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Abstract

Inappropriate design and deployment of machine learning (ML) systems leads to
negative downstream social and ethical impact — described here as social and ethical
risks — for users, society and the environment. Despite the growing need to regulate
ML systems, current processes for assessing and mitigating risks are disjointed and
inconsistent. We interviewed 30 industry practitioners on their current social and
ethical risk management practices, and collected their first reactions on adapting
safety engineering frameworks into their practice — namely, System Theoretic
Process Analysis (STPA) and Failure Mode and Effects Analysis (FMEA). Our
findings suggest STPA/FMEA can provide appropriate structure toward social and
ethical risk assessment and mitigation processes. However, we also find nontrivial
challenges in integrating such frameworks in the fast-paced culture of the ML
industry. We call on the ML research community to strengthen existing frameworks
and assess their efficacy, ensuring that ML systems are safer for all people.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1 Introduction

Safety practices in the ML community often focus on ML-centered areas, such as Robustness,
Monitoring, Alignment and Systemic Safety. In this paper, we propose the use of safety engineering
frameworks in machine learning research and practice, and study its impact on responsible ML
practices. While recent work argues that there are unique aspects to ML for which safety engineering
may not generalize [§]], we propose that there have not been serious efforts to apply these frameworks
in ML. We examine the dialogue between safety engineering frameworks and understandings of
social and ethical risks of ML systems. First, we report on ethical and social risk management
practices currently used in the industry. Second, we take a developmental approach to examine how
safety engineering frameworks can improve existing practices. We chose two of the most successful
safety engineering frameworks used in other sociotechnical domains [27,[19,4]]: Failure Mode and
Effect Analysis (FMEA) [5] and System Theoretic Process Analysis (STPA) [12,[18].

We conducted 30 semi-structured in-depth interviews with industry practitioners who shared their
current practices used to assess and mitigate social and ethical risks. We introduced the two safety
engineering frameworks, inviting them to envision how they might employ them to assess ethical and
social risk of ML systems. The results of our study address the following research questions:

* RQ1: Which practices do ML practitioners use to manage social and ethical risks today?
* RQ2: What challenges do practitioners face in managing social and ethical risks?

* RQ3: How could safety engineering frameworks such as FMEA and STPA inform and
improve current practices? What advantages and disadvantages of each method do ML
practitioners identify?

Our findings illustrate safety engineering frameworks provide valuable structure for investigating how
social and ethical risks emerge from ML system design and integration in a given context. However,
successful adaptation of these frameworks requires solutions to existing organizational challenges
for operationalizing risk management practices. Moreover, results of our work motivate further
theoretical and applied research on adaptation of such frameworks. We start by providing an overview
of current discourse in responsible ML development and contextualize the relevance of the safety
engineering frameworks (Section 2). We discuss the strengths and limitations of applying safety
engineering frameworks in light of current practice and call on the research community to further
examine and strengthen these frameworks for ethical and social risk management of ML systems
(Section 3). A full version of this paper is submitted for another archivable venue and it is currently
under review.

2 Introducing safety engineering approaches to failure and hazard analysis

Safety engineering is a generic term for an assemblage of engineering analyses and management
practices designed to control dangerous situations arising in sociotechnical systems [[1} (7, [13]]. These
analyses and practices identify potential hazards or system failures, understand their impact on users
or the public, investigate causes, develop appropriate controls to mitigate the potential harms, and
monitor systems [26]. Safety engineering crystallized as a discipline around WWII, when military
operators recognized losses and accidents were often the result of avoidable design flaws in technology
and human factors [28]. Since then, implementation of safety engineering in sociotechnical domains,
such as medical devices and aerospace, has significantly reduced accidents and failures [24]].

‘We motivate use of safety engineering for social and ethical risk management given its strength in
drawing attention to the relationships between risks, system design, and deployment [6l 20]. As
ML systems introduce interdependencies between the ML artifact, its operational environments, and
society at large [22], safety frameworks can provide strong analytical grounding for risk management
[7]l. Moreover, harms from ML systems are often recognized after they have occurred [21] at which
point mitigating them is significantly more challenging and costly [5]], and safety frameworks aid
proactive harms surfacing. In this study, we focus on two safety engineering techniques designed to
identify and address undesired outcomes early in development [[1,[7,[13]: a failure analysis technique
for improving reliability (FMEA) and a hazard analysis technique for identifying unsafe system states
(STPA).



