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Abstract

While certified robustness is widely promoted as
a solution to adversarial examples in Artificial
Intelligence systems, significant challenges re-
main before these techniques can be meaningfully
deployed in real-world applications. We iden-
tify critical gaps in current research, including
the paradox of detection without distinction, the
lack of clear criteria for practitioners to evaluate
certification schemes, and the potential security
risks arising from users’ expectations surrounding
“guaranteed" robustness claims. This position pa-
per is a call to arms for the certification research
community, proposing concrete steps to address
these fundamental challenges and advance the
field toward practical applicability.

1. Introduction
A known property of learned models like neural networks is
that they can have their outputs changed through semanti-
cally indistinguishable changes to their inputs (Biggio et al.,
2013; Szegedy et al., 2014). The risk associated with these
manipulated samples—known as adversarial examples—is
heightened by both the confidence ascribed by models to
these samples (Kumar et al., 2020), and how simple they are
to construct, with mechanisms typically relying upon the
same gradient descent style processes that are used in model
training (Papernot et al., 2017; Carlini & Wagner, 2017b).
As Artificial Intelligence (AI) increasingly permeates both
interpersonal and business interactions, these adversarial
examples have the potential to impact the security of real
world systems (Ibitoye et al., 2019; Finlayson et al., 2019;
Albert et al., 2020; Liu et al., 2025a).

In response to these security concerns, significant research
effort has been devoted to what are known as adversar-
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ial defenses, which are designed to minimize or mitigate
specific attacks (Chakraborty et al., 2018). However, it is
crucial to note that these defenses are rarely more than best
response strategies to particular attack vectors, as deployed
mitigations can often be defeated by identifying a single,
undefended vector (Perolat et al., 2018). This makes AI
security into an expensive, reactive process that requires
constant vigilance by model deployers.

Certified defenses eschew this best response paradigm by
guaranteeing the absence of a family of potential attacks,
rather than any one attack (Lecuyer et al., 2019; Li et al.,
2019). These families are typically parameterized by ℓp
inputs, with the certification guaranteeing the absence of
adversarial examples within a calculated region. While
the literature has primarily focused upon classifiers, recent
works have begun to explore extensions of certified defenses
to other problem spaces, including reinforcement learning
and regression (Han et al., 2018; Lütjens et al., 2020; Ham-
moudeh & Lowd, 2022; Liu et al., 2023; Rekavandi et al.,
2024; Liu et al., 2025b).

For all the promise of such systems, when it comes to the
practical implications of these approaches, the devil is very
much in the details. These techniques are presented as
producing the distance to the nearest adversarial example,
which implies that the sample being certified is itself not
already attacked. However, as was observed by Cullen
et al. (2024b), a more precise framing is that: a certification
bounds the distance to the nearest class changing example.
Crucially, there is no guarantee that the class prediction is
accurate, and the certification could be the distance from
either a clean sample to an adversarial instance, an adversar-
ial instance to a different adversarial class, or an adversarial
sample to a clean sample. Thus a certification provides no
information for distinguishing between clean and attacked
samples, with certifications existing for both. Even the idea
that a certification can be considered a measure for how
much effort would be required to attack a particular sample
does not hold, given the observation that certifications them-
selves can be exploited to guide adversarial attackers (Cullen
et al., 2024b).

This then leads to a problematic contradiction between how
these systems are presented—as reliable, guarantees against
adversarial manipulation—and the practical reality of how
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they perform. And this difference is crucial, for human
perception and psychology is a crucial factor in practical
security. It is for these reasons that we take the position
that today’s certified guarantees may provide more security
theater than actual security, especially if they are providing
a false-sense of security to users who are not fully across
these technical nuances.

1.1. Why This Position Paper?

Adversarial examples present a clear and present danger
to AI models, and the risks associated with their existence
will only grow as models are more frequently integrated
into systems where incentives exist for adversarial manipu-
lation. While certified defenses have been presented as an
incorruptible solution to adversarial examples, the current
literature does not support their practical application. This
paper argues that current research into certified robust-
ness is not aligned with the provision of model security,
and may, in fact, harm security. This position is built on
the following supporting areas of discussion:

1. Examining the gap between the ideal of certifications
and their practical implications.

2. Presenting best practice for aligning research, develop-
ment, and deployment to tighten model security.

3. Arguing that an application-driven approach is crucial
for enhancing the impact of certifications.

2. Securing Against Adversarial Manipulation
The performance dividends made possible by deploying AI
has lead to its inclusion in a broad swathe of real world
systems. However, these systems introduce new frontiers
of risk, as these models are incredibly sensitive to being
exploited by a motivated attacker.

