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Abstract
We study the ‘feasible action search’ (FAS) prob-
lem for linear bandits, wherein a learner attempts
to discover a feasible point for a set of linear con-
straints Φ∗a ≥ 0, without knowledge of the ma-
trix Φ∗ ∈ Rm×d. A FAS learner selects a se-
quence of actions at, and uses observations of
the form Φ∗at + noise to either find a point with
nearly optimal ‘safety margin’, or detect that the
constraints are infeasible, where the safety mar-
gin of an action measures its (signed) distance
from the constraint boundary. While of interest
in its own right, the FAS problem also directly
addresses a key deficiency in the extant theory of
‘safe linear bandits’ (SLBs), by discovering a safe
initialisation for low-regret SLB methods.
We propose a novel efficient FAS-learner based
on Thompson Sampling (TS), FAST, which ap-
plies a coupled random perturbation to an es-
timate of Φ∗, and plays a maximin point of a
game induced by this perturbed matrix. We prove
that FAST stops in Õ(d3/ε2M2

∗ ) steps, and incurs
Õ(d3/|M∗|) safety cost, to either correctly detect
infeasibility, or find a point aout that is at least
(1 − ε)M∗-safe, where M∗ is the optimal safety
margin of Φ∗. Further, instantiating prior SLB
methods with aout yields the first SLB methods
that incur Õ(

√
d3T/M2

∗ ) regret and O(1) risk
without a priori knowledge of a safe action. The
main technical novelty lies in the extension of TS
to this multiobjective setting, for which we both
propose a coupled noise design, and provide an
analysis that avoids convexity considerations.

1. Introduction
Linear bandits capture an online approach to the fundamen-
tal decision-making paradigm of linear programs (LPs) with

1Boston University 2Broad Institute of MIT and Harvard
3University of Michigan. Correspondence to: A. Gangrade <gan-
grade@bu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

unknown objective and noisy measurements of the quality
of actions. The generality of this setup lends itself to many
applications in, e.g., machine learning, control system, and
resource allocation. However, the standard theory assumes
that the constraints of these LPs are known, which is unreal-
istic in a multitude of applications in these domains. This
motivates the safe linear bandit (SLB) problem, wherein
the learner attempts to select actions with high reward while
not violating unknown (linear) constraints at any time using
noisy feedback of the rewards and constraint levels.

The recent literature has described several methods that ad-
dress this problem in a strong sense, ensuring low regret
whilst never violating safety, i.e., playing an infeasible ac-
tion. Such an algorithm must be initialised with a safe action,
asafe, to begin with, in order to ‘seed’ the method with an
initial safe region to explore over. Moreover, the safety mar-
gin of asafe (see below) quantitatively affects regret bounds,
and so must be large to ensure good performance. However,
no prior method discusses how to get hold of such a point.
This not only limits the applicability of these algorithms,
but also hides their true safety costs, since the discovery
of such asafe would, with high likelihood, require playing
some unsafe actions. We address this question by designing
an efficient algorithm for feasible action search (FAS).

Concretely, consider the program maxa∈A θ⊤∗ a : Φ∗a ≥ α,
where the reward parameters θ∗ ∈ Rd and constraint param-
eters Φ∗ ∈ Rm×d are unknown, while A is a known convex
domain. The safety margin of an action a ∈ A, M(a) :=
minλ≥0,1⊤

mλ=1 λ
⊤Φ∗a, measures a ‘signed distance’ of a

from the constraint boundaries. Given ε, δ ∈ (0, 1), a FAS
learner selects a sequence of actions {at} ⊂ A, and accu-
mulates information by observing noisy risk measurements
St = Φ∗at + noise in response. This continues until a
stopping time, τ , at which point the learner either

• declares infeasibility, i.e., that A ∩ {Φ∗a ≥ 0} = ∅, OR
• outputs an action aout, and a ‘certificate’ Mout such that

M(aout) ≥Mout, and Mout ≥ (1− ε)M∗,

where M∗ := maxa∈A M(a) is the optimal safety margin.

The goal is to minimise τ, while ensuring correctness with
probability at least 1− δ. Ideal methods should adapt their
stopping time to the unknown M∗, incur limited ‘safety
costs’ during exploration, and be computationally efficient.
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Of course, the FAS problem is of interest in its own right,
beyond applications to SLBs, with applications to domains
such as control, manufacturing, and resource allocation,
where practitioners must balance many objectives with one
solution. For instance, when designing a manufacturing
process, a FAS-learner would find a set of process parame-
ters that balance manifold cost, efficiency, and quality con-
straints. The parameter ε serves as a dial between the re-
silience of such parameters to process perturbations, and
the cost of identifying the feasible action. In particular, we
note that setting ε = 1 recovers a safe action with minimal
search costs, but offers no nontrivial safety margin.

Our Contributions. We exploit the design of a recent (in-
tractable) bandit feasibility test for LPs to propose a novel
efficient method, ‘Feasible Action Search via Thompson
Sampling’ (FAST), to address the FAS problem for linear
constraints. FAST operates by constructing regression es-
timates of Φ∗, and playing a maximin point of the matrix
game induced by randomly perturbing this estimate. This
uses Õ(LP-time) computation per round, where LP-time
is the cost of optimising a linear objective under m linear
constraints over A to constant error. Stoppage is driven
by estimates that bound the value of M∗, and we pick the
average of played actions as aout.

We show that FAST is reliable, and stops in a near-
optimal Õ(

√
d3/ε2M2

∗ ) rounds if the instance is feasi-
ble, or Õ(

√
d3/|M∗|2) steps if it is infeasible. We fur-

ther show that FAST accumulates a limited safety cost of
Sτ = Õ(d3/|M∗|), where St :=

∑
s≤t(−mini Φ∗at)+

measures the extent of constraint violation per round. In
each case, the dependence on m/δ is polylogarithmic.

Further, due to its limited safety cost, instantiating prior
methods for SLBs with the output of FAST yields the
first SLB algorithm that, without a priori knowledge of
a safe action, attains Õ(

√
d3T/M2

∗ ) regret (see §2), and
Õ(d3/M∗) = O(1) safety costs in T rounds. This not only
removes the assumption of knowing asafe, but also improves
the regret by a factor of M∗/M(asafe), which may be arbi-
trarily large, but at a (T -independent) safety cost.

Technical Novelty. As with any method based on Thomp-
son Sampling (TS), FAST operates by drawing noisily per-
turbed estimates of the unknown parameter, Φ̃t, and acting
‘greedily’ according to a program induced by this Φ̃t. The
main challenge is to design an effective distribution on the
noise, and to prove the associated bounds.

The influential approach of Abeille & Lazaric (2017) for
analysing low-regret linear TS is a natural framework to
adopt for this task. However, this approach is rooted in
convexity, and further does not consider multiple objectives
together. In detail, Abeille & Lazaric (2017) exploit the con-
vexity of the value function of an LP with given constraints,

J(θ) := maxa∈A θ⊤a, to execute a gradient-based analysis
showing that if the noise ensures that the ‘global optimism
event’ Gu

t := {θ̃t : J(θ̃t) ≥ J(θ∗)} occurs at a constant
rate, then the regret is bounded. They further exploit the
convexity of J(θ) to show that for certain concrete choices
of noise law, this Gu

t is indeed frequent enough.

In our multiobjective scenario, the role of J(θ) is instead
played by K(Φ) := maxa∈A minλ∈∆m λ⊤Φa. However,
this K is not convex in Φ, which precludes both the gradient-
based approach to showing progress in learning, as well as
the convexity-based analysis for the frequency of optimism.

Our analysis of FAST is instead based on a convexity-free
approach using the local optimism event

Lt := {Φ̃t : min
λ∈∆m

λ⊤Φ̃ta∗ ≥M∗},

where a∗ denotes a maximin point of the matrix game in-
duced by Φ∗. In words, Lt is the event that after perturbation,
the safety margin of a∗ increases. We first argue, via a di-
rect analysis of the value, that as long as the chance of Lt
is Ω(1), a simple test statistic maintains efficient bounds on
the true value M∗, enabling fast and reliable stoppage. Next,
we provide a generic construction of a coupled noise that
ensures that P(Lt|history) ≥ 0.15. Concretely, this noise
design applies identical scaled spherical perturbations to
each of the rows of an estimate of Φ∗, and we show that
Lt is frequent under this noise by directly analysing the be-
haviour of the perturbed program at a∗. It is interesting to
note that in this local analysis, the natural noise design of
perturbing each row of an estimate of Φ∗ independently is
hard to control, and crude analyses only yield ineffective
2−Ω(m) bounds). This local optimism approach may be of
independent interest, since it may apply to TS-based algo-
rithms in other scenarios with nonconvex value functions.

1.1. Related Work

Best Arm Identification (BAI). The FAS problem is in-
timately related to the fixed-confidence BAI problem for
linear bandits. Typically, this is formulated for a finite A,
and the focus is on identifying the best arm exactly using
experimental design based methods (Soare et al., 2014).
Several asymptotically optimal (as the confidence parameter
δ → 0) methods have been proposed for this problem (e.g.
Fiez et al., 2019; Jedra & Proutiere, 2020; Degenne et al.,
2020; Wang et al., 2021). FAS, however, operates over a con-
tinuum of actions, which renders the Ω(|A|) computation
incurred in these methods untenable (note that any reason-
able discretisation is of size 2Ω(d)). The problem of finding
a ε-optimal action in continuum linear bandits has received
less attention, but is usually approached by either sampling
from a uniform spanner to directly estimate the parameters
(Jedra & Proutiere, 2020), or by playing a low-regret algo-
rithm. Our approach is along the latter lines, but with key
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differences: we need to deal with finding a near-maximin
action for many objectives, our approximation guarantees
are multiplicative in the optimal cost rather than additive,
and we need to verify the feasibility of the instance. We
note that multiplicative approximation is necessary—since
M∗ is unknown, a ε-safe action for a fixed ε may even be
unsafe. Such multiplicative guarantees have been studied
for multi-armed bandits (Michel et al., 2022), but we are un-
aware of a linear bandit treatment. We note the recent work
of Li et al. (2024b), which proposes a TS-based sampling
strategy for BAI in finite A linear bandits. While we do not
use this approach, adapting it to FAS over continuous A is
an interesting direction.

Best Safe Arm ID (BSAI). Naturally, the FAS problem is
intimately related to the problem of discovering a ε-optimal
feasible action (e.g. Katz-Samuels & Scott, 2019; Camilleri
et al., 2022; Carlsson et al., 2023) for an unknown objec-
tive and constraint. Again, most of the literature focuses
on finite |A|, often in the multi-armed bandit setup, with
additive guarantees of both the optimality and safety of ac-
tions. Notice that under such an additive guarantee the latter
scenario, the selected action can violate the constraints by
up to ε. Instead, we study a continuous A, and, with high
probability, necessarily output a safe action. Further, we
note that the FAS and BSAI problems have distinct struc-
ture. For instance, the optimal action in BSAI typically lies
close to (if not at) the boundary of the feasible set, and thus
simply verifying the safety of such an action requires a huge
number of samples. In contrast, in FAS the output lies deep
within the feasible set, and solving the FAS problem needs
correspondingly fewer samples.

Minimax and Pareto Bandits. FAST operates by exploit-
ing that the FAS problem is equivalent to searching for a
point that is near-maximin for the matrix game induced by
Φ∗, which naturally relates it to the problem of achieving
maximin values in a low-regret sense that has attracted re-
cent attention (O’Donoghue et al., 2021; Maiti et al., 2023;
Li et al., 2024a). The extant literature again focuses on
the multi-armed bandit setting using UCB-style approaches
(with Ω(|A|) computation per round), while we study con-
tinuous A. Further, the information structure in our study is
different from these prior works, reflected in the fact that our
bounds scale with log(m), while theirs scale as poly(m).
Instead of searching for a minimax point, a number of works
deal with multiobjectivity by attempting to identify the en-
tire set of Pareto-optimal actions (e.g. Auer et al., 2016). In
our notation, this is the set of a ∈ A such that Φ∗a ̸≤ Φ∗a

′

for all a′ ∈ A. This objective is very different from our
setup—we only need to identify a single action, but this
must be near-maximin. Note, of course, that the Pareto set
may contain actions that are unsafe (and in the worst case,
the entire frontier can be composed of unsafe points).

Feasibility Testing. A closely related work to ours is a
recent study of a subset of the authors and A. Gopalan
(Gangrade et al., 2024b) on feasibility testing of unknown
LPs, which is a ‘testing version’ of our estimation problem.
This work uses a frequentist low-regret method based on
‘OFUL’ (Abbasi-Yadkori et al., 2011) to design a reliable
estimate of the sign of M∗, using which they proposed
the ‘ellipsoidal optimistic-greedy test,’ EOGT. Of course,
using a version of our Lemma 7, in principle EOGT can
also be used for the FAS problem. However, this method
is computationally intractable, requiring, in each round, the
learner to solve the program

max
Φ∈C

max
a∈A

min
λ∈∆m

λ⊤Φa,

where C is a (nonconvex) confidence set for the constraint
parameters, structured as a union of polytopes (see §2.1).
This problem is in fact NP-hard even if C were a convex
set, and standard L1-based relaxations (Dani et al., 2008)
need the learner to solve Ω((2d)m) matrix games in each
round. Our procedure FAST both extends the insights of this
work to identify safe actions, but also does so efficiently.
In the process, we obtain an efficient version of this test as
well, which can be obtained by passing ε = 1 to FAST. In
passing, we note that this feasibility testing problem is inti-
mately related to the ‘minimum threshold testing problem’
(Kaufmann et al., 2018), and refer the reader to Gangrade
et al. (2024b) for a detailed discussion.

Low-Regret SLBs have attracted attention in the recent lit-
erature, and a many low-regret methods no safety violations
have been proposed (Amani et al., 2019; Moradipari et al.,
2021; Pacchiano et al., 2021; 2024; Hutchinson et al., 2023).
These methods fundamentally require the a priori knowl-
edge of a safe action asafe such that M(asafe) > 0, and
(under efficient relaxations) the ensuing regret bounds scale
as Õ(

√
d3T/M(asafe)2). Our solution to the FAS problem

not only eliminates this assumption, but also replaces the
arbitrary M(asafe) in the regret bounds by the optimal safety
margin M∗, improving the resulting regret bounds, albeit at
an (unavoidable) O(1) safety cost. The only methods that
do not require an assumption of knowing asafe to begin with
are known to violate constraints regularly, and only yield
Õ(
√
T ) bounds on safety costs (Gangrade et al., 2024a).