2.1 Failure Mode and Effects Analysis (FMEA)

FMEA, a long-standing reliability framework, takes an analytic reduction (i.e. divide and conquer)
approach to identifying and evaluating likelihood of risk for potential failure modes (i.e. the mecha-
nism of failure) for a technological system or process [S]. FMEA has been used in high consequence
projects, such as space shuttle [11] and U.S. nuclear power plant safety [15]. The FMEA framework
helps uncover potential failure modes, identify the likelihood of risk, and address higher risk failure
modes for a system (i.e. bicycle), component (i.e. bicycle’s tire), or process (i.e. bicycle assembly)
[5]. FMEA is a multi-step framework, through which steps are iteratively performed by FMEA and
system experts over the development life cycle [S]. See Figure 1 for breakdown of the steps and refer
to Appendix for the details.
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Figure 1: Steps for conducting an FMEA [3]

2.2 System Theoretic Process Analysis (STPA)

The hazard analysis method, STPA, is a relatively new technique taking a system theoretic perspective
towards safety [13]]. It maps elements of a system, their interactions, and examines potential hazards
(i.e. sources of harm). While analytic reduction requires a user of the tool to imagine interactions
between components, modeling at the system level is meant to capture emergent phenomena that are
well-described only by component interactions rather than individual component behavior. STPA has
been employed in NASA’s space program [10], the nuclear power industry [25]], and the aviation
industry [9].

In contrast to FMEA, the STPA process does not focus on reliability, failures, or risk likelihood.
Instead, STPA models the sociotechnical system, focusing on the structure between components
as well as control and feedback loops. Broadly, STPA encompasses the following steps, which are
meant to be iterative (across the model of a system) and cyclic (across a system’s lifecycle). See
Figure 2 for breakdown of the steps and refer to Appendix for the details.
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Figure 2: Steps for conducting an STPA[12]]

In sum, FMEA and STPA frameworks pose complementary analytical perspectives from safety
engineering. Prior work suggests these techniques could strengthen the identification and mitigation
of social and ethical risks of ML systems [14}16} 23| [20]. Scholars have discussed the overall benefits
of FMEA for internal ML auditing [20], illustrating how it could uncover ML fairness related failures
[14], and have used it to propose an analysis of "social failure modes" for ML systems [23]. Yet, we
could not locate any studies investigating ML practitioner’s perspectives towards use of FMEA for



social and ethical risk management. Similarly, several works suggest the value of a system theoretic
framework for eliminating or mitigating social and ethical risks of ML systems [6,|17]. These works
illustrate the theoretical application and benefit; however, little work to date explores industry ML
practitioner’s perspectives towards these techniques and how they could address perceived gaps in
current risk management practices [16].

3 Findings

We interviewed 30 participants with expertise in foundational ML research; ethics review and
advising; program and product management; and engineering. Interviews focused on participants’ (a)
current social and ethical risk management practices and (b) first impressions of safety engineering
frameworks/l]

In terms of current practices, participants described increased formalization of risk management,
yet noted key aspects of their work - including defining and assessing for social and ethical risks
- were characterized by an interpretive flexibility through which practitioners navigate peers with
multiple and sometimes conflicting understandings of risk management work. While this flexibility
accommodates the wide range of ML systems and contexts of deployment these practitioners are
responsibilized to assess, it also fosters friction in multidisciplinary environments. Our findings show
the emergent and chaotic nature of existing practices. We identified four key challenges that ML
practitioners face when developing and implementing these practices: (a) Organizational structure:
Incentive conflicts, fractured adoption, and unclear responsibilization; (b) resource constraints (e.g.,
time, capacity and data); (c) communication limitation of people with diverse perspectives and forms
of expertise; and (d) Uncertainty and knowledge gaps for assessing ML systems.