Within the AI security community, significant research in-
terest has been placed upon norm-minimising ℓp evasion
attacks (Papernot et al., 2016a), which attempt to induce a
class change at test (or inference) time to minimize the ℓp
distance between the original sample and its corresponding
adversarial example. The appeal of this threat model is mul-
tifaceted: it affects a broad spectrum of systems (including
classifiers and reinforcement learning); leads to easy-to-
construct attacks; and correlates with our conceptual un-
derstanding of human- and machine-perceptibility (Gilmer
et al., 2018).

Attacks in the form of adversarial examples can be consid-
ered as variants of gradient descent, involving finding a class
flipping example x′ that approximates the minima of

argmin
x′∈S

∥x− x′∥p (1)

s.t. argmax
i∈K

fi(x) ̸= argmax
i∈K

fi(x
′) ,

across some permissible space S, which is typically the d-
dimensional space [0, 1]d for computer vision. This framing
has led to a number of distinct evasion attacks, including
PGD (Madry et al., 2018), Carlini-Wagner (Carlini & Wag-
ner, 2017b), DeepFool (Moosavi-Dezfooli et al., 2016), and
AutoAttack (Croce & Hein, 2020), and has been shown to
have the potential to compromise real world systems (Wu
et al., 2020; Cullen et al., 2023). Similar mechanisms also
can be deployed to attack models at training time, to either
corrupt learning performance or embed deleterious behav-
iors into the model’s outputs.

2.1. Adversarial Defenses

While early works suggested that techniques like model
regularisation and weight decay may minimize the success
rates of these attacks (Kukačka et al., 2017), these mitiga-
tions have been broadly shown to be ineffective (Kurakin
et al., 2020; Athalye et al., 2018). Consequently, research
has shifted to developing countermeasures, known as ad-
versarial defenses. While these approaches have demon-
strated more success, they also share a common weakness,
in that they serve as responses to specific attacks, and do
not typically provide resistance against alternative attack
frameworks. This has led to a cyclical development process,
where defenses are attacked, and new defenses are subse-
quently proposed to counter those attacks. An example of
this is single step-attacks (Goodfellow et al., 2015) being
mitigated by adversarial training, which led to the develop-
ment of multi-stage attacks (Kurakin et al., 2020). These
were in turn countered by defensive distillation (Papernot
et al., 2016b), which has subsequently been attacked. This
game of cat-and-mouse demonstrates that an attacker only
needs to find an undefended vector to carry out their attack.
Therefore, the adversarial resistance offered by a defense is,
at best, limited when faced with a motivated attacker who
can evade or exploit the deployed system (Meng & Chen,
2017; Carlini & Wagner, 2017a).

2.2. Certified Defenses

In response to the inadequacy of adversarial defenses, the AI
and security communities have developed certified defenses,
which construct regions around samples in which it can be
guaranteed that no adversarial example exists. Crucially,
these guarantees are independent of the particular attack
framework, and only make basic assumptions regarding the
threat model associated with the attacker.

Certification mechanisms eschew the reactive view of adver-
sarial defenses in favor of proactively bounding the space
within which adversarial examples can exist. In some mech-
anisms, this might be a x-centered p-norm ball of radius r
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defined as Bp(x, r), where r is strictly less than

r⋆ = inf {∥x− x′∥p: x′ ∈ S, F (x) ̸= F (x′), } (2)

where F (·) = 1

(
argmax

i∈K
fi(·)

)
.

Here 1 is a one-hot encoding of the predicted class in
K = {1, . . . ,K}. The size of Bp(x, r) can be considered a
reliable proxy for both the detectability of adversarial exam-
ples (Gilmer et al., 2018) and the cost to the attacker (Huang
et al., 2011).

The construction of such bounds are typically approached
through either exact or high-probability methods, with inter-
val bound propagation (IBP) and convex relaxation (Mirman
et al., 2018; Weng et al., 2018) being examples of the former,
and randomized smoothing (Lecuyer et al., 2019) thelatter.
While high probability methods construct high-probability
bounds on the existence of adversarial examples, exact meth-
ods construct bounds by propagating intervals through the
model and tracing potential class changes.

Exact approaches require significant changes to training
processes and place limits on available model architec-
tures. Moreover, these techniques impose a significant
computational cost (in terms of time and GPU memory)
that scales with model size, due to the need to propagate
bounds through each layer (Zhang et al., 2018b; Xu et al.,
2020), which typically requires the introduction of approx-
imations to scale to model sizes of academic/industrial
interest (Gowal et al., 2018; Singh et al., 2018). In con-
trast, randomized smoothing can be applied to almost any
model architecture or training routine, with the only re-
quired changes occurring before the input layer and after
the output layer. While randomized smoothing does require
significant numbers of model samples to be evaluated, the
computational time implications of this can be partially ame-
liorated, as the sampling process is embarrassingly parallel,
making it a powerful alternative to bound-propagation style
approaches (Cohen et al., 2019).

