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Abstract

Understanding the impact of adversarial attacks on reinforcement learning (RL)
models is essential due to their wide range of applications. In this work, we initiate
a study of targeted poisoning attacks for reinforcement learning agents, where the
adversary aims to deliberately increase the likelihood of a specific undesirable event
chosen by the attacker. In particular, rather than degrading overall performance
indiscriminately, the adversary carefully manipulates the training process so that,
during critical decision-making steps, the agent is more likely to fail in a targeted

manner, leading it into the adversary’s desired outcome.

We present theoretical results showing the effectiveness of such targeted poison-
ing in basic RL settings. Building on these insights, we design practical attack
strategies and thoroughly evaluate their impact beyond the scope of our theoretical
analysis. Through extensive experiments, we demonstrate that targeted poisoning
attacks substantially raise the probability of the chosen undesirable event across a
variety of reinforcement learning tasks, ranging from classic control benchmarks to
more complex continuous-control environments, including stochastic settings. We
compare our attacks against standard RL baselines and against algorithms specifi-
cally designed to mitigate poisoning, and we further validate their effectiveness on
deep RL models. Our results highlight the vulnerabilities of RL systems to targeted

training-time manipulations, underscoring the need for stronger defenses.
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1 Introduction

Reinforcement learning investigates how an intelligent agent acquires the ability to navigate and
operate within an unfamiliar environment, guided solely by the feedback of rewards. RL has a variety
of applications in the real world, such as autonomous driving (Mnih et al.,|2015), recommender
systems (Afsar et al.} 2022)), and portfolio management (Jiang et al.l 2017), among others. The
environment in RL is modeled as a Markov Decision Process (MDP). The MDP describes the
space of states, how an agent’s action leads to a transition between those states, and how it is
rewarded for each transition. In the conventional setting, the MDP is stationary, meaning that the
state transition mechanism and the reward function remain unchanged over time. Operating under
this assumption, numerous algorithms, supported by theoretical guarantees, have been meticulously
developed (Lillicrap et al., | 2015a; Mnih et al., [2013)) that can achieve the agent’s goal: learning a
policy that maximizes the cumulative reward it receives over time through its interactions with the
environment. However, these guarantees may lose effectiveness if an adversary corrupts one or more
elements of the underlying MDP.

Recent studies have demonstrated that modifications to the MDP, such as perturbed rewards, altered
state transitions, or manipulated actions, can undermine the performance of RL algorithms (Rakhsha
et al., [2021} [Pinto et al.| 2017). These works reveal how such adversaries can lead to sub-optimal
outcomes (Behzadan and Munir, |2017; |Huang et al., 2017). These works fall under the umbrella
of so-called poisoning attacks. Several prior works have investigated poisoning attacks against
reinforcement learning, and these can be broadly categorized into two general classes.

One type of poisoning attack on RL has primarily focused on maximizing the agent’s “regret” (Wei
et al.| 2022 Wang| [2022) defined as

T
REgretg = Z [R(St—la ’/T*(st—l)v St) - R(st—lv ag, St)] )

t=1

which represents the difference between the agent’s cumulative reward when following policy 7
and the cumulative reward obtained under the optimal policy 7*, where 7 is generally defined as a
mapping from states to actions. Here, s; denotes the agent’s state at time step ¢, and a, represents the
action chosen by the agent at time step ¢t — 1. R(-) denotes the reward function, and T represents the
number of time steps in an episode, which is a sequence of interactions between an agent and the
environment (see the RL formulation of Section 2| for definitions).

In another type of attacks (Xu and Singh| [2023};|Zhang et al., |2020bj [Liu et al., [2022)), the adversary
sets an adversarial policy, ', and aims to increase the “loss” as the number of time steps the agent
follows this policy,

T
LossT = Z 1o, —rt(s,)-
t=1

While regret-based and adversarial-policy poisoning attacks can sometimes lead to harmful outcomes,
they do so only indirectly. These approaches are not designed to target specific notions of failure
that may be critical in real-world systems. In many applications, a bad event might mean entering a
dangerous state, taking a harmful action, or violating a safety constraint. Attacks focusing solely on
maximizing regret or policy deviation fail to capture these nuanced objectives. In contrast, poisoning
attacks that explicitly aim to increase the probability of predefined bad events, regardless of how
those events are defined, offer a more direct and flexible threat model for safety-critical reinforcement
learning settings. Therefore, despite the attack models presented in prior works, it is crucial to
broaden our perspective on the possible vulnerabilities of reinforcement learning, ensuring that these
systems can withstand and adapt to various adversarial conditions.

1.1 Our Contribution

This paper examines poisoning attacks against RL from a novel perspective by introducing an
adversarial goal that diverges from traditional approaches focused on maximizing regret and loss.
Instead, we focus on increasing the probability of a particular bad event desired by the adversary.
This scenario is relevant in many RL applications, and examining the power of such attacks would
broaden our understanding of the vulnerability of RL agents to adversarial attacks.



Our contributions are threefold: (i) introducing a novel attack model, (ii) designing theoretical attacks,
and (iii) extensive experiments against multiple algorithms in different environments.

Defining targeted poisoning attacks for RL. We initiate a study of rargeted poisoning attacks
for RL, which is a novel class of adversarial attacks on RL agents. In such attacks, the adversary
manipulates the learning process to increase the probability of a specific undesirable event. In essence,
a targeted poisoning attack involves the adversary identifying an undesirable event, denoted by a
condition BE, defined over the trajectory of the RL process. The agent is said to have triggered the
targeted event if this condition is satisfied. The adversary’s objective is to steer the learning process
such that the probability of this undesirable event increases:

Ppr(RL random process) = Pr [The RL random process results in the targeted undesirable event] ,

where “the RL random process results in the targeted undesirable event” means that the random
trajectory generated by the environment together with the agent’s policy 7 satisfies the condition BE.

In more detail, there are generally two phases in a targeted poisoning attack on an RL system: the
training phase and the testing phase. During the training phase, the adversary executes its poisoning
attack strategy while the agent works to improve its policy over time within this adversarial setting.
In the testing phase, the agent ceases policy refinement and uses the policy obtained at the end of
the training phase to interact with the environment. By the end of the testing phase, we can evaluate
the adversary’s success in causing the targeted undesirable event for the agent. Targeted poisoning
attacks are general enough to capture a wide range of meaningful scenarios not previously studied in
poisoning-robust RL.

In the case of theoretical attacks, we also study an alternative setting in which the training and testing
phases are merged into a single, continuous process of learning and testing concurrently. This way,
the agent focuses on learning the optimal policy during the initial portion of the episode, while the
latter part is reserved for performance evaluation.

Comparison to targeted attacks on classifiers. Our attack is inspired by fargeted poisoning
attacks in robust classification (Barreno et al.| 2006; |Shafahi et al.|[2018), where the adversary seeks
to increase the likelihood of misclassifying a specific test by manipulating the training data. However,
despite similarities, there are fundamental differences between the two settings. In particular, RL is a
stateful process, and it has an entirely different way of measuring an adversary’s “budget” compared
with classification, as even a single change in the process can drive it into a completely new path.
However, attacks on classifiers can corrupt each example in the training set individually, regardless of
the other examples in the set.

Motivating examples. To illustrate targeted poisoning attacks in real-world scenarios, consider
an RL-powered robotic surgery assistant responsible for suturing skin wounds. An adversary might
manipulate the agent’s learning process to induce undesirable outcomes, such as inadvertently
puncturing healthy skin with a needle. Similarly, consider an RL-driven firefighting robot tasked
with suppressing forest fires. Although the agent must steer clear of dangerously hot zones to avoid
damage, an adversary could manipulate its learning to direct it into hazardous areas. In these two
examples, the condition BE can be defined as the RL process entering a set of target malicious states
ST, specified by the adversary. Another example involves an autonomous driving agent operating in
the presence of an adversary that aims to manipulate the learning process, causing the agent to take
actions that may harm the vehicle, such as sudden acceleration or hard braking, which can damage its
components. In this case, the condition BE can be defined as the agent executing a harmful action
from a set A", specified by the adversary.

