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Abstract

Bayesian optimization is a popular method for optimizing expensive black-box1

functions. Yet it oftentimes struggles in high dimensions where the computation2

could be prohibitively expensive and a sufficient estimation of the global landscape3

requires more observations. We introduce Coordinate backoff Bayesian optimiza-4

tion (CobBO) with two-stage kernels to alleviate this problem. In each iteration, a5

promising subset of coordinates is selected in the first stage, as past observed points6

in the full space are projected to the selected subspace adopting a simple kernel7

that sacrifices the approximation accuracy for computational efficiency. Then in8

the second stage of the same iteration a more sophisticated kernel is applied for9

estimating the landscape in the selected low dimensional subspace where the com-10

putational cost becomes affordable. Effectively, this second stage kernel refines the11

approximation of the global landscape estimated by the first stage kernel through12

a sequence of observations in the local subspace. This refinement lasts until a13

stopping rule is met determining when to back off from a certain subspace and14

switch to another coordinate subset. This decoupling significantly reduces the com-15

putational burden in high dimensions, while the two-stage kernels of the Gaussian16

process regressions fully leverage the observations in the whole space rather than17

only relying on observations in each coordinate subspace. Extensive evaluations18

show that CobBO finds solutions comparable to or better than other state-of-the-art19

methods for dimensions ranging from tens to hundreds, while reducing the trial20

complexity and computational costs.21

1 Introduction22

Bayesian optimization (BO) has emerged as an effective zero-order paradigm for optimizing expen-23

sive black-box functions. The entire sequence of iterations rely only on the function values of the24

already queried points without information on their derivatives. Though highly competitive in low25

dimensions (e.g., the dimension D ≤ 20 [15]), Bayesian optimization based on Gaussian Process26

(GP) regression has obstacles that impede its effectiveness, especially in high dimensions.27

28 Approximation accuracy: GP regression assumes a class of random functions in a probability space29

as surrogates that iteratively yield posterior distributions by conditioning on the queried points. When30

suggesting new query points, for complex functions with numerous local optima and saddle points31

due to local fluctuations, always exactly using the values on the queried points as the conditional32

events may mismatch the function’s local landscape by overemphasizing the approximation accuracy33

of the global landscape.34

35 Curse of dimensionality: As a sample efficient method, Bayesian optimization often suffers from36

high dimensions. Fitting the GP model (estimating the parameters, e.g., length_scales [14]), comput-37

ing the Gaussian process posterior and optimizing the acquisition function in high dimensions all38
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Figure 1: Minimize the fluctuated Rastrigin function on [−5, 10]50 with 20 initial samples. [Left]
Computation times for training the GP regression model and maximizing the acquisition function
at each iteration. CobBO significantly reduces the execution time compared with a vanilla BO, e.g.
×13 faster in this case. [Right] The average error between the GP predictions before making queries
and the true function values at the queried points (solid curves, the higher the better) and the best
observed function value (dashed curves, the lower the better) at iteration t. CobBO captures the
global landscape less accurately using the RBF kernel, and then explores selected subspaces Ωt more
accurately using the Matern kernel. This eventually better exploits the promising subspaces.

incur large computational costs. It also results in statistical insufficiency of exploration [11, 65]. As39

the GP regression’s error grows with dimensions [8], more samples are required to balance that in40

high dimensions, which could cubically increase the computational costs in the worst case [45].41

To alleviate these issues, we design coordinate backoff Bayesian optimization (CobBO) with two-42

stage kernels, by challenging a seemingly natural intuition stating that it is always better for Bayesian43

optimization to have a more accurate approximation of the objective function at all times. We44

demonstrate that this is not necessarily true, by showing that smoothing out local fluctuations and45

using the estimated function values instead of the true observations to serve as the conditional events46

in selected subspaces can not only significantly reduce the computation time due to the curse of47

dimensionality but also help in capturing the large-scale properties of the objective function f(x).48

Specifically, CobBO introduces the two-stage kernels with a stopping rule. The first stage of each49

iteration adopts a simple kernel that sacrifices the approximation accuracy of f(x) for computational50

efficiency. For example, by using a universal radial basis function (RBF) approximation without51

learnable parameters [50], CobBO can eliminate the model fitting time in the full space. It captures52

a smooth approximation f̂(x) of the global landscape by interpolating the values of queried points53

projected to selected promising subspaces. These projected points serve as the conditional events54

for GP regression. In a selected coordinate subspace, the second stage of the same iteration applies55

a sophisticated kernel that can tolerate high computational cost in low dimensions. For example,56