We must emphasize that the following definitions, and their
associated techniques, are heavily aligned with evasion at-
tacks in the interests of clarity. While some recent works
have begun to consider constructing certifications against
other attack frameworks, there still exist a broad range of
attacks outside the aegis of evasion attacks, including back-
door attacks that embed deleterious behaviors that can be
manipulated; model stealing attacks, where proprietary in-
formation is extracted from the model; check fraud, which
forces the model to read a larger amount of data than what
is written (Papernot et al., 2016b) and more.

2.2.1. RANDOMIZED SMOOTHING

The certifications constructed by randomized smooth-
ing (Lecuyer et al., 2019) are built around a Monte Carlo

estimator of the expectation of a class prediction, where

1

N

N∑
j=1

F (Xj) ≈ EX[F (X)] ∀i ∈ K (3)

X1, . . . ,XN ,X
i.i.d.∼ x+N (0, σ2) .

These expectations can be employed to provide guarantees
of invariance under additive perturbations. In forming this
aggregated classification, the model is re-construed as a
smoothed classifier, which in turn is certified. Mechanisms
for constructing such certifications include differential pri-
vacy (Lecuyer et al., 2019; Dwork et al., 2006), Rényi di-
vergence (Li et al., 2019), and parameterising worst-case
behaviors (Cohen et al., 2019; Salman et al., 2019a; Cullen
et al., 2022). The latter of these approaches has proved the
most performant, and yields certifications of the form

r =
σ

2

(
Φ−1

(
qE0[x]

)
− Φ−1

(
pE1[x]

))
, (4)

where Φ−1 is the inverse normal CDF, (E0, E1) =

topk ({EX[F (X)]} , 2) , and ( qE0, pE1) are the lower and
upper confidence bounds of these quantities to some confi-
dence level α (Goodman, 1965).

2.2.2. INTERVAL BOUND PROPAGATION

Conservative certificates upon the impact of norm-bounded
perturbations can be constructed by way of either interval
bound propagation (IBP) which propagates interval bounds
through the model; or convex relaxation, which utilizes
linear relaxation to construct bounding output polytopes
over input bounded perturbations. In contrast to random-
ized smoothing, which constructs isotropic measures of
ℓp-robustness, interval bound propagation and its associated
techniques attempt to propagate the potential influence of
all possible perturbations through the model, producing an
anisotropic measure of the potential response of a model to
any potential perturbation (Salman et al., 2019b; Mirman
et al., 2018; Weng et al., 2018; Zhang et al., 2018a;b; Singh
et al., 2019; Mohapatra et al., 2020). Of these, IBP is more
general, while convex relaxation typically provides tighter
bounds (Lyu et al., 2021).

Utilizing these techniques requires introducing an aug-
mented loss function during training to promote tight output
bounds (Xu et al., 2020). These schemes have also, until
very recently, been heavily limited in the types of network
architectures that they can successfully construct bounds
through, with only recent works demonstrating an applica-
bility to a nonlinear activation functions beyond ReLU (Shi
et al., 2023). Moreover they both exhibit a time and memory
complexity that makes them infeasible for complex model
architectures or high-dimensional data (Wang et al., 2021;
Chiang et al., 2020; Levine & Feizi, 2022).
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2.2.3. GLOBAL LIPSCHITZ

Global Lipschitz takes an alternative approach to construct-
ing certifications, a point that they distinguish through the
framing of local and global robustness. The guarantees
provided by prior works, which can take the form

∥x− x′∥p≤ ϵ =⇒ F (x) = F (x′) (5)

are considered to be local properties, that relate x and ϵ.
Lipschitz based techniques instead attempt to construct their
certifications in terms of global robustness, where

∀x1,x2 : ∥x1 − x2∥p≤ ϵ =⇒ F (x1)
⊥
= F (x2) . (6)

Here ⊥ is the marker for an abstained class prediction, and
c1

⊥
= c2 denotes that either c1 =⊥, c2 =⊥, or c1 = c2. In

essence such a form of certification involves constructing
a model that has not only an infinitesimally thin decision
boundary, but a margin between the regions associated with
each class, where ϵ then becomes the shortest ℓp distance
to span the boundary. Several attempts have been made to
use Lipschitz bounds during training to promote robustness.
These include constructing provable lower bounds on the
norm of the input manipulation required to change classi-
fier decisions based upon the network architecture (Hein &
Andriushchenko, 2017); modifying the loss associated with
logits different than the ground-truth class (Tsuzuku et al.,
2018); and GloRoNets, which add an additional logit corre-
sponding to the predicted class at a point (Leino et al., 2021).
While these techniques can be an order of magnitude faster
than randomized smoothing, they are both less flexible—in
terms of the architectures they support—and often produce
smaller certifications than randomized smoothing. (Leino
et al., 2021).