In passing, we note that the above SLB problem is distinct
from the ‘bandits with knapsacks’ problem, wherein learn-
ers may violate constraints in each round, but must satisfy
long-term aggregate constraints (e.g. Badanidiyuru et al.,
2013). An interesting point of contact in this literature lies
in the use of primal-dual methods for such problems, which
too require the use of a point with nontrivial margin (re-
ferred to as a Slater parameter therein). Within this context,
Castiglioni et al. (2022, §8) study a related method to iden-
tify (or bound) such a Slater parameter, which is related to
our FAS problem. We note, however, that this method is
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focused on initialising a primal-dual algorithm, and so treats
this FAS problem very crudely. In particular, the method
does not adapt its stopping behaviour to the size of M∗, nor
obtains tight FAS guarantees, unlike our work.

Thompson Sampling (TS). We refer the reader to Russo
et al. (2018) for background on TS. For parametric prob-
lems, the efficiency of TS has long made this approach
attractive, with frequentist regret bounds in the linear setup
first demonstrated by Agrawal & Goyal (2013). Abeille &
Lazaric (2017) provide a simplification of this analysis that
most strongly informs our approach. Of course, these analy-
ses are limited to single objectives, while our focus lies in
finding a maximin point of a multiobjective problem. This
introduces new challenges arising from the nonconvexity of
the value function, and the need for a robust noise design.
We address these by developing a systematic convexity-free
analysis that directly exploits the saddle-point structure of
the optimal noisy value, and further describe a novel coupled
noise structure to ensure frequent optimism.

2. Problem Definition and Background
Notation. For v ∈ Rd, ∥v∥ denotes the Euclidean 2-norm.
For a PSD matrix M, ∥v∥M := ∥M 1/2v∥. An inequality
a ≤ b is said to hold under an event E if a1E ≤ b1E, where
1E indicates E. Standard Big-O notation is used, and Õ
hides polylog factors. Sd is the unit ℓ2 sphere in Rd, and
∆d the simplex. For a matrix M , M i denotes its ith row.
Gaussians are denoted N .

Setup. We are concerned with linear programs of the form
maxa∈A{θ⊤∗ a : Φ∗a ≥ 0}, where A ⊂ Rd is assumed to
be a known bounded domain, while θ∗ ∈ Rd,Φ∗ ∈ Rm×d

are unknown reward and constraint parameters. The safe,
or feasible, set is denoted S∗ := A ∩ {Φ∗a ≥ 0}. Note
that S∗ may be empty. We define the safety margin of an
action a as M(a) := minλ∈∆m λ⊤Φ∗a. This is equal to
mini∈[1:m](Φ∗a)

i, and thus captures the smallest ‘slack’ in
the constraints at a if positive, and the greatest violation of
them if negative. The optimal safety margin is

M∗ := max
a∈A

M(a) = max
a∈A

min
λ∈∆m

λ⊤Φ∗a.

Note that M∗ may be positive or negative. If negative, then
S∗ = ∅, i.e., the instance is infeasible. Throughout, we use
(a∗, λ∗) to denote a(ny) saddle point of this game.
Nonzero constraint levels. We note that our setup of {Φ∗a ≥
0} subsumes the general case {Φ∗a ≥ α}, since we can
augment the dimension by one, include α as a column of
Φ∗, and include ad+1 = 1 as a constraint in A.

Play proceeds in rounds indexed by t ∈ N. At each t,
the learner picks an action at ∈ A, and gets the feedback
Rt = θ⊤∗ at+wR

t , and St = Φ∗at+wS
t , where wR

t ∈ R and
wS

t ∈ Rm are noise. Let Ct denote randomness available

to the learner at round t. We will denote the historical
filtration as Ht−1 = σ({(as, Rs, Ss, Cs)}s<t), and Gt :=
σ(Ht−1 ∪ {at, Ct}}. The actions at must be adapted to
σ(Ht−1 ∪ σ({Ct})).

In the feasible action search (FAS) problem, given ε, δ ∈
(0, 1), the learner selects actions, and at some point, deter-
mines a stopping time, τ. Upon stopping, the learner either
declares the instance to be infeasible, or outputs an action
aout ∈ A, along with a certificate Mout. We call a FAS
learner (ε, δ)-reliable if with probability at least 1− δ, (a) if
M∗ < 0, the learner declares infeasibility, and (b) if M∗ >
0, the learner ensures that M(aout) ≥ Mout ≥ (1 − ε)M∗
w.p. at least 1 − δ. The goal is to select actions and the
stopping rule in a way that maintains reliability, whilst min-
imising τ (which is the number of samples used). We note
that the reward information need not be utilised by a FAS
learner. In addition to the stopping time, we will control the
safety cost of exploration, Sτ , where for t ∈ N,

St :=
∑
s≤t

(−min
λ

λ⊤Φ∗at)+,

with (z)+ := max(z, 0). Notice that St penalises any ex-
cursion outside of the feasible set, but playing within this
set does not yield a reduction in St.

In the regret-control problem, given δ ∈ (0, 1), the
learner’s goal is to ensure that w.p. at least 1− δ, both the
safety cost and the regret are well-controlled, where, with
OPT being the optimal value of the program, the regret is

Rt :=
∑
s≤t

(OPT− θ⊤∗ at)+.

When discussing regret-control, we tacitly will assume fea-
sibility, i.e., that S∗ := A ∩ {Φ∗a ≤ 0} ≠ ∅.

Standard Assumptions. Throughout, we will assume the
following conditions on the instance (θ,Φ,A), and noise w.
All subsequent results only hold under these assumptions.
•Boundedness: it holds that max(∥θ∗∥mmaxi ∥Φi

∗∥) ≤ 1,
and A ⊂ {a : ∥a∥ ≤ 1}.
•SubGaussian noise: wt := (wR

t , (w
S
t )

⊤)⊤ is centred and
1-subGaussian with respect to Gt, i.e., E[wt|Gt] = 0, and
∀λ ∈ Rm+1,E[exp(λ⊤wt)|Gt] ≤ exp(∥λ2∥/2).
If augmenting the dimension to handle nonzero constraint
levels, boundedness only applies to the unknown parts of Φ.

2.1. Background

We include repeatedly used background on online linear
regression, and on laws of iterated logarithms.

Confidence Ellipsoids. We estimate the parameters Φ∗ given
Ht−1 by Φ̂t = argminΦ̂

∑
s<t ∥Φ̂as − Ss∥2 +

∑
i ∥Φ̂i∥2.

The standard confidence set for Φ∗ is

Ct(δ) = {Φ̃ : ∀ rows i, ∥Φ̃i − Φ̂i
t∥Vt
≤ ωt(δ)},
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where Vt = I +
∑

s<t asa
⊤
s , and

ωt(δ) := 1 + (1/2 log(2m/δ) + 1/4 log detVt)
1/2.

The first key result states that these confidence ellipsoids
are consistent at all times.
Lemma 1. (Abbasi-Yadkori et al., 2011) Define the con-
sistency event at time t Cont(δ) = {Φ∗ ∈ Ct(δ)}, and
Con(δ) :=

⋂
t≥1 Cont(δ). Under the standard assumptions,

for all δ ∈ (0, 1), P(Con(δ)) ≥ 1− δ.

The following result is termed the elliptical potential lemma
(Abbasi-Yadkori et al., 2011; Carpentier et al., 2020).
Lemma 2. For any t, and any sequence of actions {at}
lying in the unit ball, it holds that∑

s≤t

∥as∥V −1
s
≤
√

2t log detVt ≤
√
2dt log(1 + t/d).

We will also need the following nonasymptotic law of iter-
ated logarithms (LIL) (e.g. Howard et al., 2021).
Lemma 3. For any filtration {Ft}, if ξt is a process adapted
to Ft that is conditionally centred and 1-subGaussian, then

∀δ ∈ (0, 1),P
(
∃t : |Zt| >LIL(t, δ)

)
≤ δ, where

Zt :=
∑
s≤t

ξs,& LIL(t, δ) :=
√

4t log(11max(log t, 1)/δ).

3. Feasible Action Search via Thompson
Sampling

As previously discussed, our algorithm is inspired by the
EOGT procedure of Gangrade et al. (2024a). This method
uses a low-regret algorithms for linear bandits to construct
an approach to estimate the sign of the value of a matrix
game. Our strategy is to apply this idea to construct a com-
putationally efficient method by exploiting a randomised
approach based on Thompson Sampling.

Our method, FAST is parametrised by a law µ on Rm×d,
along with ε, δ. FAST(µ, ε, δ), operates by first drawing a
noise matrix Ht ∼ µ, independently of Ht−1, and construct-
ing the perturbed constraint matrix

Φ̃t = Φ(Ht, t, δ) := Φ̂t + ωt(δ)HtV
1/2
t . (1)

Observe that the perturbation is aligned with the geometry
induced by the historical information via ωtV

1/2
t . Given

Φ̃t, we select both an action at ∈ A, as well as a vector
λt ∈ ∆m by solving the game

max
a∈A

min
λ∈∆m

λ⊤Φ̃ta. (2)

The action at is played, and the ensuing safety feedback is
used along with λt to construct the main statistic

Tt :=
∑
s≤t

λ⊤
s Ss,

Algorithm 1 Feasible Action Search via Thompson Sam-
pling (FAST(µ, ε, δ))

1: Input: ε, δ ∈ (0, 1), µ, a law on Rm×d, and A.
2: Initialise: H0 ← ∅,T0 ← 0, t← 0, τ ← −∞
3: while τ < 0 do
4: Increment t and draw Ht ∼ µ independent of Ht−1.
5: Φ̃t ← Φ̂t + ωt(δ)HtV

−1/2.
6: Compute λt, at via (2).
7: Play at, and observe St.
8: Tt ← Tt−1 + λ⊤

t St, ⟨a⟩t ←
∑

s≤t as/t.
9: Update Bt(µ, δ) as defined in Lemma 7.

10: Ut ← (Tt + Bt)/t, Lt ← (Tt −Bt)/t.
11: if Ut < 0 or (Lt > (1− ε)Ut and Ut > 0) then
12: τ ← t.
13: if Uτ > 0 then
14: Return aout = ⟨a⟩τ , Mout = Lτ

15: Return "Instance is infeasible".

which is used to determine stoppage.

There are two important questions to address: how should
one select µ, and how should one select the stopping and
decision rules to ensure both efficiency and reliability.

To this end, in §3.1, we describe a generic ‘concentration-
optimism’ condition on µ, and show that under this condi-
tion, the value of Tt tracks the optimal safety margin in the
sense that

Tt ∈ tM∗ ±Bt(µ, δ),

where Bt is an adapted computable process defined below.
Using this, in §3.2 we will describe a simple reliable stop-
ping rule, which either detects that M∗ < 0, or continues
sampling until ⟨a⟩t :=

∑
s<t as/t is an appropriately feasi-

ble action. Next, in §3.3, we provide a generic construction
of µs satisfying this CO condition, operationalising this de-
sign. Finally, in §3.4, we use these properties to analyse the
behaviour of the stopping time and the safety costs of FAST.

3.1. The CO Condition and the Tracking Inequality

As in prior studies of linear TS, the core insight we exploit is
that progress is made in learning whenever the perturbation
is ‘optimistic’, i.e., the optimal perturbed value dominates
the true value. Thus, it is enough to design a noise that
ensures frequent optimism, while limiting blowups in errors
due to the scale of these perturbations. For the FAS problem,
we encapsulate these two aspects in the following condition.

Definition 4. Let B : [0, 1] → R≥0 be a map, and π ∈
(0, 1]. Define the global optimism event

Gt(δ) := {Ht : K(Φ̃t) ≥ K(Φ∗)},

where K(Φ) := maxa∈A minλ∈∆m λ⊤Φa. Recall the
event Cont(δ) = {Φ∗ ∈ Ct(δ)} from Lemma 1.

5



Feasible Action Search for Bandit LPs via Thompson Sampling

We say that a distribution µ on Rm×d satisfies a B-
concentration condition if ∀t, ξ ∈ [0, 1], it holds that

µ({H : max
i
∥Hi∥ > B(ξ)}) ≤ ξ.

Further, we say that µ satisfies a π-optimism condition if

∀δ, t,1Cont(δ)E[µ(Gt(δ))|Ht−1] ≥ π1Cont(δ).

We will succinctly say that µ satisfies a (B, π)-CO condition
if both these properties are true.

The concentration property above limits how far the pertur-
bation can move Φ̃t, and thus, the size of Φ̃t − Φ∗ under
consistency. The event Gt(δ) is a ‘global optimism’ event,
in that when Φ̃t ∈ Gt(δ), the value of the game induced
by Φ̃t dominates the value induced by Φ∗ (which equals
M∗). Note that Gt(δ) dependts on δ through the ωt(δ) term
in Φ̃t in (1). The remainder of this section will derive key
consequences of the CO condition, and we leave a generic
construction of laws meeting ‘good’ CO conditions to §3.3.

Roundwise Tracking. The main utility of the CO condition
is the following key result.

Lemma 5. Let δt = min(π/2, δ/t(t+ 1)), and define the
event Ballt(δ) := {maxi ∥Hi

t∥ ≤ B(δt)}. If µ-satisfies a
(B, π)-CO condition, then for all t, under Ballt(δ),

M∗ ≤ λ⊤
t Φ̃tat +

4B(δt)ωt(δ)

π
E[∥at∥V −1

t
|Ht−1].

Proof Sketch. We defer most details to §A.1, and only high-
light the main difference from the prior analysis of Abeille
& Lazaric (2017). Using this approach, under Ballt(δ),

M∗ −K(Φ̃t) ≤ E[K(Φ̃t)−K(Φ̄t)|Ht−1, G̃t],

where Φ̄t is the minimiser of K(Φ) over the set Et =
{Φ(H, t, δ) : maxi ∥Hi∥ ≤ B(δt)}, and G̃t = Gt ∩
Ballt(δ). At this point, prior analyses use the convexity
of the value function in terms of the unknown parameters,
which fails for us. Instead, we take the following direct tack.

Let (āt, λ̄t) denote a saddle point of Φ̄t such that λ̄⊤
t Φ̄tāt =

K(Φ̄t). By the saddle point property, λ̄⊤
t Φ̄tat ≤ K(Φ̄t).