Targeted poisoning through action manipulation. The notion of targeted poisoning is general and
agnostic to the specific mechanism by which the poisoning is carried out. However, we need to select
a concrete poisoning model to demonstrate the effectiveness of such attacks. For this goal, we focus
on action manipulation. Specifically, after the agent selects an action, the adversary decides whether
to replace it with an alternative. Action manipulation can stem from the direct manipulation of the
agent’s actions or unintended perturbations, such as sensor noise or system malfunctions (Tessler|
et al.,|2019). For example, in the scenarios described in the “Motivating examples” paragraph, the
adversary can apply a destabilizing force that affects the needle’s trajectory in a robotic surgery
assistant. Similarly, for an RL agent tasked with suppressing fires in a burning forest, the adversary’s



action manipulation can be modeled as a software glitch that leads to adjustments in the robot’s
speed or altitude. The key reason to focus on action manipulation is that RL processes can be largely
deterministic in their state transitions and rewards in some applications, such as robotic manipulation
tasks governed by physics laws (Whitman et al., 2020; [James and Johns, [2016; Zhang et al., [2015]).
In contrast, actions tend to exhibit higher entropy during training.

Theoretical attacks. The theoretical adversary in this work aims to gradually increase the proba-
bility of a desired bad event by occasionally overriding the agent’s actions. In particular, our attack
is provably effective when (1) the RL setting has almost deterministic rewards and state transition
functions, which is common in some engaging scenarios, (2) the learning and testing phases are
combined into a continuous process, (3) the attack can depend on the policy of the agent. Looking
ahead, we will remove all these constraints in our actual experiments, and yet remain highly effective.
While near-determinism is assumed in theoretical attacks, our experimental attacks remain effective
even in highly stochastic environments. Nonetheless, this assumption is valid in specific practical
scenarios. For instance, robotic manipulation tasks are often modeled as deterministic MDPs due to
the predictability of physical laws (Whitman et al.}2020; James and Johns|, |2016} Zhang et al.,2015).
Similarly, Reinforcement Learning from Human Feedback (RLHF) is employed to align language
models with human preferences (Ouyang et al., [2022; |Christiano et al.} |2017). In this setting, the
prompt serves as the state, the model selects a token as an action, and the transition is deterministic:
the next state is formed by appending the selected token to the current prompt.

Experimental attacks. Our theoretical result comes with several restrictions (notably the near
determinism); however, the main contribution of our work is to do extensive experiments to show that
none of these limitations apply when we heuristically instantiate a concrete adversary and address
the challenges that arise. In particular, we evaluate our targeted poisoning attack against agents
representing the two fundamental reinforcement learning paradigms: off-policy and on-policy value
estimation in a tabular setting. We also assess our attack on deep reinforcement learning. Furthermore,
we examine how effectively our attack increases the probability of the bad event against two broad
classes of prior defenses: robustified value updates (Klima et al,|2019) and risk-sensitive policy
evaluation (Pan et al.,|2019), which were initially developed to counter earlier forms of poisoning
attacks. Analyzing these defenses under our attack framework sheds light on the generality and
limitations of targeted poisoning. We study the effectiveness of our attacks for both classic control
tasks and continuous control locomotion tasks in MuJoCo environments.

Black-Box nature of our attacks. As mentioned, an adversary in RL may have access to various
components, such as the agent’s policy and learning algorithm, or aspects of the environment,
including the state and action spaces, transition probabilities, and the reward function. In a black-box
setting (Liu and LAIL 2021; [Yu and Sun, 2022), however, the adversary has no knowledge of the
agent’s internal mechanisms—neither its policy nor the algorithm used to optimize it. Additionally,
the adversary only interacts with the environment through an API and can observe agent-environment
interactions. In practice, black-box attacks are preferred, but their design is more challenging.

Although much of the prior work on adversarial attacks in reinforcement learning relies on white-
box assumptions in some way (Zhang et al., [2020b; Rakhsha et al., [2020; Xu et al. 2021), our
experimental attacks operate under a black-box setting, where the adversary does not know the
agent’s algorithm or policy. Furthermore, it does not know the environment’s state and action spaces,
transition probabilities, or reward function. The adversary only has API access to the environment;
it can observe the outputs of the agent-environment interactions and, given a specific state, send an
action to the environment to observe the resulting next state and reward. In contrast, our theoretical
results assume that the adversary is aware of the agent’s policy and action space. We circumvent this
challenge in our experiments by training our own policy in conjunction with the attack.

1.2 Further related work

Research on poisoning attacks in RL can be examined from various aspects. Existing studies can
generally be compared from three perspectives: the adversary’s knowledge, the adversary’s budget,
and the adversary’s goal. The adversary’s knowledge refers to the information available to an
adversary about the target model or its environment. |[Xu and Singh|(2023);|Cai et al.|(2022)) introduce
a black-box setting in which the adversary does not know the environment or the algorithm the agent



uses to find the optimal policy. Instead, the adversary only receives information from the agent’s
interaction with the environment. On the other hand, Zhang et al.|(2020b)) describes a scenario where
the adversary has full access to both the environment and the agent. The adversary’s budget refers
to limitations on an adversary’s ability to perturb the environment. Early research has explored
various techniques for manipulating the environment in which an agent operates (Behzadan and Hsul
2019)). Using a theoretical framework, Zhang et al.|(2020a)) aimed to characterize the intricacies of an
observationally perturbed RL environment, while|Yu and Sun|(2022)) introduces a black-box adversary
capable of perturbing the state space. The adversaries in the works of [Xu et al.| (2022); |Cai et al.
(2022);|Wu et al.| (2023)) manipulate the reward observed by the agent. Ultimately, Liu and LAI|(2021)
introduces an attack model involving an adversary who manipulates actions that an agent takes, and
some empirical studies have been done in action poisoning against deep RL agents (Lee et al., 2020
Tan et al.| 2020). The adversary’s goal in reinforcement learning is usually maximizing regret (Wei
et al.,|2022; 'Wang| [2022) or maximizing loss (Xu and Singhl 2023} |Zhang et al.,[2020bj; |Liu et al.,
2022). While adversarial attacks are often studied to design efficient adversaries that degrade an
agent’s performance, another line of research focuses on making reinforcement learning agents more
robust to such attacks. Various works have explored robustness against different types of adversarial
perturbations, including reward manipulation (Banihashem et al.| 2021;|Bouhaddi and Adil 2024),
action interference (Tessler et al.l |2019; Tan et al.,|2020), and observation corruption (Mandlekar
et al.,2017; He et al.|[2024). These approaches leverage worst-case optimization, adversarial training,
and certified robustness to ensure a stable policy.

2 Background

RL formulation. In RL, every problem involves two key components: the environment and the
agent. The agent aims to achieve a goal by interacting with the environment and understanding
its dynamics. The environment is modeled as a Markov Decision Process (MDP), denoted by
M = (S, AR, P, T, o,~), where S is the state space and A is the action space. The reward
function R : S x A x § — P(R) maps state-action-state triples to a probability distribution over R,
and the transition function P : § x A — P(S) defines the probability distribution over next states
given a state-action pair. The horizon T specifies the number of time steps during which the agent
interacts with the environment. An episode in an MDP consists of a sequence of states, actions, and
rewards, starting from an initial state sy drawn from the distribution py and ending when the horizon
T is reached. Finally, the discount factor y € [0, 1] determines the agent’s preference for immediate
rewards over future ones. The agent interacts with the environment during an episode using a policy,
denoted by 7, which is a mapping m; : S — P(A). m(als) represents the probability of taking
action a in state s under policy  in time step ¢. Naturally, ) . 7;(a|s) = 1 for all states s € S.
In a deterministic policy for every state s € S, there exists an action a € A such that 7;(a|s) = 1,
which for simplicity is denoted by 7;(s). A policy at time 7; can be updated based on the policy at
the previous time 7;_1 and the information (s;_1, a¢, S¢, 7¢) that describe the transition at time ¢.

RL as a random process. In this paper, we represent an RL process with horizon 7', using an MDP,

M, along with the policy 7, and denote this as M;}, describing it as a random process (a sequence
of random variables):

M;TT = (Mg)rv M{r7 ... 7M?ZrT) = (SO7 <At7 Sta Rt>?:1) .
A sample episode from this random process would be

mgT = (mg,ﬁg, cee 7WL§T) = (307 <ata Start>tT:1) )
which is sampled by letting mJ = so ~ po and then sampling the following items for all ¢ € [T:

* Actions: m3,_o = a; ~ m(-|st—1),
o States: m%, | = s; ~ P(:|si—1,a1),
* Rewards: m%, = r; ~ R(:|s¢t—1, at, St).