3. Certifications for Model Security
Whether presented as a ‘certified guarantee’ or a ‘certified
defense’, that it is a ‘certification’ heavily implies an ab-
solute improvement to model security. This impression is
driven not just by the naming of these techniques, but also
how they are described. After all, these are techniques that
are guaranteed to apply in all circumstances, irrespective of
the attacker’s behavior. To both academic and non-academic
readers who are even passingly familiar with the security
risks associated with adversarial examples, such properties
are incredibly appealing.

However, it must be emphasized that certified defenses do
not operate in the same manner as a traditional defense.
While a traditional defense ideally increases the difficulty
of performing an attack, a certification only measures the
distance to the nearest class-flipping example. In the liter-
ature this is typically framed as the distance to the nearest
possible adversarial example, however this is not strictly

true for deployed models, as adversarial examples can also
be certified (Cullen et al., 2024b). That a certification is the
distance to the nearest possible adversarial example is only
true under the settings of many academic papers, in which
oracle level knowledge of the true class is presumed.

This clear disparity between how certifications may be per-
ceived, and what they actually produce presents a security
risk that can potentially be exploited by motivated attackers.
After all, if a model deployer is confident that their model is
certifiably robust against adversarial examples, there is po-
tentially no need to implement any other security measures.
This is especially worrisome when certification mechanisms
are inherently limited to specific types of threat models—
for example, geometric attacks (rotational or translational)
are unlikely to be covered by traditional ℓp based threat
models (Xiao et al., 2018; Dumont et al., 2018).

In practice, as the following theorem argues, the only in-
formation provided by the certificate is the distance to the
nearest potential class-flipping example, rather than pro-
viding any information regarding if the sample has been
attacked or not. If a point is correctly predicted, then this
distance may be the distance to the nearest adversarial exam-
ple, or to the true semantic class boundary. However, if the
point is an adversarial example whose class expectation is
large enough to produce a certification, then the certification
is the distance to the true class.

If we know that any potential attacker is ϵ bounded within
the ℓp norm that we have been able to certify, then the
guarantee will ensure that the class prediction will remain
constant for these attacks. However, this does not guarantee
that the prediction is correct, nor that it has not been the
subject of an attack. While it may be true that certifiable ad-
versarial examples may produce smaller certifications, due
to the inherent proximity of adversarial examples to deci-
sion boundaries, this is only a heuristic, with no theoretical
backing. While this observation may allow certifications
to be used to stack-rank risk using certifications in a com-
parative fashion, we would argue that the only reliable ,
actionable information that a certification technique may
currently provide is the absence of a certification.
Theorem 1. A certification of size ϵ associated with the in-
put x to a model f could correspond to either a certification
of the correct class, that is representative of the semantic
space that the sample exists within; or a certification of
an incorrect class, one which is not representative of the
semantic space a sample exists within. Thus the existence of
a certification does not intrinsically provide any information
regarding if the sample x has been attacked or not.

As an example of this, consider a stochastic, location in-
variant classifier, that produces a fixed expectation of 0.75
and a constant class prediction across all x ∈ S. While
this classifier will certify all points, the classifier will have
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low accuracy, and the certified will not provide any action-
able information. While this point may appear obvious, it
underpins the inherent contradiction between how certifica-
tions are presented—as a security guarantee—and how they
operate in actuality.

An additional consequence of the above theorem is that hav-
ing access to a certification provides an attacker additional
information regarding where adversarial examples may or
may not be (Cullen et al., 2024b). This allows an attack to
be guided not just by gradients, but by knowledge of where
adversarial examples can and cannot exist. Thus, if the
attacker has access to the certifications, then they have an in-
formation advantage relative to an uncertified model. Thus
it can be argued that employing certification mechanisms
may compromise AI security (Cullen et al., 2024b).

3.1. Employing Certifications

Given these observations, there is a clear need for the certi-
fication research community to acknowledge the limitations
inherent to certifications, and to reflect on how the framing
of these techniques may drive misapprehensions about the
levels of security provided. At the most basic level, this
should include emphasizing that certifications should only
be accessible to those who have trusted access to the model.
Throughout this paper, we will explore potential research
directions relating to both this and other issues through a
series of open questions.