Participant first impressions of FMEA and STPA underscored how safety engineering could bring
greater structure to social and ethical risk management practice. Specifically, we find participants
strongly endorsed the soundness these structures offer for social and ethical risk management.
However, practitioners also emphasized understanding the context of use and implementation of
the ML system remains a critical aspect of assessment, and raised concerns about employing safety
engineering when context is not yet known. Lastly, implementation of FMEA- and STPA-like
processes require internal capacity building and organizational shifts.

3.1 Observations on step-by-steps application of FMEA and STPA

When asked to walk through the FMEA and STPA processes as illustrated in Figures [I] and [2]
participants discussed how they would apply each step on an ML system. Many participants remarked
they would benefit from using FMEA and STPA processes “earlier in development” (R25) when
they are tasked with assessing potential social and ethical risk.

Observations of the FMEA steps

 Identify function or steps: Practitioners expressed that there is value in outlining functions
or steps for an ML system. They suggested either breaking down functions based on intended
uses of an ML-based feature or product (i.e. “to log food, to inform users and to provide the
act of tracking.” (R10)) OR identifying steps for sub-processes along the ML development
pipeline (i.e. “dataset development, annotation, training, evaluation or deployment” (R25)).
Some remarked that it would be challenging to break down functions for the ML model
itself. According to a research scientist “key features/functions [of an ML system] are often
embedded in some distributed representation in the model. This is especially true for larger
models, and it is very hard to assess because the boundaries are not there anymore” (R3).

¢ Identify failure mode: Participants were able and skilled in articulating failure modes
(i.e. “unfavorable chatbot responses to zip codes that are identified as lower socioeconomic
status” (R17)) but expressed uncertainty about their ability to comprehensively identify all
potential failure modes due to the emerging nature of ML technologies. Moreover, they
stated ethical and social risk often emerge from complex and non-tangible failures which
are hard to identify and often need in-depth analysis of the ML system in context of use.

"Details on the study design, and interview findings can be found in the Appendix.



* Identify effect: Participants emphasized the importance of identifying the effect on whom
or what, and expressed this should be incorporated into the FMEA process. They raised
questions and seeked guidance about the extent to which practitioners should be responsible
for protecting the interest of the company deploying/developing an ML system as opposed
to interests of directly impacted users or the society at large.

* Identify cause and control: These two steps were seen as valuable, and participants noted
ML technology companies have some control over changing design/implementation based
on identified causes and controls. Participants noted that causal analysis and developing
controls for social and ethical risk are active areas of research and suffer from challenges
about uncertainties and knowledge gaps in assessing ML systems.

Observations of the STPA steps

* Identify purpose of analysis: Practitioners in different roles appreciated the start from
stakeholder, values and losses. A participant explains “I like the idea of starting with the
negative outcomes, it’s much more user oriented at the beginning, in terms of how it impacts
them” (R1). Social scientists and ethicists noted that in-depth value analysis and normative
guidance is required in this step.

* Create control structure: Participants identified two scopes of analysis for drawing a
control structure: internal company processes OR human-ML product interactions. Some
noted that it is difficult to set meaningful boundaries and questioned how one could create a
control structures for sociotechnical harms such as ecological harms. A participant noted
that “control structure would be very helpful in terms of limiting rather than constantly
overextending where all of the potential problems or risks can come from” (R10). Guidance
is needed for where the system needs to be bounded and future work can use lessons
from current STPA literature/practice. [12]] Similar to reasons expressed for an FMEA,
participants stated it is challenging to create a control structure for an ML model.

» Unsafe control actions: Participants appreciate “the quadrant logic” (R10) (i.e. four
conditions outlined by the STPA process) for identifying how control actions could be
unsafe. Some participants remarked that unsafe control actions could be mapped to “design
choices” (R25) and stated that it would be valuable to have this type of analysis earlier on in
the development process when creators can critically think about unsafe control actions to
inform system requirements and corresponding design choices.

* Loss scenarios: Similar to FMEA, participants noted it would be hard to set boundaries
for identifying causal scenarios for unsafe control actions. Considering the time and
design limitations in our interview, participants did not have the time to provide adequate
feedback on this step. Further investigation is necessary to understand how this step could
be operationalized for ML systems.

