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Abstract

We explore the minimax optimal error associated with a demographic parity-
constrained regression problem within the context of a linear model. Our proposed
model encompasses a broader range of discriminatory bias sources compared to
the model presented by Chzhen and Schreuder [6]. Our analysis reveals that the
minimax optimal error for the demographic parity-constrained regression problem
under our model is characterized by Θ(dM/n), where n denotes the sample size, d
represents the dimensionality, and M signifies the number of demographic groups
arising from sensitive attributes. Moreover, we demonstrate that the minimax error
increases in conjunction with a larger bias present in the model.

1 Introduction

Machine learning techniques have been incorporated into numerous automated decision-making
systems, spanning critical domains such as employment, credit assessment, insurance, and security.
Nevertheless, these systems can exhibit discriminatory behavior towards specific demographic groups,
including gender, race, and ethnicity, potentially causing significant societal ramifications. This
issue, known as the fairness problem, has attracted substantial attention within the machine learning
research community. The growing focus on the fairness problem primarily arises from reported
instances of unfair behavior in real-world systems, encompassing recidivism risk prediction [3],
hiring practices [10], facial recognition [9, 17], and credit scoring [24].

Motivated by these concerns, a considerable body of research has explored regression problems
subject to fairness constraints [13, 25, 16, 2, 7, 8, 14, 18]. Numerous regression algorithms incor-
porating various fairness constraints have been developed to accommodate diverse contexts, with
demographic parity [21] and equalized odds [11] being the predominant fairness constraints adopted
by these methods.

In this study, we focus on the regression problem under the fairness constraint of demographic
parity [21]. Existing literature primarily concentrates on the development of fair regression algorithms,
and their performance evaluation predominantly relies on empirical analyses. Such evaluations,
however, only offer performance guarantees for specific scenarios explored in the experiments,
which may result in poor performance in unexamined situations. To ensure the algorithm’s robust
performance across a wider range of contexts and obtain a comprehensive understanding of the fair
regression problem, a theoretical analysis of statistical efficiency is indispensable.

Several studies have introduced fair regression algorithms accompanied by theoretical analyses of
their statistical efficiency in terms of accuracy and fairness. Agarwal et al. [2] designed a demographic
parity-based fair regression algorithm using reduction methods [1] and established upper bounds on
its empirical approximation errors for accuracy and fairness using Rademacher complexity. Chzhen
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Table 1: Comparison between Chzhen and Schreuder [6]’s and our models. Each checkmark signifies
the presence of an influence exerted by the sensitive attribute on the respective variable.

partial
coefficients intercept non-sensitive

features

Chzhen and Schreuder [6] ✓
ours ✓ ✓ ✓

et al. [8] proposed a discretization-based fair regression algorithm, deriving upper bounds on the mean
squared excess risk for accuracy and a Kolmogorov distance-based score for demographic parity as
fairness guarantees. Chzhen et al. [7] derived the Bayes optimal regressor under a demographic parity
constraint, providing upper bounds on the mean absolute deviation from the Bayes optimal regressor
for accuracy and a Kolmogorov distance-based score for demographic parity as fairness guarantees.
Despite ensuring low error and fair treatment even in non-linear models, it remains unclear if these
guarantees represent optimal performance among possible algorithms.

Minimax optimal fair regression. Numerous researchers have investigated minimax optimal
regression algorithms, the best possible algorithm, without addressing fairness considerations [22,
23, 19, 15]. In contrast to standard regression problems, minimax optimality in fair regression
problems remains relatively unexplored, with a notable exception being the recent work by Chzhen
and Schreuder [6]. They examine minimax optimality in fair regression problems, incorporating
demographic parity constraints within the following linear model:

Y = ⟨β∗, X⟩+ bS + ξ where X ∼ N(0,Σ). (1)

In this model, Y , X , and S represent the outcome, non-sensitive features, and a sensitive attribute,
respectively. ⟨·, ·⟩ denotes the inner product, ξ represents zero-mean noise, and Σ is an arbitrary
covariance matrix. For example, in salary calculations, X and S correspond to working hours and
gender, respectively, with bS and β∗ signifying the base salary and hourly wage. In Eq (1), the salary
Y is determined by the base salary bS and the product of working hours X and an hourly wage β∗.

The model in Eq (1) exhibits limitations pertaining to its applicability across various scenarios. We
elucidate these limitations by discussing the notion of direct discrimination and indirect discrimina-
tion, summarized succinctly in the second row of Table 1. Direct discrimination occurs when the
sensitive attribute influences the outcome, regardless of non-sensitive features. The model in Eq (1)
can treat direct discrimination resulting from the dependency of the intercept bS on S; for example, it
can capture discrimination due to basing base salary on gender (third column in Table 1). However,
it is imperative to underscore that the model in Eq (1) fails to handle direct discrimination arising
from the partial (regression) coefficients β∗, as these are independent of S; for instance, it cannot
accommodate discrimination due to gender-dependent hourly wages (second column in Table 1).

Indirect discrimination (or redlining effect [4]) constitutes another source of unfair bias, arising when
the sensitive attribute influences the outcome through its correlation with non-sensitive features. The
presence of the dependency between non-sensitive features and the sensitive attribute signifies indirect
discrimination. In the model in Eq (1), non-sensitive features X is independet from the sensitive
attribute S, thereby implying an absence of indirect discrimination (forth column in Table 1).

Chzhen and Schreuder [6] effectively revealed the minimax optimal error for fair regression prob-
lems involving direct discrimination due to varying intercepts associated with sensitive attributes.
However, their research does not address direct discrimination from partial coefficients and indirect
discrimination through non-sensitive features.

Our model and contributions. In this study, we investigate the minimax optimality of the fair
regression problem in the context of the following model:

Y = ⟨β∗
S , X⟩+ ξ where X ∼ N(µS , σXI), (2)

where σX > 0, and I denotes the identity matrix. The subscript in β∗
S and µS signifies that our model

varies regression coefficients and the mean of non-sensitive features based on the sensitive attribute.

Compared to the model proposed by Chzhen and Schreuder [6], our model accommodates a broader
range of direct and indirect discrimination. These discriminations can be characterized as follows:

2



• (Direct discrimination) Our model accommodates direct discrimination through discrepancies in
β∗
S concerning S, as the regression coefficients β∗

S hinge on the sensitive attribute S (second and
third columns on the third row in Table 1). This includes, for instance, discrimination arising from
varying base salaries and hourly wages. Divergent partial coefficients yield varied outcome variance
amongst S, while disparate intercepts relative to S merely alter the outcome’s mean. Hence, our
model introduces an additional challenge of attenuating direct discrimination through disparate
variance, alongside mitigating direct discrimination through disparate mean. This presents a stark
contrast to Chzhen and Schreuder [6]’s model, which solely focuses on mitigating discrimination
via the mean without considering the variance.

• (Indirect discrimination) The sensitive attribute S affects the mean of non-sensitive features X ,
as denoted by the subscript of µS . Our model thereby introduces indirect discrimination through
variations in µS with respect to S (e.g., disparate working hours by gender). To alleviate this
form of indirect discrimination, µS needs to be estimated to adjust the learned regressor, thereby
ensuring its output remains invariant to differing µS . Therefore, our model presents an additional
complexity in estimating µS for mitigating indirect discrimination.

Overall, our model demonstrates an expanded dependency of partial coefficients (direct discrimina-
tion) and non-sensitive features (indirect discrimination) on the sensitive attribute (second and fourth
columns of Table 1).

The principal contribution of this paper lies in the establishment of matching upper and lower
bounds on the minimax optimal error (i.e., the error corresponding to the minimax optimal regression
algorithm) and the proposition of a regression algorithm that achieves this optimal error under Eq (2).
The optimal error elucidates several insights:

• (Direct discrimination) The optimal error comprises a term reflecting the outcome’s variance
heterogeneity but excludes that of the outcome’s mean. This insight implies that mitigating direct
discrimination due to the outcome’s variance sacrifices statistical efficiency, whereas addressing
direct discrimination due to the outcome’s mean does not entail this cost. This term effectively
quantifies the cost of mitigating direct discrimination in variance and is absent from the optimal error
of the Chzhen and Schreuder [6]’s model. Its identification, thus, signifies a crucial contribution of
our research.

• (Indirect discrimination) Our lower bound is independent of the term associated with indirect
discrimination. Although this evidence is not definitive, it hints at the potential for mitigating
indirect discrimination without additional costs under certain conditions. This observation sets
the stage for future research focused on developing cost-effective strategies to tackle indirect
discrimination.

Our technical contributions to establish these bounds are detailed in Section 4.

Notations. Given a positive integer m, define [m] = {1, ...,m}. For a finite set A, denote its
cardinality by |A|. Given an event E , its complement is represented as Ec, and its probability is
denoted by P{E}. For a random variable X , its expectation is E[X], and its associated sigma-algebra
is σ(X). For two real values a and b, the notations a ∨ b = max{a, b} and a ∧ b = min{a, b}
are used. For a square matrix A ∈ Rd×d, its maximum and minimum eigenvalues are denoted by
λmax(A) and λmin(A), respectively, and its transpose is represented by A⊤. The set of unit vectors
is given by Sd−1. For a sequence at indexed by t ∈ T , the notation a· denotes the sequence (at)t∈T .

2 Problem Setup

2.1 Model and Learning Algorithm

Model. The proposed model, described in the introduction, is formulated according to Eq (2). We
consider X ∈ Rd and S ∈ [M ] where M ≥ 2. The noise variable, ξ, is assumed to follow a Gaussian
distribution with zero mean and variance σ2

ξ > 0. We define ps = P{S = s} for all s ∈ [M ], and the
optimal regression function is denoted as f∗(x, s) = ⟨β∗

s , x⟩.
Learning algorithm. Given n i.i.d. copies of the tuple (X,S, Y ), denoted as Dn =
{(X1, S1, Y1), ..., (Xn, Sn, Yn)}, the goal is to construct a regression function f that maps (X,S) to
Y , represented as f̂n. The learner seeks to optimize the accuracy of f̂n while satisfying a fairness
constraint. The definitions of fairness and accuracy are provided in subsequent subsections.
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2.2 Fairness

Demographic parity. We utilize demographic parity [21] as our fairness criterion. A regressor f
adheres to demographic parity if its output distribution is invariant when conditioned on S = s.

Definition 1. A regressor f satisfies (strong) demographic parity if, for all s, s′ ∈ [M ], and for all
E ∈ σ(f(X,S)), P{f(X,S) ∈ E|S = s} = P{f(X,S) ∈ E|S = s′}.

Denote the set of all regressors fulfilling demographic parity for a given distribution of X , parameter-
ized by µ·, as FDP(µ·).
Fairness consistency. Instead of enforcing strict demographic parity (Definition 1), which results in
the regressor to be a constant function due to the unknown (X,S) distribution, we introduce fairness
consistency (Definition 2). This concept demands the learned regressor to converge to a fair regressor
as the sample size n approaches infinity.

To define “convergence”, we introduce the unfairness score U(f) ≥ 0, where a lower U(f) indicates
a higher fairness level. U(f) = 0 if and only if f achieves demographic parity (Definition 1). We
claim the learned regressor f̂n converges to an exactly fair regressor when U(f̂n)→ 0 as n→∞.

Definition 2. A learning algorithm is (α, δ)-consistently fair for an unfairness score U if there exist
constants n0 ≥ 0 and C > 0, independent of n, such that P{U(f̂n) > Cn−α} ≤ δ for all n ≥ n0,
with randomness arising from the training sample via f̂n.

Note that an (α, δ)-consistently fair regressor f̂n exhibits (α′, δ)-consistent fairness for any α′ ∈
(0, α].

We adopt a specific unfairness score using the Wasserstein distance. Given two probability measures
ν and ν′ over R, Π(ν, ν′) denotes the set of all coupling measures π satisfying π(A × R) = ν(A)
and π(R × A′) = ν′(A′) for every measurable sets A,A′ ⊂ R. The 2-Wasserstein distance W2

between ν and ν′ is expressed as W 2
2 (ν, ν

′) = infπ∈Π(ν,ν′)

∫
(z − z′)2π(dz, dz′). Our unfairness

score is then formulated as:

U(f) = max
s,s′∈[M ]

W2(νf |s, νf |s′),

where νf |s represents the distribution of f(X,S) conditioned on S = s. Prior works, including
[2, 7, 8, 6], have adopted different unfairness scores (see the appendix for details2).

2.3 Accuracy

Under the fairness consistency constraint, the learner’s objective is to obtain a fair approximation of
f∗, denoted as f∗

DP, which is the closest regressor to f∗ within FDP(µ·) using the L2 distance:

f∗
DP = argmin

f∈FDP(µ·)

E
[
(f(X,S)− f∗(X,S))

2
]
.

To evaluate the inaccuracy of a regressor f , we compute the mean squared deviation from f∗
DP:

E(f ;β∗
· , µ·) = E

[
(f(X,S)− f∗

DP(X,S))
2
]
. (3)

Chzhen et al. [7, 8] employ similar definitions, differing only in the choice of deviation metric.

