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ABSTRACT

Most segmentation losses are arguably variants of the Cross-Entropy (CE) or Dice
losses. In the abundant segmentation literature, there is no clear consensus as
to which of these losses is a better choice, with varying performances for each
across different benchmarks and applications. In this work, we develop a theo-
retical analysis that links these two types of losses, exposing their advantages and
weaknesses. First, we provide a constrained-optimization perspective showing
that CE and Dice share a much deeper connection than previously thought: They
both decompose into label-marginal penalties and closely related ground-truth
matching penalties. Then, we provide bound relationships and an information-
theoretic analysis, which uncover hidden label-marginal biases: Dice has an intrin-
sic bias towards specific extremely imbalanced solutions, whereas CE implicitly
encourages the ground-truth region proportions. Our theoretical results explain
the wide experimental evidence in the medical-imaging literature, whereby Dice
losses bring improvements for imbalanced segmentation. It also explains why
CE dominates natural-image problems with diverse class proportions, in which
case Dice might have difficulty adapting to different label-marginal distributions.
Based on our theoretical analysis, we propose a principled and simple solution,
which enables to control explicitly the label-marginal bias. Our loss integrates CE
with explicit L1 regularization, which encourages label marginals to match target
class proportions, thereby mitigating class imbalance but without losing gener-
ality. Comprehensive experiments and ablation studies over different losses and
applications validate our theoretical analysis, as well as the effectiveness of our
explicit label-marginal regularizers.

1 INTRODUCTION

Semantic segmentation is one of the most investigated problems in computer vision, and has been
impacting a breadth of applications, from natural-scene understanding (Cordts et al., 2016; Kirillov
et al., 2019) to medical image analysis (Litjens et al., 2017; Dolz et al., 2018). In the recent years,
deep learning methods have dominated the field, as a result of the great capacity of Convolutional
Neural Networks (CNN) (He et al., 2016) to automatically learn representations from large-scale
data sets (Long et al., 2015; Ronneberger et al., 2015; Zhao et al., 2017; Chen et al., 2018; Yuan
et al., 2020). Semantic segmentation is often stated as a pixel-wise classification task, following
the optimization of a loss function expressed with summations over the ground-truth regions, as in
the standard Cross-Entropy (CE) loss. A relevant aspect of segmentation problems is class imbal-
ance, i.e., unequal proportions of the segmentation regions, which may cause large-region terms in
the objective to completely dominate small-region ones. A representative example is the popular
Cityscapes dataset (Cordts et al., 2016), where the average proportions of some classes, such as
motorcycle or bicycle, are below 1%. In these scenarios, besides specifically designed CNN archi-
tectures or training schemes (Tao et al., 2020; Bao et al., 2021), the loss function to be minimized
during learning plays a critical role, and has triggered a large body of research works in the last years
(Lin et al., 2017; Wong et al., 2018; Kervadec et al., 2021b; Milletari et al., 2016; Sudre et al., 2017;
Kervadec et al., 2021a).

There exists a great diversity of loss functions for image segmentation, which can be categorized
into two main families, and are arguably variants of CE, the Dice loss (Ma et al., 2021; Yeung et al.,
2021), or combinations of both (Wong et al., 2018; Taghanaki et al., 2019). The first family is mo-
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Figure 1: The visual improvement of our solution compared to various losses under different
classes in Cityscapes. The ground-truth is given in the left-most column. A magnified contour
of the segmentation is also provided alongside the original target within each image. The numeric
below each image indicates the IoU score for the corresponding prediction result. The examples
show how Dice has a bias towards small regions, while CE is more stable for different scenarios.
Our solution is capable of leveraging the best aspects of both. See Sec. 2 for the explicit theoretical
analysis and Sec. 3 for the detailed experimental results. Best seen in color.

tivated by distribution measures, i.e., CE and its variants, and is directly adapted from classification
tasks. To deal with class imbalance, various extensions of CE have been investigated, such as in-
creasing the relative weights for minority classes (Ronneberger et al., 2015), or modifying the loss
so as to account for performance indicators during training, as in the popular Focal loss (Lin et al.,
2017) or TopK loss (Wu et al., 2016). The second main family of losses is inspired by geometrical
metrics. In this category, the most popular losses are linear Dice (Milletari et al., 2016) and its ex-
tensions, such as the logarithmic (Wong et al., 2018) or generalized (Sudre et al., 2017) Dice loss.
Borrowing the idea of the weighted CE, the latter introduces class weights to increase the contribu-
tions of the minority classes. These loss functions are motivated by the geometric Dice coefficient,
which measures the overlap between the ground-truth and predicted segmentation regions.

In the literature, to our knowledge, there is no clear consensus as to which category of losses is better,
with the performances of each varying across data sets and applications. It has been empirically
argued that the Dice loss and its variants are more appropriate for extreme class imbalance, and
such empirical observations are the main motivation behind the wide use and popularity of Dice in
medical-imaging applications (Milletari et al., 2016; Jha et al., 2020). CE, however, dominates most
recent models in the context of natural images (Chen et al., 2018; Zhao et al., 2017; 2018; Yuan
et al., 2020). Therefore, beyond experimental evidence, there is a need for a theoretical analysis
that clarifies which segmentation loss to adopt for a given task, a decision that affects performance
significantly.

On the surface, these two categories of losses (i.e., geometry-based vs. distribution-based) seem
unrelated. Furthermore, an important body of work in the literature suggests that CE and Dice are
complementary, which has motivated composite losses integrating both, e.g., (Wong et al., 2018;
Taghanaki et al., 2019). Such composite losses perform very competitively in extremely imbalanced
segmentation, as shown by (Wong et al., 2018; Taghanaki et al., 2019), among several other recent
works (Isensee et al., 2018; Ma et al., 2021).

In this paper, we provide a constrained-optimization perspective showing that, in fact, CE and Dice
share a much deeper connection than previously thought: They both decompose into label-marginal
penalties and closely related ground-truth matching penalties. Our theoretical analysis highlights en-
coded hidden label-marginal biases in Dice and CE, and shows that the main difference between the
two types of losses lies essentially in those label-marginal biases: Dice has an intrinsic bias prefer-
ring very small regions, while CE implicitly encourages the right (ground-truth) region proportions.
Our results explain the wide experimental evidence in the medical-imaging literature, whereby us-
ing or adding Dice losses brings improvements for imbalanced segmentation with extremely small
regions. It also explains why CE dominates natural-image problems with diverse class proportions,
in which case Dice might have difficulty adapting to different label-marginal distributions (see Table
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3 and the examples depicted in Fig. 1). Based on our theoretical analysis, we propose principled
and simple loss functions, which enable to control explicitly the label-marginal bias. Our solution
integrates the benefits of both categories of losses, mitigating class imbalance but without losing
generality, as shown in the examples in Fig. 1.