4 Conclusion

In this work, we implicitly argue for an expanded definition of safety for ML systems - one which
considers harms beyond physical harms - namely social and ethical harms. We posit that ML safety
discussion need to include future work on how lessons and tools from safety engineering frameworks
can offer a valuable insight for design of safer ML systems even though these frameworks were
traditionally user for different technical systems. ML systems present new challenges; however,
principles of safety engineering is transferrable across different technological systems. Challenges
with organizational structure, resources constraints, representing diverse perspectives, and uncertainty
of assessing ML systems present fertile ground for innovating social and ethical risk management
tools. Quantitative, qualitative and reflexive investigative processes are emerging for defining,
assessing and mitigating social and ethical risks. We examined existing practices and posit tools from
safety engineering could provide value for creating more appropriate frameworks. Our preliminary
discussions with ML practitioners about safety engineering frameworks, such as STPA and FMEA,
showed these approaches could be adapted to provide the necessary guidance for systematically
conducting failure and hazard analysis for social and ethical risks of ML systems. We discussed the
strength and limitations of two processes from safety engineering and highlighted need for further
research.
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A Methodology

We conducted 30 semi-structured interviews with ML industry practitioners specializing in assessing and mitigating ML ethics risks, from
six companies. The research proposal, the interview protocol, and consent forms were reviewed and approved within one of the institutions
represented in this study. Here, we describe the participants, recruiting, data collected, analysis, and study limitations.

A.1 Participants and recruiting

We used purposive and snowball sampling to recruit participants. Recruitment inclusion criteria specified participants be 18 years old or older,
and currently work in an industry position conducting, managing, or researching social and ethical risks of ML system. As our primary research
question is to understand industry adoption of reliability engineering tools, we excluded practitioners in academic, governmental or not-for-profit
organizations. While we did not establish specific quotas for each professional position, we sought a balance of roles and backgrounds.

Four of the authors brainstormed an initial list of interview candidates based on knowledge about their existing work profile (via networking
and publication or presentation track record at major conferences) and sent emails inviting their participation. Once a candidate accepted an
invitation to participate, the interview was scheduled and the interviewer sent the consent form. At the conclusion of each interview session, we
invited participants to recommend other candidates. The lead author conducted all interviews, which lasted approximately 60 minutes except for
two 90-minute interviews.

In total, 30 practitioners from a diverse range of industry roles and educational backgrounds took part in the study (Tabl@. Participants held a
range of roles including management (e.g., product, technical program, research and executive) (n=8), research (n=11), analyst/advisory roles
(n=9), and software engineers (n=2). All participants worked in their current role for at least one year, and had experience assessing multiple
ML systems for social and ethical risks, including classifiers, recommendation systems, large language models and text to image models. We
conducted interviews between June and August 2022. All participants gave informed consent prior to participating in the study; interviews were
recorded with permission. Participants were not financially compensated for their participation.

Table 1: Participant’s roles and reference ID

Job Title Description n (%) 1D

Research (i.e. research scientist, Primarily conduct interdisciplinary 11 (37) R3, R4, R5, R12, R18,

principal researcher) research in responsible ML R19, R21, R25, R22,
R28, R29

Analyst/advisory (i.e. ethics Advise project teams and 9 (30) R6, R7, R8, R13, R14,

reviewer, ethics and policy advisor, review ML systems according to R16, R17,R24, R26

sociotechnical analyst, user internal review processes

researcher, research associate)

Management (i.e. product Manage products, programs, 8 (27) R1, R2, R9. R10, R15,

manager, technical program companies, and research projects R20, R23, R27

manager, research manager, chief

executive officer)

Engineer (i.e. research/software Design and develop ML systems 2 (6) R11,R30
engineer)