By the same coin, λ̄⊤
t Φ̃tat ≥ λ⊤

t Φ̃tat = K(Φ̃t). So,

K(Φ̃t)−K(Φ̄t) ≤ λ̄⊤
t (Φ̃t − Φ̄t)at.

But, under G̃t ⊂ Ballt, each row of Φ̃t − Φ̄t has Vt-
norm at most 2B(δt)ωt(δ), and thus ∥(Φ̃t − Φ̄t)at∥∞ ≤
2Bωt∥at∥V −1

t
(see Lemma 11 in §A.1). Since ∥λ̄t∥1 = 1,

by Hoelder’s inequality, we conclude that under Ballt,

M∗ −K(Φ̃t) ≤ 2B(δt)ωt(δ)E[∥at∥V −1
t
|Ht−1, G̃t].

The conclusion follows by using the nonegativ-
ity of ∥as∥V −1

s
to see that E[∥as∥V −1

s
|Ht−1] ≥

E[µ(G̃t)|Ht−1]E[∥as∥V −1
s
|Ht−1, G̃t], and noting that

µ(G̃t) ≥ µ(Gt)− δt since µ(Ballt(δ)) ≥ 1− δt.

In more detail, for the single objective value J(θ) =
maxa∈A θ⊤a, prior analysis due to Abeille & Lazaric
(2017) rely on the convexity of J to bound J(θ̃t)−J(θ̄t) by
∇J(θ̃t)⊤(θ̃t − θ̄t), where θ̃t is the perturbed objective, and
θ̄t is an analogue of Φ̄t. The final step is to use the fact that
∇J(θ̃t) = at almost surely, which concludes the argument
via the Cauchy-Schwarz inequality.

In our case, the map K(Φ) is nonconvex1, and we instead
approach this question by directly exploiting the saddle
point structure of K. This strategy should be useful in
other scenarios with unknown constraints by exploiting the
saddle point property of a Lagrangian (as long as norms of
dual-optimal solutions are controlled).

The above is complemented by a roundwise lower bound.

Lemma 6. For all t, under Ballt(δ) ∩ Cont(δ),

M∗ ≥M(at) ≥ λ⊤
t Φ∗at − 2(1 +B(δt))ωt(δ)∥at∥V −1

t

Proof. Under the event in question, each row of Φ̃t − Φ∗
has Vt-norm bounded by ζt = (1 + B(δt))ωt(δ). Now,
by definition, M∗ ≥ M(at). Further, suppose M(at) =

λ(at)
⊤Φ∗at. Since (at, λt) is a saddle point for Φ̃t,

λ(at)
⊤Φ̃tat ≥ λ⊤

t Φ̃tat.

But, since ∥λ(at)∥1 = ∥λt∥1 = 1, we further have

λ(at)
⊤Φ∗at + ζt∥at∥V −1

t
≥ λ⊤

t Φ∗at − ζt∥at∥V −1
t

.

Tracking Inequality. The above roundwise results, coupled
with concentration arguments, yield the main consequence
of the CO condition for the FAS problem, which relate the
behaviour of the statistic T to M∗. This is shown in §A.1.

Lemma 7. Define the boundary process

Bt(µ, δ) :=
(1 + 5B(δt))ωt(δ)

min(π, 1/2)
(LIL(t, δ)+

∑
s≤t

∥as∥V −1
s

).

If µ satisfies a (B, π)-CO condition, and δ ∈ (0, 1), then
for δt := min(π, δ/t(t+1)), with probability at least 1− 4δ,
FAST(µ, ε, δ) ensures that simultaneously for all t

Tt + Bt(µ, δ) ≥ tM∗ ≥
∑
s≤t

M(as) ≥ Tt −Bt(µ, δ).

1e.g., consider the payoff
(
1− z z
z z − 1

)
over A = ∆2

as z varies. Via direct computation (see §A.5.1), we find that
K(z) = z +min(0, (2z)−1 − 1), which is nonconvex over any
interval containing z = 1/2.
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3.2. The Design of FAST(µ, ε, δ)

The above tracking inequality captures the main thrusts of
the design of FAST. The two key processes are

Ut :=
Tt + Bt

t
, and Lt :=

Tt −Bt

t
.

Under the tracking inequality, these bound the optimal mar-
gin M∗ as Ut ≥ M∗ ≥ Lt. This immediately suggests a
reliable stopping criterion: if Ut < 0, then M∗ < 0, and
we can declare infeasibility. If instead Lt > (1 − ε)Ut

and Ut > 0, we can a fortiori conclude that M∗ > 0 and
Lt > (1− ε)M∗. However, yet more is true. Notice that

min
λ

λ⊤Φ∗
∑

s≤t as

t
≥
∑
s≤t

min
λ

λ⊤Φ∗as
t

=
∑
s≤t

M(as)

t
.

Thus, we also find that the ergodic average action ⟨a⟩t =∑
s≤t as/t satisfies M(⟨a⟩t) ≥ Lt. Since A is convex, this

point lies in it, and thus under the second stopping criterion,
we a fortiori conclude that ⟨a⟩t is at least (1− ε)M∗-safe.

This motivates the stopping time of FAST(µ, ε, δ),

τ := inf{t : Ut < 0 OR Lt > (1− ε)Ut > 0}.

Upon stopping, we find a reliable decision by declaring
infeasiblity if Uτ < 0, and outputting ⟨a⟩τ , Lτ if Uτ > 0.

3.3. Choosing an Effective Noise Distribution

The quantitative effect of the choice of µ on FAST is through
the factor B(δt)/π appearing in Bt(µ, δ). Since stoppage
requires that Tt dominates Bt, this factor directly scales the
costs of FAST, and thus a good µ should control this ratio.
We now turn to the problem of designing such µ.

Via a convexity-based analysis, Abeille & Lazaric (2017)
show that for single objective TS, optimism is induced if the
noise law is anticoncentrated (i.e., the noise vector has large
projection along any direction with constant chance) This
lies in tension with B-concentration, and a good balance is
attained by, e.g., N (0, Id), and Unif(

√
3dSd) (§A.2.1).

A natural idea is to draw each row of H independently from
such a law. However, this approach is hard to analyse well:
each row of Ht gets an independent shot at reducing the
noisy feasible set {a : Φ̃ta ≤ 0}, and thus at reducing the
noisy optimal margin K(Φ̃t), which suggests that under
such noise, π would be of the order 2−Ω(m), where m is the
number of unknown constraints. We avoid this issue with a
simple fix, coupling all perturbations, and via a convexity-
free local analysis at a∗, prove the following result in §A.2.

Theorem 8. For a map B̄ : [0, 1]→ R≥0, and p ∈ (0, 1],
let ν be a law on ζ ∈ Rd×1 such that

ν(∥ζ∥ > B̄(δ)) ≤ δ, and ∀u ∈ Rd, ν(ζ⊤u ≥ ∥u∥) ≥ p.

For ζ ∼ ν, let µ be the law of H = 1mζ⊤. Then µ satisfies
a (B, π)-CO condition with π = p, and B(ξ) = B̄(ξ).

The noise design above boils down to setting H = 1mζ⊤,
where ζ is drawn from a good single-objective law. The
core of the analysis shows that under such a noise design,
local optimism at (a∗, λ∗) is frequent, i.e., that the event

Lt(δ) := {Φ̃t : min
λ∈∆m

λ⊤Φ̃ta∗ ≥M∗}

satisfies E[µt(Lt(δ))|Ht−1] ≥ p under Cont(δ). Notice
that in contrast to the global optimism event Gt(δ), Lt(δ)
specifically requires that the value of the perturbed program
increases at a maximal safety margin point a∗. Of course,
Lt(δ) ⊂ Gt(δ), so this event ensures global optimism.

The idea of the analysis is as follows. To begin with, con-
sider just the first row of the Φs. Under the event Cont(δ),
we know by Lemma 1 and the Cauchy-Schwarz inequality
that

Φ̂1
ta∗ ≥ Φ1

∗a∗ − ωt(δ)∥a∗∥V −1
t

.

So, if the noise H1 satisfies

H1V
−1/2
t a∗ ≥ ∥V −1/2

t a∗∥ = ∥a∗∥V −1
t

,

then

Φ̃1
ta∗ = Φ̂1a∗ + ωt(δ)H

1V
−1/2
t a∗ ≥ Φ1

∗a∗.

But each row Φ̂i
t satisfies the same property, and so such an

H1 would improve the value of every constraint, ergo, the
coupled noise H = 1mH1 would ensure that

Φ̃ta∗ = Φ̂ta∗ + 1mH1V
−1/2
t a∗

≥ Φ∗a∗ − ωt(δ)∥a∗∥V −1
t

1m + ωt(δ)∥a∗∥V −1
t

1m = Φ∗a∗,

thus inducing local optimism. The coupled design samples
a (column vector) ζ ∼ ν, and then sets H1 = ζ⊤, H =
1mH1. The ‘anticoncentration’ condition on ν(ζ⊤u ≥ ∥u∥)
in Theorem 8 then ensures that no matter the value of Vt,
with chance at least p, H1(V

−1/2
t a∗) ≥ ∥V −1/2

t a∗∥. The
boundedness of ζ ∼ ν is of course directly inherited by H1,
thus establishing the mentioned CO condition.

This local approach again bypasses convexity considerations
of K(Φ), which prior proofs of frequent optimism need. We
note that even though we only analyse Lt ⊂ Gt, the resulting
optimism rate we prove is the same as these prior analyses,
i.e., we derive π-optimism with many unknown constraints
under the same conditions under which prior work derives
π-optimism for single objectives.

3.4. Stopping Time and Safety Cost Bounds

Instantiating the tracking analysis with our design of effec-
tive µ from the previous section, and controlling the growth
of Bt to B/π · Õ(

√
d2t) yields our main result on the stop-

ping time and safety costs of FAST, as shown in §A.3.
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Theorem 9. Let µ be the law of 1mζ⊤, where ζ ∼
Unif(

√
3d ·Sd), and letA be convex, and log(m/δ) = o(d).

Then FAST(µ, ε, δ/5) is (ε, δ)-reliable, and w.p. at least 1−δ,
in the feasible case, the stopping time is bounded as

τ = Õ

(
d3 + d2 log(m/δ)

ε2M2
∗

)
,

and the excess-risk incurred is bounded as

Sτ = Õ

(
d3

M∗
+

d5/2
√
log(m/δ)

εM∗

)
.

If instead the instance is infeasible, then the same bounds
hold with all ε above replaced by 1, and M∗ by |M∗|.

On tightness. FAST yields a point aout that has near-optimal
safety margin in time Õ(d3/ε2M2

∗ ). Note that since M∗ is
a priori unknown, this procedure adapts to its value. The de-
pendence of τ on ε and M∗ is optimal up to polylog factors.
Indeed, for m = 1, i.e., only a single unknown constraint,
the problem of reliably finding a point with safety margin
(1 − ε)M∗ is equivalent to finding a point that maximises
the unknown objective Φ∗x to within a εM∗ error, and it
is known that any method solving this problem for linear
bandits requires Ω(d2/ε2M2

∗ ) samples in the worst case
(Wagenmaker et al., 2022, Thm. 2). The main loss, then,
is a factor of d in the stopping time (which in turn inflates
the Sτ ). However, such a loss of a factor of d appears in
all known efficient algorithms for linear bandits (Dani et al.,
2008; Agrawal & Goyal, 2013). Indeed, for continuous A,
we are unaware of any polytime algorithm that can identify
near-optimal actions with o(d3) samples.

Computational Costs. The dominating step for FAST is
finding a saddle point of the game (2). By a standard re-
duction (see §A.5.2, and also Boyd & Vandenberghe (2004,
Ch. 5)), this can be computed by solving a linear program
with d + 1 variables and m constraints over the set A.
We note that some care is needed: typically such meth-
ods are only efficient for approximate computation of the
optima. However, our tracking analysis is robust to approxi-
mation errors that are o(t−0.5), and using this approximat-
plot(mean(tau(ion level, the computational cost needed at
round t scales as O(LP-time · log(t)) by, e.g., interior-point
methods (Boyd & Vandenberghe, 2004). Of course, for
convex A, this LP-time is scales polynomially in m, d, and
appropriate complexity measures of A. In particular, if A is
a polyhedron with k faces, then this is poly(d,m+ k).
We reiterate that this efficiency holds even though A is
continuous. This is distinct from finite-action bandit explo-
ration approaches, where the computation per round grows
as Ω(|A|). Discretisation of A at the scale εM∗ would
require Ω((εM∗)

−d) points, making these approaches un-
tenable in our scenario. Of course, M∗ is unknown, so such
discretisation cannot be directly implemented anyway.

Relationship to EOGT. FAST can be seen as an efficient ex-
tension of the feasibility test EOGT (Gangrade et al., 2024b).
Indeed, if executed with ε = 1, FAST stops as soon as
Ut < 0 or Lt > 0, which yields a reliable detection of the
feasibility of the constraints, capturing the testing guarantees
of EOGT. Of course, by coupling EOGT with an appropriate
version of our Lemma 7, we can also use this to method
to solve the FAS problem. Quantitatively, EOGT would
need τ = Õ(d2/(εM∗)

2) samples (and the ℓ1-relaxation
proposed by Gangrade et al. (2024b) to implement EOGT
would need τ = Õ(d3/(εM∗)

2)), with testing guarantees
recovered by setting ε = 1. Thus, FAST recovers the same
stopping behaviour, except for the loss of the extra factor of
d relative to the unrelaxed-EOGT. As previously discussed,
such a loss is associated with all known efficient methods
for linear bandits. We note that in simulations (§B.2), FAST
with appropriately selected noise (see below and §B) is both
computationally and statisically faster than EOGT even for
small m. In particular, in the scenario of §B.2, we have
d = 6,m = 2,M∗ = 0.4, and the stopping time of FAST
is ∼ 27× smaller than that of EOGT, and each round is
∼ 100× faster as well.

Mild Dependence on m, δ. Notice that the dependence of
τ on m and δ is quite weak. These terms appear logarithmi-
cally, and scale with second order factors in the dimension d.
Thus, in the practically relevant regime of m/δ = poly(d),
the statistical effect of large m or small δ is limited.

Mild Dependence of ST on ε. Finally, we highlight that
the main term of ST depends on ε only logarithmically, and
the second order term is a 1/ε

√
d factor smaller (and so is

inactive if ε = Ω(d−1/2)). Further, the safety cost scales
only inversely with M∗, rather than with its square (as in
τ ). This limited safety cost can be understood through the
tracking behaviour of FAST: since the optimal margin occurs
deep inside S∗, and since the margins of the at track the
optimal margin, FAST must play an at ∈ S∗ in most rounds.