This paper aims to identify the minimax optimal regression algorithm, which minimizes Eq (3)
while maintaining fairness consistency. Given parameters α > 0 and δ ∈ (0, 1), the optimal error is
formulated as:

En(α, δ) = inf
f̂n:(α,δ)-consistently fair

sup
β∗
· ∈B,µ·∈M

E[E(f̂n;β∗
· , µ·)],

where the infimum is taken over all (α, δ)-consistently fair algorithms, and B andM represent the
sets of possible β∗

· and µ·, respectively.

2A version of this paper including appendices is available in the supplementary material.
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3 Main Results

Our main result is to establish the minimax optimal error bound, delineating the dependency on the
diversity of conditional outcome variances concerning the sensitive attribute. This diversity of the
variances is quantified via a parameter B > 0, which is defined such that it satisfies:

max
s
∥β∗

s∥ ≤ B and
(
∑

s ps∥β∗
s∥)2

M

∑
s

1

∥β∗
s∥2
≤ B2. (4)

The left-hand side of the second inequality in Eq (4) forms as a product of two factors: the weighted
average norms, (

∑
s ps∥β∗

s∥)2, and the averaged inverse norms, 1
M

∑
s

1
∥β∗

s∥2 . As the norms increase,
the first factor (weighted average norms) has the propensity to grow, while the second factor (averaged
inverse norms) tends to rise when the norms decrease. Maximizing the product of these two elements
involves a delicate balancing act: the norms of some groups need to be large, while the norms of
other groups need to be smaller. As such, the left-hand side of the second inequality in Eq (4) can
increase when the norms ∥β∗

s∥ display diversity.

We adopt mild assumptions on β∗· and µ·. Let B denote the set of β∗
· satisfying Eq (4). Assume

there exists a finite universal constant U > 0 such that ∥µs∥ ≤ U for all s ∈ [M ], leading to
M = {µ· ∈ Rd×M : ∀s ∈ [M ], ∥µs∥ ≤ U}. Our analysis relies on these assumptions.

Our main results are as follows:
Theorem 1. Given α ∈ (0, 1/2] and δ ∈ (0, 1), suppose M(d − 1) > 16 and n ≥ 12(3d ∨
4 ln(M/δ))/mins∈[M ] ps. Then, there exist universal constants C > 0 and c > 0 such that

c
σ2
ξB

2dM

n
− o

(
1

n

)
≤ En(α, δ) ≤ C

σ2
ξB

2dM ∨ σ2
XB2M ∨B2U2

n
+ o

(
1

n

)
.

Theorem 1 illustrates that the optimal error is σ2ξB2dM/n up to a constant factor which may potentially
depend on σX and U . The implications of Theorem 1 can be summarized as follows:

1. The optimal error for the standard linear regression problem can be denoted as d/n [15]. The
dependency on n and d is consistent with the standard case, provided α ∈ (0, 1/2].

2. The term dM denotes the number of unknown parameters in Eq (2), comprising β∗
1 , .., β

∗
M ∈ Rd

and µ1, ..., µM ∈ Rd. This dependency on the number of unknown parameters is a common
characteristics observed in statistical estimation problems.

3. (Direct discrimination) The minimax error delineated in Theorem 1 demonstrates a dependency
on parameter B. As the variation of ∥β∗

s∥ with respect to s increases, so does the magnitude
of B. Hence, B serves as a measure of the difficulty in mitigating direct discrimination due to
the outcome’s variance. This unique quantification of difficulty is absent in standard regression
problems and specific to fair regression problems.

4. (Indirect discrimination) The lower bound precludes parameters associated with indirect dis-
crimination. It is conceivable that biases arising from indirect discrimination can be reduced
without extra costs, provided the dependence of X on S exists only in its mean. Investigating and
clarifying this aspect offers a promising direction for future research.

5. The minimax error is invariant to α and δ, implying that the learning process does not introduce
unfair bias for α ∈ (0, 1/2]. However, the case for α ≥ 1/2 remains unexplored and poses a
significant research challenge.

6. The gap between the upper and lower bounds regarding σX and U remains, making narrowing
this gap an essential future research direction.

Remark 1. Direct comparison of the minimax error between our model and that of Eq (1) is not
feasible due to the differing f∗

DP across the models. However, the emergence of the fairness-specific
term B can be unequivocally identified as a novel contribution in our study. Notably, the minimax
error validated by Chzhen and Schreuder [6] is congruent with the minimax optimal error of standard
linear regression within their model, a contrast to our findings.

To prove Theorem 1, we initiate by constructing the estimator detailed in Section 5. We then prove in
Section 6 that the estimator satisfies 1) (α, δ)-fairness consistency for α ∈ (0, 1/2], and 2) the error
aligns with the upper bound specified in Theorem 1. Subsequently, we present a sketch of the proof
for the lower bound in Theorem 1 in Section 7. All omitted proofs can be found in the appendices.
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4 Technical Difficulties in Minimax Optimality Analyses

In this section, we expound on the challenges arising from the analysis of minimax optimality for our
problem. First, we introduce the closed-form expression for the Bayes optimal fair regressor f∗

DP.
We then outline the technical difficulties encountered during the analysis.

Bayes optimal fair regressor under Eq (2). Chzhen et al. [7] present a characterization of regression
error and the corresponding regressor minimizing the mean squared error under the demographic
parity constraint. Building upon the results from Chzhen et al. [7], we derive the closed-form
expression for f∗

DP in the following lemma.
Lemma 1. Given the model in Eq (2), the Bayes optimal regressor adhering to the demographic
parity constraint can be formulated as

f∗
DP(x, s) = ∥β∗

· ∥
〈

β∗
s

∥β∗
s∥

, x− µs

〉
+
∑

ps′⟨β∗
s′ , µs′⟩, (5)

where ∥β∗
· ∥ =

∑
s∈[M ] ps∥β∗

s∥.

Technical difficulty in deriving the upper bound in Theorem 1. To obtain the upper bound in
Theorem 1, we first construct an estimator for the regression function in Eq (5) and analyze its
regression error. This entails developing estimators for individual components in Eq (5) (e.g., ∥β∗

· ∥,
β∗
s/∥β∗

s∥, µs, etc.) and substituting them into Eq (5). The upper bound on En(α, δ) is derived by
combining estimation error bounds for each component’s estimator. However, to our best knowledge,
no existing estimators provide bounds for the norm (∥β∗

· ∥) and direction (β∗
s/∥β∗

s∥) of regression
coefficients. A direct approach involves computing the norm and direction of the OLS estimator, but
standard analyses for OLS do not yield bounds on the estimation errors.

The main challenge in deriving the upper bound of Theorem 1 lies in analyzing the following
problem: given X following a non-isotropic Gaussian distribution with mean µ, find upper bounds on
E[(X/∥X∥ − µ/∥µ∥)2] and E[(∥X∥ − ∥µ∥)2]. Solving this problem provides estimation errors for
the norm and direction estimators, as the OLS estimator is an unbiased estimator with noise following
the non-isotropic Gaussian distribution. Our key technical contribution is the derivation of these
bounds (Theorems 4 and 5).

Technical difficulty in deriving the lower bound in Theorem 1. The minimax optimal error
characterizes the intrinsic complexity of the regression problem, as no algorithm can surpass this error.
In our analysis of the lower bound presented in Theorem 1, we demonstrate that the fair regression
problem’s complexity, under the model Eq (2), is characterized by the complexity in estimating the
direction β∗

s/∥β∗
s∥. The primary challenge lies in establishing this characterization.

To overcome this challenge, we investigate the geometric structure of the error term En(f ;β∗
· , µ·)

concerning the parameters β∗
· and µ·. We then reveal that the geometric structure of En(f ;β∗

· , µ·) is
characterized by the geometric structure of the direction β∗

s/∥β∗
s∥ (Theorem 7).

5 Estimator

In this section, we present a detailed construction of the estimators that attain the minimax error as
delineated in Theorem 1. Existing theoretical results, such as those found in Agarwal et al. [2], Chzhen
et al. [7, 8], are incapable of addressing unbounded non-sensitive features X or unbounded outcomes
Y , rendering them inapplicable to our problem. Consequently, we have developed a novel estimator
accompanied by rigorous analytical techniques.

Estimator construction. In constructing the optimal regressor for model Eq (2), we leverage the
results from Lemma 1 and employ a plugin estimator. The method involves estimating the components
of terms in Eq (5) and substituting the obtained estimates into the same equation. Concretely, we
derive estimators ∥̂β·∥, β̃s, µ̂s, p̂s, β̂′

s, and µ̂′
s, with the following correspondence:

∥β∗
· ∥

∥̂β·∥

〈
β∗
s

∥β∗
s∥

β̃s

, x− µs

µ̂s

〉
+
∑

s′∈[M ]

ps′

p̂s′

〈
β∗
s′

β̂′
s′

, µs′

µ̂′
s′

〉
.
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Table 2: Estimator construction. In this table, β̂b,s and β̂′
b,s denote OLS estimands obtained from

subsets Db,s and D′
b,s, respectively. “Sample” refers to the subset utilized for estimand calculation,

while “Definition” provides the corresponding estimator’s definition. “Sample“ in ∥̂β·∥ is left empty,
as it is derived from p̂s and ∥̂βs∥.

Estimator Sample Definition

p̂s n· p̂s = ns/n

∥̂βs∥ D1,s ∥̂βs∥ = ∥β̂1,s∥ if ns > 18d, and ∥̂βs∥ = 0 otherwise
∥̂β·∥ - ∥̂β·∥ =

∑
s∈[M ] p̂s∥̂βs∥

β̃s D2,s β̃s = β̂2,s/∥β̂2,s∥ if ns > 18d, and β̃s = 0 otherwise
µ̂s D3,s µ̂s =

1
n3,s

∑n3,s

i=1 X3,s,i

β̂′
s D′

1,s β̂′
s = β̂′

1,s if ns > 12d, and β̂′
s = 0 otherwise

µ̂′
s D′

2,s µ̂′
s =

1
n′
2,s

∑n′
2,s

i=1 X ′
2,s,i

For technical reasons, we partition the sample to calculate each estimand. Each estimator is assigned
a corresponding subset, as shown in Table 2. Under specific conditions, ns > 18d or ns > 12d,
estimators may exhibit altered behavior, primarily as technical considerations for subsequent analyses.
We detail the partitioning process as follows. First, we create a histogram of the sensitive attribute
Si, denoted as n· = (n1, ..., nM ), with ns = |{i ∈ [n] : Si = s}|. Simultaneously, we form
group-wise samples Ds = {(Xi, Yi) : i ∈ [n], Si = s}. For each s ∈ [M ], we partition Ds into
D1,s, D2,s, and D3,s, ensuring |Db,s| := nb,s ≥ ⌊ns/3⌋ for b ∈ [3]. Using n·, D1,s, D2,s, and
D3,s, we estimate p̂s, ∥̂βs∥, β̃s, and µ̂s, respectively. The combination of p̂s and ∥̂βs∥ yields ∥̂β·∥.
Furthermore, we generate a duplicate of Ds, denoted as D′

s, and partition it into D′
1,s and D′

2,s,
satisfying |D′

b,s| := n′
b,s ≥ ⌊ns/2⌋ for b ∈ [2]. We then use D′

1,s and D′
2,s to estimate β̂′

s and
µ̂′
s. Precise definitions of the estimator construction and subset partitioning can be found in the

appendices.

Incorporating the derived estimators, we construct the final regressor as:

f̂n(x, s) = ∥̂β·∥
〈
β̃s, x− µ̂s

〉
+
∑

s′∈[M ]

p̂s′
〈
β̂′
s, µ̂

′
s

〉
. (6)

6 Upper Bound Analyses

In this section, we demonstrate the achievability of the upper bound presented in Theorem 1 utilizing
the estimator delineated in Section 5. Initially, we conduct an analysis of the estimator’s fairness
guarantee, subsequently progressing to an examination of the estimator’s mean squared deviation.

6.1 Analysis of Fairness

For our fairness guarantee on f̂n, we demonstrate the following theorem.
Theorem 2. If n ≥ 48 ln(M/δ)/mins ps, we have for δ ∈ (0, 1),

P

{
max

s,s′∈[M ]
W2

(
νf̂n|s, νf̂n|s′

)
> 4BσXσX

√
48 ln(M/δ)

mins′′∈[M ] nps′′

}
≤ δ.

By proving Theorem 2, we can immediately confirm that the estimator adheres to (α, δ)-fairness
consistency with α ∈ (0, 1/2].