Our contributions are summarized as follows:

• Showing through an explicit bound relationship (Proposition 1) that the Dice loss has a hid-
den label-marginal bias towards specific extremely imbalanced solutions, preferring small
structures, while losing the flexibility to deal effectively with arbitrary class proportions.

• Providing an information-theoretic perspective of CE, via Monte-Carlo approximation of
the entropy of the learned features (Proposition 2). This highlights a hidden label-marginal
bias of CE, which encourages the proportions of the predicted segmentation regions to
match the ground-truth proportions.

• Introducing new loss functions to control label-marginal biases: Our losses integrate CE
with explicit regularization terms based on L1 or the KL divergence, which encourage label
marginals to match target class proportions.

• Comprehensive experiments and ablation studies over different losses and applications,
including natural and medical-imaging data, validate our theoretical analysis, as well as the
effectiveness of our explicit label-marginal regularizers.

2 FORMULATION

Table 1: Notations, formulations and approximations used in this paper. F and K denotes
the random variables associated with the learned features and the labels, respectively. P denotes
probability. |.| denotes cardinality when the input is a set and the standard absolute value when the
input is a scalar. Note that network parameters θ are omitted in the prediction quantities, so as to
simplify notations, as this does not lead to ambiguity.

Dataset

Concept Formula

Indices/number of classes 1 ≤ k ≤ K
Spatial image domain Ω ⊂ R2

Labels of pixel i ∈ Ω yik ∈ {0, 1}
GT region k Ωk = {i ∈ Ω|yik = 1}
GT proportion of region k ŷk = |Ωk|

|Ω|
GT label-marginal prob. y = (ŷk)1≤k≤K

Modeling

Concept Formula

Model parameters θ

Feature embedding at pixel i ∈ Ω fθi
Softmax predictions at pixel i ∈ Ω pik = P(k|fθi )

Predicted proportion of class k p̂k = 1
|Ω|
∑
i∈Ω pik

Predicted label-marginal prob. p = (p̂k)1≤k≤K
(K − 1)-simplex ∆K = {p ∈ [0, 1]K /

∑
k p̂k = 1}

Losses, label-marginal regularizers and information-theoretic quantities

Concept Formula

Weighted cross-entropy CE = −
∑K
k=1

1
|Ωk|

∑
i∈Ωk

log(pik)

Dice coefficient for region k Dicek =
2
∑
i∈Ωk

pik∑
i∈Ω pik+|Ωk|

Label-marginal KL divergence DKL(y||p) =
∑K
k=1 ŷk log( ŷkp̂k )

Label marginal L1 distance L1(y,p) =
∑K
k=1 |ŷk − p̂k|

Monte-Carlo estimate of the entropy of features given region k H(F|K = k) ≈ − 1
|Ωk|

∑
i∈Ωk

log(P(fθi |k))

Semantic segmentation is often stated as a pixel-wise classification task, following the optimization
of a loss function for training a deep network. In Table 1, we present the notations, formulations and
approximations used in our subsequent discussions. Besides the basic notations of the task (such
as networks predictions), we explicitly include the loss functions, label-marginal regularizers and
information-theoretic quantities that will be discussed in the following sections. We note that, to
facilitate the reading of our analysis, we write the CE and Dice losses in a non-standard way using
summations over the ground-truth segmentation regions, rather than as functions of the labels. Also,
while we provide the CE loss for all segmentation regions, we give Dice for a single region. This is
to accommodate two variants of the Dice loss in the literature: in the binary case, Dice is typically
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used for the foreground region only (Milletari et al., 2016); in the multi-region case, it is commonly
used over all the regions (Wong et al., 2018). Finally, to simplify notation, we give all the loss
functions for a single training image, without summations over all training samples (as this does not
lead to any ambiguity, neither does it alter the analysis hereafter). In the training iterations, we use
the mean values across all the training samples via standard mini-batch optimization.

2.1 DEFINITION OF LABEL-MARGINAL BIASES AND PENALTY FUNCTIONS

In the following, we analyse the label-marginal biases inherent to CE and Dice losses, and show that
the main difference between the two types of losses lies essentially in those label-marginal biases. To
do so, we provide a constrained-optimization perspective of the losses: We define a label-marginal
bias as a soft penalty function for the hard equality constraint p = t, where t is a given (fixed)
target distribution. Such a penalty encourages the predicted label-marginal p to match a given target
distribution t. In the general context of constrained optimization, penalty functions are widely used
(Bertsekas, 1995). In general, penalty methods replace equality constraints of the form p = t by
adding a term g(p) to the main objective being minimized. Such a penalty function g increases
when p deviates from target t. By definition, for the constraint p = t, with the domain of p being
probability simplex ∆K , a penalty g(p) is a continuous and differentiable function, which reaches
its global minimum when the constraint is satisfied, i.e., it verifies: g(t) ≤ g(p)∀p ∈ ∆K .

2.2 THE LINK BETWEEN CROSS ENTROPY AND DICE

To ease the discussion in what follows, we will start by analyzing the link between CE and the
logarithmic Dice, along with the label-marginal bias of the latter (Proposition 1). Then, we discuss a
bounding relationship between the different Dice variants. Finally, we will provide an information-
theoretic analysis, which highlights the hidden label-marginal bias of CE (Proposition 2).

Let us consider the logarithmic Dice loss in the multi-class case. This loss decomposes (up to a
constant) into two terms, a ground-truth matching term and a label-marginal bias:

−
K∑

k=1

log(Dicek)
c
= −

K∑
k=1

log

 1

|Ωk|
∑
i∈Ωk

pik


︸ ︷︷ ︸

Ground-truth matching: DF

+

K∑
k=1

log (p̂k + ŷk)︸ ︷︷ ︸
Label-marginal bias: DB

(1)

where c
= stands for equality up to an additive and/or non-negative multiplicative constant. The

ground-truth matching term in Eq. (1) is a lower bound on the cross-entropy loss (CE) due
to Jensen’s inequality and the convexity of function − log(x): DF ≤ CE. Therefore, minimiz-
ing CE could be viewed as a proxy for minimizing term DF that appears in the logarithmic
Dice. In fact, from a constrained-optimization perspective, DF and CE are very closely related
and could be viewed as two different penalty functions enforcing the same equality constraints:
pik = 1, ∀i ∈ Ωk, ∀k. Both DF and CE are monotonically decreasing functions of each softmax
and reach their global minimum when these equality constraints are satisfied. Therefore, they en-
courage softmax predictions pik for each region Ωk to reach their target ground-truth values of 1. Of
course, this does not mean that penalties CE and DF yield exactly the same results. The difference in
the results that they may yield is due to the optimization technique (e.g., different gradient dynamics
in the standard training of deep networks as the penalty functions have different forms).