FAS v/s Optimal Margin. Nominally, the result above
captures a stronger output than is strictly needed for the
FAS problem, in that aout has margin ≥ (1 − ε)M∗, i.e.,
close to the optimal margin, while FAS only requires us to
output a point with (arbitrarily small) positive margin. We
note that our theory actually captures the latter scenario too,
by setting ε = 1. Indeed, in this case, the procedure will stop
essentially in time required to test feasibility, and provide a
point with arbitrarily small positive margin. This arises due
to the multiplicative nature of our notion of approximation—
in essence, M∗ serves as the natural scale of the search
problem, and ε simply tunes between the resilience of the
solution and the costs of recovery. Note that the resulting
stopping time is still tight.

The Zero Optimal Margin Case. Strictly speaking, The-
orem 9 only captures settings with |M∗| > 0. For com-
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pleteness, we note that for M∗ = 0, no method can have
a nontrivial stoppage guarantee. A simple way to see this
is to note that the Ω(d2/ε2M2

∗ ) bound above diverges as
M∗ → 0.

Practical Noise Distributions. It is well-understood that
while existing analyses of TS require inflation of the noise
variance to demonstrate optimism, in practice the smaller
perturbations of the form N (0, Id/

√
d) have sufficient opti-

mism rate, and improve regret by a factor of
√
d by contract-

ing B (e.g. Abeille & Lazaric, 2017). In the case of FAST,
this improvement would be stronger still, since the stopping
time scales with (B/π)2. We recommend that in practice,
this method is executed with such a small noise, but without
amending the value of π. Simulations supporting this design
are presented in §B. Of course, proving that this algorithm
is reliable is an open question.

4. Implications for Low-Regret SLBs
Finally, we turn to the implications of the FAS problem, and
specifically FAST, for regret control in safe linear bandits
(SLBs). Recall that the regret control problem concerns
both the reward θ⊤∗ a and the risks Φ∗a associated with the
program maxa∈A θ⊤∗ a : Φ∗a ≥ 0. Using noisy feedback of
both the rewards and risks, the ‘hard enforcement’ problem
for SLBs demands an algorithm for which the regret RT is
small, while ensuring that the actions are always safe, i.e.,
with high probability, ST = 0.

As previously discussed, algorithms for SLBs, such as
LC-LUCB (Pacchiano et al., 2024) or SAFE-LTS (Moradi-
pari et al., 2021) address this problem, given an initial ac-
tion asafe, along with a bound Msafe such that M(asafe) ≥
Msafe > 0. These methods proceed by constructing a se-
quence of inner approximation of S∗, S̃t, and ensure safety
by restricting at to lie in S̃t for each t. The data (asafe,Msafe)
is used to construct the initial S̃0, and Msafe affects the
rate of expansion of S̃t, as reflected in the regret bounds,
which scale as RT = Õ(

√
d3T/M2

safe) for efficient meth-
ods. Note that as such this Msafe is an arbitrary value, and
may not be close to M∗. For instance, in settings such as
drug design and trialling, while a ‘no-dosage’ solution is
always safe, it may not have a nontrivial margin (since, typ-
ically, active compounds must be coupled with auxiliary
compounds to manage their side-effects).

Of course, without knowledge of such an asafe, these meth-
ods cannot be executed. Indeed, without such an asafe, it is
evidently impossible to achieve guarantees such as ST = 0,
since just the initial action may be unsafe with constant
chance. Given the development of FAST above, our pro-
posal is natural: we initialise these prior methods with the
output of FAST, run with ε = 1/2. This results in the follow-
ing guarantee (§A.4).

Corollary 10. For ζ ∼ Unif(
√
3dSd), let µ be the law of

1mζ⊤. For any feasible instance, the two phase method
that runs FAST(µ, 1/2, δ/5) until stoppage, and then executes
LC-LUCB(δ) initialised with its output ensures that with
probability at least 1− δ, for all T ,

RT = Õ

(√
d3T

M2
∗

)
, and ST = Õ

(
d3

M∗

)
= O(1)

in the regime log(m/δ) = o(d).
Comparison to Hard Enforcement Methods. Notice that
the regret bound of the two phase method in Corollary 10
improves upon prior results by a factor of M∗/Msafe, which
can be attributed to the fact that FAST(µ, 1/2, δ/5) finds a
point with margin at least M∗/2. In the absence of a pri-
ori control on Msafe, this factor can be arbitrarily large.
In greater detail, given that FAST ignores all reward in-
formation, our analysis simply incurs a constant cost for
τ = Õ(d3/M2

∗ ) rounds. Of course, this additive over-
head does not grow with T, and so is hidden in the regret
bounds. However, even more is true: notice that a bound
of
√

d3T/M2
safe is smaller than T only if T > d3/M2

safe.
Since M∗ ≥Msafe, this means that by the time prior results
give sublinear regret, the above two phase process already
recovers the same performance as prior results to within a
polylog factor, without being given an initial safe action.

Limited Safety Costs Without A Priori Knowledge. No-
tice that the bound on ST in Cor. 10 does not grow with
T , i.e., that the net excess-risk is only O(1). Since the re-
gret performance of this two-stage procedure matches prior
results, this is the first hard enforcement method for SLBs
that ensures Õ(

√
d3T/M2

∗ ) regret at an O(1) cost, without
assumed knowledge of an asafe to begin with, and with de-
pendence only on the optimal safety margin M∗.

No Restart Requirement. The two phase method can be ex-
ecuted without resetting the information accumulated over
the course of running FAST, since our argument accounts for
conditions under which, e.g., LC-LUCB is low-regret. This
‘reuse’ of information (i.e., the data in Hτ ) yields a ‘warm
start’, and thus a practical speed up, for regret control.

5. Conclusion
We have presented FAST, a method that efficiently explores
a convex action space to either detect the infeasibility of a
set of linear constraints, or to find a safe point with safety
margin close to optimal. The design and analysis of FAST
yield new insights in the theory of TS when applied to multi-
objective problems. The stoppage of FAST adapts optimally
to the optimal safety margin, and limited safety costs are
incurred, which allows this method to be combined with
low-regret algorithms for SLBs to yield the first method that,
without priori knowledge of a safe action, achieves strong
regret performance at only O(1) safety cost.
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A. Analysis of FAST

We prove the results determining the reliability of, and quantitative bounds on, the behaviour of FAST. We will repeatedly
exploit the following basic observation, which is a consequence of the Cauchy-Schwarz inequality.

Lemma 11. Let Φ,Ψ be two matrices in Rm×d, and let V be a positive definite matrix in Rd×d. Then for any a ∈ Rd,

∥(Φ−Ψ)a∥∞ ≤ (max
i
∥Φi −Ψi)∥V )∥a∥V −1 .

Proof. By the Cauchy-Schwarz inequality,

|(Φi −Ψi)a| = |(Φi −Ψi)V 1/2V −1/2a| ≤ ∥(Φi −Ψi)V 1/2∥ · ∥V −1/2a∥,

where we note that (Φi − Ψi)V 1/2 is a row vector. Of course, ∥V −1/2a∥2 = a⊤V −1/2V −1/2a = ∥a∥2V −1 , and similarly
for ∥(Φi −Ψi)V 1/2∥. This bounds the absolute value of the ith coordinate of (Φi −Ψi)a, and maximising over the same
bounds the ℓ∞ norm.

A.1. Proof of the Tracking Inequality

The main tool required to analyse FAST is the tracking inequality of Lemma 7. In order to prove the same, we begin by
completing the proof of the roundwise tracking upper bound of Lemma 5.

Proof of Lemma 5. Recall the event Ballt = {maxi ∥Hi
t∥ ≤ B(δt)}. In this case, we know that Φ̃t ∈ Et := {Φ(H, t) :

maxi ∥Hi∥ ≤ B(δt)}. Finally, recall the event G̃t = Gt(δ) ∩ Ballt.

Now, observe that the constant M∗ satisfies
M∗ = E[M∗|Ht−1, G̃t],

where we exploit the fact that Ballt is determined given Gt. Of course, by definition, under Gt(δ) ⊂ G̃t, it holds that
M∗ = K(Φ∗) ≤ K(Φ̃t), which further yields the upper bound

M∗1Ballt ≤ E[K(Φ̃t)1Ballt |Ht−1, G̃t].

On the flipside, notice that λ⊤
t Φ̃tat = K(Φ̃t). Now, under Ballt, it holds that Φ̃t ∈ Et, which implies that

K(Φ̃t)1Ballt ≥ K(Φ̄t)1Ballt ,

where
Φ̄t ∈ argmin

Φ∈Et

K(Φ).

But notice that Et is entirely determined given the historical data (i.e., does not depend on the noise Ht), and thus so is
K(Φ̄t). As a consequence, K(Φ̄t) is independent of G̃t given Ht−1. We can then conclude that

K(Φ̃t)1Ballt ≥ K(Φ̄t)1Ballt = E[K(Φ̄t)|Ht−1, G̃t]1Ballt

Putting these two together gets us to the point discussed in the main text, that

(M∗ −K(Φ̃t)1Ballt ≤ E[K(Φ̃t)−K(Φ̄t)|Ht−1, G̃t]1Ballt ,

at which point we can continue that analysis. For completeness, we restate this here.

Recall that K(Φ̃t) = λ⊤
t Φ̃tat. Since K(Φ̄t) is similarly the value of the matrix game over A induced by the payoffs Φ̄t,

there exists a saddle point (λ̄t, āt) of Φ̄t such that K(Φ̄t) = λ̄⊤
t Φ̄tat.

Note that since λ is selected by the ‘min’-player, deviating from λt while keeping at fixed increases the value of λ⊤Φ̃tat
beyond K(Φ̃t). Using this for λ = λ̄t, we find that

K(Φ̃t) = λ⊤
t Φ̃tat ≤ λ̄⊤

t Φ̃tat.
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By the same coin, deviating from āt while leaving λ̄t fixed decreases the value of the payoff under Φ̄t, i.e.,

λ̄⊤
t Φ̄tāt ≥ λ̄⊤

t Φ̄tat.

As a result,
K(Φ̃t)−K(Φ̄t) ≤ λ̄⊤

t (Φ̃t − Φ̄t)at.

Now, under G̃t ⊂ Ballt(δ), we further know that maxi ∥Φ̃i
t − Φ̄i

t∥Vt
≤ B(δt)ωt, since each lies in Et. Thus, applying the

Cauchy-Schwarz relation of Lemma 11, and using the fact that ∥λ̄∥t = 1 since it lies in the simplex ∆m, we conclude that

E[K(Φ̃t)−K(Φ̄t)|Ht−1, G̃t]1Ballt ≤ E[2B(δt)ωt(δ)∥at∥V −1
t
· λ̄⊤

t |Ht−1, G̃t]1Ballt .

Since B(δt) is deterministic, and ωt(δ) is Ht−1-measurable, this lets us conclude that

(M∗ −K(Φ̃t)1Ballt ≤ 2B(δt)ωt(δ)E[∥at∥V −1
t
|Ht−1, G̃t]1Ballt .

The argument is concluded by observing that for any nonnegative random variable X and event E, E[X|E]P(E) ≤ E[X],
and using the fact that under the π-optimism condition, µ(G̃t) ≥ µ(Gt(δ))− µ(Ballt(δ)) ≥ π − π/2.

Proving the Main Tracking Inequality. We recall the roundwise lower bound of Lemma 6, which will also be exploited in
the proof of the main tracking inequality.

Proof of Lemma 7. The proof consists of exploiting the roundwise results of Lemmas 5 and 5 to derive basic forms of upper
and lower bounds on Tt. These bounds are controlled by a concentration argument to conclude.

Let Ball(δ) :=
⋂

t≥1 Ballt(δ), and recall the event Con(δ) :=
⋂

t≥1 Cont(δ). Note that the probability of Ball(δ) at least
1−

∑
δt = 1− δ.

Lower bound on Tt. Observe that
λ⊤
s Φ∗as = λ⊤

s Φ̃sas + λ⊤
s (Φ̃s − Φ∗)as.

Under Con(δ) ∩ Ball(δ), it holds for all s that maxi ∥Φ̃i
s − Φ̂i

s∥Vs
≤ B(δs)ωt(δ), and maxi ∥Φi

∗ − Φ̂i
s∥Vs

≤ ωs(δ). By
the Cauchy-Schwarz relation Lemma 11, and the fact that ∥λs∥1 = 1 since it lies in the simplex ∆m, we have under
Ball(δ) ∩ Con(δ) that

∀s, λ⊤
s Φ∗as ≥ λ⊤

s Φ̃sas − (1 +B(δs))ωs(δ)∥as∥V −1
s

.

Now, using the upper bound of Lemma 5, we further conclude that under Ball(δ) ∩ Con(δ),

λ⊤
s Φ∗as ≥M∗ − (1 +B(δs))ωs(δ)∥as∥V −1

s
− 4B(δs)ωs(δ)

π
E[∥as∥V −1

s
|Hs−1].

Now, let ζs := λ⊤
s w

S
s be the projection of the noise in Ss onto λs. Notice that since λs is measurable given Gs (since it can

be determinitically determined from the history and Hs), the process {ζs} is a centred 1-subGaussian process with respect
to the filtration Gs. We let Zt :=

∑
s≤t ζs.

Now, finally, we have

Tt =
∑
s≤t

λ⊤
s Ss =

∑
s≤t

λ⊤
s Φ∗as +

∑
s≤t

ζs

≥ Zt + tM∗ −
∑
s≤t

(1 +B(δs))ωs(δ)∥as∥V −1
s
−
∑
s≤t

4B(δs)ωs(δ)

π
E[∥as∥V −1

s
|Hs−1]

=⇒ Tt ≥ tM∗ + Zt − (1 +B(δt))ωt(δ)
∑
s≤t

∥as∥V −1
s
− 4B(δt)ωt(δ)

π

∑
s≤t

E[∥as∥V −1
s
|Hs−1], (3)

where the final line uses the fact that B(δs) and ωs(δ) are nondecreasing in s, and that ∥as∥V −1
s

is a nonnegative quantity.
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Upper bound on Tt Taking a similar approach, we have

Tt = Zt +
∑
s≤t

λ⊤
s Φ∗as,

and applying Lemma 6, under Con(δ) ∩ Ball(δ), we have

Tt ≤ Zt +
∑
s≤t

M(as) + 2(1 +B(δt))ωt(δ)
∑
s≤t

∥as∥V −1
s

. (4)

Concentration. There are two quantities in the bounds above that need to be controlled: Zt, and
∑

s≤t E[∥as∥V −1
s
|Hs−1].