6.2 Analysis of Estimation Error

In this subsection, we derive an upper bound for the estimation error presented in Theorem 1, focusing
on the estimator introduced in Section 5. To derive the upper bound in Theorem 1, we begin by
decomposing the mean squared deviation of the estimator in Eq (6) as follows:
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Theorem 3. For the estimator defined in Eq (6), the mean square deviation from f∗
DP is bounded

above by

∑
s∈[M ]

psE

[(
E

[
∥̂β·∥

2
∣∣∣∣n·

]1/2

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

+ σXE

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

+

σX∥β∗
· ∥E

[∥∥∥β̃s − β∗
s/∥β∗

s∥
∥∥∥2∣∣∣∣n·

]1/2

+E


 ∑

s′∈[M ]

p̂s′
〈
β̂′
s′ − β∗

s′ , µ̂
′
s′

〉2
∣∣∣∣∣∣∣n·


1/2

+

E


 ∑

s′∈[M ]

p̂s′⟨β∗
s′ , µ̂

′
s′ − µs′⟩

2
∣∣∣∣∣∣∣n·


1/2

+

∣∣∣∣∣∣
∑

s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩

∣∣∣∣∣∣
)2]

. (7)

In Eq (7), the terms correspond to the estimation errors of µ̂s, ∥̂β·∥, β̃s, β̂′
s, µ̂′

s, and p̂s, respectively.
Standard techniques for the OLS estimator and empirical average yield upper bounds for the first,
fourth, fifth, and sixth terms. Nevertheless, the second and third terms in Eq (7) involve non-linear
transformations of the OLS estimator (i.e., taking the norm or dividing by the norm), complicating
their error analysis. This section’s primary technical contributions involve establishing tight upper
bounds for the second and third terms in Eq (7).

Estimation error of norm and direction of β∗
s . Consider X1, ..., Xn

iid∼N(µ, σ2
XI), β∗ ∈ Rd with

∥β∗∥ ≤ B for some B > 0, and ξ1, ..., ξn
iid∼N(0, σ2

ξ ). Define Yi = ⟨β∗, Xi⟩+ξi. The OLS estimator
of β∗ is given by β̂ = ( 1nX

⊤X)−1( 1nX
⊤Y ), where X = (X1 · · ·Xn)

⊤ and Y = (Y1 · · ·Yn)
⊤.

The direction estimator is β̂/∥β̂∥, while the norm estimator is ∥β̂∥.
We present the estimation errors for direction and norm in Theorems 4 and 5:
Theorem 4. For n > 6d, we have

E

∥∥∥∥∥ β̂

∥β̂∥
− β∗

∥β∗∥

∥∥∥∥∥
2
 ≤ 84e10σ2

ξd

σ2
X∥β∗∥2n

(
1 +

6

n− 6

)
.

Theorem 5. For n > 6d, we have

E

[(
∥β̂∥ − ∥β∗∥

)2]
≤

21e10σ2
ξd

σ2
Xn

(
1 +

6

n− 6

)
.

The direction’s estimation error (Theorem 4) is O(σ
2
ξd/σ2

X∥β∗∥2n), while the norm’s estimation
error (Theorem 5) is O(B

2σ2
ξd/σ2

Xn). Integrating Theorems 3 to 5 yields the σ2
ξB

2dM/n term in the
upper bound in Theorem 1. The remaining part, Uσ2

ξ/n, arises from the estimation error of β̂′
s (the

third term in Eq (7)), dominating other terms in Eq (7).

7 Lower Bound Analyses

In this section, we provide a proof sketch for the lower bound, outlined in Theorem 1. To facilitate a
clear and concise presentation of the proof sketch, we introduce several notations. Let θ denote the
tuple of distribution parameters (β·, µ·), and let Θ represent the set of all such parameters, defined as
Θ = B ×M. We use Pθ and Eθ to denote the probability and expectation operators, respectively,
given X ∼ N(µS , σ

2
XI) and Y = (βS , X) + ξ, where ξ ∼ N(0, σ2

ξ ). We adopt the shorthand
E(f ; θ) = E(f ;β·, µ·) for θ = (β·, µ·). Moreover, we define fθ = argminf∈FDP

R(f ;β·, µ·) for
θ = (β·, µ·). For two probability distributions π and π′, the Kullback-Leibler (KL) divergence
is denoted as DKL(π, π

′) =
∫
ln( dπ

dπ′ (z))π(dz). Finally, we denote the set of all L2 integrable
functions f : Rd × [M ]→ R as L2.

By utilizing Fano’s inequality, we establish a lower bound for the minimax error as presented in
Theorem 1. Due to the invariance of the distribution of S1, ..., Sn under parameter alterations θ,

8



Fano’s inequality can be applied after conditioning on S1, ..., Sn, or equivalently, n·. Consequently,
we derive the following theorem:

Theorem 6. Let Θ̂ ⊆ Θ be a finite set of the parameters such that there exists ϵ > 0 such that for
any θ, θ′ ∈ Θ̂, inff E(f ; θ) ∨ E(f ; θ′) ≥ ϵ, where Θ̂ and ϵ is possibly dependent on n·. Let |Θ̂| = K.
Then, for arbitrary α > 0 and δ ∈ (0, 1), we have

En(α, δ) ≥ E

[
ϵ

(
1−

infπ
1
K

∑
θ∈Θ̂ DKL

(
πθ|n· , π

)
+ ln(2)

ln(K)

)]
,

where πθ|n· denotes the distribution of Dn conditioned on n· with parameter θ, and the expectation
is taken over n·.

As demonstrated in Theorem 6, the lower bound for the minimax error can be obtained by constructing
Θ̂ such that: 1) inff E(f ; θ)∨E(f ; θ′) ≥ ϵ for any θ, θ′ ∈ Θ̂, and 2) infπ 1

K

∑
θ∈Θ̂ DKL

(
πθ|n· , π

)
≤

ln(K/4)/2. With the construction of such a Θ̂, a lower bound of E[ ϵ2 ] is attained.

We present a theorem that establishes a tight lower bound on inff E(f ; θ) ∨ E(f ; θ′).

Theorem 7. Let θ and θ′ be the parameters of the distributions such that 1
2σ2

X
∥µs − µ′

s∥
2 := ds < 1

for all s ∈ [M ]. Then, we have

inf
f∈L2

E(f ; θ) ∨ E(f ; θ′) ≥
∑

s∈[M ]

ps
σ2
Xe−ds

4

∥∥∥∥∥∥β·∥βs

∥βs∥
− ∥β

′
·∥β′

s

∥β′
s∥

∥∥∥∥∥
2(

1 +
ds
2

)1+ d
2

.

The term ∥∥β·∥βs/∥βs∥ − ∥β′
·∥β

′
s/∥β′

s∥∥2 characterizes the lower bound, which is different from the
characteristic term in standard linear regression, ∥βs − β′

s∥2.

We next present the construction of Θ̂. We construct Θ̂ such that each of its elements corresponds to an
index from the set V = {−1, 1}M×(d−1), denoted by θv = {βv,·, µv,·} ∈ Θ̂, where βv,s is controlled
such that its norm is equivalent to a specified value Bs, i.e., ∥βv,s∥ = Bs. This construction ensures
that Θ̂ ⊂ B ×M. Given positive values ϵ1, ..., ϵM and B1, ..., BM , we construct Θ̂ as follows:

µv,s = 0, ∥βv,s∥ = Bs,
βv,s,1

∥βv,s∥
=
√

1− ϵ2s, and
βv,s,i

∥βv,s∥
= vs,i−1

ϵs√
d− 1

for i = 2, ..., d. (8)

We demonstrate the following properties for Θ̂ defined in Eq (8).

Theorem 8. Given ϵ1, ..., ϵM > 0 and B1, ..., BM > 0, let Θ̂ ⊂ Θ represent the set of parameters
defined in Eq (8). Let πθ|n· be the distribution of the sample Dn conditioned on n· with the distribution
parameter θ. Then, we have 1) for any v, v′ ∈ V ,

inf
f∈L2

E(f ; θv) ∨ E(f ; θv′) ≥
∑

s∈[M ]

ps

 ∑
s′∈[M ]

ps′Bs′

2

σ2
Xϵ2s

d− 1
dH(vs, v

′s),

and 2) for v, v′ ∈ V ,

DKL

(
πθv|n· , πθv′ |n·

)
=
∑

s∈[M ]

2σ2
XB2

snsϵ
2
s

σ2
ξ (d− 1)

dH(vs, v
′
s).

By integrating Theorems 6 to 8 and employing the renowned Varshamov-Gilbert bound, we derive
the lower bound in Theorem 1.

8 Conclusion

This paper investigates a regression problem with (α, δ)-fairness consistency as a fairness constraint.
Specifically, we demonstrate that, under the constraint of (α, δ)-fairness, the minimax optimal error

9



scales as σ2
ξB

2dM/n up to a constant factor, when α ∈ (0, 1/2]. Additionally, we provide the fair
regressor that achieves this optimal error.

Potential negative societal impacts. Our study aims to mitigate the negative impact of regression
models on social groups, rather than to cause harm. However, our results are only valid for linear mod-
els, as defined in Eq (2). Misapplication of our findings to other models may result in discriminatory
treatment, which should be avoided.
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Figure 1: Sample splitting for constructing estimators.

A Comparison of Existing and Our Unfairness Scores

This section compares our unfairness score with existing ones. Recall that our unfairness score is
defined as the maximum Wasserstein distance between any two distributions νf |s and νf |s′ over all
pairs of groups s and s′, as follows:

U(f) = max
s,s′∈[M ]

W2(νfn|s, νf |s′).

In contrast, Agarwal et al. [2], Chzhen et al. [7, 8] use the Kolmogorov distance DKol to measure
unfairness, which is defined as:

UKol(f) = max
s,s′∈[M ]

DKol(νf |s, νf |s′).

The difference between our score and UKol(f) is solely the choice of distance metric. Our score
utilizes the Wasserstein distance, while UKol(f) uses the Kolmogorov distance. This difference arises
mainly from technical reasons.

In addition, Chzhen and Schreuder [6] proposed another unfairness score, denoted by UAvgW2
(f),

which is defined as the average of the Wasserstein distance, as follows:

UAvgW2
(f) = inf

ν

∑
s∈[M ]

psW2

(
νf |s, ν

)
.

Here, the score places more emphasis on the major groups, as reflected by the weight of ps. This may
not be desirable if the unfairness is more prevalent in the minority groups, which may be common in
real-world scenarios.

B Estimator Details

This section describes the construction of our optimal estimator in detail. Recall that our estimator
is a plugin estimator in which we first estimate the parts of the terms in Eq (5) and then substitute
them into Eq (5). Specifically, we construct estimators for∥̂β·∥, β̃s, p̂s′ , β̂′

s′ , and µ̂′
s′ , where they

correspond to the terms in Eq (5) as follows:

∥β∗
· ∥

∥̂β·∥

〈
β∗
s

∥β∗
s∥

β̃s

, x− µs

µ̂s

〉
+
∑

s′∈[M ]

ps′

p̂s′

〈
β∗
s′

β̂′
s′

, µs′

µ̂′
s′

〉
.
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Algorithm 1: Algorithm of the proposed optimal estimator.
Input :The sample Dn = {(Xi, Si, Yi}ni=1.
Output :The regressor f̂n.
for s← 1 to M do

Calculate ns and construct the group-wise sample Ds and its duplicate D′
s ;

Partition Ds into equal-sized subsets: D1,s, D2,s, and D3,s ;
Compute the estimands p̂s from n·, ∥̂βs∥ from D1,s, β̃s from D2,s, and µ̂s from D3,s ;
Partition D′

s equally into D′
1,s and D′

2,s ;
Compute the estimands β̂′

s from D′
1,s and µ̂′

s from D′
2,s ;

end
Calculate f̂n using Eq (6) ;
return f̂n

For analysis purposes, we split the sample into several subsets and pass each subset to the corre-
sponding estimator (the correspondence is explained later). Figure 1 shows an overview of the
sample splitting and the correspondence between the subsets and estimators. We construct the
histogram of the sensitive attribute Si from the sample Dn, denoted as n· = (n1, ..., nM ), where
ns = |{i ∈ [n] : Si = s}| (upper left in Figure 1). We also construct group-wise samples
Ds = {(Xi, Yi) : i ∈ [n], Si = s}. For each s ∈ [M ], we divide Ds into D1,s, D2,s, and D3,s such
that |Db,s| := nb,s ≥ ⌊ns/3⌋ for b ∈ [3] (lower left in Figure 1). We use n·, D1,s, D2,s, and D3,s to
estimate p̂s, ∥̂βs∥, β̃s, and µ̂s, respectively, where ∥̂βs∥ is the estimator for ∥β∗s∥. We obtain ∥̂β·∥
from the combination of p̂s and ∥̂βs∥ (middle in Figure 1). Furthermore, for each s ∈ [M ], we create a
copy of Ds, denoted as D′s, and divide it into D′1, s and D′2, s such that |D′b, s| := n′b, s ≥ ⌊ns/2⌋
for b ∈ [2]. We use D′1, s and D′

2,s to estimate β̂′
s and µ̂′

s, respectively (right in Figure 1).

We describe the construction of each estimator below. We first define some notations. Let the
ith element of Db,s and D′

b,s be denoted as (Xb,s,i, Yb,s,i) and (X ′
b,s,i, Y

′
b,s,i), respectively. We

use the matrix notations Xb,s = (Xb,s,1 · · ·Xb,s,nb,s
)⊤, X ′

b,s = (X ′
b,s,1 · · ·X ′

b,s,n′
b,s
)⊤, Yb,s =

(Yb,s,1 · · ·Yb,s,nb,s
)⊤, and Y ′

b,s = (Y ′
b,s,1 · · ·Y ′

b,s,n′
b,s
)⊤. We define the ordinary least square estima-

tors for the subset of the sample Db,s and D′
b,s as follows:

β̂b,s =

(
1

nb,s
X⊤

b,sXb,s

)−1(
1

nb,s
X⊤

b,sYb,s

)
,

β̂′
b,s =

(
1

n′
b,s

(X ′
b,s)

⊤X ′
b,s

)−1(
1

n′
b,s

(X ′
b,s)

⊤Y ′
b,s

)
.

