 1

α

)α

.

Proof. Fix index i ∈ JnK, neighboring datasets (x,x′) ∈ Ni and let Zi ← PrivLoss(M(x)∥M(x′)).
By assumption we have

E
(
e(α−1)Zi

)
= e(α−1)Dα(M(x)∥M(x′)) ≤ e(α−1)ρ(i).
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By Lemma D.7, we seek an upper bound on E(max{0, 1 − eϵ−Zi}), which we can set to δ(i).
Following Canonne, Kamath, and Steinke, we pick c > 0 such that max{0, 1− eϵ−z} ≤ c · e(α−1)z
for all z ∈ R. Then

E
(
max{0, 1− eϵ−Zi}

)
≤ E

(
c · e(α−1)Zi

)
≤ c · e(α−1)ρ(i).

Canonne, Kamath, and Steinke show that the smallest value of c that satisfies this condition is
c = eϵ(1−α)

α−1
(
1− 1

α

)α
. Thus

E
(
max{0, 1− eϵ−Zi}

)
≤ eϵ(1−α)

α− 1

(
1− 1

α

)α

· e(α−1)ρ(i) = e(α−1)(ρ(i)−ϵ)

α− 1

(
1− 1

α

)α

= δ(i).

By exploiting the connection between Rényi DP and zCDP, we obtain a conversion result from zCDP
to approximate DP. This is a generalization of Corollary 13 of Canonne, Kamath, and Steinke [38].
Corollary D.9. Let M : X ⋆ → Y be a randomized mechanism that satisfies ρ-zCDP. Then M is
(ϵ, δ)-DP for any ϵ ≥ 0 and δ : JnK→ [0,∞) such that

δ(i) =
e(α

⋆−1)(α⋆ρ(i)−ϵ)

α⋆ − 1

(
1− 1

α⋆

)α⋆

,

with α⋆ = argminα∈(1,∞)
e(α−1)(α supi ρ(i)−ϵ)

α−1
(
1− 1

α

)α
.

Proof. Fix i ∈ JnK and (x,x′) ∈ Ni. Since M satisfies ρ-zCDP, we have Dα(M(x)∥M(x′)) ≤
αρ(i) for all α ∈ (1,∞). Proposition D.8 (with ρ(i) ← αρ(i)) provides a conversion result to
(ϵ, δ)-DP for any choice of α. We choose α to minimize the worst case δ(i), given by:

sup
i

δ(i) =
e(α−1)(α supi ρ(i)−ϵ)

α− 1

(
1− 1

α

)α

= exp g(α)

with g(α) = (α−1)(α supi ρ(i)− ϵ)+α log(1−1/α)− log(α−1). A unique minimizer α⋆ exists
since g(α) is a smooth convex function.

We note that the optimizer α⋆ can be found efficiently using binary search as described by Canonne,
Kamath, and Steinke [38].

E Additional Empirical Results

In this appendix, we provide additional empirical results to complement those presented in Section 4.2.
In Figure 3 of the main paper, we plotted a lower bound on the number of adaptive statistical queries
k that can be answered as a function of the final dataset size n. There we varied the initial size
of the dataset n0 to ensure a fixed growth ratio n/n0 = 3. In Figure 4, we produce a similar plot
where we fix n0 = 500 000 and vary the growth ratio n/n0 instead. Here again, we observe that our
bounds (Ours-U and Ours-N) outperform the others in the non-asymptotic regime plotted, with the
performance gap becoming more pronounced for larger values of b.

Figure 5 covers the same setting as Figure 3 in the main paper, except that it plots the confidence
width α on the vertical axis for a fixed number of queries k = 10 000. A smaller confidence width
is better, and we see that the relative rankings of the bounds is the same as in Figure 3. Notably,
the behavior of our bounds (Ours-U and Ours-N) is stable for all values of b > 1, whereas the
confidence width degrades for the static-based bounds (JLNRSS and JLNRSS+) as b increases.

Figure 6 examines the impact of query batching for a fixed final dataset size n = 1500 000 and fixed
initial dataset size n0 = 500 000. It shows that both of our bounds (Ours-U and Ours-N) improve as
the number of batches b increases, reaching a saturation point at around b = 40. This suggests it is
better from a generalization perspective to ask queries more frequently in smaller batches when using
our bounds. In contrast, the static-based bounds (JLNRSS and JLNRSS+) degrade as the number of
batches b increases.
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Figure 4: Comparison of the number of adaptive statistical queries that can be answered with error
tolerance α = 0.1 and uniform coverage probability 1− β = 0.95 using a growing dataset with fixed
initial size n0 = 500 000 in a batched query setting. The number of queries (vertical axis) is plotted
as a function of the final dataset size n (horizontal axis), bound (curve style) and the number of query
batches b (horizontal panel). The right-most panel with b = 1 corresponds to the static data setting.
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Figure 5: Comparison of the error tolerance α (vertical axis) for k = 10 000 adaptive statistical
queries with uniform coverage probability 1− β = 0.95 using different ADA bounds (curve style).
The queries are answered using a growing dataset with final size n (horizontal axis) and growth
ratio n/n0 = 3, and are grouped into b batches (horizontal panel). The right-most panel with b = 1
corresponds to the static data setting.
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Figure 6: Comparison of the number of adaptive statistical queries that can be answered with error
tolerance α = 0.1 and uniform coverage probability 1 − β = 0.95 using a growing dataset with
initial size n0 = 500 000 and final size n = 1500 000 in a batched query setting. The number of
queries (vertical axis) is plotted as a function of the number of query batches b (horizontal axis) and
bound (curve style).
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paper’s contributions and scope?
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Justification: The claims in the abstract and introduction summarize the paper’s key contribu-
tions. These contributions are mostly theoretical results with all proofs offered in the paper’s
body or appendices. Empirical observations/claims are based on experimental evaluation
presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, limitations of the paper are discussed in Section 6: namely that (like
most of the literature on adaptive data analysis) we assume i.i.d. data and a worst-case
analyst. While these are conventional assumptions, we highlight these assumptions clearly
throughout the paper and again in Section 6 as limitations. We cite relevant work in the
literature that has relaxed these assumptions in the static scenario, previously.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We present key theoretical results in Sections 3 and 4 with narrative text and a
schematic (Figure 2) explaining how the derivation proceeds. Proofs for these key results are
provided in Appendices B and C. Some of these proofs rely on properties of non-uniform
differential privacy, which are stated and proved in Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We produce plots based on evaluating mathematical expressions (e.g., Figure 3).
All parameter settings are specified in Section 4 and in the caption below each plot.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Our empirical results are obtained by evaluating mathematical expressions, so
there is no data or code to release.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: We do not train or test models. When instantiating our bounds in Figures 3, 4
and 6, we specify parameter settings in the captions.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We plot quantities derived from exact bounds, so there is no statistical error to
consider.
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31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We do not conduct experiments that require significant compute resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the Code of Ethics and confirm that our work complies.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We motivate our work by highlighting the potential negative consequences of
the replication crisis/p-hacking/data dredging in the introduction. Adaptive data analysis
sheds light on generalization in this important and practical adaptive setting. We do not
anticipate specific negative societal impact of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We are not releasing assets, so there are no such risks to consider.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use assets created by others.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work is theoretical, so there are no assets of this nature to release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work is theoretical and does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Since our work does not involve human subjects, there is no need to obtain
IRB approval.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLMs to conduct this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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