A.2 Interview design

The interview protocol consisted of two parts: a) current practices and challenges, and b) first impressions of FMEA and STPA applicability for
ML systems. Following confirmation of consent, we asked participants to describe their role and the type of technologies they focus on. We then
asked participants how they define, assess, and mitigate social and ethical risk, broadly conceived. Moreover, we asked participants to discuss
challenges they face when assessing and mitigating social and ethical risks in their current role. In the second part of the interview, we introduced
the two processes using non-ML examples: FMEA was described with an example of a car tire; STPA was introduced using an example of a new
surgical technique. The introduction of each process (including the example) took approximately 5 minutes. We introduced each technique
one at a time and then discussed it for 10 minutes each. During this discussion, we asked participants to share their first impressions (pros,
cons) while considering their potential use as a social and ethical risks assessment tool for ML systems. We invited them to talk through how
they would apply such a process on an ML system they have assessed previously. To avoid order bias, the interviewer alternated between the
processes for each interview. All interviews were conducted online using a video conferencing platform. Participants discussed both techniques
in all interviews except in two interviews where due to time restraints one of the techniques was not discussed. This occurred once for each of
the technique.

A.3 Data analysis

We used reflexive thematic analysis [3} 2] to understand the main themes in the interview data. We used an automatic transcription software for
transcribing the interview recordings and then manually cleaned the transcripts. The primary author removed identifying information (e.g.,
current employer, specific products/projects mentioned) from the transcripts to protect the anonymity of the participants. Four of authors coded
the data, first taking familiarization notes to highlight key ideas emerging early in the analysis. We then conducted open coding of the interview
data, using the QSR NVivo 12 qualitative analysis software. The lead author coded all of the interviews and three other authors collectively
coded 15 interviews. Every interview was coded by two researchers. The authors responsible for coding met iteratively to discuss codes, data
interpretations, and progress from codes to thematic discussions. During these discussion session, researchers resolved disagreements, and
generated new codes as relevant concepts emerged. In the final session, these authors convened to organize codes thematically and discussed
emerging themes. The lead author compiled all the coding documents and synthesized the themes from the group discussions. Next, thematic
findings were shared with broader research team for confirmation and collaborative discussion.

A.4 Author reflexivity

As with all research, our positionality and lived experiences inform our approach to designing, conducting, and analyzing this research study. All
authors are researchers living in Canada and the United States. Our collective disciplinary backgrounds informing our research perspectives



include ML research and engineering, mechanical engineering, robotics, human-robot interaction, sociology/ science and technology studies,
cognitive sciences, and cybersecurity.

A.5 Study limitations

Our study examines how ML practitioners engage in social and ethical risk management practices, what challenges they face, and how failure and
hazard analysis frameworks could inform and improve their practice. As an exploratory study, further work is needed to deepen understanding
and develop ML model or other contextually-specific insights on the applicability of FMEA and STPA. Moreover, the ML practitioners
interviewed for the study did not have expertise in safety and reliability engineering, and had limited time and exposure to the techniques.
This study reflects first impressions of these frameworks based on their experience. In addition, our participants primarily come from larger,
multinational technology organizations (4 of 6 companies represented) and reside in North America. As industry practitioners, there are
limitations on what some participants could disclose due to confidentiality commitments. Thus, further work could examine views from a wider
range of practitioners, which could provide deeper insights.

B STPA and FMEA Steps

B.1 Failure Mode and Effects Analysis

1. List out the functions of a component/system OR steps of a process.
. Identify potential failure modes, or mechanisms by which each function or step can go wrong.
. Identify the effect, or impact of a failure, and score its severity on a scale of 1 — 10 (least to most severe).

. Identify the cause, or why the failure mode occurs, and score its likelihood of occurrence on a scale of 1 — 10 (least to most likely).

[ I

. Identify controls, or how a failure mode could be detected, and score likelihood of detection on a scale of 1 — 10 (least to most
likely).

6. Calculate Risk Priority Number (RPN) by multiplying the three scores; higher RPN indicates higher risk level. Develop recom-
mended actions for each failure mode and prioritize based on RPN.

B.2 System Theoretic Process Analysis

1. Define the purpose of the analysis by identifying losses via outlining stakeholders, and their values. System specific hazards and
controls are then highlighted based on the loss.

2. Model the control structure of the full sociotechnical system using control feedback loops which consists of a controller which
sends control actions to a system that is being controlled while receiving feedback from the same system.

3. Identify unsafe control actions (UCA) by going through each control action and thinking about unsafe modes of (no) action,
incorrect action and untimely action.

4. Identify potential loss scenarios by outlining potential casual scenarios for each UCA.
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