Our theoretical results are independent of any specific reinforcement learning algorithm, demon-
strating that the attack remains effective across a broad range of RL methods. However, in our
experiments, we evaluate the attack against several concrete algorithms, the details of which are
provided in Appendix [A]



3 Threat model

The adversary can manipulate the agent’s actions by launching an action-poisoning attack. At each
time step t, the adversary decides whether to tamper with the agent’s chosen action a, in state s;_; to
a different action a; € A — {a;} (a+ # a:), or not (in which case a; = a.). The agent is unaware of
the adversary’s presence; therefore, it does not know whether its chosen action has been replaced, and
it assumes that all actions are a result of its own decisions. The environment receives the modified
action a,; and transitions to state s;, which is drawn from the distribution P(+|s;—1, a;). The agent
also receives reward r; < R(|s;—1,a¢, S¢+1). Consider a sequence in which, at each time step ¢,
the action a, is replaced by a;, the adversarially altered action. This modification yields a different
stochastic process compared to the original one. Even a single altered action can propagate changes
throughout the remainder of the sequence, potentially leading to a fundamentally different random
process, which we denote as W;T. In this case, a sample episode and a prefix of an episode are
represented as 75 and n% ., respectively.

Definition 1 (Bad Event). Consider an RL process with horizon T, along with policy w, represented
as a random process M;IT. The adversary defines a bad event through a condition denoted by BE.
Let msr € Supp(ﬁgT) denote a trajectory realized under the agent’s policy m. This condition can
be represented as a Boolean function BE : Supp(May) — {0, 1} indicates whether the bad event
has occurred. It is defined as:

BE(m3r) = 1ge(Mar),

where 1gg is the indicator function for the event that the trajectory s satisfies the condition BE.

As seen above, a bad event is a Boolean function defined on the support set of the RL random process
in its most general form. Our theoretical results hold in this general setting. The definition of a bad
event is broad, allowing it to encompass a wide variety of possible formulations used to characterize
undesirable outcomes in reinforcement learning. Our results indicate that, regardless of how the bad
event is defined, the adversary can increase its probability.

The agent interacts with the environment to learn the optimal policy while the adversary deploys its
poisoning attack strategy. After that, the agent stops improving its policy and uses the policy obtained
at the end of the training phase, where we can evaluate the adversary’s success using two key metrics:
Budget and Pgg, representing the adversary’s budget and the initial probability of the bad event, in
the training and testing episodes. They are denoted as:

T
* Budgej(T) =21 1&#«%)’
* Ppe(Nzp) = PrBE(Nyp) = 1,
where a; is the corrupted action introduced by the adversary at time step ¢, and N;rT denotes the
corrupted RL process. The adversary aims to strike a balance between minimizing its budget and
increasing P, or maximizing Ppg subject to a budget constraint. Note that Pgg and Budget are

defined with respect to the testing and training episodes, respectively. These episodes may either
coincide or differ, depending on the experimental setup.

4 Targeted poisoning attacks on RL

This section presents both the theoretical and experimental targeted poisoning attacks. In each case,
the adversary must decide at which time step it is most effective to replace the agent’s action to
increase the likelihood of achieving its objective.

4.1 Theoretical attacks

In this section, we state and prove our theoretical barrier to RL agents that are robust to targeted
poisoning attacks through action manipulation. First, we define p-Deterministic random processes.

Definition 2 (o -Deterministic Random Process). A random process Uy is called P -deterministic,
where P = (po, p1,---,pm), and py, € [0,1] for all h € {0} U [H], if

Vh € {O} U [H] and ﬂgh_l,auh € Supp(Uh) S.L. PI‘[Uh = Uh‘ﬂgh,—l] > Ph-



We now define RL settings with almost deterministic reward and state transition functions, which is
the setting we use here.

Definition 3 ((o®, a®)-deterministic RL Process). We call an RL process (o, a®*)-deterministic if

it is psp-deterministic for some psp = (pg, (pdt, p?, pf)le), in which p{* = 07T (i.e., no restriction
on the determinism of action steps) and,

« States: 31 (1 — pf) < a5,
« Rewards: Y, (1—pf) < aF.

To account for real-world variability (e.g., sensor noise) and to increase the robustness of our results,
we introduce slight stochasticity into this otherwise deterministic setting. It is worth noting that,
as shown in Section [4.2] our attack remains effective even in stochastic environments. The near-
deterministic assumption applies only to our theoretical results, and none of our experiments suffer
from this limitation.

We now state our result regarding targeted poisoning attacks by action manipulation. The following
theorem shows that if almost all the entropy comes from the actions, then an action-poisoning attack
can indeed increase the probability of the bad event from ~ 0 to &~ 1. See Appendix [D]for the proof.

Theorem 1. Let My be an (o, o)-deterministic RL process. Let BE : Supp(Myy) — {0,1}

define a bad event over the process, whose initial probability is €: PBE(MgT) = € and where
e >a=a’+af. Thenforall § € [0, 1), there exists an adversary with following features:

* Success. Ppg, (N;“T) >1—0—a where N;TT is the tampered RL process.
« Budget. Budget(T) = O (\/T Sn (1/((e — a)a))).

e Complexity. Given oracle access to the policy, transition probability, and reward functions,
the adversary can be implemented in polynomial time over N/ ((¢ — «)d) where N is the
total bit representation of the RL process.

4.2 Experimental targeted poisoning attacks

Our theoretical results are not confined to a specific algorithm or class of algorithms; they hold
universally for any RL algorithm. Similarly, the definition of a bad event is highly general and not
limited to specific cases. However, to provide concrete empirical validation and demonstrate the
practical impact of our attack, we conduct evaluations on representative RL algorithms. Specifically,
we evaluate the effectiveness of our attack strategy on both off-policy algorithms, such as Q-learning,
and on-policy algorithms, like Expected SARSA, to ensure a comprehensive assessment. Additionally,
we test our attacks against three robust variants of these algorithms: Q(x)-learning and Expected
SARSA(k) from Klima et al.|(2019)), as well as RARARL from [Pan et al.| (2019). We also evaluated
our attack on Deep Q-Learning and Deep Deterministic Policy Gradient (DDPG), two widely used
deep RL algorithms (Mnih et al., 2013). ['| We conduct our experiments in nine settings: the standard
classic control environments, Cart-Pole and Mountain-Car, which are widely used in reinforcement
learning research; their stochastic variants (see Appendix ; and Fire-Grid, a novel environment
introduced in this study and inspired by one of our motivating examples (see the second example
of the “Motivating examples” Paragraph of Section [I.T)), designed to illustrate the notion of bad
events intuitively. Additionally, we consider four continuous-control MuJoCo environments: Hopper,
Swimmer, Inverted Double-Pendulum, and Half-Cheetah. All environments, except Fire-Grid, are
available through OpenAI’s gymnasium library (Brockman et al., 2016).

4.2.1 Attacked environments

Cart-Pole environment In the Cart-Pole environment, the agent aims to balance a pole on a moving
cart by choosing to push the cart left or right. The task ends if the pole falls too far or the cart moves
out of bounds, and the agent is rewarded for keeping the pole upright as long as possible (see more

details in Appendix[B.2).

Bad event in the Cart-Pole environment. In the Cart-Pole environment, a bad event is defined as the
agent being in a state where the pole angle exceeds -6°, or the cart position exceeds +0.8 unit. The

'All these algorithms are described in detail in Appendix



Figure 1: Representation of the Cart-Pole environment.

intuition behind this definition is that exceeding these narrower thresholds indicates the system is
nearing instability, making it critical for maintaining control of the cart and pole.

Mountain-Car environment. In the Mountain-Car environment, the agent must drive an under-
powered car up a steep hill by first building momentum through strategic movement in a valley. The
goal is to reach the hilltop in as few steps as possible, with each time step penalized to encourage
efficiency (see more details in Appendix [B.3).

Figure 2: Representation of the Mountain-Car environment.