Open Question 1. How best should certifications be em-
ployed to enhance model security?

Based upon our discussions to this point, we can treat a
certification as a heuristic measure of how likely it is that
a sample may have been manipulated. However, thinking
about a certification in isolation also potentially minimizes
how information security is practiced.

To take a more systematic perspective, consider organiza-
tional security as a composition of operations, that could
include rules, algorithmic screening, human operators, and
more. If a model produces a radius, how would that infor-
mation be best served by other components of that process
flow? Should the information of the certification be propa-
gated through to subsequent tasks (or even back to earlier
operations)? How could a certification be incorporated into
a multifaceted assessment of risk, for both individual sam-
ples and for collective sets? Can certifications be informed
by measures of risk at preceding steps of the model pipeline?

These questions may seem vague, but it is crucial to think
about how techniques designed for mitigating risk—as cer-
tifications are designed to do—may exist in the context of
real-world risk management frameworks. Both ISO/IEC
27001:2022 and the NIST AI Risk Management Frame-
work (Int, 2022; National Institute of Standards and Tech-

nology, 2022) treat AI systems governance as something
that requires continuous, active, multifaceted risk monitor-
ing and assessment. For organisations, conforming to such
information security controls is crucial not just for manag-
ing their own risk, but for aligning with legal and auditing
expectations. In the case of smaller organisations, simply
recording certifications may be enough to satisfy auditing
requirements, but more complicated security apparatus will
require a more nuanced perspective to be taken.

The challenge with attempting to answer questions like these
in an academic context is that they do not align well with
the tools that we have at our disposal. We do not have easy
access to real-world information security risk frameworks.
And even if we did, any testing we performed would likely
produce results that were specific to particular organizations.
This is not to say that these problems are not able to be
studied within an academic context. In fact, facets of this
problem space can be seen in the fields of mathematical risk
management, human-in-the-loop computing, human com-
puter interaction, game theory (Zhou et al., 2019; Sun et al.,
2023; Cullen et al., 2024a; Adams et al., 2025), and psy-
chology. This suggests that working towards a more holistic
view of certified robustness will require multidisciplinary
research expertise.

Taking such a perspective is critical to avoid certifications
becoming more security-theater than actual security. As
has been noted in the differential privacy community, the
inherent trade off between user privacy and utility in dif-
ferentially private systems creates a tension that has the
potential to lead system creators to minimize transparency.
Doing this has the potential to convert privacy guarantees
into advertizing material and window dressing, that provides
only the appearance of positive user benefit (Khare, 2009).
In response to this, recent observational studies have begun
to consider both how expectations of privacy shape user
habits, and how clarifying private mechanisms can induce
confidence in system privacy (Xiong et al., 2020; Smart
et al., 2022). If certification schemes are to be considered as
similarly important for demonstrating model security, then
it is important to both consider and study how the framing
of these mechanisms affects user expectations.

Open Question 2. What is required for certifications to be
practically deployed for end users?

While works examining randomized smoothing, IBP, and
global Lipschitz-style certifications often highlight their
relative benefits, the level of detail provided is typically in-
sufficient for end-users to assess whether an approach suits
their needs. This is particularly true when user requirements
span factors such as resource demands, ease of deployment,
and certification performance on datasets relevant to their
use cases. We believe it is crucial for researchers to develop
a shared framework for analyzing certification schemes, of-
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fering more contextual information about their performance.

Typically, certification works allude to their employed com-
putational resources, which is sometimes supplemented with
a discussion of the total computational time required. How-
ever, in practice comparisons between the resource demands
imposed by different techniques are rare, and yet these very
comparisons are crucial for determining the suitability of
these schemes for end users. This is especially so when pro-
duction environments may not share the same bottlenecks as
research systems, which may lead to differing perspectives
on how computational costs would be perceived.

In practice, we contend that practitioners should better struc-
ture their comparisons in terms of the resource requirements,
the computational time required, and the level of achievable
parallelism. While it is simple to state this as a necessity,
in practice these comparisons are complicated by the stark
methodological differences between the core techniques.
To take randomized smoothing as an example—the large
number of draws required to construct the expectations may
appear to be numerically expensive. However, in practice
this task of repeated model draws is embarassingly parallel,
can be split over arbitrarily many GPUs, and only requires
as much memory as is required to hold the model. In con-
trast interval bound propagation typically only requires a
single pass to establish a certification. However implement-
ing this requires both significant amounts of computational
time and GPU memory to construct the certification, which
intrinsically limits the size of models that can be certified.