2.3 THE HIDDEN LABEL-MARGINAL BIAS OF DICE

The following proposition highlights how the label-marginal term DB in Eq. (1) encourages specific
extremely imbalanced solutions.
Proposition 1. Let t =

(
t̂j
)
1≤j≤K ∈ {0, 1}

K denote the simplex vertex verifying: t̂j = 1 when

ŷj = max1≤k≤K ŷk and t̂j = 0 otherwise. For variables p = (p̂k)1≤k≤K and fixed distribution
y = (ŷk)1≤k≤K , the label-marginal term in Eq. (1) reaches its minimum over the simplex at t:

K∑
k=1

log
(
t̂k + ŷk

)
≤

K∑
k=1

log (p̂k + ŷk) ∀p ∈ ∆K (2)
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Proof. The details of the proof are deferred to Appendix A.1. The main technical ingredient is based
on Jensen’s inequality and the concavity of penalty DB with respect to simplex variables p.

Inequality (2) means that the label-marginal term in Dice in Eq. (1) is a penalty function for con-
straint p = t, where t is the simplex vertex given in Proposition 1. Therefore, it encourages ex-
tremely imbalanced segmentations, where a specific region includes all the pixels and the remaining
regions are empty. All in all, the logarithmic Dice loss integrates a hidden label-marginal prior pre-
ferring extremely imbalanced segmentations, which is optimized jointly with a ground-truth match-
ing term similar to CE. It is worth noting that, in the two-class (binary) segmentation case, Dice
might be used for the foreground region only, as in the popular work in (Milletari et al., 2016), for
instance. Similarly to the multi-class case discussed above, a single Dice term also decomposes
into a ground-truth matching term and label-marginal penalty, with the latter encouraging extremely
imbalanced binary segmentations. We provide more details for this case in Appendix B.

2.4 ON THE LINK BETWEEN THE DIFFERENT VARIANTS OF DICE

The label-marginal analysis we discussed above is based on the standard logarithmic Dice loss.
Here, we argue that both logarithmic and linear Dice are very closely related and, hence, the linear
Dice also hides a class-imbalance bias. In fact, from a constrained-optimization perspective, the two
losses could be viewed as different penalty functions for imposing constraints: Dicek = 1∀k. Both
functions – log(x) and (1 − x) are monotonically decreasing in [0, 1] and achieve their minimum
in [0, 1] at x = 1. Furthermore, the logarithmic Dice is an upper bound on the linear one. This
follows directly from: − log (t) ≥ 1 − t ∀t > 0. Of course, this does not mean that optimizing
these two variants leads to exactly the same results. The differences in their results might be due to
optimization (i.e., different gradient dynamics stemming from logarithmic and linear penalties).

2.5 THE HIDDEN LABEL-MARGINAL BIAS OF CE

In the following, we give an information-theoretic perspective of CE, via a generative view of
network predictions and a Monte-Carlo approximation of the entropy of the learned features given
the labels. This highlights a hidden label-marginal bias of CE, which encourages the proportions of
the predicted segmentation regions to match the ground-truth proportions.

Proposition 2. Let F and K denote the random variables associated with the learned features and
the labels, respectively, and H(F|K) the conditional entropy of learned features given the labels,
estimated via Monte-Carlo :

H(F|K) ≈
K∑
k

ykH(F|K = k) ≈ − 1

|Ω|

K∑
k

∑
i∈Ωk

log(P(fθi |k)) (3)

where H(F|K = k) is the empirical estimate of the conditional entropy of features given a specific
class k (expression in Table 1) and P(fθi |k) denotes the probability of the learned features given
class k. We have the following generative view of CE:

CE c
= H(F|K)︸ ︷︷ ︸

Ground-truth matching

+ DKL(y||p)︸ ︷︷ ︸
Label-marginal bias

(4)

The detailed proof is deferred to Appendix A.2. The approximation of H(F|K = k) in the second
line of Eq. (3) is based on the well-known Monte-Carlo estimation (Kearns et al., 1997; Tang et al.,
2019). Then the relationship in Eq. (4) follows from Eq. (3), after some manipulations, using Bayes
rule P(fθi |k) ∝ pik

p̂k
and

∑
i∈Ωk

log(p̂k) = |Ωk| log(p̂k).

This information-theoretic view of CE shows that the latter has an implicit (hidden) label-marginal
bias towards the ground-truth region proportions (the KL term). This bias competes with the entropy
term, which encourages low uncertainty (variations) within each ground-truth segmentation region
Ωk. The entropy term could be viewed as a ground-truth matching term: it reaches its global
minima when the feature embedding is constant within each region. If used alone, the entropy term
may lead to trivial imbalanced solutions. The label-marginal KL term avoids such trivial solutions
by matching the ground-truth class proportions. Note that there is no mechanism in CE to control
the relative contributions of those two competing terms as they are implicit in CE.
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2.6 OUR SOLUTION

Our analysis shows that Dice, CE and their combinations, e.g., CE − log(Dice), are closely related
and enforce two types of competing constraints : ground-truth matching and label-marginal con-
straints. However, there is no clear consensus in the literature as to which loss is better, with the
performances of each varying across data sets and applications. This variability in performances
could be explained by two fundamental factors:

• The difference in the label-marginal prior. The label-marginal priors are different as Dice
has an intrinsic bias preferring very small regions, while CE encourages the right (ground-truth)
region proportions. This might explain the wide experimental evidence in the medical imaging
literature, where using or adding Dice losses brings improvements for imbalanced segmentation
with extremely small regions.