Bad event in the Mountain-Car environment. In this environment, we define the bad event as the
agent taking more than 150 steps to reach x > 0. This captures inefficient movement, indicating the
agent is failing to build sufficient momentum.

Stochastic versions of Cart-Pole and Mountain-Car environments. To assess robustness under
uncertainty, stochastic variants of the Cart-Pole and Mountain-Car environments were created by
introducing randomness into transitions and rewards, simulating more realistic and unpredictable
dynamics while preserving the original tasks’ objectives (see more details in Appendix [B.4).

Fire-Grid environment. The Fire-Grid environment simulates a forest where an agent, starting
with a limited charge, must navigate a 6 x 6 grid to reach a charging station located in the bottom-
right corner. Along the way, the agent must avoid hazardous wildfire zones and suppress fires in
cells containing a manageable amount of fire (represented as white squares) as much as possible.
Movement is stochastic, and the agent’s objective is to conserve energy by minimizing time and
avoiding high-cost areas, making this environment a challenging benchmark for planning under
uncertainty and risk (see more details in Appendix [B.5).

Bad event in the Fire-Grid environment. The adversary designates a set of states, those affected by
wildfire and visually represented by orange squares, as target states, and aims to lead the agent into
these states. If the agent passes through even a single target state, the event is considered a bad event.

MuJoco environments. We evaluate our attack in four continuous-control environments: Hopper,
Swimmer, Inverted Double Pendulum, and Half-Cheetah. These environments are continuous-control
environments that challenge agents to learn complex motor coordination for balance and locomotion.
Each task involves controlling a simulated robot, ranging from hopping and swimming to balancing
poles and running, by applying torques to joints in order to move forward or maintain stability under
dynamic physical conditions (see more details in Appendix [B.6)).

Bad event in MuJoCo. MuJoCo environments involve applying torques to different joints, where
excessive torque can damage the robot and lead to mechanical fatigue. Therefore, we define the bad
event in all these environments as a violation of a specified action magnitude range. In the Hopper
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Figure 3: Fire-Grid Environment. The blue circle represents the agent, the top row of green squares
indicates possible initial positions to start an episode, the orange squares denote locations with
wildfire, and the yellow thunderbolt icon represents the charging station.

Figure 4: From left to right: Hopper, Swimmer, Inverted Double-Pendulum, and Half-Cheetah.

environment, a bad event occurs if the agent takes an action with magnitude exceeding a specific
threshold for more than 20% of the time.

4.3 Results

In this section, we report our findings on the effectiveness of our attacks in all the various combinations
of the environments and agent algorithms described above. ﬂ However, before reporting on our
experiment’s results, here we present four key findings derived from our experimental results.

* Effective under stochasticity: Our results in the Fire-Grid environment and the stochastic
versions of Cart-Pole and Mountain-Car show that even when near-deterministic conditions
do not hold, and state transitions and reward signals are stochastic, our attack remains
effective in increasing the probability of bad events.

* Diverse definitions of bad events: Our experiments confirm the attack’s effectiveness
across diverse bad event definitions. In Cart-Pole and Fire-Grid, the adversary targets a set
of states ST C S. In Mountain-Car, the bad event is defined over S x [T'], penalizing failure
to reach states with certain features within a time horizon. In MuJoCo, it is defined over
the action space A, where the agent is pushed toward harmful actions. Despite these varied
definitions, the adversary remains consistently effective.

* Adversary’s budget: We consider an adversary budget inspired by our theoretical results.
Specifically, our theoretical analysis indicates that the budget required for the adversary to
achieve its objective is O(v/T). To apply this in practice, we first train the agent in a non-
adversarial setting to estimate the typical episode length, denoted 7”. Based on this estimate,
we set the adversary’s budget to v/7”. Remarkably, even with this constrained budget, the
adversary is still capable of significantly increasing the probability of the undesirable event.

* Effective in different levels of stochasticity: We experimented with varying levels of
stochasticity in the Fire-Grid environment to evaluate the robustness of our attack in in-
creasing the probability of the bad event. Our results show that even under high levels of

*Codes are available here: https://anonymous.4open.science/r/
Targeted-Poisoning-of-Reinforcement-Learning-Agents-D803/
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stochasticity, the adversary remains effective, and the agent continues to exhibit behavior
that satisfies the adversary’s objective.

Table[T|presents the adversary’s performance across the aforementioned environments against various
agents. The entry in row ¢ and column j in this table indicates the probability of the bad event in the
environment j when the agent is trained using the algorithm 1.

Table 1: Results of targeted poisoning attack against Q-learning, expected SARSA, Deep Q-learning,
Q(k)-learning, expected SARSA(x), and RARARL in the Cart-Pole (CP), Mountain-Car (MC),
Stochastic Cart-Pole (stoc-CP), Stochastic Mountain-Car (stoc-MC), and Fire-Grid environments.

Setting Cp MC  stoc-CP stoc-MC FG
Non-adversarial 0.038 0.174 0.053 0.162 0.088
Adversarial

Q-learning 0.737 0.438  0.695 0.392 0.618
expected SARSA 0.822 0.449 0.831 0.466 0.561
Deep Q-learning 0.573 0475 0.560 0.421 0.712
Q(k)-learning 0.682 0.389 0.702 0.375 0.567
expected SARSA(k) 0.788 0.350 0.791 0.471 0.480
RARARL 0.863 0.604 0.814 0.659 0.472

Our results show that, across all environments, the adversary can significantly increase the probability
of the bad event, regardless of the agent’s specific method for policy optimization. Notably, all
algorithms exhibited comparable levels of vulnerability.

Table [2| shows targeted poisoning results in Fire-Grid under different stochasticity levels. As detailed
in Appendix the agent moves in the intended direction with probability p = 0.8, and otherwise
in a perpendicular direction. We varied p from 0.2 to 1.0 to test the adversary’s robustness. The
adversary remains effective across all settings. Results are based on a Q-learning agent.

The results of the targeted poisoning attack in MuJoCo environments are presented in Table 3]

Table 2: The probability of the bad event at dif- Table 3: The probability of the bad event in
ferent levels of stochasticity in the Fire-Grid en-  both non-adversarial (Non-Adv) and adversarial
vironment. (Adv) settings when using the DDPG algorithm
across various MuJoCo environments.

Stochasticity Level (p) Pgg

02 0618 Environment Non-Adv Adv

0.4 0.714 Hopper 0.148 0.412
0.6 0.603 Swimmer 0.103 0.584
0.8 0.651 Inverted Double-Pendulum 0.067 0.388
1.0 0.549 Half-Cheetah 0.093 0.479

5 Conclusion and future directions

We introduce targeted poisoning, a novel attack where the adversary selectively alters actions to
increase the probability of a bad event by adapting to the agent’s algorithm. Even a polynomial-time
adversary can significantly amplify this risk. Unlike prior methods, our attack accounts for execution
order. We demonstrate its stealth and effectiveness across nine environments, five RL algorithms
(Q-learning, Expected SARSA, Deep Q-learning, DDPG), and three defenses, showing a marked
increase in bad event probability. Given the novelty of targeted poisoning attacks in this work, no
existing defenses are specifically designed to counter them. We adapted several relevant strategies but
found they failed to mitigate the attack, revealing a critical gap. This highlights the need for robust
RL algorithms that can withstand such adversarial manipulations, a key direction for future research.

Our experimental results suggest that targeted poisoning attacks can still be impactful even when the
state transition and reward functions are stochastic. An intriguing direction for future research would
be to systematically investigate the effectiveness of targeted poisoning attacks in such environments
from a theoretical perspective. Furthermore, an important extension would be studying adversaries
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that manipulate rewards or states, rather than actions, to evaluate their success in achieving the unique
objective of targeted poisoning.
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A Algorithms in experimental attacks

This section discusses the algorithms targeted in our experiments and outlines how we configure their
parameters during training.

A.1 Temporal difference learning algorithms.

This section introduces two fundamental functions: the state value function and the state-action value
function. These functions are essential for understanding RL algorithms such as Q-learning, Expected
SARSA, and other temporal-difference (TD) learning methods used in this study (see Algorithm T).
Additionally, they serve as the foundation for deriving the optimal policy.