CobBO uses the Automatic Relevance Determination (ARD) Matérn 5/2 kernel [40]. It refines the57

approximation of the local landscape by a sequence of observations determined by a stopping rule that58

backs off from a certain subspace and switches to another coordinate subset. In addition, computing59

the Gaussian process posterior and optimizing the acquisition function are both efficiently conducted60

in the low dimensional subspaces, bypassing the curse of dimensionality.61

For iteration t, instead of directly computing the Gaussian process posterior distribution62 {
f̂(x)

∣∣∣Ht = {(xi, yi)}ti=1 , x ∈ Ω
}

by conditioning on the observations yi = f(xi) at queried63

points xi in the full space Ω ⊂ RD for i = 1, . . . , t, we change the conditional events, and consider64 {
f̂(x)

∣∣∣R (PΩt(x1, . . . , xt),Ht) , x ∈ Ωt,Ωt ⊂ Ω
}

for a projection function PΩt(·) to a random subspace Ωt and an interpolation function R(·, ·), e.g.,65

using a RBF approximation without learnable parameters [50] as the simple kernel for the first66

stage. The projection PΩt(·) maps the queried points to virtual points on a subspace Ωt of a lower67

dimension [51]. The interpolation function R(·, ·) estimates the objective values at the virtual points68

using the queried points and their values as specified byHt. The second stage within the subspace Ωt69

uses the more sophisticated kernel, e.g., Matérn 5/2 kernel [40], which has a number of parameters70

that otherwise would be expensive to be learned in high dimensions.71
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This method can be viewed as a variant of block coordinate ascent tailored to Bayesian optimization by72

applying backoff stopping rules for switching coordinate blocks. While similar work exists [43, 48],73

CobBO differs by introducing the two-stage kernels and addressing the following three issues:74

1. Selecting a block of coordinates for ascending requires determining the block size as well as75

the coordinates therein. CobBO selects the coordinate subsets by a multiplicative weights76

update method [2] to the preference probability associated with each coordinate. Thus, it77

samples more promising subspaces with higher probabilities.78

2. A coordinate subspace requires a sufficient number of query points acting as the conditional79

events for the GP regression. CobBO leverages all observations in the whole space by80

interpolating the values of queried points projected to selected promising subspaces, rather81

than simply starting from scratch in each subspace.82

3. Querying a certain subspace, under some trial budget, comes at the expense of exploring83

other coordinate blocks. Yet prematurely shifting to different subspaces does not fully84

exploit the full potential of a given subspace. Hence determining the number of consecutive85

function queries within a subspace makes a trade-off between exploration and exploitation.86

CobBO uses a stopping rule in each subspace to switch the selected coordinates. When87

consecutively querying data points in the same subspace, CobBO does not need to conduct88

the first-stage function approximation in the full space, which is far more efficient.89

Through comprehensive evaluations, CobBO demonstrates appealing performance for dimensions90

ranging from tens to hundreds. It obtains comparable or better solutions with fewer queries, in91

comparison with the state-of-the-art methods, for most of the problems tested in Section 4.2.92

2 Related work93

Certain assumptions are often imposed on the latent structure in high dimensions. Typical assumptions94

include low dimensional structures and additive structures. Their advantages manifest on problems95

with a low dimension or a low effective dimension. However, these assumptions do not necessarily96

hold for non-separable functions with no redundant dimensions.97

Low dimensional structure: The black-box function f is assumed to have a low effective dimen-98

sion [30, 58], e.g., f(x) = g(Φx) with some function g(·) and a matrix Φ of d ×D, d << D. A99

number of different methods have been developed, including random embedding [66, 11, 63, 36,100

44, 70, 5, 32], low-rank matrix recovery [11, 58], and learning subspaces by derivative informa-101

tion [11, 13]. In contrast to existing work on subspace selections, e.g., Hashing-enhanced Subspace102

BO (HeSBO) [44], Mahalanobis kernel for linear embeddings [33], DROPOUT [35] and LineBO [29]103