Now, notice that since the only randomness in as given Hs−1 arises from Hs, which is independent of Hs−1, the fluctuations
∥as∥V −1

s
− E[∥as∥V −1

s
|Hs−1] are conditionally centred. Further, since ∥as∥V −1

s
∈ [0, 1], which uses the fact that Vs ⪰ I

and A ⊂ {∥a∥ ≤ 1}, we conclude that these fluctuations are also 1-subGaussian. It follows thus that the process

βt :=
∑
∥as∥V −1

s
− E[∥as∥V −1

s
|Ht−1]

has centered 1-subGaussian increments with respect to {Hs−1}. Of course, we have already argued that Zt is a martingale
with centred and 1-subGaussian increments with respect to the filtration {Gs}.

We encapsulate the concentration of these two processes into one event

Walk(δ) := {∀t, |βt| ≤ LIL(t, δ), |Zt| ≤ LIL(t, δ)}.

Tracking Inequality. But then, applying (4), under Con(δ) ∩ Ball(δ) ∩Walk(δ), we have

Tt ≥ tM∗ −
(
1 +B(δt)) +

4B(δt)

π

)
ωt(δ)

∑
s≤t

∥as∥V −1
s
−
(
1 +

4B(δt)

π

)
LIL(t, δ),

and applying (3),
Tt ≤

∑
s≤t

M(as) + 2(1 +B(δt))ωt(δ)
∑
s≤t

∥as∥V −1
s

+ LIL(t, δ).

Now, recall that under Con(δ) ∩ Ball(δ) ∩Walk(δ),

Bt(µ, δ) =
(1 + 5B(δt))ωt(δ)

min(π, 1/2)

∑
s≤t

∥as∥V −1
s

+ LIL(t, δ)

 .

But then it is evident that
Bt(µ, δ) ≥ 2(1 +B(δt))ωt(δ)

∑
s≤t

∥as∥V −1
s

+ LIL(t, δ),

and

Bt(µ, δ) ≥
(
1 + 5

B(δt)

π

)
ωt(δ)

∑
s≤t

∥as∥V −1
s

+

(
1 +

4B(δt)

π

)
ωt(δ)LIL(t, δ).

This lets us conclude that under Con(δ) ∩ Ball(δ) ∩Walk(δ), it holds simultaneously for all t that

Tt + Bt(µ, δ) ≥ tM∗ and Tt −Bt(µ, δ) ≤
∑
s≤t

M(as),

and the tracking inequality follows from the trivial observation that
∑

s≤t M(as) ≤ tM∗.

Bookkeeping the probability of violation. Finally, we note from Lemma 1 that the chance of Con(δ) is at least 1− δ. Via
the lil, the chance of Walk(δ) is at least 1− 2δ, using a union bound for the two processes βt and Zt. Finally, by a union
bound, the chance of Ball(δ) is at least 1−

∑
δt ≥ 1− δ

∑
1/t(t+1) = 1− δ. By a union bound, then, these events occur

together with chance at least 1− 4δ.
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A.2. Analysis of the Coupled Noise Design

We move to the crucial argument that our coupled noise design leads to a good FCO condition, which relies on analysing the
behaviour of a∗ under the perturbations.

Proof of Theorem 8. Notice that the noise distribution µ couples the rows of H such that H = 1mζ⊤, where ζ ∼ ν. We
will suppress the dependence of ωt,Cont(δ) on δ in the following.

Let a∗ be any maximin point of the matrix game, and fix any t. As stated in §3.1, we will analyse the local optimism event

Lt := {Φ̃t : min
λ

λ⊤Φ̃ta∗ ≥M∗ = λ⊤
∗ Φ∗a∗}.

To this end, recall that
Φ̃t = Φ̂t + ωtHtV

−1/2
t .

Thus, local optimism holds whenever Ht is such that

Φ̂ta∗ + ωtHtV
−1/2
t a∗ ≥ Φ∗a∗.

Now, under Con(δ), we know that maxi ∥Φ̂i
t −Φi

∗∥Vt
≤ ωt. Thus, by the Cauchy-Schwarz relation of Lemma 11, we know

that
∥(Φ̂t − Φ∗)a∗∥∞ ≤ ωt∥a∗∥V −1

t
= ωt∥V −1/2

t a∗∥ =⇒ Φ̂ta∗ ≥ Φ∗a∗ − ωt∥V −1/2
t a∗∥1m.

But then notice that
Φ̂ta∗ + ωtHtV

−1/2
t a∗ ≥ Φ∗a∗ + ωt

(
HtV

−1/2
t a∗ − ∥V −1/2

t a∗∥1m

)
.

Now, we use the fact that Ht = 1mζ⊤ for some ζ ∼ ν drawn independently of Vt. In this case, we find that

HtV
−1/2
t a∗ − ∥V −1/2

t a∗∥1m = (ζ⊤ut − ∥ut∥)1m,

where ut = V
−1/2
t a∗.

It immediately follows that {ζ⊤ut ≥ ∥ut∥} ⊂ Lt(δ) under Cont(δ). But since ζ ∼ ν independently of the history, the
chance of this given Ht−1 is at least π. Of course, we can further see that each row of Ht is just a copy of ζt, and so
automatically inherits the concentration property of ν.

Let us note that in practice, we expect the optimism rate to be much larger: we only showed that optimism occurs at rate
at least π at any maximin point a∗. But the global optimism event Gt accounts for any draw where the value of the game
induced by Φ̃t (for which the margin at a∗ is only a lower bound). In practice, it is known that in single objective TS, the
optimism rate is large even with laws that are poorly anticoncentrated in the sense of ν (e.g., N (0, Id/

√
d), which typically

only ensures that ζ⊤u > ∥u∥/
√
d.

A.2.1. BOUNDS FOR SIMPLE REFERENCE DISTRIBUTIONS

We argue that both the standard Gaussian, and the uniform law of the sphere of radius
√
3d yield effective noise distributions

for our coupled design.

For the Gaussian, recall that if Z ∼ N (0, Id), then ∥Z∥2 is distributed as a χ2-random variable. A classical subexponential
concentration argument (e.g. Laurent & Massart, 2000, Lemma 1) yields that for any x,

P(∥Z∥2 ≥ d+ 2
√
dx+ 2x) ≤ e−x.

Note that (d + 2
√
dx + 2x) ≤ (

√
d +
√
2x)2, and hence taking x = log(1/δ) in the above yields that B(δ) ≤

√
d +√

2 log(1/δ). Further, due to the isotropicity of Z,Z⊤u/∥u∥ law
= Z1 ∼ N (0, 1), and thus π ≥ 1− Φ(1) ≥ 0.158 . . . .
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Further, notice that if Z ∼ N (0, Id), then Y :=
√
3dZ/∥Z∥ ∼ Unif(

√
3d · Sd), and by isotropicity, for any u : ∥u∥ =

1, Y ⊤u/∥u∥ law
= Y1. As a result,

P(Y ⊤u/∥u∥ ≥ 1) = P(Y1 ≥ 1) =
1

2
P(Y 2

1 ≥ 1) =
1

2
P((3d− 1)Z2

1 ≥
d∑

i=2

Z2
i ) ≥

1

2
P(Z2

1 ≥ 1) · P(
d∑

i=2

Z2
i ≥ 3d− 1).

But notice that d− 1 + 2
√

(d− 1) · d/3 + 2d/3 ≤ 3d− 1, and thus, P(
∑d

i=2 Z
2
i ≥ 3d− 1) ≤ exp(−d/3). Invoking the

bound on P(Z1 ≥ 1) = 1
2P(|Z1| ≥ 1) above, we conclude that π ≥ 0.15 · (1 − e−d/3). Of course, ∥Y ∥ =

√
3d surely,

giving the B expression.

We note that while the above analysis only shows a 0.15(1− e−d/3) lower bound for Unif(
√
3dSd), via direct simulation

this can easily be seen to exceed 0.28, no matter the d. In this case, the attained ratio B/π behaves roughly as 6
√
d.

A.3. Analysis of Stopping Time and Excess-Risk of Exploration

The tracking inequality, along with the development in §3.2 enables the analysis of the stopping time and excess-risk of
exploration, which we provide below.

The analysis breaks into three pieces: (i) reliability analysis; (ii) control of the stopping time, and (iii) control of the safety
costs. We first separately discuss these aspects through a sequence of Lemmas, throughout working under the event that the
tracking inequality holds (and perhaps other auxiliary events), and then prove of Theorem 9 by accounting for the various
failure rates of the events. Throughout, we will repeatedly use the notation Con(δ),Ball(δ),Walk(δ), Zt and βt as defined
in the proof of Lemma 7.

Reliability. We demonstrate reliability under the tracking inequality.

Lemma 12. If the tracking inequality of Lemma 7 holds, then the procedure FAST(µ, ε, δ) is reliable, i.e.,

M∗ ≤ 0 =⇒ Uτ < 0, and

M∗ ≥ 0 =⇒ min
λ

λ⊤Φ∗⟨a⟩τ ≥ Lτ > (1− ε)M∗

Proof. Assume the tracking inequality. Then for all t,

Ut ≥M∗ ≥ Lt,

where Ut = (Tt + Bt(µ, δ))/t and Lt = (Tt −Bt(µ, δ))/t. Further recall that the stopping time of FAST is

τ = inf{t : Ut < 0 or Lt > (1− ε)Ut > 0.

But then, if M∗ ≤ 0, =⇒ Lt < 0 for all t, and so if Ut > 0 then Lt ̸≥ (1− ε)Ut, and thus upon stopping it must hold that
Uτ < 0.

Further, if M∗ > 0, then it always holds that Ut > 0, and so only the second stopping criterion, that Lτ > (1− ε)Uτ , can
be met, which in turn implies that Lτ > (1− ε)M∗. Further, as discussed in §3.2, (⟨a⟩τ , Lτ ) form a valid output since

min
λ

M(⟨a⟩τ ) ≥
∑
s≤τ

M(as)/τ ≥ Lτ > (1− ε)M∗.

Stopping Time Analysis. Again, using the tracking inequality, we control the behaviour of τ .

Lemma 13. (Stopping Time Analysis) Suppose that the tracking inequality holds. Then,

τ = Õ

(
d3 + d2 log(m/δ)

ε2M2
∗

)
if the instance is feasible, and τ = Õ

(
d3 + d2 log(m/δ)

M2
∗

)
otherwise.

Proof. We begin by bounding the boundary Bt(µ, δ). Instantiating B and π with the bounds from §A.2.1 above, we note
that B/π = O(

√
d) for our choices of laws. Using Lemma 2 to control

∑
∥as∥V −1

s
and ωt, we conclude that there is a
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constant C such that for t ≥ max(d, 3),

Bt(µ, δ) ≤ C
√
d
√
t log log(t/δ) + C

√
d ·
√
d log(t) + log(m/δ) ·

√
dt log t

≤ 3C
√
t ·
(
d3/2 log t+ d

√
log(t) log(m/δ)

)
.

We now turn to studying the stopping time. Firstly, notice that if the tracking inequality is always true, then

Ut = (Tt + Bt(µ, δ))/t ≤M∗ + 2Bt(µ, δ)/t,

and
Lt = (Tt −Bt(µ, δ))/t ≥M∗ − 2Bt(µ, δ)/t.

Now, in the infeasible case, i.e., when M∗ ≤ 0,

Ut ≤ tM∗ + 2Bt(µ, δ) ≤ −t|M∗|+ 6C
√
t ·
(
d3/2 log t+ d

√
log(t) log(m/δ)

)
,

meaning that in this case, with probability at least 1− 4δ,

τ ≤ inf{t : tM∗ + 2Bt(µ, δ) < 0}
= inf{t : t|M∗| > 2Bt(µ, δ)}

≤ inf{t ≥ max(d, 3) : t|M∗| > C
′√

t ·
(
d3/2 log t+ d

√
log(t) log(m/δ)

)
},

with C ′ = 6C. This infimum can be upper bounded using the following result:

Lemma 14. For A ≥ e, inf{z ≥ e : z ≥ A log z} ≤ 2A log(2A).

Proof. Notice that the map f(z) := z/ log z is nondecreasing for z ≥ e, since f ′(z) = log z−1
log2 z

≥ 0. Now,

f(2A log(2A)) =
2A log(2A)

log(2A) + log log(2A)
≥ 2A log(2A)

2 log(2A)
≥ A,

where we have used that log log(z) ≤ log(z) for all z ≥ e.

To use the above, notice that τ ≤ max(T1, T2) where

T1 := inf{t ≥ max(d, e2) :
√
t/ log(

√
t) > 4C

′
d3/2/|M∗|},

T2 := inf{t ≥ max(d, e2) :
√

t/ log t ≥ 2C
′
d
√
log(m/δ)/|M∗|}.

By Lemma 14, if
√
t > 4C′d3/2

|M∗| log(d3/M2
∗ ) and

√
t > e, then t > T1, and similarly, if t > 4C′2d2 log(m/δ)

M2
∗

·
log(8C ′2d2 log(m/δ)/|M∗|2), then t > T2, yielding the bound that

τ ≤ max

(
d+ e2,

16C ′2d3

M2
∗

log2
d3

M2
∗
,
4C ′2d2 log(m/δ)

M2
∗

log
4C ′2d2 log(m/δ)

M2
∗

)
.

Turning now to the feasible case, where M∗ > 0, we instead notice that if the tracking inequality holds, Ut ≥ M∗ > 0
always, and thus

τ ≤ inf{t : M∗ − 2Bt(µ, δ)/t ≥ (1− ε)M∗ + (2− 2ε)Bt(µ, δ)/t}
= inf{t : εt|M∗| ≥ 4Bt(µ, δ)},

where we used |M∗| = M∗ > 0 in the second line. But this is the same bound as the infeasible case, except with |M∗|
replaced by ε|M∗|/2. Thus, we can immediately invoke the analysis above to conclude that in the feasible case,

τ ≤ max

(
d+ e2,

64C ′2d3

ε2M2
∗

log2
4d3

ε2M2
∗
,
16C ′2d2 log(m/δ)

ε2M2
∗

log
16C ′2d2 log(m/δ)

ε2M2
∗

)
.
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Safety Analysis. Finally, we analyse the safety of the actions selected by FAST using both the tracking inequality, the
behaviour of τ , as well as a concentration of a sum of ∥as∥V −1

s
on the subset of events where these have large expectation.