• Weighting the contribution of the bias term. Our analysis suggests that CE should be preferred
over Dice in all cases and applications (both balanced/imbalanced segmentation, or segmentation
problems with high variability in region proportions) as it promotes the right label-marginal distri-
bution. While this seems to be widely the case in natural image segmentation, where Dice is un-
common, the extensive experimental evidence in the medical-image segmentation literature suggests
otherwise, especially in extremely imbalanced problems. We argue that this is due to the relative
contribution of the label-marginal term in the overall objective. Controlling such label-marginal con-
tribution is very important in imbalanced problems. In particular, it mitigates the difficulty that the
ground-truth matching terms differ by several orders of magnitude across regions, as in CE, which
causes large-region terms to completely dominate small-region ones. This analysis also resonates
with the fact that combo losses such as CE - λ log (Dice) perform very competitively in imbalanced
segmentation, as shown by (Wong et al., 2018; Taghanaki et al., 2019), among several other recent
works. In this case, controlling the relative contribution of each of these terms indirectly controls
the weight of the label-marginal bias. Note that such control is not possible when using CE alone or
Dice alone, as the label-marginal biases in these losses are hidden (implicit).

Figure 2: Different label-marginal biases. The
ground-truth foreground region proportion is set
to 0.1. The expression of penalty DB1 is pro-
vided in Appendix B, and corresponds to the two-
class (binary) variant of Dice, where the loss is
used over the foreground region only. Penalty L1

presents better gradient dynamics at the vicinity
of label marginal p̂1 = 0. Best seen in color.

We propose a principled and simple solution,
which enables to control explicitly the label-
marginal bias, via regularization losses that en-
courage the correct class proportions and are
used in conjunction with CE :

CE + λR(y; p) (5)

Our label-marginal regularizers increase the
contribution of the minority classes in imbal-
anced problems, but, unlike Dice, do not lose
adaptability to problems with various class pro-
portions. Our extensive experiments and abla-
tion studies over different losses and applica-
tions demonstrate the effectiveness of our ex-
plicit label-marginal regularizers. We investi-
gate different forms of regularization, includ-
ing the L1 norm, i.e.,R(y; p) = L1(y,p), and
the KL divergence, i.e.,R(y; p) = DKL(y||p);
see Table 1 for the expressions of DKL and L1.
In Fig. 2, we depict our different regulariz-
ers as functions of the label-marginal distribu-
tion for a binary-segmentation case, with the
foreground-region proportion set to 0.1, along with the bias terms in Dice. While our DKL and
L1 regularizers may deliver comparable performances (see the experimental section), L1 might be
a better option for extremely imbalanced segmentations, due to its gradient properties and stability
at the vicinity of 0, i.e., when the label-marginal probability p̂1 is close to 0. Notice that, at the
vicinity of zero, both first and second derivatives of the regularizer are unbounded for DKL, but
bounded and constant for L1. Our experiments on imbalanced medical image segmentation confirm
the effectiveness of the L1 regularizer.
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3 EXPERIMENTS

Datasets. We report results on both medical and natural image segmentation benchmarks, i.e.,
Retinal Lesions (Wei et al., 2020) and Cityscapes (Cordts et al., 2016). Retinal Lesions is a large
collection of color fundus images, as shown in Fig. 3 and Fig. G.1. It is noted that a panel of 45
experienced ophthalmologist was formed to label this dataset and each image was assigned to at least
three annotators to get trustworthy pixel-level annotations(Wei et al., 2020). In our experiments, we
employ its public version1, containing 1, 593 samples, and conduct our experiments in the binary
setting to segment the lesion region versus background. The dataset is randomly divided into training
(70%), validation (10%) and test (20%) set, whose images are resized to 512 × 512. We tune the
hyper-parameters of each model on the validation set, and report the results on the test set. The
natural scene dataset, Cityscapes, is a large-scale dataset with high quality pixel-level annotations of
5, 000 images across 19 categories, containing both stuff and objects with high variation in the class
proportions distribution. We use the official data split, which contains 2, 975 samples for training,
500 samples for validation and 1, 512 samples for testing. All the input images are resized to 512×
1024 for training, and 1024 × 2048 for testing. Fig. C.1 in Appendix C shows the distribution of
region proportions for Retinal Lesions and the 19 classes in Cityscapes, highlighting the challenging
class imbalance and high diversity on target sizes.

Backbones. It is worth stressing that the theoretical discussion in this paper is model-agnostic.
Thus, in our experiments we employ Res34-FPN, Res50-FPN (Lin et al., 2017) and Res34-Unet,
Res50-Unet (Ronneberger et al., 2015) on Retinal Lesions, while we show results with Res50-FPN
and Res101-FPN on Cityscapes, whose implementations are publicly available2.

Training. The parameters of the encoder are initialized with the pre-trained weights on Imagenet,
while those in the decoder head are randomly initialized. On Retinal Lesions, we train the model
during 60 epochs, with a batch size of 8, via the Adam optimizer. The initial learning rate is set to
1e-4, and halved if the loss on the validation set does not decrease within 5 epochs. On Citycapes,
the main setting is adopted from the state-of-the-art library3. Specifically, the SGD optimizer is used
for training, with an initial learning rate set to 0.01 and a batch size of 8. During the 100 training
epochs, we use an iteration-wise polynomial strategy to linearly scale the learning rate down to a
minimum of 1e-4. For all the models, we tune the hyper-parameters on the validation and report
the best results on the corresponding test set. Conventional data augmentations, such as random
cropping, mirror flipping and changes in brightness, are employed on both datasets.

Losses. We evaluate the proposed loss function in Eq. (5) with two regularizing terms, i.e., DKL
and L1. In our implementation, we use a modified soft-max function with a temperature parameter
when computing the predicted region proportion, as this enables a better estimate of the actual region
proportion (refer to Appendix D for details). We compare our results with the following baselines:
CE, Focal loss (Lin et al., 2017), Dice related losses, i.e., linear/logarithmic/generalized Dice, and
the composite loss combining CE and logarithmic Dice.

Evaluation metrics. On Retinal Lesions, we use two standard metrics in medical image segmenta-
tion, i.e., Dice Similarity Coefficient (DSC) and modified Hausdorff Distance (HD-95). Particularly,
HD-95 represents the 95th percentile of the symmetric Hausdorff Distance (HD) between the binary
objects in two images. On Cityscapes, we resort to the standard Intersection-Over-Union (IoU)
score, which is widely employed in natural image segmentation.