We construct each estimator as follows:

(p̂s) We use the empirical mean defined as p̂s = ns/n.
(∥̂βs∥) We use the norm of the OLS estimator. We define ∥̂βs∥ = ∥β̂1,s∥ if ns > 18d, and ∥̂βs∥ = 0

otherwise.
(∥̂β·∥) Since ∥β∗

· ∥ =
∑

s∈[M ] ps∥β∗
s∥, we construct its estimator as ∥̂β·∥ =

∑
s∈[M ] p̂s∥̂βs∥.

(β̃s) We use the normalized ordinary least square estimator; β̃s = β̂2,s/∥β̂2,s∥ if ns > 18d, and
β̃s = 0 otherwise.

(µ̂s) We use the empirical mean; µ̂s =
1

n3,s

∑n3,s

i=1 X3,s,i.

(β̂′
s) We employ the ordinary least square estimator; β̂′

s = β̂′
1,s if ns > 12d, and β̂′

s = 0
otherwise.

(µ̂′
s) We use the empirical mean; µ̂′

s =
1

n′
2,s

∑n′
2,s

i=1 X ′
2,s,i if ns > 12d, and µ̂′

s = 0 otherwise.

Some estimators change their behavior based on the condition ns > 18d or ns > 12d, which is done
for technical purposes in later analyses.
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Recall that the final regressor is constructed as follows:

f̂n(x, s) = ∥̂β·∥
〈
β̃s, x− µ̂s

〉
+
∑

s′∈[M ]

p̂s′
〈
β̂′
s, µ̂

′
s

〉
.

Algorithm 1 shows the algorithm for our estimator.

C Bayes Optimal Regressor under Our Modell

This section presents the proof of Lemma 1, demonstrating the Bayes optimal regressor under the
model Eq (2). To establish this, we make use of a key result from the work of Chzhen et al. [7]:
Theorem 9 (Chzhen et al. [7]). Assume, for each s ∈ [M ], νf∗|s has a density. Then,

inf
f :DP

E
[
(f(X,S)− f∗(X,S))

2
]
= inf

ν

∑
s∈[M ]

psW
2
2 (νf∗|s, ν).

where the infimum is taken over all the regressors that satisfy the demographic parity. Moreover,
letting f∗

DP and ν∗ be the minimizer of the lhs and rhs, respectively, we have νf∗
DP

= ν∗ and

f∗
DP(x, s) =

 ∑
s′∈[M ]

ps′F
−1
f∗|s′

 ◦ Ff∗|s(f
∗(x, s)). (9)

Here, we denote νf∗ as the distribution of f∗(X,S), Ff |s as the cumulative distribution function of
f(X,S) conditioned on S = s, and F−1

f |s as the inverse cumulative distribution function, given by
F−1
f |s (t) = inf{y ∈ R|Ff |s(y) ≥ t}.

Building upon the results of Theorem 9, we establish the proof of Lemma 1.

Proof of Lemma 1. Building upon Theorem 9, we can derive the Bayes optimal regressor under the
model Eq (2) by obtaining closed expressions of the cumulative and inverse cumulative distribution
functions Ff∗|s and F−1

f∗|s. To obtain these closed forms, we apply certain transformations to f∗(X,S)

that render it a random variable following a standard normal distribution. Let Φ and Φ−1 be the CDF
and inverse CDF of the standard normal distribution, respectively. Through elementary calculations,
we have:

Ff∗|s(t) =P{f∗(X,S) ≤ t|S = s}
=P{⟨β∗

s , X⟩ ≤ t|S = s}

=P
{

1

σX∥β∗
s∥
⟨β∗

s , X − µs⟩ ≤
1

σX∥β∗
s∥

(t− ⟨β∗
s , µs⟩)|S = s

}
.

Here, we can readily observe that 1
σX∥β∗

s∥
⟨β∗

s , X − µs⟩ follows the standard normal distribution
under conditioned on S = s, as X ∼ N(µs, σXI) conditioned on S = s. Consequently, we have

Ff∗|s(t) = Φ

(
1

σX∥β∗
s∥

(t− ⟨β∗
s , µs⟩)

)
. (10)

The inverse function of F−1
f∗|s(t) can be obtained by equating the right-hand side to p and solving the

resulting equation for t, which leads to

F−1
f∗|s(p) = σX∥β∗

s∥Φ−1(p) + ⟨β∗
s , µs⟩. (11)

By substituting Eqs (10) and (11) into Eq (9) in Theorem 9, we obtain the desired claim.

D Details of Fairness Analysis

In this section, we provide evidence of the guarantee of our estimator’s fairness consistency. Specifi-
cally, we present the following theorem.
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Theorem 10. For any δ ∈ (0, 1], the regressor in Eq (6) is (1/2, δ)-consistently fair.

We prove the above claim by utilizing Theorem 2, which is shown in the main body, as follows:

Proof of Theorem 10. We can confirm the claim by comparing the bound obtained in Theorem 2
with the definition of ( 12 , δ)-consistent fairness in Definition 2. In particular, we can set C =

4BσX

√
48 ln(M/δ)
mins∈[M] ps

and n0 = n ≥ 48 ln(M/δ)/mins ps to satisfy the definition of ( 12 , δ)-consistent
fairness.

Next, we provide the proof of Theorem 2. To this end, we prove the following two theorems:

Theorem 11. Let f̂n be the estimator of f∗
DP defined in Eq (6). Then, almost surely, we have

W2

(
νf̂n|s, νf̂fn|s′

)
≤ 2B

(∣∣∣〈β̃s, µs − µ̂s

〉∣∣∣ ∨ ∣∣∣〈β̃s′ , µs′ − µ̂s′

〉∣∣∣).
Theorem 12. If n ≥ (48 ln(M/δ)− 36d)/mins ps, we have for δ ∈ (0, 1),

P

{
∃s ∈ [M ],

∣∣∣〈β̃s, µs − µ̂s

〉∣∣∣ > σX

√
48 ln(M/δ)

mins nps + 36d

}
≤ δ.

Combining Theorems 11 and 12 immediately yields Theorem 2.

Proof of Theorem 11. This proof investigates the distribution of νf̂n|s. It is straightforward to verify

that, conditioned on S = s, f̂n(X,S) follows the Gaussian distribution with mean

∥̂β·∥
〈
β̃s, µs − µ̂s

〉
+
∑

s′∈[M ]

p̂s′
〈
β̂′
s′ , µ̂

′
s′

〉
,

and variance

σ2
X ∥̂β·∥

2
.

We can thus evaluate the Wasserstein distance between the distributions νf̂n|s and νf̂n|s′ using the
Wasserstein distance between Gaussian distributions. Given two Gaussian distributions N(µ, σ2) and
N(µ′, σ′2), the 2-Wasserstein distance between them are obtained [20] as

W 2
2 (N(µ, σ2), N(µ′, σ2)) = (µ− µ′)

2
+ (σ − σ′)

2
.

Therefore, we have

W 2
2 (νf̂n|s, νf̂n|s′) =∥̂β·∥

2(〈
β̃s, µs − µ̂s

〉
−
〈
β̃s′ , µs′ − µ̂s′

〉)2
≤4B2

(∣∣∣〈β̃s, µ− µ̂
〉∣∣∣ ∨ ∣∣∣〈β̃s′ , µ− µ̂

〉∣∣∣)2,
which concludes the claim.

Proof of Theorem 12. We start by deriving the concentration inequality for ⟨β̃s, µs− µ̂s⟩ conditioned
on β̃s and n·. Note that β̃s = 0 if ns ≤ 18d. Conditioning on β̃s and n·, we observe that ⟨β̃s, µs−µ̂s⟩
follows a Gaussian distribution with mean zero and variance σ2

X/n3,s. Therefore, for any s ∈ [M ]
and t > 0,

P
{〈

β̃s, µs − µ̂s

〉
> t
∣∣∣β̃s, n·

}
≤ 1{ns > 18d} exp

(
−n3,st

2

2σ2
X

)
.

Taking the expectation with respect to β̃s and using the fact that n3,s ≥ ⌊ns/3⌋ ≥ ns/6 for ns ≥ 6,
we obtain the following inequality for s ∈ [M ] and t > 0:

P
{〈

β̃s, µs − µ̂s

〉
> t
∣∣∣n·

}
≤ 1{ns > 18d} exp

(
− nst

2

12σ2
X

)
.
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Using the union bound for t > 0, we have

P
{
∃s ∈ [M ],

〈
β̃s, µs − µ̂s

〉
> t
∣∣∣n·

}
≤
∑

s∈[M ]

1{ns > 18d} exp
(
− nst

2

12σ2
X

)
. (12)

We now derive a sufficient condition on t such that the expectation of the right-hand side in Eq (12) is
less than δ. First, we note that

1{ns > 18d} exp
(
− nst

2

12σ2
X

)
≤1{ns > 18d} exp

(
− (ns + 18d)t2

12σ2
X

ns

ns + 18d

)
≤ exp

(
− (ns + 18d)t2

24σ2
X

)
Taking the expectation and substituting the moment-generating function of the binomial distribution,
we obtain

E

[
exp

(
− (ns + 18d)t2

24σ2
X

)]
≤ exp

(
−18dt2

24σ2
X

)(
1− ps + pse

− t2

24σ2
X

)n

≤ exp

(
−18dt2

24σ2
X

− nps

(
1− e

− t2

24σ2
X

))
.

Since 1− e−x ≥ (1− e−1)x for x ∈ [0, 1], if t2/24σ2
X ≤ 1, we have

E

[
exp

(
− (ns + 18d)t2

24σ2
X

)]
≤ exp

(
−18dt2

24σ2
X

− (1− e−1)npst
2

24σ2
X

)
.

Hence, E[exp(− (ns+18d)t2

24σ2
X

)] ≤ δ/M if t ≥ σX

√
24 ln(M/δ)

(1−e−1)nps+18d ≤ σX

√
48 ln(M/δ)

mins nps+36d because

(1− e−1) ≥ 1/2. To ensure t2/24σ2
X ≤ 1, we require n ≥ (48 ln(M/δ)− 36d)/mins ps.

E Proofs for Norm and Direction Estimators

This section presents the proofs for Theorem 4 and Theorem 5. Our strategy for proving these
theorems is to use the hyperellipsoid to interpret the distribution of the OLS estimator. Specifically,
we begin by defining Σn = 1

nX
⊤X and expressing the OLS estimator β̂ as

β̂ = β∗ +Σ−1
n

(
1

n
X⊤ξ

)
, (13)

where ξ follows a zero-mean Gaussian distribution. Eq (13) shows that, conditioned on X , β̂

follows a multivariate Gaussian distribution with mean β∗ and covariance matrix
σ2
ξ

n Σ−1
n . We

establish that, under the condition ∥β̂∥ = r, β̂ is supported on a hyperellipsoid E(r, β, n
σ2
ξ
Σn), where

E(r, c, A) = {x ∈ Rd : (x− c)⊤A(x− c) ≤ r} denotes the hyperellipsoid with r > 0, c ∈ Rd, and
a symmetric and positive-definite matrix A ∈ Rd×d.

To prove Theorem 4 and Theorem 5, we adopt the following strategy. First, we provide an approxi-
mation of the hyperellipsoid E(r, c, A) using the maximum eigenvalue of A−1, i.e., λmax(A

−1). In
our context, A = n

σ2
ξ
Σn, and we then focus on the concentration inequalities regarding λmax(Σ

−1
n ).

Finally, we combine these tools to prove both theorems.

Lemmas regarding hyperellipsoid. We present two lemmas that relate to the approximation of the
hyperellipsoid E(r, c, A). Specifically, we demonstrate the following two lemmas:
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Lemma 2. For r > 0, c ∈ Rd, and a symmetric and positive-definite matrix A ∈ Rd×d, we have
E(r, c, A) ⊆ E(rλmax(A

−1), c, I).

Lemma 3. For r > 0, c ∈ Rd, and a symmetric and positive-definite matrix A ∈ Rd×d, if
rλmax(A

−1) ≤ ∥c∥2, we have

inf
x∈E(r,c,A)

〈
c

∥c∥
,

x

∥x∥

〉
≥
√
1− r

∥c∥2
λmax(A−1).

These lemmas provide insight into the approximation of the hyperellipsoid E(r, c, A) for a given
positive value of r, vector c in Rd, and positive-definite symmetric matrix A in Rd×d. Lemma 2
states that the hyperellipsoid E(r, c, A) is contained within a hyperellipsoid E(rλmax(A

−1), c, I).
Lemma 3 shows that, under certain conditions, the minimum angle between a point in E(r, c, A) and
the vector c is bounded below by a quantity that depends on r, c, and A.