(which receives a special treatment in Appendix F), CobBO efficiently leverages all the observations104

in the whole space using the two-stage kernels and the stopping rule in each subspace for consecutive105

observations, rather than only relying on limited observations in each coordinate subspace. It exploits106

subspace structure from a perspective of block coordinate ascent, independent of the dimensions,107

different from some algorithms that are more suitable for low dimensions, e.g., BADS [1].108

Additive structure: A decomposition assumption is often made by f(x) =
∑k
i=1 f

(i) (xi), with xi109

defined over low-dimensional components. In this case, the effective dimensionality of the model is110

the largest dimension among all additive groups [45], which is usually small. The Gaussian process111

is structured as an additive model [17, 28], e.g., projected-additive functions [36], ensemble Bayesian112

optimization (EBO) [61], latent additive structural kernel learning (HDBBO) [65] and group additive113

models [28, 36]. However, learning the unknown structure incurs a considerable computational114

cost [44], and is not applicable for non-separable functions, for which CobBO can still be applied.115

Trust regions and space partitions: Trust region BO has been proven effective for high-dimensional116

problems. A typical pattern is to alternate between global and local search regions. In the local117

trust regions, many efficient methods have been applied, e.g., local Gaussian models (TurBO [14]),118

adaptive search on a mesh grid (BADS [1]) or quasi-Newton local optimization (BLOSSOM [41]).119

TurBO [14] uses Thompson sampling to allocate samples across multiple regions. A related method is120

to use space partitions, e.g., LA-MCTS[60] on a Monte Carlo tree search algorithm to learn efficient121

partitions. CobBO differs by selecting low dimensional subspaces. It can also incorporate trust122

regions in the first-stage global approximation, as shown in the Appendix.123
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3 Algorithm124

Without loss of generality, suppose that the goal is to solve a maximization problem x∗ =125

argmaxx∈Ωf(x) for a black-box function f : Ω → R. The domain is normalized Ω = [0, 1]D126

with the coordinates indexed by I = {1, 2, · · · , D}.127

For a sequence of points Xt = {x1, x2, · · · , xt} with t indexing the most recent iteration, we observe128

Ht = {(xi, yi = f(xi))}ti=1. A random subset Ct ⊆ I of the coordinates is selected, forming a129

subspace Ωt ⊆ Ω at iteration t. As a variant of coordinate ascent, the subspace Ωt contains a pivot130

point Vt, which presumably is the maximum point xMt = argmaxx∈Xtf(x) with Mt = f
(
xMt
)
.131

CobBO may set Vt different from xMt to escape local optima. Then, BO is conducted within Ωt while132

fixing all the other coordinates Cct = I \ Ct, i.e., the complement of Ct.133

Algorithm 1: CobBO(f, τ , T)

1 Hτ ← sample τ initial points and evaluate their values
2 Vτ ,Mτ ← Find the tuple with the maximal objective value inHτ
3 qτ ← 0 Initialize the number of consecutive failed queries
4 πτ ← Initialize a uniform preference distribution on the coordinates
5 for t← τ to T do
6 if switch Ωt−1 by the backoff stopping rule (Section 3.2) then
7 Ct ← Sample a promising coordinate block according to πt (Section 3.1)
8 Ωt ← Take the subspace of Ωt over the coordinate block Ct, such that Vt ∈ Ωt
9 else

10 Ωt ← Ωt−1

11 X̂t ← PΩt(Xt)
[
Project Xt onto Ωt to obtain a set of virtual points (Eq. 1)

]
12 Ĥt ← R

(
X̂t,Ht

) [
Smooth function values on X̂t by interpolation usingHt

]
13 p

[
f̂Ωt(x)|Ĥt

]
← Compute the posterior distribution of the Gaussian process in Ωt

conditional on Ĥt
14 xt+1 ← argmaxx∈Ωt

Qf̂∼p(f̂ |Ĥt)(x|Ĥt)
[

Suggest the next query in Ωt (Section 3)
]

15 yt+1 ← Evaluate the black-box function yt+1 = f(xt+1)
16 if yt+1 > Mt then
17 Vt+1 ← xt+1, Mt+1 ← yt+1, qt+1 ← 0
18 else
19 Vt+1 ← Vt, Mt+1 ←Mt, qt+1 ← qt + 1
20 πt+1 ← Update πt by a multiplicative weights update method (Eq. 2)
21 Ht+1 ← Ht