Results on Retinal Lesions. Table 2 reports the quantitative comparison between the proposed
loss, with the two different regularizers, and baselines on the Retinal Lesions dataset. Regarless of
the backbone network, the proposed CE+L1 loss consistently outperforms all the others with a DSC
score of 54.5% for Res50-FPN and 54.3% for Res50-Unet. Compared to CE, our best model, i.e.,
L1 as the label-marginal regularizer, brings nearly 3.0% improvement in terms of DSC and between
5.6% and 8.6% in terms of HD-95, depending on the backbone. Even though these differences are
reduced with respect to the best baseline, this gap is still significant, particularly in terms of HD-95.
It is noteworthy to mention that while DSC is more sensitive to the internal filling of the target region,
the HD-95 is more sensitive to the segmentation boundary. Thus, the proposed loss is more effective

1https://github.com/WeiQijie/retinal-lesions
2https://github.com/qubvel/segmentation_models.pytorch
3https://github.com/open-mmlab/mmsegmentation
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Table 2: Quantitative evaluations of different losses on Retinal Lesions. Average DSC and HD95
values (and standard deviation over three independent runs) achieved on the test set are reported.
Note that Dice1 is implemented for all the Dice related losses for the binary setting on this dataset,
and DB1 refers to label-marginal bias for the binary Dice (details can be found in Appendix B).

Res34-FPN Res34-Unet Res50-FPN Res50-Unet

Loss DSC (%) HD-95 (mm) DSC(%) HD-95 (mm) DSC(%) HD-95 (mm) DSC(%) HD-95 (mm)

CE 51.4 (0.1) 85.50 (2.04) 52.4 (0.5) 85.46 (3.71) 52.7 (0.1) 80.58 (2.63) 52.7 (0.3) 84.27 (4.12)
Focal loss (Lin et al., 2017) 51.2 (0.2) 84.38 (4.86) 51.2 (0.8) 88.56 (4.90) 52.9 (0.4) 80.87 (2.75) 51.8 (0.6) 84.41 (1.93)
1− Dice1 (Milletari et al., 2016) 52.0 (0.7) 84.80 (3.33) 52.3 (0.7) 89.19 (2.44) 52.0 (0.7) 82.20 (4.01) 53.2 (0.1) 81.93 (4.00)
− log(Dice1) (Wong et al., 2018) 51.7 (0.9) 86.02 (4.44) 52.7 (0.5) 85.84 (0.18) 52.0 (1.0) 81.69 (3.57) 53.5 (0.5) 82.15 (2.76)
GDice (Sudre et al., 2017) 51.9 (0.7) 86.70 (2.72) 52.4 (0.5) 89.99 (1.28) 53.4 (0.3) 80.79 (2.36) 53.7 (0.4) 86.84 (3.20)
CE− log(Dice1) (Wong et al., 2018) 52.2 (0.5) 81.60 (6.70) 52.6 (0.4) 84.13 (2.40) 53.2 (0.5) 78.38 (2.06) 53.4 (0.3) 82.55 (2.11)
CE + DB1 51.7 (0.9) 82.72 (1.66) 51.8 (0.2) 86.07 (1.83) 53.4 (0.4) 78.67 (1.18) 53.2 (0.1) 83.04 (0.46)
CE +DKL (Ours) 52.7 (0.3) 83.31 (2.40) 52.8 (0.3) 82.66 (2.40) 53.8 (0.1) 77.12 (1.82) 53.8 (0.4) 80.17 (1.28)
CE + L1 (Ours) 52.8 (0.3) 80.68 (2.49) 53.1 (0.2) 81.15 (2.75) 54.5 (0.2) 74.99 (1.96) 54.3 (0.2) 77.03 (1.51)

to predict better boundaries than existing losses. Furthermore, as shown in Fig. C.1 in Appendix C,
the average region proportion is considerably low, i.e., 3.8%, and varies significantly (the standard
deviation is 6.6% with a maximum of 57.8%). Under this highly heterogeneous scenario in terms
of class region proportions, the proposed losses present a more stable performance across different
runs and backbones, which is reflected in their lower variances. This can be explained by their better
adaptability to different target sizes and better gradient dynamics at the vicinity of label marginal
p̂k = 0 (as shown in Fig. 2). Another interesting finding is that, by combining CE with the bias term
of Dice (CE + DB1), we obtain results close to combo loss CE − log(Dice1)(Wong et al., 2018).
This validates our theoretical insight that the fundamental difference between CE and Dice lies in
their distinct hidden biases.

On the balancing weight in the composite losses. In this section we evaluate the impact of the
balancing weight λ of the proposed loss in Eq. (5), which balances the effects of the regularization
term, as well as the balancing weight in CE− log(Dice1). In our experiments, we empirically found
that the best λ values fordifferentpenaltyterms are : 1.0 for CE+L1, 0.1 for CE+DKL, 0.01 for
CE + DB1. These values are consistent with the given arguments in Sec. 2.6, which emphasize that
L1 has a better gradient evolution for large learning rates and relatively high weighting, especially
at the beginning of training. Regarding the widely used combo loss of CE− log(Dice1), setting its
balancing weight to 1.0 yielded consistent performance across the datasets and networks we used.
Details of this experimental study can be found in Appendix E. Therefore, with the same hyper-
parameter budget, CE + L1 performed better than all the other related composite loss functions.
Note that we use the best empirical values of λ found on Retinal Lesions for the experiments on
Cityscapes.

GT CE 1 - Dice CE - log( Dice  ) CE + L1 (Ours)

0.677 0.727 0.734 0.774

0.591 0.659 0.574 0.756

1

Figure 3: Visual results on the Retinal Lesions dataset. The ground-truth is depicted in the first
column. At the bottom of each image, we indicate the corresponding obtained DSC score.

Qualitative results on the Retinal Lesions dataset. As shown in Fig. 3, we can observe that the
model trained with Dice variants (third and fourth column) tends to undersegment large and medium
target regions, while ignoring several small lesions and generating false positives. In contrast, the
proposed solution enables a better trade-off between finding small regions, reducing the number of
false positives and matching the size of the larger targets. Furthermore, one can notice that our loss
yields better consistencies with the target region proportions than CE.
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Table 3: Results on Cityscapes validation set. (Top: Res50-FPN, Bottom: Res101-FPN) The
second row indicates the average region proportion (mRegProp) for each class. mIoU denotes the
mean IoU score over all classes.

road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU
mRegProp (%) 32.6 5.4 20.2 0.6 0.8 1.1 0.2 0.5 14.1 1.0 3.6 1.1 0.1 6.2 0.2 0.2 0.2 0.1 0.4