We leave the analysis of the event Walk′ below to the final argument proving Theorem 9.

Lemma 15. Recall the events Con(δ),Ball(δ), and Walk(δ) from the proof of Lemma 7. Further, define the process

Xt :=
∑
s≤t

(E[∥as∥V −1
s
|Hs−1]− ∥as∥V −1

s
)1{E[∥as∥V −1

s
|Hs−1] > M∗/2κs},

and the event
Walk′(δ) := {∀t, |Xt| ≤ LIL(t, δ)} .

Under Con(δ) ∩ Ball(δ) ∩Walk(δ) ∩Walk′(δ), it holds that

Sτ = Õ

(
d3

M∗
+

d5/2
√
log(m/δ)

εM∗

)
if the instance is feasible, and Sτ = Õ

(
d3

|M∗|

)
otherwise,

where we assume that log(m/δ) = o(d).

Proof. As show in the proof of Lemma 7, the tracking inequality holds under the assumed events. We will exploit further
detailed bounds shown in that proof. Throughout, we will suppress the dependence of ωt on δ until required. Similarly, we
will just write Bt instead of B(δt).

Recall that the safety cost at any time t is

St =
∑
s≤t

(
− min

λ∈∆m
λ⊤Φ∗as

)
+

=
∑
s≤t

(−M(as))+.

Under the roundwise tracking inequality, which holds under Con(δ) ∩ Ball(δ), we know that

M(as) ≥ λ⊤
s Φ∗as − 2(1 +Bt)ωt∥as∥V −1

s

=⇒ −M(as) ≤ −λ⊤
s Φ∗as + 2(1 +B)ωt∥as∥V −1

s

Of course, under Con(δ) ∩ Ball(δ), we further know by an application of the Caucy-Schwarz relation that

λ⊤
s Φ∗as ≥ λ⊤

s Φ̃sas − (1 +Bt)ωt∥as∥V −1
s

.

Further under the roundwise tracking upper bound, we have

−λsΦ̃sas ≤M∗ +
4Bsωs

π

∑
E[∥as∥V −1

s
|Hs−1].

Putting these together, we conclude that

−M(as) ≤ 3(1 +Bs)ωs∥as∥V −1
s

+
4Bsωs

π
E[∥as∥V −1

s
|Hs−1]−M∗

For convenience we define

κs(δ) = (3(1 +Bs(δs)) + 4Bs(δs)/π)ωs(δ) = O(
√

d2 log(t) + d log(m/δ)),

where the O only suppresses a universal constant factor, and the bound arises from our choice of µ = 1mζ⊤ for ζ ∼
Unif(

√
3dSd). We further recall the notation βt =

∑
s≤t ∥as∥V −1

s
− E[∥as∥V −1

s
|Hs−1].

Since both ∥as∥V −1
s

and E[∥as∥V −1
s
|hists−1] are nonnegative, with this notation, we can write

−M(as) ≤ κs

(
∥as∥V −1

s
+ E[∥as∥V −1

s
|Hs−1]

)
−M∗ (5)
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Infeasible case. In this case, notice that −M∗ = |M∗| ≥ 0. Since the remaining terms are nonnegative, we end with the
bound that under Con(δ) ∩ Ball(δ),

St ≤ t|M∗|+ κt

∑
s≤t

∥as∥V −1
s

+ κt|βt|

where we have used recall that κs is nondecreasing as s increases. But, under Walk(δ), we further know that |βt| ≤
LIL(t, δ)), which tells us that for all t,

St ≤ t|M∗|+ κs(δ)(
√
2dt log(1 + t/d) + LIL(t, δ)).

Recall further that in the infeasible case, under Con(δ)∩Ball(δ)∩Walk(δ), it holds that τ = Õ(M−2
∗ (d3 + d2 log(m/δ))),

as discussed in Lemma 13. Using this, we find that

√
τ = Õ

(
d3/2 + d

√
log(m/δ)

|M∗|

)
.

Upon accounting for the fact that LIL(t, δ) = O(
√

t log log t+ t log(1/δ)) and the bound on κt, this induces (by a simple
but tedious accounting) that

Sτ = Õ

(
d3 + d5/2

√
log(m/δ) + d2 log(m/δ) + d3/2 log(m/δ)

√
log(1/δ)

|M∗|

)
.

Naturally, in the regime log(m/δ) = o(d), the leading term is d3/|M∗|.

Feasible case. Note that in the feasible case, we could always get an upper bound by dropping the −M∗ < 0 term in (5)
and repeating the same analysis as the above. However, this would give an extra 1/ε factor blowup in the main term of the
safety costs due to the increase in the bound on τ . To show the stated bound thus requires us to exploit this −M∗ term as a
resource. To this end, we note using the subadditivity of (·)+ that for any u, v, w, it holds that

(u+ v − w)+ ≤ (u− w/2)+ + (v − w/2)+ = (u− w/2)1{u > w/2}+ (v − w/2)1{v > w/2}.

Using this with u = κs∥as∥V −1
s

, v = κsE[∥as∥V −1
s
|Ht−1], w = M∗, we find upon summing that

∀t,St ≤κt

∑
s≤t

(∥as∥V −1
s
−M∗/2κs)1{∥as∥V −1

s
> M∗/2κs}

+ κt

∑
s≤t

(E[∥as∥V −1
s
|Hs−1]−M∗/2κs)1{E[∥as∥V −1

s
|Hs−1] > M∗/2κs},

where we again used that κt ≥ κs > 0 for all s ≤ t.

We will first reduce the analysis of the second sum above to the first using the event Walk′ in the statement of the lemma.
For the sake of succinctness, define ℓs = M∗/2κs, ns = ∥as∥V −1

s
− ℓs,ms = E[∥as∥V −1

s
|Hs−1] − ℓs. Notice that

∥as∥V −1
s

> ℓs ⇐⇒ ns > 0 and similarly for ms.

Now, ∑
s≤t

ms1{ms > 0} =
∑
s≤t

ns1{ms > 0}+
∑
s≤t

(ms − ns)1{ms > 0}︸ ︷︷ ︸
=:Xt

= Xt +
∑
s≤t

ns1{ns > 0}+
∑
s≤t

ns (1{ms > 0} − 1{ns > 0})︸ ︷︷ ︸
=:Yt

= Xt + Yt +
∑
s≤t

ns1{ns > 0}.
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To analyse Yt, notice that

1{ms > 0} − 1{ns > 0} = 1{ms > 0, ns ≤ 0} − 1{ms ≤ 0, ns > 0}.

But then, we have

Yt =
∑

ns1{ms > 0, ns ≤ 0} −
∑

ns1{ms ≤ 0, ns > 0}

=
∑

ns1{ms > 0, ns ≤ 0}︸ ︷︷ ︸
≤0

+
∑

(−ns)1{ms ≤ 0, (−ns) < 0}︸ ︷︷ ︸
≤0

≤ 0.

Further, moving notation back to terms of ∥as∥V −1
s

instead of ns,ms, the process Xt is precisely

Xt =
∑
s≤t

(E[∥as∥V −1
s
|Hs−1 − ∥as∥V −1

s
)1{E[∥as∥V −1

s
|Hs−1] > M∗/2κs},

and thus under Walk′(δ), |Xt| ≤ LIL(t, δ). Let us note that this concentration event is likely: indeed, since M∗ and κs are
deterministic quantities, and E[∥as∥V −1

s
|Hs−1] is Hs−1-measurable, we find that the conditional expectation of

cs := (E[∥as∥V −1
s
|Hs−1]− ∥as∥V −1

s
)1{E[∥as∥V −1

s
|Hs−1] > M∗/2κs}

given Hs−1 is zero. Further, of course, since 0 ≤ ∥as∥V −1
s
≤ 1, the random variable cs is 1-subGaussian given Hs−1,

meaning that the LIL applies and so Walk′(δ) has chance at least 1− δ.

Now, moving back, we conclude that

∀t,St ≤ κtXt + 2κt

∑
s≤t

(∥as∥V −1
s
−M∗/2κs)1{∥as∥V −1

s
> M∗/2κs}.

To address the second term, we note that∑
s≤t

(∥as∥V −1
s
−M∗/2κs)1{∥as∥V −1

s
> M∗/2κs}

≤
∑
s≤t

∥as∥V −1
s
1{∥as∥V −1

s
> M∗/2κs}

≤
∑
s≤t

2κs

M∗
∥as∥2V −1

s

≤ 2κt

M∗

∑
s≤t

∥as∥2V −1
s

,

where we use the fact that 1{u > v} ≤ u/v for nonnegative u, v. At this point, we use a refinement of the Elliptical
Potential Lemma (Abbasi-Yadkori et al., 2011, Lemma 11), which states that for any sequence of actions in the unit ball,
and any t, ∑

s≤t

∥as∥2V −1
s
≤ 2 log detVt ≤ 2d log(1 + t/d).

Indeed, the statement in Lemma 2 is derived from the above via an application of the Cauchy-Schwarz inequality to write∑
s≤t ∥as∥V −1

s
≤
√∑

s≤1 1 ·
√∑

s≤t ∥as∥2V −1
s

.

In any case, incorporating all of the above, we find under the event Con(δ) ∩ Ball(δ) ∩Walk(δ) ∩Walk′(δ), that

Sτ ≤
4κτ (δ)

2

M∗
(2d log(1 + τ/d)) + κτ (δ)LIL(τ, δ).
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Further, under this event, we know by Lemma 13 that

τ = Õ

(
d3 + d2 log(m/δ)

ε2M2
∗

)
.

Since κ2
τ = O(d2 log(τ) + d log(m/δ)), and since LIL(τ, δ) = O(

√
τ log(1/δ)) + Õ(

√
τ), we conclude that

Sτ = Õ

(
d3 + d2 log(m/δ)

M∗
+

d5/2
√

log(1/δ) + d2
√
log(m/δ) log(1/δ) + d3/2 log(m/δ)

√
log(1/δ)

εM∗

)
,

or, dropping all lower order terms under the regime log(m/δ) = o(d),

Sτ = Õ

(
d3

M∗
+

d5/2
√
log(m/δ)

εM∗

)
.

Conclusion: proof of the main theorem. With all the pieces in place, the proof of the main reliability and stopping analysis
of FAST is a simple matter of putting the arguments together, and arguing the frequency of Walk′.

Proof of Theorem 9. We will first show that the probability of the event Walk′(δ/5) defined in the statement of Lemma 15
is at least 1− δ/5. Recall that the process under consideration is

Xt :=
∑
s≤t

(∥as∥V −1
s
− E[∥as∥V −1

s
|Hs−1])1{E[∥as∥V −1

s
|Hs−1] > M∗/2κs(δ)}︸ ︷︷ ︸

=:cs

.

But notice that since E[∥as∥V −1
s
|Ht−1] is Ht−1 measurable, and M∗/κs(δ) is not random, E[cs|Hs−1] = 0 for all s. Further,

since 0 ≤ ∥as∥V −1
s
≤ 1, we immediately conclude that cs ∈ [−1, 1] surely. Thus, the process Xt is a martingale with

[−1, 1]-bounded, and thus, conditionally 1-subGaussian increments, meaning the LIL (Lemma 3) applies, and so for all δ,
with probability at least 1− δ/5, Xt ≤ LIL(t, δ/5), as required.

Now, by a union bound, the probability of the event Con(δ/5) ∩ Ball(δ/5) ∩Walk(δ/5) ∩Walk′(δ/5), as defined in the
proof of Lemma 7 and the statement of Lemma 15, is at least 1− δ, and further, as detailed in the proof of Lemma 7, the
tracking inequality holds under this event.

Then invoking Lemma 12, we conclude that the probability that the output of FAST(ε, δ/5) is valid is at least 1− δ. Further,
under the same event, Lemma 13 and Lemma 15 yield the stated bounds on the stopping time and safety costs.

A.4. Proof of Regret Bounds for Safe Linear Bandits

Proof of Corollary 10. As discussed in the main text, we execute FAST with ε = 1/2, and δ as specified. We recall that FAST
produces a reliable output under the event E := Con(δ/5) ∩ Ball(δ/5) ∩Walk(δ/5) ∩Walk′(δ/5) defined in the previous
sections. This results in an aout,Mout such that M(aout) ≥Mout ≥M∗/2.

Now, we instantiate the LC-LUCB method of Pacchiano et al. (2024) with (aout,Mout). We note that since we do not exactly
know M(aout), we must run this method without the projection onto the subspace orthogonal to aout, as detailed in their
remark 11. Further, to ensure efficiency, we carry out the reward optimisation via an L1-relaxation, which incurs an extra√
d factor relative to their regret bounds (Dani et al., 2008). Invoking Theorem 18 of Pacchiano et al. (2024) with these

corrections, and observing that θ⊤∗ (a∗ − at) ≤ 2, we find

RT ≤ 2min(T, τ) + Õ

(√
d3(T − τ)+
(M∗/2)2

)
,

and ST ≤ Sτ . Of course, using the bounds in Theorem 9, under E, τ = Õ(d3/M2
∗ ), and so RT =

Õ
(
d3/M2

∗ +
√
d3T/M2

∗

)
, and further ST = Õ(d3/M∗). Finally, note that

√
d3TM2

∗ < T ⇐⇒ d3/M2
∗ < T,

which allows us to absorb the first term above into just a Õ(
√
d3T/M2

∗ ) bound.
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In further detail, we note the only probabilistic condition needed for Theorem 18 of Pacchiano et al. (2024) is precisely
the event Con(δ) ⊃ E, along with a similar condition for a confidence estimate of the parameter θ, which only causes the
change that m 7→ m+1 in ωt(δ). Thus, one can ‘warm start’ LC-LUCB with the information accrued up to time τ and retain
these guarantees. An entirely analogous argument holds for any other hard enforcement method, including, e.g., SAFE-LTS
(Moradipari et al., 2021).

A.5. Auxiliary Material on Matrix Games

A.5.1. NONCONVEXITY OF THE VALUE OF A MATRIX GAME IN ITS PAYOFF MATRIX

We explicitly calculate the value of the parametric game presented in the footnote in §3.1.