Proof of Lemma 2. It is trivial that A− λmin(A)I is positive semi-definite. Equivalently, we have
for any x ∈ Rd,

x⊤(A− λmin(A)I)x ≥ 0

⇐⇒ x⊤Ax ≥ x⊤λmin(A)Ix. (14)

From Eq (14), for any x ∈ E(r, c, A), we have

x⊤λmin(A)Ix ≤ x⊤Ax ≤ r.

Hence, for any x ∈ E(r, c, A), we have

x⊤Ix ≤ r

λmin(A)
= λmax(A

−1)r,

which indicates x ∈ E(rλmax(A
−1), c, I).

Proof of Lemma 3. Let c̄ = c/∥c∥, and define a set Ē(r, c, A) = {x ∈ Sd− 1 : ∃γ > 0, γx ∈
E(r, c, A)}. Then, x ∈ Ē(r, c, A) if and only if

inf
γ>0

(γx− c)
⊤
A(γx− c) ≤ r. (15)

We can rewrite the left-hand side of Eq (15) as

γ2⟨x,Ax⟩ − 2γ⟨c, Ax⟩+ ⟨c, Ac⟩

=⟨x,Ax⟩
(
γ − ⟨c, Ax⟩
⟨x,Ax⟩

)2

+ ⟨c, Ac⟩ − ⟨x,Ac⟩2

⟨x,Ax⟩
.

Hence,

inf
γ>0

(γx− c)
⊤
A(γx− c) = ⟨c, Ac⟩ − (⟨x,Ac⟩ ∨ 0)2

⟨x,Ax⟩
.

Consequently, x ∈ Ē(r, c, A) if and only if

⟨x,Ax⟩
(
⟨c̄, Ac̄⟩ − r

∥c∥2

)
≤ (⟨x,Ac̄⟩ ∨ 0)

2
. (16)

From Lemma 2, we have

inf
x∈E(r,c,A)

〈
c̄,

x

∥x∥

〉
≥ inf

x∈E(λmax(A−1)r,c,I)

〈
c̄,

x

∥x∥

〉
= inf

x∈Ē(λmax(A−1)r,c,I)
⟨c̄, x⟩. (17)

By Eq (16), x ∈ Ē(λmax(A
−1)r, c, I) if and only if

1− r

∥c∥2
λmax(A

−1) ≤ (⟨x, c̄⟩ ∨ 0)
2
. (18)

Combining Eqs (17) and (18) and the assumption yields the claim.

17



Least eigenvalue of the empirical covariance matrix. The previous lemmas, Lemmas 2 and 3,
provide valuable insight into analyzing the randomness regarding ξ. However, to account for the
randomness of X , we must also control the lower bound on the least eigenvalue of A in Lemmas 2
and 3, which corresponds to the least eigenvalue of 1

nX
⊤X in our context. To this end, we leverage

the high probability bound presented by Mourtada [15] based on the small-ball condition. We state
the following probabilistic bound and expectation bound.

Lemma 4. For µ ∈ Rd and σ2
X > 0, let X1, ..., Xn

iid∼N(µ, σ2
XI), and let X = (X1 · · ·Xn)

⊤.
Then, for n > 6d, we have

P
{
λmin

(
1

n
X⊤X

)
< t

}
≤
(
21e10

σ2
X

t

)n/6

.

Lemma 5. For µ ∈ Rd and σ2
X > 0, let X1, ..., Xn

iid∼N(µ, σ2
XI), and let X = (X1 · · ·Xn)

⊤.
Then, for n > 6d, we have

E

[
λmax

((
1

n
X⊤X

)−1
)]
≤ 21e10

σ2
X

(
1 +

6

n− 6

)
.

To prove Lemma 4, we utilize Corollary 3 in Mourtada [15]. Specifically, we use the following
theorem.
Theorem 13 (Corollary 3 in Mourtada [15]). Let X be a random vector in Rd such that E[∥X∥2] <
+∞, and let Σ = E[XX⊤]. Let Σ̂n = 1

n

∑n
i=1 XiX

⊤
i , where Xi are i.i.d. copies of X . Given

C > 0 and α ∈ (0, 1], assume that for every θ ∈ Rd \ {0} and t > 0,

P
{
⟨θ,X⟩2 ≤ t2

∥∥∥Σ1/2θ
∥∥∥2} ≤ (Ct)α. (19)

Then, if d/n ≤ α/6, for every t > 0,

Σ̂n ⪰ tΣ

with probability at least 1− (C ′t)αn/6, where C ′ = 3C4e1+9/α.

Eq (19) is known as the small-ball condition.

Proof of Lemma 4. To take an advantage of Theorem 13, we need to ensure that Xi satisfies the
small-ball condition in Eq (19). Let Σn = 1

nX
⊤X . Then, the expected value of Σn is equal to

σ2
XI+µµ⊤ := Σ, i.e., E[Σn] = Σ. Given θ ∈ Rd\{0}, ⟨θ,Xi⟩2/σ2

X∥θ∥2 follows the non-central χ2

distribution with degree of freedom 1 and non-centrality parameter ⟨θ, µ⟩2/σ2
X∥θ∥2. Consequently,

we verify the satisfication of the small-ball condition of Xi by confirming that for a random variable
Z following the non-central χ2 distribution with degree of freedom 1 and non-centrality parameter
λ2, there exists C and α ∈ (0, 1] such that

P
{
Z ≤ t2

}
≤ (Ct)α.

The cumulative distribution fucntion of the non-central χ2 distribution with degree of freedom 1 has
a closed-form using the error function (See [12] and references therein). Specifically, letting erf(z)
be the error function, defined as

erf(z) =
2√
π

∫ z

0

e−x2

dx,

the cumulative distribution function of Z is obtained as

P
{
Z ≤ t2

}
=

1

2

(
erf

(
t− λ√

2

)
+ erf

(
t+ λ√

2

))
.

Since e−x2

is an even function, we have

P
{
Z ≤ t2

}
=

1√
2π

(∫ λ+t

0

e−
x2/2dx+

∫ t−λ

0

e−
x2/2dx

)
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=
1√
2π

(∫ λ+t

0

e−
x2/2dx+

∫ 0

λ−t

e−
x2/2dx

)

=
1√
2π

(∫ λ+t

0

e−
x2/2dx−

∫ λ−t

0

e−
x2/2dx

)

=
1√
2π

∫ λ+t

λ−t

e−
x2/2dx.

Noting that e−x2/2 ≤ e−
(0∨(λ−t))2

2 for x ∈ (λ− t, λ+ t), we have

P
{
Z ≤ t2

}
≤ 1√

2π

∫ λ+t

λ−t

dx =

√
2

π
e−

(0∨(λ−t))2

2 t. (20)

We verify that Xi satisfies the small-ball condition by utilizing Eq (20). Recall that ⟨θ,Xi⟩2/σ2
X∥θ∥2

follows the non-central χ2 distribution with degree of freedom 1 and non-centrality parameter
λ2 = ⟨θ, µ⟩2/σ2

X∥θ∥2 for any θ ∈ Rd \ {0}. By Eq (20), we have

P

{
|⟨θ,Xi⟩|
σ2
X∥θ∥2

2

< t2

}
≤
√

2

π
e−

(0∨(λ−t))2

2 t.

Noting that
∥∥Σ1/2θ

∥∥2 = σ2
X∥θ∥2 + ⟨θ, µ⟩2, we have

P
{
⟨θ,Xi⟩2 ≤ t2

∥∥∥Σ1/2θ
∥∥∥2} ≤

√√√√ 2

π

(
1 +

⟨θ, µ⟩2

σ2
X∥θ∥2

)
e−

(0∨(λ−t))2

2 t

=

√
2

π
(1 + λ2)e−

(0∨(λ−t))2

2 t. (21)

We divide into two cases, λ > t and λ ≤ t, to derive an upper bound on Eq (21).

(Case λ > t) Since (λ− t)2 = λ2− 2λt+ t2 ≥ λ2− 2t2 + t2 = λ2− t2, an upper bound on Eq (21)
is obtained as √

2

π
(1 + λ2)e−

(0∨(λ−t))2

2 t

≤
√

2

π
(1 + λ2)e−

λ2−t2

2 t.

For positive numbers a and b,
√
a+ b ≤

√
a+
√
b. Using this fact, we have√

2

π
(1 + λ2)e−

(0∨(λ−t))2

2 t

≤
√

2

π

(√
1 + t2 +

√
λ2 − t2e−

λ2−t2

2

)
t.

Since a function x → xe−x2/2 admits a maximum on x ∈ (0,∞) of e−1/2, we have
√
λ2 − t2e−

λ2−t2

2 ≤ e−1/2. Consequently, we have√
2

π
(1 + λ2)e−

(0∨(λ−t))2

2 t ≤
√

16

πe
(1 + t2)t, (22)

where we use the fact (1 + e−1/2)2 ≤ 8e−1.

(Case λ ≤ t) We can easily verify that√
2

π
(1 + λ2)e−

(0∨(λ−t))2

2 t ≤
√

2

π
(1 + t2)t (23)
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Combining Eqs (22) and (23), we have for every t > 0,

P
{
⟨θ,Xi⟩2 ≤ t2

∥∥∥Σ1/2θ
∥∥∥2} ≤√ 16

πe
(1 + t2)t.

For t2 ∈ (0,− 1
2 + 1

2

√
1 + πe

4 ], we have√
16

πe
(1 + t2)t ≤

√
8

πe

(
1 +

√
1 +

πe

4

)
t.

For t ≥ − 1
2 + 1

2

√
1 + πe

4 ,√
8

πe

(
1 +

√
1 +

πe

4

)
t ≥

√
4

πe

((
1 +

πe

4

)
− 1
)
= 1.

Hence, for every t > 0, we have

P
{
⟨θ,Xi⟩2 ≤ t2

∥∥∥Σ1/2θ
∥∥∥2} ≤

√
8

πe

(
1 +

√
1 +

πe

4

)
t ≤ 7

1/4t.

It confirms Xi satisfies the small-ball condition with C = 71/4 and α = 1. Application of Theorem 13
yields the desired claim.

Proof of Lemma 5. For a positive random variable X , we can express the expected value of X as
E[X] =

∫∞
0

P{X > t}dt. Applying this to our problem, we obtain

E

[
λmax

((
1

n
X⊤X

)−1
)]

=

∫ ∞

0

P

{
λmax

((
1

n
X⊤X

)−1
)

> t

}
dt

=

∫ ∞

0

P
{
λmin

((
1

n
X⊤X

))
< t−1

}
dt.

Now, let us set C = 21e10

σ2
X

. Using the previous result, we can rewrite the expectation of interest as

E

[
λmax

((
1

n
X⊤X

)−1
)]

=C +

∫ ∞

C

P
{
λmin

((
1

n
X⊤X

))
< t−1

}
dt

≤C +

∫ ∞

C

(
Ct−1

)n/6
dt

=C + C
n/6
(
1− n

6

)−1(
−C1−n/6

)
=C

(
1 +

6

n− 6

)
,

which yields the claim.

Proofs of theorems. By utilizing the results of Lemmas 2 to 5, we provide the complete proofs for
both Theorem 4 and Theorem 5.

Proof of Theorem 4. We begin by demonstrating that obtaining an upper bound on the expected
error of the direction estimator can be reduced to finding a lower bound on the inner product
An = ⟨ β̂

∥β̂∥
, β∗

∥β∗∥ ⟩. Specifically, a straightforward calculation yields

E

∥∥∥∥∥ β̂

∥β̂∥
− β∗

∥β∗∥

∥∥∥∥∥
2
 =2

(
1−E

[〈
β̂

∥β̂∥
,

β∗

∥β∗∥

〉])
. (24)

Therefore, it suffices to establish a lower bound on E[An].
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Taking advantage of Lemma 3, we derive a lower bound on An. Let r = (β̂ − β∗)⊤( n
σ2
ξ
Σn)(β̂ − β∗).

From Lemma 3, it follows that

An ≥

√
1−

σ2
ξr

∥β∗∥2n
λmax

(
Σ−1

n

)
,

provided that r ≤ n∥β∗∥2/σ2
ξλmin(Σ

−1
n ). Since 1−

√
1− x ≤ x for x ∈ [0, 1], it follows that

1−An ≤
σ2
ξr

∥β∗∥2n
λmax

(
Σ−1

n

)
,

as long as r ≤ n∥β∗∥2/σ2
ξλmax(Σ

−1
n ).

Next, we derive an upper bound on the expectation of 1 − An. Noting that conditioned on X , r
follows the χ2 distribution with degree of freedom d, we have

E[1−An|X]

=E

[(
1

{
r ≤ n∥β∗∥2

σ2
ξλmax(Σ

−1
n )

}
+ 1

{
r >

n∥β∗∥2

σ2
ξλmax(Σ

−1
n )

})
(1−An)

∣∣∣∣∣X
]

≤E

[
σ2
ξr

∥β∗∥2n
λmax

(
Σ−1

n

)∣∣∣∣∣X
]
+ P

{
r >

n∥β∗∥2

σ2
ξλmax(Σ

−1
n )

∣∣∣∣∣X
}

≤2E

[
σ2
ξr

∥β∗∥2n
λmax

(
Σ−1

n

)∣∣∣∣∣X
]

(25)

=
2σ2

ξd

∥β∗∥2n
λmax

(
Σ−1

n

)
, (26)

where we use the Markov inequality to obtain Eq (25).