CE 97.2 80.6 90.0 38.2 51.3 55.7 60.5 72.2 91.0 58.6 92.3 75.6 48.5 92.5 50.5 67.7 56.3 50.2 71.6 68.45
Focal loss 97.1 78.8 89.5 37.9 48.9 51.8 56.9 67.6 90.6 56.9 92.6 73.1 42.8 92.0 47.5 57.5 46.1 49.2 68.4 65.53
1− Dice 95.9 77.6 87.7 41.1 47.6 56.0 66.2 74.8 90.0 59.6 93.1 77.3 55.8 91.1 10.0 63.9 34.6 53.6 73.6 65.77
− log Dice 94.0 70.8 85.6 33.2 39.1 50.6 62.2 69.6 88.4 52.1 88.1 74.2 50.7 89.2 34.8 55.3 31.7 48.0 70.7 62.54
CE− log(Dice) 96.9 78.6 89.8 40.4 48.3 57.1 65.4 74.6 90.7 57.2 92.5 77.0 52.7 92.4 47.9 65.0 50.6 51.4 72.6 68.48
CE +DKL(Ours) 97.2 79.6 90.0 39.6 51.2 54.8 60.3 71.5 91.0 59.7 92.9 75.2 49.0 92.7 55.6 72.5 65.6 51.3 70.9 69.52
CE + L1(Ours) 97.4 80.2 90.1 37.9 51.9 55.7 61.0 72.1 91.0 58.9 93.5 75.7 49.8 92.8 54.9 70.2 62.8 54.0 71.6 69.55
CE 97.8 82.4 91.0 46.5 55.3 57.2 62.6 72.3 91.5 60.7 94.2 76.1 50.7 93.6 68.4 77.2 64.8 54.9 72.6 72.10
Focal loss 97.7 81.9 90.8 48.2 54.1 54.4 59.0 69.4 91.0 60.2 93.7 74.7 47.8 93.0 59.3 67.3 51.9 52.1 70.5 69.32
1− Dice 96.4 79.6 88.1 0.0 50.6 58.4 69.0 76.0 90.2 60.4 93.7 78.7 60.0 91.4 35.1 0.0 26.8 0.0 74.5 59.42
− log Dice 95.2 73.9 86.4 31.5 39.2 52.4 63.3 70.4 88.6 53.0 92.2 74.6 52.1 89.4 37.1 57.3 31.1 42.7 71.5 63.26
CE− log(Dice) 97.2 79.9 90.2 42.5 52.2 57.6 66.7 74.8 90.9 59.6 93.7 77.7 57.4 92.9 56.4 72.1 58.9 54.2 74.0 71.00
CE +DKL (Ours) 97.8 82.6 91.1 45.4 56.8 57.4 63.4 72.5 91.5 61.3 94.0 76.7 52.4 93.7 69.2 78.3 64.5 57.1 72.8 72.56
CE + L1 (Ours) 97.8 82.9 91.2 48.0 56.8 57.7 63.8 72.7 91.6 61.2 93.8 76.9 52.8 93.8 77.1 80.0 67.1 57.2 73.1 73.44

Results on Cityscapes. Table 3 reports the comparative per-class IoU and mean IoU (mIoU) on
the validation set of Cityscapes with two network architectures. First, we can observe that in this
multi-class dataset, regardless of the network, the proposed learning objectives outperform all the
evaluated losses in terms of mIoU. Then, by investigating the relationship between mRegProp (sec-
ond row in Table 3) and the corresponding segmentation performance across small region classes,
we can observe that Dice-related losses have a hidden label-marginal bias towards extremely imbal-
anced solutions, preferring small structures. In particular, the linear Dice often obtains the highest
mIoU for the smallest structures. This bias comes at the cost of less flexibility when dealing with
arbitrary class proportions, which is reflected in its poor average mIoU (right column).

Table 4: mIoU on Cityscapes test set.
Loss Res50-FPN Res101-FPN

CE 66.97 69.57
Focal loss 64.50 66.79
− log(Dice) 59.77 62.62
CE− log(Dice) 67.08 69.58
CE +DKL (Ours) 68.35 70.07
CE + L1 (Ours) 68.35 70.11

Quantitative evaluation on the Cityscapes test set is re-
ported in Table 4. The observations in this table are con-
sistent with the results on the validation set. Similarly to
the validation set, our method achieves better results on
both architectures. For the per-class scores on the test set,
please refer to Appendix F.

It is noteworthy to highlight that both linear Dice and log-
arithmic Dice perform relatively poorly on Cityscapes, on
average, empirically showing why Dice is rarely adopted in natural-image segmentation tasks. As
we mentioned earlier, this might be due to its inherent label-marginal bias, which is inappropriate
for segmenting regions with arbitrary class proportions. Furthermore, our simple solution yielded
an improvement over CE by nearly 1.5%, regardless of the backbone. These empirical observations
suggest that the proposed formulation in Eq. (5) results in better region-proportion guidance and
training stability than existing segmentation losses. Finally, we can observe that employing L1 as
regularizer consistently results in better performance than using the DKL term. Hence, L1 might be
a better option in extremely imbalanced segmentations, due to its gradient properties and stability
when the label-marginal probability is close to 0.

4 CONCLUSION

We provided a detailed theoretical analysis of the two most popular semantic segmentation losses,
i.e., Cross-entropy and Dice, which revealed non-obvious bounding relationships and hidden label-
marginal biases, suggesting that CE is a better option in general. Then, we showed how both loss
functions could be written within a common formulation, containing a ground-truth matching term
and a label-marginal bias. The implicit bias in Dice prefers small regions, improving its perfor-
mance in highly imbalanced conditions, as in medical-imaging applications. The bias hidden in CE
encourages the ground-truth region proportion, which makes it a generally better option in complex
scenarios with diverse class proportions. Furthermore, we proposed a principled solution, which
enables to control the label-marginal bias via L1 and KL regularizers that encourage the target class
proportions, while improving training stability. Our flexible formulation enables the minority classes
to have better influence on training, without losing adaptability to medium-to-large regions. Exten-
sive experiments on a natural and medical imaging datasets validate the theoretical analysis in this
paper, as well as the effectiveness of the presented solution.
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A PROOFS

A.1 PROPOSITION 1

Proof. Let us write the label-marginal bias term in the logarithmic Dice as a vector-valued function
of probability simplex vector p:

g(p) = 1>K log(p + y) for p = (p̂k)1≤k≤K ∈ ∆K (6)

where symbol > denotes transpose and 1K is the K-dimensional vector of ones. Function g is
concave because its Hessian is a negative semi-definite matrix: The Hessian of g is a diagonal
matrix whose diagonal elements are given by− 1

p̂2k
and, hence, are all non-positive. Therefore, using

Jensen’s inequality and the fact that p is within the simplex, we have the following lower bound on
penalty g in Eq. (6):

g(p) = g

(
K∑
k=1

p̂kek

)
≥

K∑
k=1

p̂kg(ek) (7)

where ek ∈ {0, 1}K denote the k-th vertex of the simplex: the k-th component of ek is equal
to 1 while the other components are all equal to 0. Now, recall the definition of simplex vector
t =

(
t̂j
)
1≤j≤K : t̂j = 1 when ŷj = max1≤k≤K ŷk and t̂j = 0 otherwise. Given this definition, one

could easily verify the following fact:

g(ek) ≥ g(t) ∀k (8)

To see this, let j denotes the integer verifying ŷj = max1≤k≤K ŷk and let k 6= j. Then, we have:

g(ek)− g(t) = log

(
1 +

1

ŷk

)
− log

(
1 +

1

ŷj

)
≥ 0. (9)

This is due to the fact that function log
(
1 + 1

x

)
is monotonically decreasing in [0, 1] and ŷk ≤ ŷj .