Recall that the payoff, as a function of a variable z ∈ R was Φ(z) :=
(
1− z z
z z − 1

)
, and the game was defined over

A = ∆2. Thus, we have

K(z) := K(Φ(z)) = max
a∈[0,1]

min
λ∈[0,1]

(
λ 1− λ

)(1− z z
z z − 1

)(
a

1− a

)
.

By an explicit computation, the objective above works out to

Uz(a, λ) =
(
λ 1− λ

)(a+ z − 2az
−1 + a+ z

)
= −1 + a+ z + λ− 2aλz,

and we wish to work out maxa∈[0,1] minλ∈[0,1] Uz(a, λ).

Now, the coefficient of λ is (1− 2az). There are two cases: if 2az ≥ 1, then the coefficient of λ is negative, making the
optimal λ = 1, and if 2az < 1, the optimal λ is 0. Thus, we are left with resolving maxa∈[0,1] Vz(a), where

Vz(a) =

{
a+ z − 2az 2az ≥ 1

a+ z − 1 2az ≤ 1
.

Now, if z ≤ 0, then the branch 2az ≥ 1 is never attained over a ∈ [0, 1]. In this case, the optimal a is just 1, since the
constraint 2az < 1 is never active. We conclude that K(z) = z if z ≤ 0.

If instead z ≥ 0, there are many cases:
• If 2z ≤ 1, then the 2az ≥ 1 branch is infeasible. Again the value is just z.
• If 2z ≥ 1, then both branches are possible. In the a ≥ 1/2z branch, the coefficient of a is 1 − 2z ≤ 0, and so the

constraint a ≥ 1/2z saturates. For a ≤ 1/2z ≤ 1, the objective increases with a, and so this constraint saturates in the
second branch. In either case, the optimal value is attained at a = 1/2z, and equals z + 1/2z − 1.

Thus, the value is

K(z) = z +

{
0 z ≤ 1/2

1/2z − 1 z > 1/2
,

which can be succinctly written as z + min(0, (2z)−1 − 1). To see the nonconvexity, explicitly observe that K(0) =
0,K(1) = 1

2 , but K(1/2) = 1/2 > 1/4.

A.5.2. REDUCTION OF SOLVING A MATRIX GAME TO LINEAR OPTIMISATION

We wish to compute the value of a game of the form

max
a∈A

min
λ∈∆m

λ⊤Φa.

Notice that for any a, and λ ∈ ∆m, λ⊤(Φa) ≥ mini Φ
ia, and this value is attained over ∆m by placing all of the λ mass on

the coordinate corresponding to argmini Φ
ia. Thus, the value of the game is equal to maxa(mini Φ

ia) = maxa,v∈R v :
mini Φ

ia ≥ v, a ∈ A. But of course, mini Φ
ia ≥ v ⇐⇒ Φa ≥ v1m, and further, for any (a, v) that optimise the same, it

holds that minλ λ
⊤Φa = v. Thus, it suffices to solve the program

max
a,v

v s.t. v1m − Φa ≤ 0, a ∈ A,
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which is an convex program over d+1 variables, with m linear constraints along with those definingA, and the corresponding
λ can be computed directly by computing Φa∗ and then choosing its smallest coordinate. Since LP-time is polynomial in d,
increasing d by 1 leaves the time to solve this LP as O(LP-time), and of course, computing λ after the fact only costs O(m)
time. For nonzero constraint level α, the margin is modified to minλ λ

⊤(Φ∗a− α). Carrying out the same analysis, we just
need to replace Φa by Φa− α, which makes the constraint v1m − Φa+ α ≤ 0.

Let us note further that since M∗ is directly defined as maxa∈A minλ λ
⊤Φ∗a, the algorithm only ever solves

maxa∈A minλ λ
⊤Φ̃ta. Thus, we do not need to invoke the minimax theorem in the above, and the same analysis persists

even if A were not convex (of course, without the efficiency guarantees). The main thing that breaks in this scenario for
FAST is that the cumulative action

∑
s≤t as/t is not necessarily an element of A, and the design of an appropriate rounding

rule would be required along with the stopping condition to yield a feasible action in this situation.

B. Simulation Study
Our main simulations focus on constructing a practical methodology out of the theoretical study of FAST. These are
presented in §B.1 below. Additionally, we do auxiliary simulations that compare the behaviour of FAST and EOGT, which
are presented in §B.2.

B.1. Main Simulations: The Behaviour of FAST and A Practical Choice of Noise and Boundary.

We investigate the behaviour of FAST, with the focus being to derive practical recommendations for how to set µ, π
in this procedure. Throughout, we set Φ∗ to be a certain 9 × 9 directed adjacency matrix, A, obtained from https:
//sparse.tamu.edu/vanHeukelum/cage4, which has 49 nonzero entries out of 81. This sets up d = m = 9. The
rows of this matrix were normalised to have norm 1. Throughout, we work over A = {x : ∀i, 0 ≤ xi ≤ 1/

√
9}, i.e., we

impose known box constraints that lie within the unit ball.

To generate a variety of M∗ in a structured way, we work by varying the constraint level. Specifically, we study the safe sets
S∗(ϕ) := A ∩ {Φ∗a ≥ −ϕ19}, where ϕ is a scalar parameter. This has the optimal margin M∗(ϕ) = 0.4849 + ϕ, and is
feasible so long as ϕ > −0.4849. In all cases, the optimal margin is attained by the action a∗ = 19/

√
9.

Plan of Simulations, and brief summary of results. We study three aspects of the behaviour of FAST in three experiments.
The results of each experiment raise further open problems pertinent to the practical use of FAST, which we also discuss.

1. In the first case, we attempt to discover what scales of noise are required for a practically efficient version of FAST. The
main impetus is that while theoretical analyses of TS require a large noise of typical standard deviation

√
d, in practice,

smaller noise of scale 1 is sufficient to retain good optimism rates, and thus such methods in practice tend to deliver an
improvement of Ω(

√
d) in the regret achieved. Such low-regret TS methods do not use the optimism rate in any way

(other than in the analysis), so these prior experiments could just simply be executed with this smaller noise. In FAST,
we do not need to know the optimism rate π in order to select actions, but we do need it in the boundary design. Note
that an overly pessimistic bound on π would thus hit us with a double whammy: an increased stopping time due to both
overestimating 1/π, and also due to choosing a very large B.

To address this, we execute the action selection procedure of FAST(µγ , 0.1) where µγ is the law of 1mζ⊤ with
ζ ∼ Unif(

√
γdSd), without enforcing stopping for 104 steps. The theoretical analyses were performed with γ = 3. In

this case, we investigate γ ∈ 3[−7:1], which yields a wide gamut of these scales, but keep M∗ = 1 fixed in order to
gain a sense of the relative optimism in these problems. Note that large M∗ means that the probability of optimism is
lowered, so this gives us a reasonably reliable bound on π to use in further simulations.

The main results here that optimism is frequent even with a moderate noise γ = 1/27. Since FAST is most effective
when B is small, but π is large, the main implication is that γ = 1/27 would yield the most effective noise for FAST.
Much smaller γ leads to a significant drop in the optimism rate, particularly in occasional runs, while much larger γ
leads to little increase in π, but a linear in γ increase in the stopping time. Of course, proving that in general such a
γ, which essentially corresponds to the noise Unif(

√
1/3 · Sd), does retain such good optimism is an open problem

(although from the observations of prior TS studies, we do expect this to be true).

2. In the second case, we attempt to understand the behaviour of FAST in response to changing M∗ and ε. For this, we
select γ = 3−3 from above as a noise with a good balance of B/π < 0.8. We use this value of B/π, along with a
refinement of the boundary process (see the proof of the tracking inequality in §A.1 for these expressions) to investigate
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the behaviour of FAST as we vary M∗ and ε. Throughout, we will focus on relatively large values of ε, since this is the
main regime in which we intend to apply FAST to the SLB problem.

The main results in this case bear out the broad scaling structures in our results in terms of dependence on ε,M∗ of
the stopping time and safety costs. We also find that the boundary process still tends to be too pessimistic, and thus
describe the open problem of designing refinements for the same.

3. Finally, in the third case, we investigate the behaviour of the natural decoupled noise, i.e., µ such that each row of Ht is
drawn independently from the same distribution. In more detail, we revisit the first experiment with this noise, and
attempt to understand the optimism rates and reliability of FAST executed with such noise. We find that such decoupled
noise is also effective for FAST, but requires a higher γ than the coupled noise (and thus leads to increase in stopping
time). We again note that showing that this decoupled noise attains good performance is an open problem.

B.1.1. INVESTIGATING OPTIMISM RATES

Figure 1. Estimates of the Optimism Rates under the Cou-
pled Design Drawn According to Unif(

√
γdSd) as γ is

varied. Top. Medians over 100 runs. Note that the X-axis
is log-scale. We observe that global optimism rates are sig-
nificant for γ = 3−3 = 1/3d, significantly smaller than
the theoretically analysed scale of γ = 3. Similarly, while
considerably smaller, local optimism holds for γ ≥ 3−2.

We execute FAST on the described instance with ε = 0.9, and
ϕ chosen so that M∗ = 1. As mentioned above, the noise laws
investigated are the coupled design, with ζ ∼ Unif(

√
γdSd), for

γ ∈ {3i : i ∈ [−4, 1]}. Note that since d = 9, the parameter
γ = 3−2 boils down to choosing the uniform law on Sd.

Since the action selection in FAST is independent of the boundary
process, and thus of the value of π, we estimate π by simply execut-
ing FAST for 104 steps, and averaging the counts of the number of
times that the selected action was positive. This experiment is run
with a ϕ such that the optimal margin is M∗ = 1. Note that since
this M∗ is large, this lowers the probability of optimism (given that
the signal structure is identical in all of these runs, and the margin
is adjusted simply by adjusting the constraint threshold). As such,
we expect that the resulting values of π are underestimates for sit-
uations with smaller margin. Throughout, we let the feedback noise
have variance 1. We also record the probability of ‘local optimism’
in the same way, i.e., the probability of the event Lt from §3.3. In
each case, the experiment is executed 100 times.

Figure 1 shows medians of these optimism rates as we vary γ The main observation is that the probability of optimism is
large even for surprisingly small values of γ, and that this probability is considerably larger than the probability of local
optimism (although this too remains nontrivial for large γ). Demonstrating this fact to be true (which is indeed expected
from observations regarding TS in single objective low-regret bandits) is a fascinating open problem.

B.1.2. THE BEHAVIOUR OF FAST WITH RESPECT TO M∗ AND ε

Using the information drawn in the previous section, we now turn to our main simulations on the behaviour of FAST. In
order to do so, we run FAST with the noise µγ with γ = 3−3, which, as seen in Figure 1 above provides a regular large
probability of optimism. We instantiate the boundary process for FAST with the value of the median global optimism rate
estimated above. Note that this has a significant effect: the resulting B/π is roughly 0.8, which makes the boundary process
behave as roughly 3ω

∑
∥as∥V −1

s
+ (1 + 2ω)LIL. If we instead ran with the theoretical values of B/π =

√
3d/0.28 ≈ 18,

the boundary process (or refinements of the same, as detailed in §A.1) would instead have a coefficient of ∼ 30 for the
first term, leading to two orders of magnitude increase in τ in the worst case. Of course, in practice such a π cannot be
estimated so simply — resolving this is an important open question for the applicability of methods such as FAST. Our
practical recommendation is to simply use a noise of the form Unif(

√
cSd) for c a not-too-small constant, and set π ∼ 0.5.

We first describe two experimental details before discussing our results.

A Refinement of the Stopping Criterion. In addition to the certificate Lt on the value of M∗, note that our setup yields a
running estimate of a potentially feasible action, ⟨a⟩t =

∑
s≤t as/t, and using Lemma 1 along with the Cauchy-Schwarz

inequality, we can further conclude that with high probability, Φ∗⟨a⟩t ≥ Φ̂t⟨a⟩t + ωt∥⟨a⟩t∥V −1
t

1m, which yields a further

lower bound on the value of the margin, minλ⊤(Φ∗⟨a⟩t − α) ≥ L̃t := minλ⊤(Φ̂t⟨a⟩t − α) − ωt∥⟨a⟩t∥V −1
t

. In our
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Figure 2. True safety margin of the output of FAST with different ε (left), and the certificate Mout = L̃τ output by it (right), as a fraction
of the true margin. Means over 100 runs with one-standard-deviation error bars are presented. Notice that the certified value is typically
much larger than 1− ε, and the actual realised value is larger still (always > 0.8), indicating that while reliable, the procedure is too
conservative.

experiment, we replace the Lt in the stopping criterion by ℓt := max(Lt, L̃t). Note that this retains the reliability guarantee.
While theoretically this does not improve the behaviour of the stopping time beyond a constant factor, since Ut is left
unchanged, we find that in practice, this can significantly improve the stopping time under feasibility, especially if ε and M∗
are large.

Reduced feedback noise in simulations. We note that feedback noise is set to be independent Gaussian with standard
deviation 0.1, and we use this value to adjust our confidence sets. The main reason for this is for the sake of computational
efficiency: the value of the noise standard deviation essentially scales the quantity ωt(δ), and thus decreasing the noise
standard deviation by a factor (roughly) shrinks the boundary process Bt by the same factor. Since the stopping time scale
quadratically up to polylog factors in the coefficient of

√
t in Bt, this change, in essence, reduces the stopping times by a

factor of about 100. Since we repeat each of our runs 100 times, this represents a significant computational saving. Indeed,
with this change, these simulations took about 3 hours to execute on a midrange laptop computer running a 2022 Ryzen-5U
CPU. We note that the relative scaling of all behaviours with M∗, ε is left unchanged by this modification, but, should the
actual values be important, the reader should scale them by 100 before interpretation.

Experimental setup. Below, we proceed by setting M∗ ∈ {0.15, 0.2, · · · , 0.5}, and ε ∈ {0.5, 0.7, 0.9}, and simulating
the behaviour of FAST on the described instances 100 times for each pair of parameters. The choice of M∗ is largely to
limit computational costs, while the choice of large ε reflects the natural application domain of FAST to SLB problems, as
discussed in §4.

Reliability Observations, and the discovery of very safe actions. We find that in all of our runs, the resulting feasibility-
infeasibility decisions, as well as the actual margin of the output, were always correct, despite the fact that we ran our
experiments with the reliability parameter δ = 0.1. In our opinion, this represents an inefficiency in the test design, stemming
from the fact that our boundary is too conservative (since a well-defined boundary would see about 10% of decisions being
incorrect). We leave the question of finding such a refined boundary to future work. Figure 2 illustrates the same point in the
feasible case by showing the actual safety margin of the output âτ relative to the true margin of the instance.