By utilizing Eq (24), an upper bound on the expected error can be obtained by deriving an upper
bound on the expectation of Eq (26). The random variable in Eq (26) is λmax

(
Σ−1

n

)
, which allows

us to derive the upper bound on the expected error by obtaining an upper bound on the expectation
of λmax

(
Σ−1

n

)
. To accomplish this, we apply Lemma 5. The upper bound from Lemma 5 can be

substituted into Eq (26), resulting in the claimed upper bound.

Proof of Theorem 5. We first utilize Lemma 2 to get an upper bound on the squared error of the norm
estimator. Let r = (β̂ − β∗)⊤( n

σ2
ξ
Σn)(β̂ − β∗). From Lemma 2, we have∥∥∥β̂ − β∗

∥∥∥2 ≤ σ2
ξr

n
λmax

(
Σ−1

n

)
.

Application of the triangle and reverse triangle inequality yields

∥β∗∥ −

√
σ2
ξr

n
λmax

(
Σ−1

n

)
≤
∥∥∥β̂∥∥∥ ≤ ∥β∗∥+

√
σ2
ξr

n
λmax

(
Σ−1

n

)
,

equivalently (∥∥∥β̂∥∥∥− ∥β∗∥
)2
≤

σ2
ξr

n
λmax

(
Σ−1

n

)
.

Taking expectation conditioned on X yields

E

[(
∥β̂∥ − ∥β∗∥

)2∣∣∣∣X]
=E

[
σ2
ξr

n
λmax

(
Σ−1

n

)∣∣∣∣∣X
]

≤
σ2
ξd

n
λmax

(
Σ−1

n

)
, (27)

where we use the fact that r follows the χ2 distribution with degree of freedom d to obtain the last
line. Again, application of Lemma 5 into expectation of Eq (27) yields the claim.
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F Details of Upper Bound Analyses

This section presents a detailed proof of the upper bound stated in Theorem 1, which is achieved
through an analysis of the estimator constructed in Section 5. Specifically, we establish the following
theorem:

Theorem 14. Let β̂n be the estimator constructed in Section 5. Then, there exists a universal constant
C > 0 such that for any δ ∈ (0, 1) and n ≥ 12(3d ∨ 4 ln(M/δ))/mins∈[M ] ps,

En
(
1

2
, δ

)
≤ C

σ2
ξB

2dM ∨ σ2
XB2M ∨B2U2

n
+ o

(
1

n

)
.

To establish the validity of Theorem 14, we begin by proving Theorem 3, which demonstrates that
the estimation error can be decomposed into the sum of errors associated with individual components.
Subsequently, we derive upper bounds for the estimation errors of each component. Finally, we
synthesize these results to provide a proof of Theorem 14.

F.1 Proof of Theorem 3

We commence the error analysis of our estimator by decomposing the estimation error, as presented
in Theorem 3. Recall the statement of Theorem 3

Theorem 15. For the estimator defined in Eq (6), the mean square deviation from f∗
DP is bounded

above by

∑
s∈[M ]

psE

[(
E

[
∥̂β·∥

2
∣∣∣∣n·

]1/2

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

+ σXE

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

+

σX∥β∗
· ∥E

[∥∥∥β̃s − β∗
s/∥β∗

s∥
∥∥∥2∣∣∣∣n·

]1/2

+E


 ∑

s′∈[M ]

p̂s′
〈
β̂′
s′ − β∗

s′ , µ̂
′
s′

〉2
∣∣∣∣∣∣∣n·


1/2

+

E


 ∑

s′∈[M ]

p̂s′⟨β∗
s′ , µ̂

′
s′ − µs′⟩

2
∣∣∣∣∣∣∣n·


1/2

+

∣∣∣∣∣∣
∑

s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩

∣∣∣∣∣∣
)2]

.

We provide a proof of Theorem 15 as follows:

Proof of Theorem 15. We begin by decomposing f̂n(X,S)− f∗
DP(X,S) into six terms. Recall the

definitions of f̂n(x, s) and f∗
DP(x, s):

f̂n(x, s) =∥̂β·∥
〈
β̃s, x− µ̂s

〉
+
∑

s′∈[M ]

p̂s′
〈
β̂′
s, µ̂

′
s

〉
f∗
DP(x, s) =∥β∗

· ∥
〈

β∗
s

∥β∗
s∥

, x− µs

〉
+
∑

ps′⟨β∗
s′ , µs′⟩.

Through elementary calculations, we obtain:

f̂n(X,S)− f∗
DP(X,S) = ∥̂β·∥

〈
β̃S , µS − µ̂S

〉
+
(
∥̂β·∥ − ∥β∗

· ∥
)〈

β̃S , X − µS

〉
+ ∥β∗

· ∥
〈
β̃S −

β∗
S

∥β∗
S∥

, X − µS

〉
+
∑

s′∈[M ]

p̂s′
〈
β̂′
s′ − β∗

s′ , µ̂
′
s′

〉
+
∑

s′∈[M ]

p̂s′⟨β∗
s′ , µ̂

′
s′ − µs′⟩+

∑
s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩. (28)
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By the Cauchy-Schwarz inequality, for two random variable Z1 and Z2, we have E[(Z1 +Z2)
2]1/2 ≤

E[Z2
1 ]

1/2 +E[Z2
2 ]

1/2. By applying this fact into the expectation of Eq (28) conditioned on S and n·
multiple times, we have

E

[(
f̂n(X,S)− f∗

DP(X,S)
)2]

=
∑

s∈[M ]

psE

[
E

[(
f̂n(X,S)− f∗

DP(X,S)
)2∣∣∣∣S = s, n·

]∣∣∣∣S = s

]

≤
∑

s∈[M ]

psE

[(
E

[(
∥̂β·∥

〈
β̃S , µS − µ̂S

〉)2∣∣∣∣S = s, n·

]1/2

+E

[((
∥̂β·∥ − ∥β∗

· ∥
)〈

β̃S , X − µS

〉)2∣∣∣∣S = s, n·

]1/2

+E

[(
∥β∗

· ∥
〈
β̃S −

β∗
S

∥β∗
S∥

, X − µS

〉)2
∣∣∣∣∣S = s, n·

]1/2

+E


 ∑

s′∈[M ]

p̂s′
〈
β̂′
s′ − β∗

s′ , µ̂
′
s′

〉2
∣∣∣∣∣∣∣S = s, n·


1/2

+E


 ∑

s′∈[M ]

p̂s′⟨β∗
s′ , µ̂

′
s′ − µs′⟩

2
∣∣∣∣∣∣∣S = s, n·


1/2

+E


 ∑

s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩

2
∣∣∣∣∣∣∣S = s, n·


1/2)2∣∣∣∣∣S = s

]
.

(29)

In the subsequent analyses, we derive upper bounds for each term in Eq (29).

(First term in Eq (29)) Due to the splitting of the sample, ∥̂β·∥, β̃s, and µ̂s are independent conditioned
on n·. Thus, we have:

E

[(
∥̂β·∥

〈
β̃S , µS − µ̂S

〉)2∣∣∣∣S = s, n·

]1/2

=E

[(
∥̂β·∥

〈
β̃s, µs − µ̂s

〉)2∣∣∣∣n·

]1/2

=E

[(
∥̂β·∥

2
)∣∣∣∣n·

]1/2

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

.

This term matches the first term of the desired bound.

(Second term in Eq (29)) Since ∥̂β·∥, β̃s, and X are independent conditioned on n·, we have

E

[((
∥̂β·∥ − ∥β∗

· ∥
)〈

β̃s, X − µs

〉)2∣∣∣∣S = s, n·

]
=σ2

XE

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]
,

where we use the fact that X − µs ∼ N(0, σ2
XI) conditioned on S = s, and β̃s ∈ Sd−1 almost

surely. This result corresponds to the second term of the desired bound.

(Third term in Eq (29)) Since X − µs ∼ N(0, σ2
XI), we have

E

[(
∥β∗

· ∥
〈
β̃s −

β∗
s

∥β∗
s∥

, X − µs

〉)2
∣∣∣∣∣S = s, n·

]
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=σ2
X∥β∗

· ∥
2
E

[∥∥∥∥β̃s −
β∗
s

∥β∗
s∥

∥∥∥∥2
∣∣∣∣∣n·

]
,

which corresponds to the third term of the desired bound.

(Forth and fifth terms in Eq (29)) These terms are independent of S, so we can omit S = s from the
condition, resulting in the fourth and fifth terms of the desired bound.

(Sixth term in Eq (29)) This term does not contain any random variable when n· is fixed. Thus, we
can remove the expectation, yielding the sixth term of the desired bound.

F.2 Estimation Error Analyses for Each Component

This subsection presents an analysis of the estimation errors associated with each component estimator.
In particular, we investigate the estimation errors of µ̂s, ∥̂β·∥, β̃s, β̂′

s, and µ̂′
s.

F.2.1 Estimation Error Analysis for µ̂s

Here, we presents the proof of the following theorem.
Theorem 16. Given s ∈ [M ], if ns > 18d, we have

sup
v∈Sd−1

E
[
⟨v, µs − µ̂s⟩2

∣∣∣n·

]
≤ 6σ2

X

ns
.

Proof of Theorem 16. Given v ∈ Sd−1, we have

E
[
⟨v, µs − µ̂s⟩2

∣∣∣n·

]
=
〈
v,E

[
(µs − µ̂s)(µs − µ̂s)

⊤
∣∣∣n·

]
v
〉
.

According to the definition, µ̂s is an average of n3,s i.i.d. random variables following N(µs, σ
2
XI).

Hence, we have µs − µ̂s ∼ N(0,
σ2
X

n3,s
I), which implies E[(µs − µ̂s)(µs − µ̂s)

⊤|n·] =
σ2
X

n3,s
I .

Consequently, we obtain:

E
[
⟨v, µs − µ̂s⟩2

∣∣∣n·

]
=

〈
v,

σ2
X

n3,s
Iv

〉
=

σ2
X

n3,s
⟨v, v⟩ = σ2

X

n3,s
.

Since n3,s ≥ ⌊ns/3⌋ ≥ ns/6 for ns ≥ 6, the claim follows.

F.2.2 Estimation Error Analysis for ∥̂β·∥

Here, we present the proof of the following theorem.
Theorem 17. For any s ∈ [M ], we have

E

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

≤

√√√√189e10σ2
ξMd

σ2
Xn

+
∑

s∈[M ]

1{ns ≤ 18d}ns

n
+

∣∣∣∣∣∣
∑

s∈[M ]

(p̂s − ps)∥β∗
s∥

∣∣∣∣∣∣.
Proof of Theorem 17. By combining the definitions of ∥̂β·∥ and ∥β∗

· ∥ and utilizing the Cauchy-
Schwarz inequality, we obtain

E

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

=E


 ∑

s∈[M ]

p̂s

(
∥̂βs∥ − ∥β∗

s∥
)
+
∑

s∈[M ]

(p̂s − ps)∥β∗
s∥

2
∣∣∣∣∣∣∣n·


1/2
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≤E


 ∑

s∈[M ]

p̂s

(
∥̂βs∥ − ∥β∗

s∥
)2

∣∣∣∣∣∣∣n·


1/2

+

∣∣∣∣∣∣
∑

s∈[M ]

(p̂s − ps)∥β∗
s∥

∣∣∣∣∣∣. (30)

Next, we derive an upper bound for the first term in Eq (30). Applying Jensen’s inequality, we have:

E


 ∑

s∈[M ]

p̂s

(
∥̂βs∥ − ∥β∗

s∥
)2

∣∣∣∣∣∣∣n·


≤
∑

s∈[M ]

ns

n
E

[(
∥̂βs∥ − ∥β∗

s∥
)2∣∣∣∣n·

]

=
∑

s∈[M ]

ns

n

(
1{ns > 18d}E

[(
∥̂βs∥ − ∥β∗

s∥
)2∣∣∣∣n·

]
+ 1{ns ≤ 18d}∥β∗

s∥2
)

Using the fact that n1,s > 6d for ns > 18d and employing Theorem 5, we obtain:

E


 ∑

s∈[M ]

p̂s

(
∥̂βs∥ − ∥β∗

s∥
)2

∣∣∣∣∣∣∣n·


≤
∑

s∈[M ]

ns

n

21e10σ2
ξd

n1,s

(
1 +

6

n1,s − 6

)
+
∑

s∈[M ]

1{ns ≤ 18d}∥β
∗
s∥2ns

n

≤
189e10σ2

ξMd

σ2
Xn

+
∑

s∈[M ]

1{ns ≤ 18d}B
2ns

n
,

where the last line follows from the fact that n1,s ≥ ⌊ns/3⌋ ≥ ns/6 for ns ≥ 6, 6
n1,s−6 ≤ 1/2 for

ns ≥ 18, and ∥β∗
s∥ ≤ B.