Algorithm 1 TD learning

1: Result: Agent state-action value function: Q.

2: Input: Environment: env, Minimum learning rate: «,, Minimum epsilon: ¢,, Decay rate
parameter: 7, Discount factor: v, Number of episodes: H.

3: Initialization: Q(s,a) for all s € S and a € A arbitrarily.

4: for episode h <— 1to H do

5:  Initialize the first state sg ~ Mo,

6 a = max(ay, min(1,1 — log( ));
7: € = max(€,, min(1,1 — log(T)));
8:  The first state sg ~ fo;

9 done = False;

0 t=1;

1

10:
11:  while not done do

{argmax Q(si_1,a), wp. 1—e¢
12: Choose action a; = acA
random action, w.p. €
13: Take action a, at time step ¢ and generate the next state, reward, and the termination signal:
S¢, T, done;
14: Update Q-value function:
Q(St—h at) — (1 - O‘) : Q(St—la Clt) +a- (tdtarget) (1)
15: if done then
16: Reset env;
17: end if
18: t—t+1;
19:  end while
20: end for

In order to define them, we suppose that the t" transition takes place when the agent takes action a;
in state s;_1, then it transitions to state s; and gives reward r;.

The first function to introduce is the state value function (or value function for short), denoted as
V7 : § — R. This function is defined for all states s € S and represents the expected value of the
total future rewards when starting from state s;_; in time step ¢ until the end of the episode and
following policy 7. It can be formulated as

V(Stl

T
E™ (> A Tk|3t1‘| ;

k=t

where  is the discount factor for future rewards from time ¢ onwards, and 7, represents the reward
obtained at time k. For all policies 7, we have: V7, (s7) = 0.

The second one is the state-action value function (or Q-function), denoted as Q7 : S x A — R. This
function is defined for all state-action pairs (s,a) € S X A and represents the expected value of the
total future rewards when starting from state s,_; and taking action a; in the ¢t time step onward,
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following the policy 7 until the end of the episode. It can be formulated as

T
Qf (s¢—1,a;) =E” [Z’thTHSt—l,at] .

k=t
For all policies 7 and for all actions a € A, we have: Q7 (sT,a) = 0.

In our work, we assume that the state space S and the action space A are finite. Additionally, the
horizon T is limited, and the reward function R is bounded. As a result, both the value function
and the Q-function are also bounded. It is widely recognized that the value function and Q-function
adhere to the Bellman optimality equation. As a result, according to the Banach fixed point theorem,
the optimal Q-function exists and is unique (Szepesvaril [2022).Based on Bellman optimality equation,
for all (s,a) € S x A, the optimal Q-function Q* can be obtained as bellow

Qi (s¢-1,a;) =E |:Tt + Y max Q:+1(St7a)|5t717at:|

= Z Pr[s;, re|st—1, at |:T’t + 'ymngf+1(st, a)}

StyTt

The agent’s primary objective is to discover the optimal policy that yields the maximum cumulative
reward. Consequently, the optimal policy 7*, which is a deterministic policy, can be determined as
follows

T ($t—1) = arg max Qi (st-1,a)
In Algorithm replacing the term tdgarget in Equation |1| with [ry + 7 - majl( Q(st,a)] yields the
ac

Q-learning algorithm. Similarly, substituting tdarget With [re +7 - >° 4 Prlals:]Q(s¢, a)] results
in the expected SARSA algorithm.

A.2 Deep RL algorithms that we attack

Since the action spaces in Cart-Pole, Mountain-Car, and Fire-Grid are discrete, we selected a deep
reinforcement learning algorithm suitable for such settings—Deep Q-Learning (Mnih et al., [2013)).
On the other hand, since the action space in the MuJoCo environments is continuous, we evaluated
our attack against Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,[2015b)), one of the
most widely used algorithms for such settings.

Deep Q-learning. Deep Q-learning replaces the tabular Q-value lookup of classic Q-learning with
a parameterized neural network that maps high-dimensional observations directly to action-value
estimates; this enables handling continuous or very large state spaces that a table cannot represent.
During training, Deep Q-learning employs stochastic gradient updates on mini-batches sampled
from an experience replay buffer, thereby decorrelating consecutive samples and enhancing sample
efficiency. Crucially, it maintains two networks: an online network for selecting actions and a
periodically updated target network for generating stable training targets, which prevents the feedback
loop instability typically associated with using a single moving network. By leveraging deep function
approximation, Deep Q-learning generalizes learned value estimates across similar states, enabling it
to scale to tasks with high-dimensional inputs without requiring manual feature engineering.

Deep Deterministic Policy Gradient. DDPG directly learns a deterministic policy for selecting
continuous actions via an actor network, while a paired critic network estimates the quality of those
actions. The actor network is updated by following gradients from the critic’s value estimates, enabling
efficient policy improvement in continuous domains without action discretization. Both networks
are trained off-policy using mini-batches drawn from an experience replay buffer, which breaks
temporal correlations and enhances sample efficiency. To ensure stable learning, DDPG maintains
separate target networks for the actor and critic that slowly track the learned networks, thereby
smoothing the targets used during updates and preventing divergence. By combining deterministic
policy gradients with deep function approximation and stabilization techniques borrowed from DQN,
DDPG provides a powerful framework for continuous control tasks where both state and action
spaces are high-dimensional and continuous.
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A.3 Three proposed robust algorithms that we attack

In this work, we evaluate the robustness of certain proposed algorithms against targeted poisoning
attacks. Specifically, we consider three algorithms: Q(x)-learning and expected SARSA(x) from
Klima et al.|(2019)), as well as RARARL from [Pan et al.|(2019).

A.3.1 Q(x)-learning and expected SARSA (k) algorithms

In reinforcement learning, agents must often operate in environments where external adversaries
may attempt to interfere with their decision-making. One such scenario involves a Q-learning agent
that seeks to develop a robust policy while contending with a potentially malicious adversary. In
this setting, the adversary can seize control of the agent’s action with probability x, influencing the
learning process. The outcome of each state transition depends on who controls the action: if the
agent retains control, it selects the optimal action to maximize the expected return, whereas if the
adversary takes control, it may choose an action that minimizes the expected return. Klima et al.
(2019) introduced the Q(x)-learning and expected SARSA(k) algorithms by modifying the TD target
in Equation[I] of Algorithm|T]as follows.

In Q(k), they define tdiarget as:
tdarger = o+ [(1 = 2) max Q(s1, a) + 2 min Qs a)
For expected SARSA(x), they set td¢arget to:

tdtarget =7+ {(1 - J")EGNTFQ(St7 (L) + xmainQ(Sta (Z)}

=T+

(1—-2x) Z Prlals:]Q(st,a) + :cmainQ(st,a)l .

acA

These modifications incorporate the adversary’s influence, adjusting the learning process to account
for adversarial interference in action selection.

As stated in Klima et al.[(2019), the agent either has prior knowledge of or can estimate the probability
of an attack, denoted as z. In our experiment, we estimate this probability by computing the ratio
of instances where the adversary replaces the agent’s action to the total number of opportunities for
such intervention. Before evaluating our attack against these algorithms, we provide the agent with
the estimated value of x to ensure it has access to this crucial parameter. For our experiments, we set
it based on the observed frequency of action replacements in attacks against Q-learning or expected
SARSA.

A.3.2 RARARL algorithm

Pan et al.| (2019) introduced the Risk-Averse Robust Adversarial Reinforcement Learning (RARARL)
algorithm, structured as a two-player zero-sum sequential game where the protagonist and adversary
take turns influencing the environment. The protagonist carries out a sequence of m actions, after
which the adversary responds with n actions. The game is defined by the tuple M = (S, A, R, P,7),
where S represents a potentially infinite state space, and both agents operate within a shared action
space A. To enhance robustness, [Pan et al.| (2019) introduces a risk-averse adjustment to the
protagonist’s Q-function by incorporating a variance-based penalty, and this idea is inspired by the
work of [Tamar et al.|(2016):

Q(S, a) = Q(s,a) — AVary, [Qk(‘g?a)] )

where Vary, [Qx (s, a)] denotes the variance of an ensemble of k& Q-functions Q(s,a), and A is a
constant controlling the level of risk aversion. Similarly, the adversary’s objective is modified to
encourage risk-seeking behavior using:

Q(s,a) = Q(s,a) + AVarg[Qx(s, a)].