⋃
{(xt+1, yt+1)}, Xt+1 ← Xt

⋃
{xt+1}

22 end

For BO in Ωt, we use Gaussian processes as the random surrogates f̂ = f̂Ωt(x) to describe the134

Bayesian statistics of f(x) for x ∈ Ωt. At each iteration, the next query point is generated by solving135

xt+1 = argmaxx∈Ωt,Vt∈Ωt
Qf̂Ωt (x)∼p(f̂ |Ht)(x|Ht),

where the acquisition function Q(x|Ht) incorporates the posterior distribution of the Gaussian136

processes p(f̂ |Ht). Typical acquisition functions include the expected improvement (EI) [42, 27],137

the upper confidence bound (UCB) [3, 54, 55], the entropy search [24, 25, 64], and the knowledge138

gradient [16, 53, 69].139

Instead of directly computing the posterior distribution p(f̂ |Ht), we replace the conditional events140

Ht by141

Ĥt := R (PΩt (Xt) ,Ht) = {(x̂i, ŷi)}ti=1

with an interpolation function R(·, ·) and a projection function PΩt(·),142

PΩt(x)(j) =

{
x(j) if j ∈ Ct
V

(j)
t if j /∈ Ct

(1)
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at coordinate j. It simply keeps the values of x whose corresponding coordinates are in Ct and143

replaces the rest by the corresponding values of Vt, as illustrated in Fig. 2.144

Applying PΩt(·) on Xt and discarding duplicates generate a new set of distinct virtual points X̂t =145

{x̂1, x̂2, x̂3, · · · , x̂t̂}, x̂i ∈ Ωt ∀ 1 ≤ i ≤ t̂ ≤ t. The function values at x̂i ∈ X̂t are interpolated as146

ŷi = R(x̂i,Ht) using the standard radial basis function [6, 7] and the observed points inHt. It not147

only significantly reduces the GP regression time due to the efficiency of RBF [6] and the acquisition148

function optimization in low dimensions [11], but also eventually improves the model accuracy using149

the more sophisticated kernel applied on Ωt.150

Figure 2: Two-stage kernels: subspace projection
and function value interpolation

Note that only a fraction of the points in X̂t∩Xt151

directly observe the exact function values. The152

function values on the rest ones in X̂t\Xt are153

estimated by interpolation, which captures the154

landscape of f(x) by smoothing out the local155

fluctuations. To control the trade-off between156

the inaccurate estimations and the exact obser-157

vations in Ωt, we design a stopping rule that158

optimizes the number of consistent queries in159

Ωt. The more consistent queries conducted in a160

given subspace, the more accurate observations161

could be obtained, albeit at the expense of a smaller remaining budget for exploring other regions.162

The key features of CobBO are listed in Algorithm 1, with more details in the following sections.163

Several auxiliary components are utilized and presented in Appendix C to deal with a larger variety164

of problems and corner cases.165

3.1 Block coordinate ascent and subspace selection166

For Bayesian optimization, consider an infeasible assumption that each iteration can exactly maximize167

the function f(x) in Ωt. This is not possible for one iteration but only if one can consistently query168

in Ωt, since the points converge to the maximum, e.g., under the expected improvement acquisition169

function with fixed priors [59] and the convergence rate can be characterized for smooth functions170

in the reproducing kernel Hilbert space [8]. However, even with this infeasible assumption, it is171

known that coordinate ascent with fixed blocks can cause stagnation at a non-critical point, e.g., for172

non-differentiable [67] or non-convex functions [49]. This motivates us to select a subspace with a173

variable-size coordinate block Ct for each query. A good coordinate block can help the iterations174

to escape the trapped non-critical points. For example, one condition can be based on the result175

in [21] that assumes f(x) to be differentiable and strictly quasi-convex over a collection of blocks. In176

practice, we do not restrict ourselves to these assumptions.177

We induce a preference distribution πt over the coordinate set I , and sample a variable-size coordinate178

block Ct accordingly. This distribution is updated at iteration t through a multiplicative weights179

update method [2]. Specifically, the values of πt at coordinates in Ct starts off uniform and increase180

in face of an improvement or decrease otherwise according to different multiplicative ratios α > 1181

and β > 1, respectively,182

wt,j = wt−1,j ·


α if j ∈ Ct and yt > Mt−1

1/β if j ∈ Ct and yt ≤Mt−1

1 if j /∈ Ct
; w0,j =

1

D
; πt,j =

wt,j∑D
j=1 wt,j

(2)