F.2.3 Estimation Error Analysis for β̃s

Here, we will prove the following theorem.
Theorem 18. For any s ∈ [M ], we have

E

[∥∥∥∥β̃s −
β∗
s

∥β∗
s∥

∥∥∥∥2
∣∣∣∣∣n·

]
≤


756e10σ2

ξd

σ2
X∥β∗

s∥2ns
if ns > 18d,

1 otherwise .

Proof of Theorem 18. If ns ≤ 18d, β̃s = 0, and we thus have E[∥β̃s − β∗
s

∥β∗
s∥
∥2|n·] = ∥ β∗

s

∥β∗
s∥
∥2 = 1.

For ns > 18d, we have n2,s > 6d. Application of Theorem 4 yields

E

[∥∥∥∥β̃s −
β∗
s

∥β∗
s∥

∥∥∥∥2
∣∣∣∣∣n·

]
≤

84e10σ2
ξd

σ2
X∥β∗

s∥2n2,s

(
1 +

6

n2,s − 6

)
We get the claim in the same manner as the proof of Theorem 17.

F.2.4 Estimation Error Analysis for β̂′
s′

Here, we will prove the following theorem.
Theorem 19. Given s ∈ [M ], let Σs = E[XsX

⊤
s ] for Xs ∼ N(µs, σ

2
XI). Then, if ns > 12d, we

have

E

[∥∥∥Σ1/2
s

(
β̂′
s − β∗

s

)∥∥∥2∣∣∣∣n·

]
≤

4σ2
ξd

ns
+ 504e10σ2

ξ

(
4d

ns

)2

.
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To prove Theorem 19, we utilize the following theorem presented by Mourtada [15].
Theorem 20 (Theorem 3 in [15]). Let X be a random vector in Rd such that it statisfies the small-
ball condition of Eq (19) and E[∥Σ−1/2X∥4] ≤ κd for some κ > 0, where Σ = E[XX⊤]. Let
Σ̂n = 1

n

∑n
i=1 XiX

⊤
i , where Xi are i.i.d. copies of X . If n ≥ 6α−1d ∧ 12α−1 ln(12α−1),

1

n
E
[
Tr
(
Σ̂−1

n Σ
)]
≤ d

n
+ 8C ′κ

(
d

n

)2

,

where α and C ′ are as in Theorem 13.

Proof of Theorem 19. We can easily confirm that β̂′
s ∼ N(β∗

s ,
σ2
ξ

n′
1,s

(Σ′
1,s)

−1) conditioned on n· and

X ′
1,s, where Σ′

1,s =
1

n′
1,s

X ′
1,s(X

′
1,s)

⊤. Noting that E[(β̂′
s − β∗

s )(β̂
′
s − β∗

s )
⊤|X,n·] =

σ2
ξ

n′
1,s

(Σ′
1,s)

−1,
we have

E

[∥∥∥Σ1/2
m,s

(
β̂′
s′ − β∗

s

)∥∥∥2∣∣∣∣n·

]
=Tr

(
ΣsE

[(
β̂′
s′ − β∗

s

)(
β̂′
s′ − β∗

s

)⊤∣∣∣∣n·

])
=

σ2
ξ

n′
1,s

E
[
Tr
(
Σs

(
Σ′

1,s

)−1
)∣∣∣n·

]
. (31)

We apply Theorem 20 to the expected trace term in Eq (31). To do so, we need to check X ′
1,s satisfies

the small-ball condition of Eq (19) and the kurtosis condition E[∥Σ−1/2
s X ′

1,s∥4] ≤ κd.

The small-ball condition is confirmed by the same manner in the proof of Lemma 5, with C =
71/4 and α = 1. Here, we prove the satisfication of the kurtosis condition. For a multivariate
Gaussian random variable X ∼ N(µ,Λ) such that λmin(Λ) > 0, Σ := E[XX⊤] = µµ⊤ + Λ, and
∥Σ−1/2X∥4 = ⟨X,Σ−1X⟩

E

[∥∥∥Σ−1/2X
∥∥∥4] =E

[
⟨X,Σ−1X⟩2

]
=Var

[
⟨X,Σ−1X⟩

]
+
(
E
[
⟨X,Σ−1X⟩

])2
.

Since we have

E
[
⟨X,Σ−1X⟩

]
=Tr

(
Σ−1

(
µµ⊤ + Λ

))
= d

Var
[
⟨X,Σ−1X⟩

]
=2Tr

(
Σ−1ΛΣ−1

(
µµ⊤ + Λ

))
+ 2Tr

(
Σ−1ΛΣ−1µµ⊤)

=2Tr
(
Σ−1Λ

)
+ 2Tr

(
Σ−1ΛΣ−1µµ⊤)

=2Tr
(
Σ−1

(
µµ⊤ + Λ

))
− 2Tr

(
µµ⊤Σ−1µµ⊤)

=2d− 2∥µ∥2
〈
µ,Σ−1µ

〉
≤ 2d.

Hence, the kurtosis condition satisfies with κ = 3.

Application of Theorem 20 into Eq (31) yields

E

[∥∥∥Σ1/2
m,s

(
β̂′
s′ − β∗

s

)∥∥∥2∣∣∣∣n·

]
≤

σ2
ξd

n′
1,s

+ 504e10σ2
ξ

(
d

n′
1,s

)2

,

provided that ns ≥ 12d. We get the claim from the fact that n′
1,s ≥ ⌊ns/2⌋ ≥ ns/4 for ns ≥ 4,.

F.2.5 Estimation Error Analysis for µ̂′
s

Here, we will prove the following theorem.
Theorem 21. Given s ∈ [M ] and v ∈ Rd, if ns > 12d, we have

E
[
⟨v, µ̂′

s − µs⟩
2
∣∣∣n·

]
≤ 4σ2

X∥v∥2

ns
.
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Proof of Theorem 21. By definition, we have µ̂′
s ∼ N(µs,

σ2
X

n′
2,s

I) conditioned on n· for ns > 12d.
Hence, we have

E
[
⟨v, µ̂′

s − µs⟩
2
∣∣∣n·

]
≤ σ2

X∥v∥2

n′
2,s

.

We get the claim following the same manner of the proof of Theorem 19.

F.3 Some Auxiliary Lemmas

This subsections introduce some auxiliary lemmas for use to prove Theorem 14. Specifically, we
demonstrate the following lemmas:

Lemma 6. Let a1, ..., aM ∈ R be arbitrary numbers. Then, we have

E

 ∑
s∈[M ]

as(p̂s − ps)
2

 =
1

n
Var[aS ].

Lemma 7. For a constant c > 0, we have for any s ∈ [M ]

E
[
n−1
s 1{ns > c}

]
≤ 1 + c−1

ps(n+ 1)
.

Lemma 8. Let c > 0 be a constant. If n > 2c/mins∈[M ] ps,we have for any s ∈ [M ]

P{ns ≤ c} ≤ e−nps/8.

Proof of Lemma 6. Since np̂· follows the multinomial distribution with the parameters n and p·,
using the variance and covariance of the multinomial distribution, we have

E


 ∑

s∈[M ]

as(p̂s − ps)

2


=
∑

s∈[M ]

a2sps(1− ps)

n
−

∑
s,s′∈[M ]:s̸=s′

asas′psps′

n

=
∑

s∈[M ]

asps
n

as −
∑

s′∈[M ]

as′ps′

.

Let ā =
∑

s∈[M ] psas. Then, we have∑
s∈[M ]

asps(as − ā)

=
∑

s∈[M ]

ps(as − ā)
2
+
∑

s∈[M ]

āps(as − ā)

=
∑

s∈[M ]

ps(as − ā)
2
= Var[aS ].

Hence,

E


 ∑

s∈[M ]

as(p̂s − ps)

2
 =

1

n
Var[aS ].
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Proof of Lemma 7. For a random variable X following the binomial distribution with the parameters
n and p, E[ 1

X+1 ] =
1

p(n+1) (1− (1− p)n+1) [5]. Since ns follows the binomial distribution with the
parameters n and ps, we have We have

E
[
n−1
s 1{ns > c}

]
=E

[
1

ns + 1

(
1 +

1

ns

)
1{ns > c}

]
≤
(
1 + c−1

)
E

[
1

ns + 1

]
=

1 + c−1

ps(n+ 1)

(
1− (1− ps)

n+1
)
≤ 1 + c−1

ps(n+ 1)
.

Proof of Lemma 8. From the Chernoff bound, we have

P{ns ≤ c} ≤ exp

(
− n

2ps

( c
n
− ps

)2)
.

Under the assumption, we have c ≤ nps/2. Then, we have n
2ps

(
c
n − ps

)2 ≥ n/8, which gives the
claim.

F.4 Proof of Theorem 14

Proof of Theorem 14. We begin by characterizing the estimation error by each component’s estima-
tion error shown in Theorems 16 to 19 and 21. Specifically, we characterize the estimation error
using the following error terms:

e2mean,s = sup
v∈Sd−1

E
[
⟨v, µs − µ̂s⟩2

∣∣∣n·

]
e2norm =E[(∥β∗

· ∥ − ∥̂β·∥)2|n·]

e2coef,s =E[∥β̃s −
β∗
s

∥β∗
s∥
∥2|n·]

e2coef′,s =E

[∥∥∥Σ1/2
s

(
β̂′
s − β∗

s

)∥∥∥2∣∣∣∣n·

]
e2mean′,s = sup

v∈Sd−1

E
[
⟨µ̂′

s − µs, v⟩2
∣∣n·
]

e2prob =

∣∣∣∣∣∣
∑

s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩

∣∣∣∣∣∣
2

,

where Σx = E[XsX
⊤
s ] for Xs ∼ N(µs, σ

2
XI).

We analyze each term in Eq (7) one by one.

(First term in Theorem 3) Recall the first term in Theorem 3

E

[
∥̂β·∥

2
∣∣∣∣n·

]1/2

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

.

From the Cauchy–Schwarz inequality, we have

E

[
∥̂β·∥

2
∣∣∣∣n·

]1/2

≤E
[
∥β∗

· ∥
2
∣∣∣n·

]1/2
+E

[(
∥β∗

· ∥ − ∥̂β·∥
)2∣∣∣∣n·

]1/2

≤B + enorm.
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By definition, β̃s = 0 for ns ≤ 18d, which indicates that

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

= 0.

In the case of ns > 18d, by utilizing the fact β̃s and µ̂s are independent conditioned on n· due to the
sample spilitting and β̃s ∈ Sd−1, we obtain

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]
≤ sup

v∈Sd−1

E
[
⟨v, µs − µ̂s⟩2

∣∣∣n·

]
= e2mean,s.

Consequently, we have

E

[
∥̂β·∥

2
∣∣∣∣n·

]1/2

E

[〈
β̃s, µs − µ̂s

〉2∣∣∣∣n·

]1/2

≤ (B + enorm)emean,s 1{ns > 18d}. (32)

(Second term in Theorem 3) Recall the second term in Theorem 3

σXE

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

.

Using the notation of enorm, we have

σXE

[(
∥̂β·∥ − ∥β∗

· ∥
)2∣∣∣∣n·

]1/2

= σXenorm. (33)

(Third term in Theorem 3) Recall the third term in Theorem 3

σX∥β∗
· ∥E

[∥∥∥∥β̃s −
β∗
s

∥β∗
s∥

∥∥∥∥2
∣∣∣∣∣n·

]1/2

.

Substituting ecoef,s yields

σX∥β∗
· ∥E

[∥∥∥∥β̃s −
β∗
s

∥β∗
s∥

∥∥∥∥2
∣∣∣∣∣n·

]1/2

= σX∥β∗
· ∥ecoef,s. (34)

(Fourth term in Theorem 3) Recall the fourth term in Theorem 3

E


 ∑

s∈[M ]

p̂s

〈
β̂′
s − β∗

s , µ̂
′
s

〉2
∣∣∣∣∣∣∣n·


1/2

.

Due to the sample splitting, β̂′
s and µ̂′

s are mutually independent. Also, we have E[⟨β̂′
s−β∗

s , µ̂
′
s⟩] = 0.

Hence,

E


 ∑

s∈[M ]

p̂s

〈
β̂′
s − β∗

s , µ̂
′
s

〉2
∣∣∣∣∣∣∣n·


=
∑

s∈[M ]

p̂2sE

[〈
β̂′
s − β∗

s , µ̂
′
s

〉2∣∣∣∣n·

]

=
∑

s∈[M ]

p̂2sE

[〈
β̂′
s − β∗

s , µ̂
′
s

〉2∣∣∣∣n·

]
1{ns > 12d}.