The variance of an action a is computed as:

Vary, [Qr (s, a)]

k
Z sa—fZlea ,

w \
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where Q; represents the i head of a multi-headed Q-value network. An analogous variance compu-
tation applies to the adversary using (). The details of how this algorithm operates and its training
process are outlined in Algorithm 1 of |Pan et al.|(2019).

While RARARL is designed for continuous state spaces and employs Deep Q-learning rather than
tabular Q-learning, our work requires modifications to align with a different attack model. Addition-
ally, RARARL follows a turn-based structure where the protagonist and adversary alternate taking
actions. In contrast, our approach involves the agent selecting an action at each time step, with the
adversary dynamically deciding, based on a budget constraint, whether to perturb the action at that
moment. Therefore, we adapt the concept of the RARARL algorithm to make it compatible with the
context of our attack in this work.

Parameter setting. In our attacks, the agent first undergoes a training phase. Once training is
complete, the testing phase is conducted. We estimate the probability of the bad event during testing
by deploying the learned policy across a sufficiently large number of episodes and computing the
fraction in which the bad event occurs. To enhance confidence in our estimates for both adversarial
and non-adversarial settings, we repeat the entire training and testing process multiple times and
average the occurrences of the bad event.

Some parameters in our experiments, such as those used in the epsilon-greedy strategy and the
learning rate, are selected based on best practices commonly adopted in the reinforcement learning
literature. During early training, the agent emphasizes exploration by starting with a high exploration
rate (¢) and learning rate (o), giving greater weight to new experiences. As training progresses,
both rates decay logarithmically, gradually shifting the agent’s behavior toward exploitation. In our
experiments, we initialize with g = ¢y = 1 and decay both rates until they reach a lower bound of
oy = €, = 0 (see Algorithm|T]for details).

Additionally, for parameters such as the number of training episodes, we ensure that training proceeds
until the agent’s policy exhibits clear signs of convergence. For example, as illustrated in Figure 5}
the agent’s policy in the Cart-Pole environment converges to an effective policy after approximately
200 episodes. Nonetheless, we continue training beyond this point to ensure robust convergence. A
similar approach is adopted in all other environments studied.

200 — —

Cumulative Rewards

50 — —

| | | | | | |
0 50 100 150 200 250 300

Episode

Figure 5: Cumulative rewards during the training phase in the Cart-Pole environment with a 95%
confidence interval under the non-adversarial setting.

Moreover, whenever possible, we adopt algorithm parameters directly from the original papers that
introduced robust variants of reinforcement learning algorithms. For instance, we use the same values
for x in Q(x)-learning and Expected SARSA(x), and for A in RARARL, as specified in those studies.
Additionally, for parameters such as K (the number of random continuations), we select values that
strike a balance between computational efficiency and the effectiveness of the attack. Specifically,
we select values that avoid significant computational overhead while still allowing the adversary to
perform reliably.
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The parameter 7 in Algorithm@] can be determined as follows (Etesami et al.l [2019):

2In (1)

7 @)

7’]:

where e denotes the probability of the bad event in the absence of an adversarial attack, and 7' is the
episode length.

Finally, we emphasize that for some parameters, we experimented with only a few values and still
observed a significant increase in the probability of the bad event. This highlights the strength and
robustness of our attack, even in the absence of extensive parameter tuning.

B Additional explanation of the experiments

This section provides detailed information about the environments used to evaluate our algorithms, as
well as the strategy by which the adversary determines where to modify the agent’s actions.

B.1 Replacing action in targeted poisoning attack

We now provide a high-level description of our experimental attacks. The big picture of our attack is
inspired by our theoretical attack. However, as mentioned, we need to go around several limitations.
One major limitation is to make the attack efficient enough to be implemented, even if the adversary
does not have access to the full action space. To achieve this goal, we use the concept of maintaining a
set of actions by the adversary as it observes the agent’s interactions (denoted by A4y in Algorithm[2)).
Then, the adversary always picks its corrupted action from this space. A second idea is to avoid the
dependency on knowing the agent’s policy at every moment (to become a black-box attack). This
requires our attacker to train their own policies.

Suppose the agent is at time step ¢ — 1, meaning a prefix trajectory pref up to state s;_; has been
realized, and the agent is about to select action a;. The adversary must then decide whether this is an
appropriate point to replace the agent’s action. To do so, it generates K virtual random continuations
in its own simulation, from the current state and action a, to estimate the probability of a bad event
occurring. The adversary then repeats this process by substituting a; with other actions, estimating
the probability of the bad event for each. Based on these estimates, the adversary determines whether
to replace the original action. This procedure is outlined in Algorithm 2}

In our experimental attack, the adversary observes the agent-environment interactions and learns
its own policy, which differs from that of the agent. When generating random continuations in
Algorithm 2] the adversary uses this learned policy. To simulate a random continuation, it sends a
sequence of queries to the environment to complete that episode only in its own head. In contrast, the
theoretical adversary is assumed to have access to the agent’s policy.

Below, you can find more details regarding the environments in which we tested targeted poisoning
attacks.

B.2 Cart-Pole environment

In the Cart-Pole environment, the agent’s goal is to keep a pole upright by moving a cart left or right.
The pole stays upright if its angle remains within £12° of the vertical. The state space consists of
four continuous variables: cart position, velocity, pole angle, and angular velocity. At each time
step, the agent observes the state in its continuous form and maps it to a discrete counterpart using a
mapping function. The action is then selected based on this discretized state. This approach enables
the application of algorithms such as Q-learning and Expected SARSA in the environment.

The action space consists of two discrete choices: moving the cart left or right. The agent receives a
reward of +1 for each time step the pole remains upright. An episode terminates if (i) the pole tilts
beyond £12°, (ii) the cart moves outside 2.4 units, or (iii) the maximum reward threshold of +200
is reached. Similar to many robotic tasks, both state transition and reward in this environment are
deterministic in each transition.
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Algorithm 2 Our framework of action-replacement decisions

1: Result: Output action: a;, Remaining budget: Budget,.
2: Input: Realized prefix: pref, Current state: s;_1, Current action: a;, Attack strength 7,
Budget Budget,_;, Adversary memory of actions: A,qy.

3: Generate K random continuations (in adversary’s head) to complete the prefix pref:
{red, ... el )

4: Estimate baseline bad event probability: P4y, + L S BE(pref, rc});

5. Generate K random continuations to complete the episode after choosing a; as the action at time
stept — 1: {ref*, ..., rcit};

6: P& & S0 BE(pref, rci);

7: forall a € A.q4, do

8:  Generate K random continuations to complete the episode after choosing a as the action at

time step ¢ — 1: {rc{,...,rc% };
K
9: A % > .1 BE(pref,rcf);
10: end for

11: af < argmax,ec4,,, (PLg);

12: if Budget, , > 0 and (P& > " - PLn vV P&y < e -P%y) then
131 a¢ < a*, Budget, < Budget,_; — 1

14: else

15 dy < a;, Budget, < Budget,_;

16: end if

Figure 6: Representation of the Cart-Pole environment.

B.3 Mountain-Car environment

The Mountain-Car environment is a classic control benchmark in which an underpowered car must
build momentum to climb a steep hill. The agent starts at a random position near the bottom of a
sinusoidal valley and must strategically accelerate left or right to build enough momentum to reach the
goal at the top of the right hill. The state space consists of two continuous variables: the car’s position
and velocity. The position is constrained within [—1.2, 0.6], while the velocity is clipped between
[—0.07,0.07]. As in the Cart-Pole environment, we discretize the state space in the Mountain-Car
environment to enable the application of tabular algorithms such as Q-learning and Expected SARSA.
The action space consists of three discrete actions: accelerating to the left, accelerating to the right,
or maintaining the current speed. Due to the car’s low power, it cannot reach the goal in a single
move and must leverage the valley’s slopes to gain momentum. The transition dynamics follow a
deterministic update rule where the chosen action, a constant force, and the gravitational effect of
the terrain influence velocity. Collisions with the environment’s boundaries are inelastic, setting the
velocity to zero. The agent receives a reward of -1 per time step, encouraging it to reach the goal in
the shortest time possible. An episode terminates if the agent reaches the goal (position z > 0.5) or
exceeds 200 steps.