Now, combining inequalities (7) and (8), and using the fact that
∑K
k=1 p̂k=1, we obtain:

g(p) ≥ g(t) (10)

A.2 PROPOSITION 2

Proof. Considering a generative view of the prediction model, random variable F associated with
the learned features is continuous, while the random variable describing the labels, i.e., K, takes
its possible values in a finite set {1, . . . ,K}. Then, the marginal distribution of the labels could be
empirically estimated by the GT proportion of each segmentation region (as listed in Table 1) (Kim
et al., 2005) :

P(K = k) ≈ ŷk =
|Ωk|
|Ω|

(11)

Also, we express the conditional entropy of the learned features as follows :

H(F|K) =

K∑
k

P(K = k)H(F|K = k)

≈ 1

|Ω|

K∑
k

|Ωk|H(F|K = k) (12)

with eachH(F|K = k) given by :

H(F|K = k) = −
∫

fθ
P(fθ|K = k) logP(fθ|K = k)dfθ (13)

Hereafter, for notation simplicity, we omit K and use H(F|k) instead of H(F|K = k). Also, we
use P(fθ|k) instead of P(fθ|K = k).

12
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To estimate the conditional entropy in Eq. (13), let us refer to the following well known Monte-Carlo
estimation (Kearns et al., 1997; Tang et al., 2019) :

Monte-Carlo estimation. For any discrete set of points S ⊂ Ω, any function g and any feature
embedding f , we have : ∫

f

g(f)P(f |S) ≈ 1

|S|
∑
i∈S

g(fi) (14)

where fi denotes a feature vector at point i, and P(f |S) stands for the density of {fi, i ∈ S}.
Therefore, applying Montre-Carlo toH(F|k) in Eq. (13), we can re-write Eq. (12) as follows :

H(F|K) ≈ − 1

|Ω|

K∑
k

∑
i∈Ωk

log(P(fθi |k)) (15)

Furthermore, using Bayes rule P(fθi |k) ∝ pik
p̂k

, in addition to the fact that
∑
i∈Ωk

log(p̂k) =

|Ωk| log(p̂k), we obtain :

H(F|K) ≈ − 1

|Ω|

K∑
k

∑
i∈Ωk

log

(
pik
p̂k

)

= − 1

|Ω|

K∑
k

∑
i∈Ωk

log (pik) +
1

|Ω|

K∑
k

∑
i∈Ωk

log (p̂k)

= CE +
1

|Ω|

K∑
k

|Ωk| log(p̂k)

= CE +

K∑
k

ŷk log(p̂k) (16)

Finally, due to the definition of the label-marginal KL divergence, we have :

DKL(y||p) =

K∑
k=1

ŷk log

(
ŷk
p̂k

)
c
= −

K∑
k

ŷk log(p̂k) (17)

This yields :

CE c
= H(F|K) +DKL(y||p) (18)

In summary, we give an information-theoretic prospective of CE. The entropy term can be con-
sidered as a ground-truth matching term, while the label-marginal KL term avoids trivial solutions
and encourages the proportions of the predicted segmentation regions to match the ground-truth
proportions.

B THE BINARY SEGMENTATION CASE

In the two-class (binary) segmentation case, Dice might be used for the foreground region only (Mil-
letari et al., 2016). Similarly to the multi-class case discussed in the paper, a single Dice term also
decomposes into a ground-truth matching term and label-marginal penalty, with the latter encourag-
ing extremely imbalanced binary segmentations. For this specific case, the logarithmic Dice and CE
could be written as summations over the foreground and background segmentation regions:

− log(Dice1)
c
= − log

(
1

|Ω1|
∑
i∈Ω1

pi1

)
︸ ︷︷ ︸

Foreground matching: DF1

+ log

(∑
i∈Ω

pi1 + |Ω1|

)
︸ ︷︷ ︸

Label-marginal bias: DB1

(19)
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CE = − 1

|Ω1|
∑
i∈Ω1

log pi1︸ ︷︷ ︸
Foreground matching: CE1

− 1

|Ω2|
∑
i∈Ω2

log(1− pi1)︸ ︷︷ ︸
Background matching: CE2

(20)

In Eq. (19), the term DB1 can be expressed, up to an additive constant, as a function of the marginal
probability of the foreground class (k = 1) as follows:

DB1
c
= log(p̂1 + ŷ1) (21)

Clearly, the marginal probability p̂1 measures the predicted proportion of pixels within the fore-
ground region. This term reaches its minimum when the foreground region is empty (pi1 = 0∀i).
Therefore, since log is monotonically increasing, minimizing term DB1 in Eq. (19) introduces a
bias preferring small foreground structures. Note that this label-marginal term in the logarithmic
Dice loss is important to avoid trivial solutions: when using the foreground-matching term alone,
the model may assign all the pixels in the image to the foreground region.

The foreground-matching terms, CE1 and DF1, are closely related, with the former being and upper
bound on the latter, due to Jensen’s inequality: DF1 ≤ CE1. Both foreground-matching terms are
monotonically decreasing functions of each softmax and reach their global minimum when all the
softmax predictions in the ground-truth foreground are equal to 1 (i.e., reach their target). Hence,
the matching terms in Dice and CE can be viewed as two different penalty functions for imposing
the same equality constraints, pi1 = 1,∀i ∈ Ω1, thereby encouraging the predicted foreground to
include the ground-truth foreground.

C DISTRIBUTION OF REGION PROPORTIONS ACROSS CLASSES

Cityscapes Retinal Lesions

Figure C.1: The distribution of region proportions for the 19 classes in Cityscapes dataset (Left)
and Retinal Lesions dataset (Right). The dashed line in the right figure indicates the average region
proportion for Retinal Lesions. Best seen in color.