This update characterizes how likely a coordinate block can generate a promising search subspace.183

The multiplicative ratio α is chosen to be relatively large, e.g., α = 2.0, and β relatively small, e.g.,184

β = 1.1, since the queries that improve the best observations yt > Mt−1 happen more rarely than185

the opposite yt ≤Mt−1.186

How to dynamically select the size |Ct|? It is known that Bayesian optimization works well for low187

dimensions [15]. Thus, we specify an upper bound for the dimension of the subspace (e.g. |Ct| ≤ 30).188

In principle, |Ct| can be any random number in a finite set of possible block sizes C. This is different189

from the method that partitions the coordinates into fixed blocks and selects one according to, e.g.,190

cyclic order [68], random sampling or Gauss-Southwell [46].191
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3.2 Backoff stopping rule for consistent queries192

Applying BO on Ωt requires a strategy to determine the number of consecutive queries for making a193

sufficient progress. This strategy is based on previous observations, thus forming a stopping rule. In194

principle, there are two different scenarios, exemplifying exploration and exploitation, respectively.195

Persistently querying a given subspace refrains from opportunistically exploring other coordinate196

combinations. Abruptly shifting to different subspaces does not fully exploit the potential of a given197

subspace.198

CobBO designs a heuristic stopping rule in compromise. It takes the above two scenarios into199

joint consideration, by considering not only the number of consecutive queries that fail to improve200

the objective function but also other factors including the improved difference Mt −Mt−1, the201

point distance ||xt − xt−1||, the query budget T and the problem dimension D. On the one hand,202

switching to another subspace Ωt+1 ( 6= Ωt) prematurely without fully exploiting Ωt incurs an203

additional approximation error associated with the interpolation of observations in Ωt projected to204

Ωt+1. On the other hand, it is also possible to over-exploit a subspace, spending high query budget205

on marginal improvements around local optima. In order to mitigate this, even when a query leads to206

an improvement, other factors are considered for sampling a new subspace.207

3.3 Theoretical Analysis208

One can view our block coordinate selection approach in section 3.1 as a combinatorial mixture of209

experts problem [10], where each coordinate is a single expert and the forecaster aims at choosing210

the best combination of experts in each step. Under this view, we bound the regret of our selection211

method with respect to the policy of selecting the best (unknown) block of coordinates at each step.212

Assume that there is a fixed optimal choice I∗ for the block of coordinates to pick at all steps. This213

block is characterized by improving the objective function for the largest number of times among214

all the possible coordinate blocks when performing Bayesian optimization over the corresponding215

subspaces. The following particular design of losses expresses this cause:216

`t,i =


− log(α̃) if i ∈ Ct and yt > Mt−1

log(β̃) if i ∈ Ct and yt ≤Mt−1

0 if i /∈ Ct
; α̃, β̃ > 1 (3)

as all the coordinates participating in the selected block incur the same loss that effectively rewards217

these coordinates for improving the objective and penalizes these for failing to improve the objective.218

All other coordinates that are not selected receive a zero loss and remain untouched.219

Note that α̃ and β̃ express the extent of reward and penalty, e.g. for α̃ = β̃ = e we have losses of220

`t,i ∈ {−1, 1, 0}. Yet, α̃ is better chosen to be larger than β̃, since the frequency of improving the221

objective is expected to be smaller.222

The loss received by the forecaster is to reflect the same motivation. This is done by averaging223

the losses of the individual coordinates in the selected block, so that the size of the block does not224

matter explicitly, i.e. a bigger block should not incur more loss just due to its size but only due to its225

performance. Such that for each coordinate block It ⊂ I = {1, · · · , D} selected at time step t, the226

loss incurred by the forecaster is Lt,It = 1
|It|
∑
i∈It `t,i. This is also the common loss incurred by227

all the coordinates participating in that block.228

In each step we have the following multiplicative update rule of the weights associated with each229

coordinate (setting α = α̃η and β = β̃η yields the update rule in Eq. 2):230

wt,i = wt−1,i · e−η`t,i = wt−1,i ·


α̃η if i ∈ Ct and yt > Mt−1

1/β̃η if i ∈ Ct and yt ≤Mt−1

1 if i /∈ Ct
(4)