While there is a paucity of comparisons between the differ-
ent certification frameworks, the International Verification
of Neural Networks Competition’s (VNN-COMP) compar-
isons between Interval Bound style certification mechanisms
serves as a proof of concept for how these comparisons
could be performed (Müller et al., 2022; Brix et al., 2023).
VNN-COMP builds comparisons between the success rates
and running times, while controlling for run-time related
issues by providing a shared codebase and prescribed com-
putational environments, demonstrating that it is possible
to begin to construct broader comparisons. However it is
crucial to emphasize that the VNN-COMP comparisons
only exist for IBP style certifications, and do not consider
randomized smoothing or Lipschitz approaches.

The net result of constructing more rigorous estimates on
computational cost will likely require a broader set of ex-
periments than those typically performed in certification
papers—especially with regard to the impact of different
model sizes. However, it is important to stress that such an
analysis should not be strictly rooted in trying to demon-
strate the superiority of a technique, but it should rather be
focused upon delving into the properties of the technique.

In the absence of clear practices for deploying certification

schemes, research on computational cost should aim not
to prove the superiority of any technique, but to provide
knowledge that helps practitioners decide whether to use
a certification framework. While this may be challenging
given publishing conventions focused on state-of-the-art im-
provements, it could open new opportunities for comparing
different certification schemas.
Open Question 3. How do we test certification schemes in
a manner that reflects real world use cases?

Establishing certification performance on key reference
datasets like MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky et al., 2009), and the Large Scale Visual Recog-
nition Challenge variant of ImageNet (Deng et al., 2009;
Russakovsky et al., 2015) are important tools for validating
research works. However, the semantic properties of these
datasets, and their diversity—or, more precisely, their lack
thereof—limits the ability to transfer these results to other
datasets of interest. This has even been shown to extend to
datasets in different contexts to those in which the datasets
were originally sampled, due to geographic and cultural bi-
ases that are driven by the very mechanisms through which
these datasets were originally constructed (Buolamwini
& Gebru, 2018; Celis & Keswani, 2020; Karkkainen &
Joo, 2021; Mandal et al., 2021). While some task-specific
works have begun to consider broader views on certification
datasets (Dvijotham et al., 2020; Korzh et al., 2024), there
clearly exists significant space for broadening the scope of
how these systems are evaluated, to better demonstrate and
understand utility.

As noted by Cullen et al. (2024c), the performance prop-
erties of different certification techniques can vary based
upon the distribution of points within what they describe as
the simplex of potential output spaces. As it is likely that
datasets of interest may not share the same properties as
those employed within academic research, it is important
that we broaden our appreciation of what exactly state of
the art is, and how techniques can be selected to maximize
utility for specific tasks.

Beyond this, while improving the size of certified guaran-
tees will always be important, it is also crucial that users
are supported with the information to contextualize said
guarantees. After all, a certification with an ℓp size of 2 (for
some p) likely does not intrinsically convey enough knowl-
edge to understand the risk associated with a sample from
an arbitrary dataset being attacked—for it may be that all
samples are clustered within a distance of 2 of the sample
point, or there may not be a single other clean sample within
this radius. Thus, for these systems to have real world ap-
plicability and interpretability, techniques to contextualize
certification sizes are crucial.

A source of inspiration for improving the quality of testing
within the certification literature is Instance Space Analy-
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sis (Smith-Miles et al., 2010; Muñoz et al., 2018), which can
be used to create a representative footprint of where samples
may exist. This data-driven approach allows practitioners to
both quantify how much coverage a dataset provides over
potential input space, but also can guide the generation of
new datasets. Drawing from such approaches may be useful
to better understand the factors that drive certification per-
formance in datasets that do not resemble the community’s
typical reference datasets.

4. Coverage
To extend upon the preceding discussions of improving
certifications to enhance the concept of model security, we
now turn to more practical considerations.

Open Question 4. How do we improve the quality of guar-
antees provided by certifications?

Intuitively, the size associated with a certification is directly
correlated with its applicability, with larger regions of cov-
erage providing more general guarantees, and more security.
While true, it is also important to note that current certifica-
tions are often small enough to not obviate the existence of
imperceptibly small adversarial perturbations. Thus increas-
ing the size of certifications will inherently decrease the risk
of attack (Gilmer et al., 2018).

This perspective on certification size being a direct measure
of risk is challenged by geometric perturbations, where the
ℓp distance may not reflect the level of difficulty in either
constructing or detecting a manipulation. Moreover, any
ℓp certification can be negated if the attacker can operate
in some space ℓq : p ̸= q. While there is overlap between
the regions of coverage provided by differing ℓp spaces,
the potential for shifting the attack norm may introduce
opportunities for the attacker to exploit.