B.4 Stochastic versions of Cart-Pole and Mountain-Car environments

To further demonstrate that stochasticity does not hinder the effectiveness of our attacks, we intro-
duced stochastic elements into the Cart-Pole and Mountain-Car environments, which are natively
deterministic, consistent with the assumptions of our theoretical analysis, by slightly modifying
their source code to incorporate random transitions and rewards. In the stochastic versions of these
environments, each state transition follows the environment’s original nature with a probability of
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Figure 7: Representation of the Mountain-Car environment.

0.8. With the remaining 0.2 probability, the agent transitions to an alternative state generated by
adding Gaussian noise (mean zero, standard deviation 0.01) to the standard next state. Additionally,
we modified the reward function by adding Gaussian noise with zero mean and a standard deviation
of 0.1, introducing variability in the received rewards. As a result, the reward signal becomes fully
stochastic.

The standard deviation values of the random gaussian noises were chosen to introduce meaningful
variability in the state and reward while ensuring that the perturbations were not so large as to
completely hinder the agent’s ability to learn an optimal policy.E]

B.5 Fire-Grid environment

In this environment, a hypothetical forest is modeled as a 6 x 6 grid (shown in Figure[3). The agent’s
starting position is selected uniformly at random from the states in the top row (green squares). The
agent aims to reach the charging station in the bottom right corner before depleting its charge while
attempting to extinguish fires. Starting with a charge of 100, the agent loses a portion of its charge
with each step.

White squares represent areas of fire that are easily suppressible by the agent. In contrast, three orange
squares represent areas with wildfires. Entering these squares causes the agent to lose a significant
portion of its charge, making it advantageous to avoid them. As the agent loses charge, it receives a
negative reward. When the agent reaches this position, it is recharged, and the episode restarts.

A state in this environment consists of two components: the agent’s position (comprising the x and y
coordinates) and the agent’s current charge level. The action space consists of four possible actions:
moving up, down, left, and right. The agent’s state transition is stochastic. When it takes an action, it
moves in the intended direction with a probability of 0.8, and in each perpendicular direction with a
probability of 0.1. If the agent attempts to move outside the grid, it remains in its current position.
At each time step, if the agent remains in its current position, it loses charge according to a normal
distribution with a mean of —1 and a standard deviation of 0.1 (M (—1,0.1)). If the agent moves to
an orange state with high-intensity fire, it loses charge according to A'(—20, 2). For all other states,
the charge loss follows N (—2, 0.2). In each case, the agent receives a reward from N'(—0.5,0.01),
N(-10,1), and N'(—1,0.1), respectively.

The agent must reach the charging station before its charge drops below 5. If the agent’s charge falls
below 5 while it is in a position other than the charging station, it receives a reward drawn from
N (-30,2). In the Fire-Grid environment, an episode ends when the agent reaches the charging
station or its charge falls below 5.

B.6 MuJoCo environments: Hopper, Swimmer, Inverted Double Pendulum, and
Half-Cheetah

The Hopper, Swimmer, Inverted Double-Pendulum, and Half-Cheetah are all continuous-control
benchmark tasks that test an agent’s ability to coordinate forces in order to achieve and maintain
dynamic balance or precise trajectories.

3For more information on the natural ranges defined by the state spaces and rewards in these environments, see
the Gymnasium documentation at https://gymnasium.farama.org/environments/classic_control/.
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Figure 8: Fire-Grid Environment. The blue circle represents the agent, the top row of green squares
indicates possible initial positions to start an episode, the orange squares denote locations with
wildfire, and the yellow thunderbolt icon represents the charging station.

In the Hopper, a planar one-legged robot made up of torso, thigh, shin, and foot, must learn to apply
torques at its three hinge joints so that it repeatedly hops forward without tipping over.

The Swimmer is a chain of three or more rigid links joined by rotary actuators and immersed in a
two-dimensional viscous medium; by learning the correct sequence of joint torques, the agent must
generate traveling waves along the body to propel itself to the right.

In the Inverted Double-Pendulum, a cart on a one-dimensional track carries two rigid poles in
series—only the tip of the second pole is free—and must learn to apply continuous lateral forces on
the cart so that both poles remain balanced upright.

Finally, the Half-Cheetah is a planar (2D) robotic agent composed of 9 interconnected body segments
and 8 joints, including two that represent paws. The task is to control the robot by applying torque at
specific joints to propel it forward (to the right) as efficiently as possible. Progress in the forward
direction yields a positive reward, while backward motion results in a penalty. The robot’s torso and
head remain rigid and immobile, while torque can be applied to six joints: those at the front and rear
thighs (linked to the torso), the shins (connected to the thighs), and the feet (attached to the shins),
enabling coordinated locomotion.

Figure 9: Environments used for additional experiments. From top left to bottom right: Hopper,
Swimmer, Inverted Double-Pendulum, and Half-Cheetah.
C Borrowed technical tools

In this section, we present two results: one bounds the statistical distance between two random
processes, and the other addresses replacing attacks.

Bounding total Variation distance. The following lemma is a well-known lemma that has been
used extensively in the literature. For the proof of this, you can see the results of (2002).

*Additional details about these environments can be found at https://gymnasium.farama.org/
environments/mujoco/|
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. . . =1 —2
Lemma 2. Consider two random processes with H time steps U y; and U y; such that for all prefixes

—1 —2 . . .
u<p—1 € Supp(Ucp,_y1) N Supp(U<y,_y). If the total variation distance of the following two
conditional distributions: (u,ll\ﬂlgh_l = u<p—_1) and (u%|ﬂ2§h_1 = U<p—1) IS at most py, then

H
—1 =2
orv(Up,Up) < § Ph
h=1

where d1v (-, -) represents the total variation distance between two random processes.

Based on the adversary’s knowledge, its ability to tamper with a sample, and its budget, we can define
different types of attacks. In replacing attacks, the adversary can see the training samples and replace
some of them. The number of replacements is limited by the adversary’s budget.

Definition 4 (Replacing Adversary). Consider the random process U g as a sequence of random
variables, and the adversary Rep with a budget of Budget(H). Suppose a prefix of this random
process is sampled in the presence of the adversary: V<1 € Supp(U<p—1). At time step h, uy, is
sampled from Uy, and the adversary’s remaining budget is Budget;, (H). Now, the adversary decides
whether to replace the sample uy, with another sample v € Supp(Up)\{up}. If it does, it loses one
unit from its budget; otherwise, it carries the previous budget to the next step.

The following theorem is proved regarding replacing attacks:

Theorem 3 (A Result of [Etesami et al.| (2019)). There is a (uniform) oracle-aided randomized
algorithm Tam such that the following holds. Suppose f : Supp(Up) — {0,1} is a Boolean
function for random the process Uy = (Uy,...,Ug), and that Pr[f(Ug) = 1] > . Then, the
oracle-aided algorithm TamVl1/0) (,9, ") (also denoted by Tam for simplicity) with access to the
online sampler U["] for U i that gets a prefix of a random process and sample the remaining process,
and f(-) as oracles is an online replacing algorithm for U g and has the following features:

The replacing budget of Tam is O (\ /n - 1n(1/55)>.
The adversary runs in time poly(N/ed), where N is the total length of the bit representation
of the random process.

()
1. Pr[f(Vy)=1] > 1— § where V g is the replaced random process.
2.
3.

D Proof of Theorem (1]

This section presents the full proof of Theorem 1]

We first derive the information-theoretic attack for the first two cases by using the tools in Appendix [C|
as a black box. We then discuss how to obtain the computationally bounded attack described in the
third bullet by examining the details of their attack.

The first two bullets of the theorem describe an information-theoretic adversary (IT-CP) with an
oracle access to BE(+), and the third bullet specifies a computationally-bounded adversary (CB-CP).
At each time step, both adversaries observe the realized prefix, denoted as pref, and decide whether to
replace the agent’s action based on its expected impact on the bad event. The key distinction between
them lies in how they acquire this probability.