The probability π̃t,It of selecting a certain coordinate block It is induced by πt as specified next.
Thus the expected cumulative loss of the foreceaster is:

LT =

T∑
t=1

∑
c∈C

∑
It∈Sc

π̃t,It ·
1

|It|
∑
i∈It

`t,i
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Assume the best coordinate block is I∗, then the corresponding cumulative loss is:

L∗T =

T∑
t=1

Lt,I∗ =

T∑
t=1

1

|I∗|
∑
i∈I∗

`t,i

We hence aim at bounding the regret RegretT = LT − L∗T .231

Theorem 1. Sample from the combinatorial space of all possible coordinate blocks It ∈
⋃
c∈C Sc232

with probability π̃t,It =
∏
i∈It

w̃t,It/
∑
c∈C

∑
Î∈Sc

∏
j∈Î w̃t,Î. Then the update rule in Eq. 2 with233

α = α̃η , β = β̃η and η = log(α̃β̃)−1
√
T−1|C|D log(D) yields:234

Regrett ≤ O
(

(log(α̃β̃) ·
√
T |C|D log(D))

)
(5)

where w̃t,It =
∏
i∈It w

1/|It|
t,i is the geometric mean of weights in block It. The upper bound in Eq. 5235

is tight, as the lower bound can be shown to be of Ω(
√
T log(N)) [23] where the number of experts236

is N =
∑
c∈C Sc ≤ D|C|D in our combinatorial setup, as typically |C| � D.237

In practice, the direct sampling policy introduced in Theorem 1 involves high computational costs due238

to the exponential growth of combinations inD. Thus CobBO suggests an alternative computationally239

efficient sampling policy with a linear growth in D.240

Theorem 2. Sample a block size c ∈ C with probability pc and c coordinates without replacement241

according to πt. Assume C ⊃ {1}, then the update rule in Eq. 2, with α = α̃η, β = β̃η and242

η =
√

log(D)

T (log(α̃β̃)2−log(p1))
≥ 1 yields:243

Regrett ≤ O
(√

(log(α̃β̃)2 − log(p1)) ·
√
T log(D))

)
(6)

where pc > 0 for all c ∈ C and
∑
c∈C pc = 1, e.g., uniformly set pc ≡ |C|−1.The proof and detailed244

sampling policy are in Appendix A. The regret upper bound in Eq. 6 is tight, as the lower bound for245

an easier setup can be shown to be of Ω(
√
T log(D)) [23]. The implication on η is valid only for246

settings of a very high dimensionality and low query budget. In particular, CobBO is designed for247

this kind of problems.248

Remark: Similar analysis and results follow when incorporating consistent queries from Section 3.2249

and sampling a new coordinate block once every several steps. This is done by effectively performing250

less steps of aggregated temporal losses, as shown in Appendix A.251

4 Numerical Experiments252

This section presents detailed ablation studies of the key components presented in Section 3 and253

comparisons with other algorithms.254

4.1 Empirical analysis and ablation study255

Ablation studies are designed to study the contributions of the key components in Algorithm 1 by256

experimenting with the Rastrigin function on [−5, 10]50 with 20 initial points. The best performing257

run out of 5 experiments for each configuration is presented in Figure 3.

(a) (b) (c)

Figure 3: Ablation study using Rastrigin on [−5, 10]50 with 20 initial random samples258
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RBF interpolation: RBF calculation is time efficient. Specifically, this is much beneficial in high259

dimensions. Figure 1 (left) shows the computation time of plain Bayesian optimization compared to260

CobBO’s. While the former applies GP regression using the Matérn kernel in the high dimensional261

space directly, the later applies RBF interpolation in the high dimensional space and GP regression262

with the Matérn kernel in the low dimensional subspace. This two-step composite kernel leads to a263

significant speed-up. Other time efficient alternatives are, e.g., the inverse distance weighting [26]264

and the simple approach of assigning the value of the observed nearest neighbour. Figure 3 (a) shows265

that RBF is the most favorable.266

Backoff stopping rule: CobBO applies a stopping rule to query a variable number of points in267

subspace Ωt (Section 3.2). To validate its effectiveness, we compare it with schemes that use a fixed268

budget of queries for Ωt. Figure 3 (b) shows that the stopping rule yields superior results.269