To understand the implications of this, it is important to re-
member that for an attacker to be successful, they only need
to find a single working adversarial example. By contrast,
a defender ideally must prevent all adversarial examples
from being passed through the model. In a certification
context, consider a scheme that produces an ℓp-norm ball
of size rp. As indicated by Theorem 2, if q < p no ℓq-norm
adversarial examples exist with size rq < rp. However, if
q > p, smaller ℓq norm adversarial examples may exist!
Thus mismatches between attacker and certification norms
can potentially induce an unfounded sense of security. This
is especially so when it is possible that the certification
norm potentially does not align with the capacity for these
adversarial examples to be detected.

Theorem 2. Consider a ℓp-certification out to a distance of
rp. Potential adversarial attacks for an attacker operating
with an ℓq-norm attack exist for rq > min

(
d1/q−1/p, 1

)
rp.

Proof. When q < p, the two regions of certification inter-
sect at rq = rp, and thus there exists some points in the
region rq > rp that admit potential adversarial examples.

When q > p, the regions of certification intersect at rq
d1/q =

rp
d1/p , for a d-dimensional space. Thus there exists points at
distances rq > d1/q−1/prp which are not covered by the ℓp
region of certification.

While Theorem 2 does present a mechanism for transla-
tion from ℓp certifications to ℓq threat models, ideally we
should be considering how to optimize certifications for
the threat model of interest, as can be seen in recent works
that have begun to generalize certifications away from ℓ2
threat models (Yang et al., 2020; Huang et al., 2023). We
should also explore moving past individual threat models to
instead consider maximizing certification coverage. How-
ever, this will require us to fundamentally change how we
assess certification performance. While prior works have
demonstrated that it is possible to ensemble certifications
(Cullen et al., 2024c), their approach was still rooted in
an ℓ2 space. Ultimately maximizing coverage may require
new certification mechanisms in other ℓp spaces and even
non-ℓp threat models such as edit distance for sequence
classifiers (Huang et al., 2023). It may also require balanc-
ing the costs of performing multiple certifications, and the
added utility provided by such a layering. This leads to an
additional question, regarding how new certifications can
be constructed.

Open Question 5. How can we build certification mech-
anisms that can be generalized to a broader set of model
types?

To this point, while we have attempted to be general in our
consideration of certifications, there has been an inherent
bias towards the robustness of classifiers, and classifier-like
systems. This bias reflects that of the overall certification
space, which is heavily weighted towards works consider-
ing classifiers under ℓ2-norm bounded (or ℓp) threat models.
While ensuring classifier performance is important, there is
no guarantee that the AI systems that we will most heavily
rely upon in the future will be similar, nor that the risks
of adversarial manipulation will be limited to such classi-
fiers (Mangal et al., 2023). While recent works have begun
to consider how certified robustness can be generalized to
frameworks like reinforcement learning (Lütjens et al., 2020;
Kumar et al., 2021; Mu et al., 2023; Wu et al., 2022), there
still remains significant potential for expanding the scope of
problems considered through certifications.

5. Secure Development
Finally, it is critical to consider how certification techniques
can be developed into secure models and certification code
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implementations. After all, the security guarantees provided
by certifications will be for naught if they cannot be incor-
porated into deployed code.
Open Question 6. How do we incentivize the development
of more secure code?

To date, research projects on certification have remained at
low levels of technology readiness. While this is understand-
able given the level of maturity of the field, if there is to be
adoption of these systems, and impact outside of research,
it is clear that significant care must be taken to implement
secure code. This goal would be supported by systems that
are open and transparent, to both enable audits (Ding et al.,
2017) and enhance user confidence in system performance.
Extensible implementations would also facilitate adaptation
to a range of applications.

A source of inspiration is OpenDP (OpenDP, 2020;
Gaboardi et al., 2020) which has generalized custom, task-
specific tools to a domain-agnostic framework for enhancing
the privacy guarantees associated with data access princi-
ples. OpenDP’s development process is an exemplar of
how security and accessibility can be balanced through an
open, application driven development process, that is built
upon a rigorous code- and proof-checking process. In doing
so, OpenDP has managed to rapidly gain significant buy-in
from both researchers and developers (Lokna et al., 2023).

It would be possible for a similar set of processes to be
employed for the development of more production-ready
certification code-bases. The advantages of such an ap-
proach would not just be useful for potential deployments
of certification frameworks, but would also allow for dif-
ferent schemes to be more readily tested against each other.
Such comparisons would only benefit the development of
the field. Moreover, a shared research framework could also
help induce a greater sense of confidence in new works, as
it would be clear that they were operating upon the same
framework employed by earlier techniques.