In Fig. C.1, we present the distribution of region portions for each class in Cityscapes and Retinal
Lesions. Cityscapes has highly variable region sizes (ranging from an average of 1.0% for rider
and motorbike to an average of 32.6% for road). In Retinal Lesions, although the average region
proportion is 3.8%, there are some examples with large region proportions (above 50.0%), and
the standard deviation is 6.6%. Thus, these plots present the significant heterogeneity on different
classes found across these two data sets.

D THE TEMPERATURE SCALING

In our implementation, we employ a modified soft-max function with a temperature scaling param-
eter when computing the predicted region proportion p̂k (also referred to as the predicted label-
marginal probability, as in Table 1) :

s(z)i =
eτ ·zi∑K
j e

τ ·zj
(22)
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Figure D.1: Comparison of soft-max functions with different temperature scaling paramter τ .
This shows that the output confidence increases with larger τ . Best seen in color.

where z = (zi)1≤i≤K is the input vector of the soft-max function, and τ > 0 acts as the temperature
hyper-parameter. High values of τ > 0 yield high confidence of the soft-max prediction, as shown
in Fig. D.1: They push the softmax vector towards the vertices of the simplex, with prediction values
approaching either 0 or 1. As a result, this enables a better estimate of the actual region proportion
(or relative size). Throughout all our experiments, we set τ to 10.

E STUDY OF THE TRADE-OFF WEIGHT IN THE COMPOSITE LOSSES

DS
C

Figure E.1: The performances of different composite losses on the test set of Retinal Lesions with
different values of the trade-off hyper-parameter λ. The network we used is fixed to Res50-FPN.

The proposed method is a type of composite loss. Thus, the trade-off hyper-parameter λ could in-
fluence the final performance. Fig. E.1 shows the performances of the different composite losses
examined in the paper, with different trade-off hyper-parameter values. While we plot the perfor-
mances on the test set of Retinal Lesions, the behaviour on the validation set is similar, with the best
trade-off parameters reached at the same value for both the validation and test sets.

From the curves, we can notice that L1 is a better choice than KL divergence for the proposed
method because of its better stability. This may relate to its gradient properties and stability at the
vicinity of 0 (see Fig. 2 in the main document). Thus, we can use a relatively larger weighting
values for CE+L1 (best performance achieved when λ = 1.0). Observe that CE+DKL leads to
comparable results at its best when λ = 0.1, but it seems more sensitive to the trade-off hyper-
parameter. For the loss integrating CE with the Dice bias term, i.e., CE+DB1, we demonstrate that
it can achieve performances similar to CE-log(Dice), but it drops significantly with high weighting
values (λ ≥ 0.1). This might be due to its gradient characteristics. Comparing to the widely
suggested composite loss of CE and Dice, our method deliver better performance with the same
hyper-parmeter budget.
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F PER-CLASS RESULTS ON CITYSCAPES TEST SET

Table F.1: Per-class Results on Cityscapes test set. (Top: Res50-FPN, Bottom: Res101-FPN) The
second row indicates the average region proportion (mRegProp) for each class. mIoU denotes the
mean IoU score over all classes.

road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike mIoU
mRegProp (%) 32.6 5.4 20.2 0.6 0.8 1.1 0.2 0.5 14.1 1.0 3.6 1.1 0.1 6.2 0.2 0.2 0.2 0.1 0.4

CE 97.5 79.3 90.3 45.0 46.3 53.5 61.6 67.3 92.1 70.1 93.5 78.4 53.3 93.7 41.4 48.8 38.2 55.2 67.1 66.97
Focal loss 97.6 79.1 89.8 41.3 43.6 49.9 57.7 63.8 91.7 68.4 94.1 75.7 47.3 93.0 37.8 44.9 35.6 50.5 63.8 64.50
CE− log(Dice) 97.4 79.2 90.3 43.8 45.0 55.1 67.0 70.3 91.8 70.0 94.0 79.4 56.0 93.3 39.7 50.8 32.2 51.2 68.1 67.08
CE + KL (Ours) 97.6 79.6 90.4 45.2 45.0 53.1 61.3 66.9 92.0 70.5 94.1 78.5 54.7 93.6 48.8 59.1 45.8 55.5 67.0 68.35
CE + L1 (Ours) 97.6 79.4 90.4 44.1 45.8 53.7 61.3 67.2 92.1 70.2 94.3 78.8 54.4 93.7 47.8 58.4 46.8 55.4 67.3 68.35
CE 97.8 81.3 90.9 45.6 50.2 55.7 64.2 67.1 92.3 70.9 94.6 79.7 57.6 94.2 51.7 58.0 43.5 58.1 68.5 69.57
Focal loss 97.9 81.3 90.6 46.4 46.9 52.4 59.9 65.7 91.9 69.4 94.4 77.3 53.0 93.6 42.7 48.7 35.9 54.5 66.5 66.79
CE− log(Dice) 97.7 80.0 90.5 43.8 48.5 55.8 68.1 70.9 91.7 70.5 94.2 80.6 61.4 93.7 46.9 57.6 40.6 59.2 70.4 69.58
CE + KL (Ours) 97.9 81.4 91.2 48.7 49.7 55.5 63.7 68.6 92.4 70.6 94.6 79.9 57.1 94.3 54.5 61.1 43.5 58.3 68.4 70.07
CE + L1 (Ours) 98.0 81.9 91.2 48.7 50.3 55.7 63.8 68.3 92.3 70.7 94.5 79.8 57.5 94.2 52.9 60.3 44.0 59.2 68.7 70.11

In Table F.1, we report the detailed per-class results on the Cityscapes test set. The proposed meth-
ods outperform related losses on both network settings. In term of mIoU, we achieve 68.35% and
70.11% on Res50-FPN and Res101-FPN, respectively. Compared to the baseline CE, our method
yields improvement for most of the minority classes, like fence, train and motorbike, while it shows
better adaptability for diverse classes than the Dice loss.

G MORE QUALITATIVE RESULTS ON THE RETINAL LESIONS DATASET

0.781 0.776 0.798 0.818

GT CE 1 - Dice CE - log( Dice  ) CE + L1 (Ours)1

0.792 0.757 0.804 0.812

0.631 0.120 0.540 0.667

0.539 0.698 0.647 0.726

Figure G.1: Additional visual results on the Retinal Lesions dataset. The ground-truth is depicted
in the first column. At the bottom of each image, we indicate the corresponding obtained DSC score.

Fig. G.1 gives more qualitative examples from Retinal Lesions Dataset. It is shown that our method
is able to adapt to the highly variant segmenting regions from small to large, while Dice loss obvi-
ously degrades in the case of large regions like the example in the third row.
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