Coordinate blocks of a varying size: CobBO selects a block of coordinates of a varying size Ct270

(Section 3.1). Figure 3 (c) shows that a varying size is better than fixed.271

Figure 4: The preference probability focuses on
active coordinates as the entropy decreases

Preference probability over coordinates: For272

demonstrating the effectiveness of coordinate273

selection (Section 3.1), we artificially let the274

function value only depend on the first 25 coor-275

dinates of its input and ignore the rest. It forms276

two separate sets of active and inactive coordi-277

nates, respectively. We expect CobBO to refrain278

from selecting inactive coordinates. Figure 4279

shows the entropy of this preference probability280

πt over coordinates and the overall probability281

for picking active and inactive coordinate at each282

iteration. We see that the entropy decreases, as283

the preference distribution concentrates on the284

significant active coordinates.285

Figure 5: Performance over low (left) medium (middle) and high (right) dimensional problems

4.2 Comparisons with other methods286

The default configuration for CobBO is specified in the supplementary materials. CobBO performs287

on par or outperforms a collection of state-of-the-art methods across the following experiments. Most288

of the experiments are conducted using the same settings as in TurBO [14], where it is compared289

with a comprehensive list of baselines, including BFGS, BOCK [47], BOHAMIANN, CMA-ES [22],290

BOBYQA, EBO [61], GP-TS, HeSBO [44], Nelder-Mead and random search. To avoid repetitions,291

we only show TuRBO and CMA-ES that achieve the best performance among this list, and additionally292

compare CobBO with BADS [1], REMBO [63], Differetial Evolution (Diff-Evo) [56], Tree Parzen293

Estimator (TPE) [4] and Adaptive TPE (ATPE) [12].294
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4.2.1 Low dimensional tests295

To evaluate CobBO on low dimensional problems, we use the lunar landing [38, 14] and robot296

pushing [62], by following the setup in [14]. Confidence intervals (95%) over 30 independent297

experiments for each problem are shown in Fig. 5.298

Lunar landing (maximization): This controller learning problem (12 dimensions) is provided by299

the OpenAI gym [38] and evaluated in [14]. Each algorithm has 50 initial points and a budget of300

1, 500 trials. TuRBO is configured with 5 trust regions and a batch size of 50 as in [14]. Fig. 5 (upper301

left) shows that, among the 30 independent tests, CobBO quickly exceeds 300 along some good302

sample paths.303

Robot pushing (maximization): This control problem (14 dimensions) is introduced in [62] and304

extensively tested in [14]. We follow the setting in [14], where TuRBO is configured with a batch305

size of 50 and 15 trust regions, each of which has 30 initial points. Each experiment has a budget of306

10, 000 evaluations. On average CobBO exceeds 10 within 5500 trials, as shown in Fig. 5 (lower307

left).308

4.2.2 High dimensional tests309

Since the duration of each experiment in this section is long, confidence intervals (95%) over repeated310

10 independent experiments for each problem are presented.311

Additive latent structure (minimization): As mentioned in Section 2, additive latent structures312

have been exploited in high dimensions. We construct an additive function of 56 dimensions, defined313

as f56(x) = Ackley(x1) + Levy(x2) + Rastrigin(x3) + Hartmann(x4) + Rosenbrock(x5) +314

Schwefel(x6), where the first three terms express the exact functions and domains described in315

Section 4.2.1, the Hartmann function on [0, 1]6 and the Rosenbrock and Schwefel functions on316

[−5, 10]10 and [−500, 500]10, respectively.317

We compare CobBO with TPE, BADS, CMA-ES and TuRBO, each with 100 initial points. Specifi-318

cally, TuRBO is configured with 15 trust regions and a batch size 100. ATPE is excluded as it takes319

more than 24 hours per run to finish. The results are shown in Fig. 5 (upper middle), where CobBO320

quickly finds the best solution among the algorithms tested.321

Rover trajectory planning (maximization): This problem (60 dimensions) is introduced in [62].322