The proof proceeds by reducing our setting to the framework of [Etesami et al.|(2019), as explained in
Appendix[C} we transform the original process into a nearly deterministic one where only action steps
retain randomness, and then apply the corresponding attack to this modified process. The crucial step
is to demonstrate that this alternative attack still succeeds in the “real” setting, where the process has
not been determinized. This argument also relies on the bounded statistical distance between the real
process and the “ideal” determinized process, using tools described in Appendix [C]

Under polynomial-time constraints, we must adapt rather than treat prior work as a black box: we
implement the oracles needed by the polynomial-time attack of [Etesami et al.|(2019)), in particular

approximating the oracle for Pr[BE(MgT) |pref] via the adversary’s internal determinized simulation.
All these make it more challenging to reduce the problem to the results of previous attacks.
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First, let gzt = (5, (pi', pi’, pF)i_1), in which p;* = 07, be such that the RL process M. is
psr-deterministic.

We now obtain the determinized version of M;T, denoted as det,,, (ﬁ;rT) through the following
construction.

Construction 1 (Partially determinizing a random process). Consider Uy as a py-deterministic
random process with length H. To make it partially deterministic using py, we modify the
process as follows: at each time step h, for previously sampled w1, ..., un_1, we first sample
up, ~ Uy, and if pp, > % then we replace uy, with the unique “dominant sample” dom(Uy) =
argmax,,, Pr[Up|uy,...,up—1] € Supp(Uy). This leads to a new random process that is determin-

istic in some of its steps, which is denoted as det z,; (Up).

We know that Ppg (M ;“T) = ¢, and next, argue that the total variation distance between the two
processes, My and det(Myy) is o7y (Myy, det(Mzr)) < o = o + off. This is stated and
discussed in Appendix [C] Therefore, we conclude that even after determining, the probability of
the bad event is still at least Pr[BE(det(M3;)) = 1] > € — . Note that we can treat det (M g7,
as a random process Y with T steps instead of 37 steps, as all transitions other than the agent’s
actions are deterministic and can be considered part of sampling the action steps. This transformation
is purely conceptual for the adversary and the analysis, without altering the actual dynamics of the
environment. Indeed, this transformation abstracts specific interactions and does not hinder the
adversary’s ability to execute and analyze the attack.

The work of Etesami et al.| (2019) proved that for any random process (here Yr) with a spe-
cial event that happens with probability € — «, there is an attacker Tam, s that can replace

(@] (\/ T -In(1/(e — a)5)) of the steps of the process to redirect the process into a new process

Z for which the probability of the specific attack is at least 1 — §. In a nutshell, we use their attack
and claim that this provides us with all the features (except efficiency). Our challenge is to argue for
this claim. We first describe the high-level description of this attack, whose details can be found in

Appendixes [C| D]

One might wonder whether the problem is already solved, since we could execute the attack Tam, s.
However, this attack is tailored to perform well on the determinized process. What remains is to
. . . . vzl .

demonstrate how to effectively run this attack on the original process M ;. At each time step of
the RL process involving either a state s, or a reward r, if the RL process selects a non-dominant
outcome, our attack algorithm halts and refrains from taking further action. As a result, the adversary
will never exceed the tampering budget used by the Tam, s attacker when applied to Y. It remains
to show that this modified attack maintains a high probability of inducing the targeted bad event.

To prove this, we again argue that the total variation difference between the random process Zr
(i.e., result of the attack Tam, s on Yr) has statistical distance at most « from the final random
process that is the result of our (modified) attack on the real process M’;T. This is again due to
Lemma[2] discussed in Appendix [C] Therefore, we lose at most an additive factor of «, and we have
PBE(N;TT) >1—-6—a.

Polynomial-time attack. In the rest of this section, we discuss how we obtain the computationally
bounded adversary (i.e., the third bullet) of our Theorem

First, recall that for our information-theoretic attacker IT-CP, we simply reduced the problem to
the result of Theorem 3] To develop the computationally bounded variant of Theorem [I] we first
elaborate on this attacker in more detail.

We first note that although Theorem [3]treats actions, rewards, and state transitions uniformly as steps
in a single random process, this ultimately results in action replacement attacks. This occurs because
we apply the theorem to a determinized process where entropy is present only during action selection.

We will heavily rely on the third bullet of Theorem 3] Therefore, all we have to do is to address the
following two points:

1. Issue 1: Show how to implement the polynomial time variant of the attack of Theorem 3]
while we have oracle access to the (non-determinized) random process of the RL.
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2. Issue 2: How to use the polynomial time attacker of Theorem [3] when we, again, have only
access to the non-determinized RL random process.

In the rest of this section, we address both points, using similar ideas. First, we get into some details
about the attacker of Theorem 3

The replacing adversary of Theorem 3] utilizes some oracles to deploy its attack. In the following,
these oracles are introduced, and in Algorithm[3] you can see the replacing attack in more detail.
Definition 5 (Oracles Used by Etesami et al. (2019)). Let the function f : Supp(Ug) — {0,1}
be defined over the random process Uy. Suppose a prefix of it up to time step h is realized
U<y, € Supp(U<p,). The Oracle g(Ti<y,) returns the average value of boolean function f, conditioned
on the given prefix

g(u<pn) = E f(ur, .. ug)]

- (unt1se-um)$—Unga,,Un)

There are two other oracles: g*(-) denotes the maximum value of the oracle g(+), and h*(-) denotes
the sample producing the maximum value for g(-)

g (U<n—1) = max(g(U<p-1,u))
uelUy,

h*(u<nh-1) = arg max(g(t<h—1,u))
uely,

Algorithm 3 Replacing Attack of [Etesami et al.[(2019)

1: Result: Replaced action: Rep(uy,), Remaining budget: Budget,,  ,(H).
2: Input: Prefix of the random process: U<p_1, Sample at time step h: up, Adversary’s budget at
time step h: Budget,, (H), Attack parameter: 7.

3: if Budget, (H) > 0 then

4: ifg*(ﬂghfl) > e”.g(ﬂgh) or g(ﬂgh) < 6in.g(ﬂgh,1) then
5: Rep(un) = h*(U<n-1);

6: else

7 Rep(un) = up;

8: endif

9: else

10:  Rep(up) = up;

11: end if

12: if Rep(up) # uy then

13:  Budget,;,,(H) < Budget, (H) — 1;
14: else

15:  Budget,;,,(H) < Budget,; (H);

16: end if

An inspection of the polynomial-time variant of the attacker of Theorem 3| reveals that their efficient
attack uses g(U<y,) as well as the online sampler for the random process U z and the Boolean oracle f.
Furthermore, they use the latter two to approximate the first oracle g(u<y ). However, the interesting
point in the other proof is that even though it works with approximation variants of the oracles in
Definition[3] it can still achieve its goals.

Therefore, we conclude that the only thing we need to implement is the random continuation oracle
for the random process U ;7. However, this oracle itself reduces to merely sampling one step uy, of the
random process U 7 given a prefix U<p—1. Here, we recall that this random process Uy is a partially
deterministic version of another oracle W ;. We also recall that when we determinize a transition
step at time step h (of state transition or reward step), we already have a dominant value u such
that Pr{up, = u] > pp, > 1/2. Consequently, we implement a wrapper that processes queries to an
online sampler of U  as follows: First, we sample k instances u}l, e qu from the non-determinized
process, conditioned on the same prefix u<j,—1. Then, we select u;, using the majority function,
up, < Maj({u},...,ur}), where Maj({-}) returns the most frequently occurring sample from the
set. Using an application of the Chernoff-Hoeffding bound, we have

Pr[Maj({u},...,uf}) = dom(Up)] > 1 — exp(—k),
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where dom (Uy},) denotes the dominant sample of the random variable U},, defined as the sample for
which Pr[U}, = dom(Uy)] > . Finally, it is enough to choose k = poly(N/e§) large enough so
that the error imposed by our emulating oracle is negligible k exp(—k), while still keeping the whole
algorithm run in time k£ = poly(N/ed).

To address Issue 2 mentioned above, we use a similar trick. Namely, this time we would like to run
the RL process and whenever a dominant sample is not chosen during the reward or state transition

steps, we would like to halt. To do this, we must determine whether a sample u is dominant. So, what
we do is again sampling k instances uj}, ... 7u§§ from the non-determinized process conditioned on

the same prefix u<j_1, and halting if u # Maj({u}, ..., uf}).
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