Additional lessons can also be drawn from the specific devel-
opment pathways of cryptographic and differential privacy
implementations, and how these pathways have lead to new
research developments. Rather than directly implementing
state-of-the-art research, OpenDP and crytrographic proto-
cols have often draw inspiration from these systems while
focusing upon ensuring that they work to a set of assump-
tions that allows for the develop of reliably robust, testable,
and verifiable systems. This focus upon how systems are
employed in practice, in contrast to the more standard aca-
demic assumptions that had existed in prior works then
in turn lead to new areas of research interest in areas like
rounding and floating point issues in Differential Privacy
correctly (Mironov, 2012; Balcer & Vadhan, 2017; Jin et al.,
2022), the development of side-channel (Jin et al., 2022) and
floating-point attacks (Jin et al., 2024b), and explorations

of the impact of privacy budgets (Jin et al., 2024a). These
examples provide a clear precedent for how examining se-
curity problems with an eye to how they will be deployed
within the real world can pay both practical and research
dividends.

6. Alternative Views
While the preceding content argues that certified robustness
schemes share significant open weaknesses, a counterfactual
perspective would be that any improvements provided by
a certification still enhances model security, even if these
improvements do not provide complete security. While this
is true, as we have argued within this paper, we believe there
is a high likelihood that these schemas will result in security
theatre, rather than security. The likelihood of this is heavily
driven by the presentation of certifications as a guarantee
of robustness. When certifications are marketed as defini-
tive proof of a model’s resilience to adversarial examples,
it creates the illusion of a level of protection that may not
truly exist. Such a false sense of security could divert at-
tention from more robust, ongoing security measures and
research, potentially leading users to neglect further model
improvements or defensive strategies. Moreover, incorpo-
rating certifications may also foster complacency in model
development.

It could also be argued that these expectations are not the
responsibility of the certification community, and that these
systems are being developed for technical users at this stage,
with future developments taking care of ease of use and
broader adoption. While basic research is undeniably im-
portant, these benefits do not negate concerns for how cer-
tifications are being communicated. For technical users,
it is essential to understand the limits of certified robust-
ness guarantees and the broader implications of these sys-
tems, particularly in industries that rely on AI models. If
certifications are not accompanied by clear explanations
of their limitations and scope, there is a risk that non-
technical stakeholders—who may not fully grasp the under-
lying complexities—could misinterpret or overestimate the
significance of these certifications. This disconnect could
lead to misuse or overreliance on certifications, which in
turn may hinder the development of more comprehensive se-
curity strategies. In the long term, as these systems become
more accessible and widespread, there will be an increased
need for transparency and clear communication about what
certified robustness can and cannot achieve. Without this,
the potential for security theater remains a significant con-
cern.
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7. Conclusions
The AI security community has consistently moved the nee-
dle in terms of our understanding of the risks facing models,
and strategies that can be employed to mitigate them. How-
ever, for all the insights gained by these works, there is a
strong case to be made that the current literature has not yet
bridged the gap from practical promise to deployable appli-
cations. This is especially true when it comes to works on
certified robustness, especially when we consider the ways
in which these certifications are perceived by downstream
users and practitioners.

Indeed, the very framing of certified robustness as provid-
ing guarantees of adversarial resistance can create a false
sense of security. Given this, within this paper we argue that
additional care must be taken to ensure that these certifica-
tions are not misinterpreted as blanket protections, rather
than constrained assurances tied to specific threat models,
perturbation bounds, and data distributions. Such misunder-
standing can lead to adverse security outcomes, especially
in real-world deployment scenarios where defenders do not
have access to oracle information, and where adversaries do
not necessarily conform to the narrow theoretical bounds
underpinning certification techniques.

However, this work also argues that considering how these
systems are used and perceived has the potential to inspire
new research directions. This work would extend beyond
the current remit of certification research—which is broadly
focused on improving bulk metrics on reference data sets—
into exploring the how and why of certification performance,
the factors that incentivize the development of secure code,
the applicability of certifications to real world threat mod-
els, and how they should be communicated to stakeholders.
These rich new veins of research questions have the po-
tential to significantly improve the safety of deployed AI
systems.

Impact Statement
This work takes the position that for all its promise, certified
robustness still has a long way to go before being ready
for wide-spread deployement as a real-world method of
securing AI. While this position may superficially appear to
be pessimistic, we believe that constructive discussion about
the current state of certification research can help reveal new,
productive research directions. If the research community
can progress solutions, we believe that certifications can
provide a tangible impact on AI security, especially where
AI is deployed in high-risk and high stakes contexts, for
positive societal impact.
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