The objective is to find a collision-avoiding trajectory of a sequence consisting of 30 positions in a323

2-D plane. We compare CobBO with TuRBO, TPE and CMA-ES, each with a budget of 20, 000324

evaluations and 200 initial points. TuRBO is configured with 15 trust regions and a batch size of325

100, as in [14]. ATPE, BADS and REMBO are excluded for this problem and the following ones,326

as they all take more than 24 hours per run. Fig. 5 (lower middle) shows that CobBO has a good327

performance.328

The 200-dimensional Levy and Ackley functions (minimization): We minimize the Levy and329

Ackley functions over [−5, 10]200 with 500 initial points. TuRBO is configured with 15 trust regions330

and a batch size of 100. These two problems are challenging and have no redundant dimensions. For331

Levy, in Fig. 5 (upper right), CobBO reaches 100.0 within 2, 000 trials, while CMA-ES and TuRBO332

obtain 200.0 after 8, 000 trials. TPE cannot find a comparable solution within 10, 000 trials in this333

case. For Ackley, in Fig. 5 (lower right), CobBO reaches the best solution among all of the algorithms334

tested.335

Regarding running times, for Ackley, CobBO runs for 12.8 CPU hours and TuRBO-1 run for more336

than 80 CPU hours or 9.6 GPU hours. Most other methods either cannot make any progress or find337

far worse solutions.338

5 Conclusion339

CobBO is a variant of coordinate ascent tailored for Bayesian optimization with a stopping rule to340

switch coordinate subspaces. The sampling policy of subspaces is proven to have tight regret bounds341

with respect to the best subspace in hindsight. Combining this projection on random subspaces with a342

two-stage kernels for function value interpolation and GP regression, we provide a practical Bayesian343

optimization method of affordable computational costs in high dimensions. Empirically, CobBO344

consistently finds comparable or better solutions with reduced trial complexity in comparison with345

the state-of-the-art methods across a variety of benchmarks.346
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Broader Impact556

As stated in [32], Bayesian optimization is a powerful optimization technique used in a wide range of557

industries and applications, such as robotics [37, 9, 52], internet tech companies [18, 34], designing558

novel molecules for pharmaceutics [19], material design for increasing efficiency of solar cells [71],559

and aerospace engineering [31]. All of these settings have high-dimensional optimization problems,560

and advances in BO will reflect on improved capabilities on these fields as well. We have fully open-561

sourced our code for CobBO using the MIT license to be available for researchers and practitioners562

in these fields, and many others. The ability to optimize a larger number of parameters than has563

previously been possible will bring further improvements to and further accelerate work in these564

areas.565

Checklist566

The checklist follows the references. Please read the checklist guidelines carefully for information on567

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or568
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing569

the appropriate section of your paper or providing a brief inline description. For example:570

• Did you include the license to the code and datasets? [Yes] See Section ??.571

• Did you include the license to the code and datasets? [No] The code and the data are572

proprietary.573

• Did you include the license to the code and datasets? [N/A]574

Please do not modify the questions and only use the provided macros for your answers. Note that the575

Checklist section does not count towards the page limit. In your paper, please delete this instructions576

block and only keep the Checklist section heading above along with the questions/answers below.577

1. For all authors...578

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s579

contributions and scope? [Yes] See Section 3.580

(b) Did you describe the limitations of your work? [No]581

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See582

Broader Impact.583

(d) Have you read the ethics review guidelines and ensured that your paper conforms to584

them? [Yes]585

2. If you are including theoretical results...586

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.3.587

(b) Did you include complete proofs of all theoretical results? [Yes] See the Appendix A.588

3. If you ran experiments...589

(a) Did you include the code, data, and instructions needed to reproduce the main ex-590

perimental results (either in the supplemental material or as a URL)? [Yes] In the591

supplemental material.592

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they593

were chosen)? [Yes] See Table 2 in the appendix, which contains the default hyperpa-594

rameters.595

(c) Did you report error bars (e.g., with respect to the random seed after running experi-596

ments multiple times)? [Yes] See Fig.5 and Fig.8-10.597
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...600

(a) If your work uses existing assets, did you cite the creators? [N/A]601

(b) Did you mention the license of the assets? [Yes] MIT license; see the appendix.602
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information or offensive content? [N/A] It does not contain personal identifiable607
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