Certified Margins Figure 2 shows the value of Mout output by the method on feasible instances, normalised by M∗. In this
case, we again observe that this value tends to be much higher than 1− ε, which bears out the fact that the upper bound Ut

decreases too slowly (due to too conservative a Bt)

Stopping Time Behaviour Figure 3 shows the behaviour of the stopping time for both the infeasible case (for which the
value of ε is immaterial), as well as for the feasible case with three values of ε. Of these, the runs with ε = 0.5 essentially
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Figure 3. Stopping Time (left) and excess-risk of exploration (right) of FAST in both the infeasible (dashed) case, and the feasible case
with different ε. Means over 50 runs with one-standard-deviation error bars are presented. The refinement ℓt discussed in this section
yields significant improvement in stopping time, especially for large (ε,M∗). Notice also that the excess-risk in feasible scenarios is < 10,
much smaller than the corresponding infeasible scenario. We further note that Sτ ∈ [1.08, 1.11]|M∗|τ in the infeasible case for all |M∗|.

correspond to FAST with no refinement of ℓt instead of Lt (see below for why), and the stopping time with ε = 0.5 exceeds
that of the infeasible case by a factor of about 2. Notice further that the plot clearly demonstrates the inverse quadratic
behaviour of τ with M∗.

The early stopping criterion we described helps reduce stopping time mainly when the upper bound Ut takes a long time to
decrease. Indeed, in our runs, for small t it essentially held that Ut = 1, Lt = −1. Thus, the stopping criterion in these cases
boils down to ℓt = L̃t ≥ (1− ε), and significant gains in stopping time arise when both ε is large, and when M∗ is large
enough so that L̃t grows quickly. This behaviour is demonstrated clearly in Figure 3 by both the sharp drop in stopping time
for M∗ = 0.4, and ε = 0.7, as well as the fact that the stopping time for ε = 0.9 is always > 50× smaller than that for
ε = 0.5 despite the fact that (0.9/0.5)2 is only 3.24.

Safety Costs Figure 3 further shows the behaviour of the safety costs of exploration. There are two qualitatively distinct
observations: in the infeasible case, the realised Sτ is typically 1.1 · |M∗| · τ , bearing out Theorem 9 quite directly (up to
the looseness in the τ bounds). In the feasible case, however, we find that the bound of this theorem is extremely loose, and
the Sτ incurred is very small, being about 100× smaller than the safety costs of exploration in the infeasible case.

B.1.3. DECOUPLED NOISE

Figure 4. Median-Estimates of the optimism rates with the decoupled
noise design with the same setup otherwise as in Figure 1. Observe
that the decoupled noise design loses optimism at the same value of
γ as the coupled design.

Finally, we briefly investigate the behaviour of the natural
design of a decoupled noise distribution, i.e., H such that
each Hi is drawn uniformly. We study the same set of
laws, i.e., each row is drawn from Unif(

√
γdSd) inde-

pendently, with γ ∈ 3[−7:1]. Figure 4 shows the resulting
optimism rates. The main observation is twofold. Firstly,
it must be noted that the global and local optimism rates
are significant for this noise design, even though our the-
ory does not analyse it. The development of effective
analyses for such noise is yet another fascinating open
question. The second key observation, however, is that
the (global) optimism rates with this decoupled noise de-
sign are significantly lower. This raises the values of Bt,
since we need a larger γ = 3−2, and since π ≈ 0.5 is
smaller. Roughly, we expect this to cause slowdowns of
about (

√
3 · 0.7/0.5)2 ≈ 6 times.
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Figure 5. Stopping time of FAST run with decoupled
noise, compared to the same with coupled noise. As
in Figure 3, means and one-standard-deviation error
bars over 100 runs are reported, here on a linear scale.
Observe that for small ε in the feasible case, and in
the infeasible case, we see a net loss of about a factor
of 6. In the case of larger ε, the loss is more limited,
although still significant, typically larger than 2×.

In fact, we observe this behaviour under simulations. These are
executed with the above γ (and appropriately adjusted boundary)
for the larger values of M∗ ∈ {0.35, 0.4, 0.45, 0.50}, but with the
same values of ε. Figure 5 plots the ratio of the stopping time in this
case relative to the stopping times determined for the decoupled design
(Figure 3). Notice that in the infeasible and ε = 0.5 feasible cases, the
stopping time is indeed about 6 times higher than the coupled design.
In the larger ε cases for feasible noise, where early stopping plays a
more critical role, the relative loss is smaller, but still significant. We
observed the same 6-fold behaviour in the safety cost for the infeasible
case, and while again larger, the behaviour was less regular for the
feasible case (since Sτ is so much smaller, and thus harder to reliably
estimate in a multiplicative sense). For this reason, we choose not to
present the same data in the case of safety costs.

B.2. Comparison of FAST and EOGT

As a final set of simulations, we investigate the behaviour of EOGT
and FAST to compare the merits of the two. Concretely, we will run
FAST with the choice of noise and boundary discussed in the previous
main section, in particular, setting γ = (9

√
d)−1, and the B, π values as in the previous section. As such, then, since the

domain is significantly different (see below), the success of FAST in this regime serves as a validation of the robustness of
this practical design.

Setup. We will implement the relaxed version of EOGT proposed in our prior work (Gangrade et al., 2024b). Recall that this
requires us to solve (2d)m matrix games in each round, and so for practical reasons, only small m can be implemented.

To set the instance, we follow our previous evaluation of EOGT (Gangrade et al., 2024b). Throughout, we work with m = 2
constraints. Explicitly, for feasible settings, we impose the constraints

a1 ≥ 1/
√
d−M∗, a

2 ≥ 1/
√
d−M∗,

and in the infeasible setting, we impose the constraints

a1 ≥M∗, a
1 ≤ −M∗,

and work with A = [−1/
√
d, 1/
√
d]d. Note that in both cases, the absolute value of the optimal margin is M∗: in the

infeasible case, the point (0, · · · , 0) has the required margin (−M∗, since it is infeasible), and in the feasible case, the point
(1/
√
d, 1/
√
d, · · · ) has the required margin. This setup is entirely in line with the prior study of EOGT, except that we

impose box constraints instead of ball constraints (which allows for faster optimisation).

We investigate the above setup for d ∈ [2 : 10], and vary |M∗| ∈ {0.2, 0.4, 0.6, 0.8}. For the sake of simplicity in
presentation, we show the data only for ε = 0.5, although we executed the same for ε = 0.7, 0.9 as well, and saw the same
behaviours. As in the previous section, feedback noise is set to Gaussian with standard deviation 0.1.

The main reason for picking box constraints is that the game-solving can be sped up significantly. We do this in a direct
brute-force way: since m = 2, the parameter λ is effectively one-dimensional. We grid this one dimension at the scale
0.002, and for any Φ, directly compute the values λ⊤Φ at each of these 500 points. For any single value of λ and Φ, the
optimal a is simply sign(λΦ)/

√
d, and the value of maxa λ

⊤Φa is thus just ∥λ⊤Φ∥1 which is extremely fast to compute.
From here, we can compute the minimising λ easily, and then work back to find a. Note that this procedure is actually
solving for minλ maxa λ

⊤Φa, but this is fine due to the minimax theorem. For EOGT, this process is carried out for each Φ
lying in the ℓ1-confidence set (Gangrade et al., 2024b), of which there are (2d)m = 4d2.

Due to the explicit request of a reviewer of this paper, in these set of experiments we do not implement the early stopping
procedure we presented in the previous section. This would largely only affect the large values ε = 0.7, 0.9, which we may
expect to be smaller for both methods if this were included.

All instances are simulated 50 times using a MATLAB environment.
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Conclusion. The main observation is that while both FAST and EOGT are accurate methods that produce high quality
solutions, FAST is strongly preferable because it has both a strong statisical and a computational advantage over EOGT, in
that it stops much sooner (so requiring fewer iterations), and is much cheaper to compute per iteration.

Of course, the computational advantage is the main point behind the design of FAST, and so is to be expected, although we
note that much of the theoretical advantage survives even the fixed costs expected in practice.

Given the theoretical development in the main text, however, the statistical advantage may be surprising. However, note that
we are running FAST with a smaller than analysed scale on noise. Given thi, the observed behaviour is somewhat expected:
it is well-established that while analyses of linear-TS are only available for noise of scale

√
d, in typical practical settings,

one can execute linear TS with ‘non-inflated’ constant-sized noise and outperform the regret behaviour of UCB-styles like
OFUL (e.g. Abeille & Lazaric, 2017). Within this context, then, EOGT is essentially built upon OFUL, while, of course, FAST
exploits a linear-TS style underlying method. The relative advantage is further exacerbated by the fact that stopping times
scales roughly quadratically with natural regret metrics, thus giving a very stark benefit.

The remainder of this section presents data supporting the above claim of strong statistical and computational advantage in
the two regimes studied.

Fixed d, varying M∗. For our first set of observations, we fix d = 6, and vary M∗.

Firstly, we note that in every run, both methods either correctly detected infeasibility, or certified a point with margin at least
M∗/2. In fact, the quality of the recovered points and the certificates are similar, as seen in Table 1. Of course, observe here
that the variance is higher in FAST - this is to be expected, since this is a randomised method, while EOGT is deterministic
(given the noise, of course).

Table 1. Comparison of the Quality of aout in the fixed d, varying M∗ setting for Feasible Instances, with ε = 0.5. Observe that the
quality of solutions is essentially the same, and far exceeds the required 50% in both the certified and realised margin values.

Metric Method M∗
0.2 0.4 0.6 0.8

Certificate Lτ/M∗
(%age)

FAST 66.6± 0.5 66.4± 0.5 66.4± 0.6 62.6± 0.1
EOGT 66.6± 0.1 66.6± 0.1 66.6± 0.1 62.5± 0.0

Realised Margin M(aout)/M∗
(%age)

FAST 99.6± 0.4 99.4± 0.5 99.1± 0.7 98.7± 1.1
EOGT 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.8± 0.0

However, the corresponding values of the stopping time are starkly different, especially in the feasible case. Indeed, as shown
in Table2, the stopping time of FAST in the infeasible case is typically about 30× smaller than that of EOGT, suggesting that
FAST is strongly favoured statistically.

Table 2. Comparison of the stopping time of FAST and EOGT for d = 6, ε = 0.5 as M∗ varies. The advantage row lists how many times
the mean τ for FAST is smaller than that for EOGT. Notice the stark advantage in the feasible case. In the infeasible case, the advantage is
small, but still nontrivial.

Metric |M∗|
0.2 0.4 0.6 0.8

τ , Feasible Case
FAST 3935± 1287 877± 245 317± 67 138± 31
EOGT 106276± 331 24562± 105 10292± 43 4296± 45
Advantage 27× 28× 32× 31×

τ , Infeasible Case
FAST 731± 44 348± 14 119± 7 48± 5
EOGT 980± 15 482± 7 263± 6 149± 4
Advantage 1.34× 1.38× 2.21× 3.1×

This, of course, is accompanied by a drastic improvement in computation as well. Indeed, for d = 6, FAST is 144× faster
(theoretically) than EOGT. Practically, we in fact see a 122× speedup per iteration, recovering most of this theoretical gain
even for this small d (see below for many more details). The net effect for us is that, e.g., in the M∗ = 0.2, feasible case,
EOGT took about 2700s (with 5-fold parallelization), while FAST took about 1s. Of course, for the infeasible case, FAST
remains similarly fast, while EOGT still took ∼ 30s.
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We note that we see similar behaviour in the safety costs of both methods: for infeasible τ , these grow roughly as |M∗| × τ ,
and so are a few percentage higher for EOGT. For the feasible case, both are time ≈ 1 for FAST in the M∗ = 0.2 case, and
≈ 8 for EOGT for the same - these are miniscule relative to the scale of τ .

Strong Advantage of FAST. This data clearly establishes that FAST is preferable to EOGT even in modest dimensions
(d = 6)—in the infeasible case, it buys a little bit statistically, and in the feasible case, the statistical gains are massive. This
is accompanied by a further strong computational gain (which would be further increased exponentially as m increases, and
polynomially as d increases).

Fixed M∗, varying d. To complement the above study, we fix M∗ = 0.4, ε = 0.5 and vary d from 2 through 10.

Computation Per-Iteration with d. As discussed in the footnote below, we investigated the time-per-iteration as d grew.
Nominally, of course, as d diverges, the relative costs are 4d2, but in practice, fixed costs per iteration at finite d tend
to reduce in gain. In our experiment, there are two main sources of fixed costs: generating randomness for feedback,
and maintaining Vt, and various recording updates to track the data. We find that the time per iteration of FAST does
not tend to go below 0.015ms/iteration, even in d = 2, suggesting that for very small d these fixed costs begin to be the
bottleneck, and reducing the theoretical advantage per iteration. For FAST, in d = 6, the costs were about 0.024ms/iteration,
while EOGT took about 2.94ms/iteration. For the range investigated, due to the polynomial growth in the time needed for
linear programming, the time-per-iteration of FAST never exceeded 0.04ms/iteration, while at d = 10, that of EOGT was
≈ 8.5ms/iteration, or > 200× more.

Quality of Solutions. Again, this is similar: throughout, the certified margin is about 0.66M∗, while the actual margin of
aout is closer to 0.99M∗. We omit formal presentation of this. Further, safety costs are similar in the feasible case, and scale
directly with τ in the infeasible case.

Stopping Time. More importantly, FAST again has a strong advantage in terms of the behaviour of the stopping time, as
shown in Figure 6. The relative advantage in stopping behaviour we saw in d = 6 persists across dimensions. In particular,
for small d, we see about 5− 10× gain, while for larger d, the gain is always > 20×, hitting a peak of 33× at d = 7. Again,
coupled with a > 200× computational advantage per iteration at d = 10 (where the statistical advantage is ≈ 22×), this
makes a strong case that even with modest d and m = 2, FAST is strongly preferable to EOGT.

Figure 6. Behaviour of the Stopping Time of FAST and EOGT as d is varied with m = 2,M∗ = 0.4, ε = 0.5 in the feasible (solid) and
infeasible (dashed) cases. Observe the strong > 20× advantage in stopping behaviour of FAST relative to EOGT for d ≥ 4. In this setting,
the infeasible case is significantly easier than the feasible, although we still find an advantage of 1.2×−1.9× in stopping behaviour.
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