Since E[(µ̂′
s)(µ̂

′
s)

⊤] = µµ⊤ +
σ2
X

n′
2,s

I = Σs − (1− 1
n′
2,s

)σ2
XI , we have

E


 ∑

s∈[M ]

p̂s

〈
β̂′
s − β∗

s , µ̂
′
s

〉2
∣∣∣∣∣∣∣n·


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=
∑

s∈[M ]

p̂2sE


∥∥∥∥∥∥
(
Σs −

(
1− 1

n′
2,s

)
σ2
XI

)1/2(
β̂′
s − β∗

s

)∥∥∥∥∥∥
2
∣∣∣∣∣∣∣n·

1{ns > 12d}

≤
∑

s∈[M ]

p̂2sE

[∥∥∥Σ1/2
s

(
β̂′
s − β∗

s

)∥∥∥2∣∣∣∣n·

]
1{ns > 12d} =

∑
s∈[M ]

p̂2se
2
coef′,s 1{ns > 12d}, (35)

where we use the fact Σs ⪰ Σs − (1 − 1
n′
2,s

)σ2
XI , and for symmetric matrices A and B such that

A ⪰ B, ⟨v,Av⟩ ≥ ⟨v,Bv⟩ for any v ∈ R. For ns ≤ 18d, the error is zero because µ̂′
s = 0

(Fifth term in Theorem 3) Recall the fifth term in Theorem 3

E


 ∑

s∈[M ]

p̂s⟨β∗
s , µ̂

′
s − µs⟩

2
∣∣∣∣∣∣∣n·


1/2

.

Since µ̂′
s are independent, we have

E


 ∑

s∈[M ]

p̂s⟨β∗
s , µ̂

′
s − µs⟩

2
∣∣∣∣∣∣∣n·


=
∑

s∈[M ]

p̂2sE
[
⟨β∗

s , µ̂
′
s − µs⟩

2
∣∣∣n·

]
1{ns > 12d}

+
∑

s,s′∈[M ]

p̂sp̂s′ 1{ns < 12d, ns′ < 12d}⟨β∗
s , µs⟩⟨β∗

s′ , µs′⟩

≤
∑

s∈[M ]

p̂2s∥β∗
s∥

2
sup

v∈Sd−1

E
[
⟨v, µ̂′

s − µs⟩
2
∣∣∣n·

]
1{ns > 12d}+ 144d2M2

n2

≤
∑

s∈[M ]

p̂2sB
2e2mean′,s 1{ns > 12d}+ o

(
1

n

)
. (36)

(Sixth term in Theorem 3) Recall the sixth term in Theorem 3∣∣∣∣∣∣
∑

s′∈[M ]

(p̂s′ − ps′)⟨β∗
s′ , µs′⟩

∣∣∣∣∣∣,
which is equivalent to eprob.

By combining Theorem 3 and Eqs (32) to (36), we get

E

[(
f̂n(X,S)− f∗

DP(X,S)
)2]

≤
∑

s∈[M ]

psE

[(
(B + enorm)emean,s 1{ns > 18d}+ σXenorm + σX∥β∗

· ∥ecoef,s

+

 ∑
s′∈[M ]

p̂2s′e
2
coef′,s′ 1{ns′ > 12d}

1/2

+

 ∑
s′∈[M ]

p̂2s′B
2e2mean′,s′ 1{ns′ > 12d}+ o

(
1

n

)1/2

+ eprob

)2
]
.

The triangle inequality gives that

30



E

[(
f̂n(X,S)− f∗

DP(X,S)
)2]

≤
∑

s∈[M ]

7ps

(
B2E

[
e2mean,s 1{ns > 18d}

]
+E

[
e2norm

]
E
[
e2mean,s 1{ns > 18d}

]
+ σ2

XE
[
e2norm

]
+ σ2

X∥β∗
· ∥

2
E
[
e2coef,s

])
+
∑

s∈[M ]

7

(
E
[
p̂2se

2
coef′,s 1{ns > 12d}

]
+E

[
p̂2sB

2e2mean′,s 1{ns > 12d}
])

+ 7E
[
e2prob

]
+ o

(
1

n

)
.

By applying Theorem 16 and Lemma 7, we have

E
[
e2mean,s 1{ns > 18d}

]
≤E
[
6σ2

X

ns
1{ns > 18d}

]
≤ 6σ2

X

ps(n+ 1)

(
1 +

1

18d

)
.

Also, from Theorem 17 and Lemmas 6 and 8, we have

E
[
e2norm

]
≤E


√√√√189e10σ2

ξMd

σ2
Xn

+
∑

s∈[M ]

1{ns ≤ 18d}ns

n
+

∣∣∣∣∣∣
∑

s∈[M ]

(p̂s − ps)∥β∗
s∥

∣∣∣∣∣∣
2


≤
378e10σ2

ξMd

σ2
Xn

+
∑

s∈[M ]

E

[
1{ns ≤ 18d}2ns

n

]
+

2

n
Var(∥β∗

S∥)

≤
378e10σ2

ξMd

σ2
Xn

+
∑

s∈[M ]

P{ns ≤ 18d}36d
n

+
2maxs∥β∗

s∥
2

n

≤
378e10σ2

ξMd

σ2
Xn

+
∑

s∈[M ]

36d

n
e−nps/8 +

2B2

n

=
378e10σ2

ξMd

σ2
Xn

+
2B2

n
+ o

(
1

n

)
,

provided that n > 36d/mins∈[M ] ps. By utilizing Theorem 18 and Lemmas 7 and 8, we have

E
[
e2coef,s

]
≤E

[
756e10σ2

ξd

σ2
X∥β∗

s∥2ns
1{ns > 18d}

]
+ P{ns ≤ 18d}

≤
756e10σ2

ξd

psσ2
X∥β∗

s∥2n

(
1 +

1

18d

)
+ e−nps/8

=
756e10σ2

ξd

psσ2
X∥β∗

s∥2n

(
1 +

1

18d

)
+ o

(
1

n

)
,

provided that n > 36d/mins∈[M ] ps. Application of Theorem 19 gives

E
[
p̂2se

2
coef′,s 1{ns > 12d}

]
≤E

[(ns

n

)2(4σ2
ξ

ns
+ 540e10σ2

ξ

(
4d

ns

)2
)
1{ns > 12d}

]

≤E
[ns

n
1{ns > 12d}

]4σ2
ξ

ns
+ o

(
1

n

)
≤ ps

4σ2
ξ

ns
+ o

(
1

n

)
.

By Theorem 21, we have

E
[
p̂2se

2
mean′,s 1{ns > 12d}

]
≤E
[
ns

n

4σ2
X

n
1{ns > 12d}

]
≤ ps

4σ2
X

n
.

Application of Lemma 6 with as = ⟨β∗
s , µs⟩ into e2prob yields

E
[
e2prob

]
≤ 1

n
Var(⟨β∗

S , µS⟩) ≤
B2U2

n
.
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Synthesizing the results so far, there exists an universal constant C > 0 such that

E

[(
f̂n(X,S)− f∗

DP(X,S)
)2]

≤
∑

s∈[M ]

Cps

σ2
XB2

psn
+

σ2
ξMd

n
+

σ2
XB2

n
+

σ2
ξ∥β∗

· ∥
2
d

∥β∗
s∥2psn


+
∑

s∈[M ]

C

(
psσ

2
X

n
+

psσ
2
X

n

)
+ C

B2U2

n
+ o

(
1

n

)
.

Consequently, there exists an universal constant C > 0 such that

E

[(
f̂n(X,S)− f∗

DP(X,S)
)2]
≤

C

(
σ2
XB2M

n
+

σ2
ξMd

n
+

σ2
XB2

n
+

σ2
ξB

2Md

n
+

σ2
X

n
+

σ2
X

n
+

B2U2

n

)
+ o

(
1

n

)
.

Then, the dominating terms match the claim.

G Details of Lower Bound Analyses

This section provides the proofs of the lower bound analyses results.

G.1 Proof of Lower Bound in Theorem 1

Theorem 22. If M(d− 1) > 16, there exists an universal constant C > 0 such that for any α > 0
and δ ∈ (0, 1),

En(α, δ) ≥ C
σ2
ξB

2dM

n
− o

(
1

n

)
.

Proof of Theorem 22. The Varshamov-Gilbert bound guarantees that there exists a subset V ′ ⊆ V
such that |V ′| ≥ 2M(d−1)/8 and dH(vs, v

′
s) ≥ (d − 1)/8 for any v, v′ ∈ V ′. With the choice of

ϵ2s = (d−1
16 −

1
M )σ2

ξ/2σ
2
XB2

sns, we confirm by Theorem 8 that infπ 1
K

∑
v∈V′ DKL

(
πθv|n· , π

)
≤

maxv,v′∈V′ DKL

(
πθv′ |n· , π

)
≤ ln(|V ′|/4)/2 ≥ M(d − 1)/16 − 1. From Theorem 8 and the

fact dH(vs, v
′
s) ≥ (d− 1)/8, we can apply Theorem 6 with ϵ =

∑
s∈[M ] ps

(
∑

s′∈[M] psBs)
2

B2
s

(d−1
16 −

1
M )σ2

ξ/2ns. From the fact that E[ 1
ns+1 ] =

1
ps(n+1) (1−(1−ps)

n) due to [5], there exists an universal

constant C > 0 such that E[ ϵ2 ] ≥ C( 1
M

∑
s∈[M ]

(
∑

s′∈[M] ps′Bs′ )
2

B2
s

)
σ2
ξMd

n − o( 1n ) We can get the

claim by confirming that there exists B1, ..., BM such that ( 1
M

∑
s∈[M ]

(
∑

s′∈[M] ps′Bs′ )
2

B2
s

) = B2 and

Bs ≤ B. Because for B2 = ... = BM = B, tending B1 to 0 results in ( 1
M

∑
s∈[M ]

(
∑

s′∈[M] ps′Bs′ )
2

B2
s

)

goes infinity, it is confirmed.

G.2 Proof of Theorem 6

Proof of Theorem 6. Since the distribution of n· is invariant against θ ∈ Θ, we have

sup
θ∈Θ

Eθ

[
E(f̂n; θ)

]
=E

[
sup
θ∈Θ

Eθ

[
E(f̂n; θ)

∣∣∣n·

]]
≥E
[
max
θ∈Θ̂

Eθ

[
E(f̂n; θ)

∣∣∣n·

]]
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≥E

 1

|Θ̂|

∑
θ∈Θ̂

Eθ

[
E(f̂n; θ)

∣∣∣n·

].
Given ϵ possibly dependent on n·, application of the Markov inequality yields

sup
θ∈Θ

Eθ

[
E(f̂n; θ)

]
≥E

 ϵ

|Θ̂|

∑
θ∈Θ̂

Pθ

{
E(f̂n; θ) ≥ ϵ

∣∣∣n·

}.
If inff E(f ; θ)∨E(f ; θ′) ≥ ϵ for any θ, θ′ ∈ Θ̂, E(f ; θ) < ϵ implies E(f ; θ′) ≥ ϵ for any θ′ ∈ Θ̂ such
that θ ̸= θ′. Hence, there exists a partion {Fθ}θ∈Θ̂ of all the measurable functions f : Rd× [M ]→ R
such that {f : E(f ; θ) < ϵ} ⊆ Fθ for all θ ∈ Θ̂. Consequently, we have

sup
θ∈Θ

Eθ

[
E(f̂n; θ)

]
≥ E

ϵ
1− 1

|Θ̂|

∑
θ∈Θ̂

Pθ

{
f̂n ∈ Fθ

∣∣∣n·

}.
Application of the Fano’s inequality and data processing inequality yields the claim.

G.3 Proof of Theorem 7

To prove Theorem 7, we show the following more tight lower bound.

Theorem 23. Let θ and θ′ be the parameters of the distributions such that 1
2σ2

X
∥µs − µ′

s∥
2 := ds < 1

for all s ∈ [M ]. Then, we have

inf
f∈L2

E(f ; θ) ∨ E(f ; θ′) ≥

∑
s∈[M ]

ps
e−ds

4

(
σ2
X

∥∥∥∥∥∥β·∥βs

∥βs∥
− ∥β

′
·∥β′

s

∥β′
s∥

∥∥∥∥∥
2(

1 +
∥µs − µ′

s∥2

4σ2
X

)1+ d
2

+

(
−

〈
∥β·∥βs

∥βs∥
+
∥β′

·∥β′
s

∥β′
s∥

,
µs − µ′

s

2

〉

+
∑

s′∈[M ]

ps′

(
⟨βs′ − β′

s′ , µ̄s′⟩+
〈
βs′ + β′

s′ ,
µs′ − µ′

s′

2

〉))2(
1 +
∥µs − µ′

s∥2

4σ2
X

) d
2

)
.

Theorem 23 immediately gives Theorem 7.

We utilize the sufficient condition for the constrained optimization problem over a Banach space.
Let Z be a Banach space. We say a function f : Z → R is Gateaux differentiable if the limit
limτ→0

f(z+τu)−f(z)
τ exists for any open set U ⊆ Z, any z ∈ U , and any u ∈ Z. We denote the

Gateaux derivative of f at z ∈ Z, a linear mapping from u ∈ Z to limτ→0
f(z+τu)−f(z)

τ , as DGf(z).
We abuse 0 to denote the mapping that always outputs 0.

Proof of Theorem 23. Let qs and q′s be the density function of Xs with the parameters (β·, µ·) and
(β′

· , µ
′
·), respectively, regarding the base measure λ. Since Xs follows the Gaussian distribution, we

can choose λ as the Lebesgue measure. Given η ∈ [0, 1], we have

E(f ;β·, µ·) ∨ E(f ;β′
· , µ

′
·)

≥ηE(f ;β·, µ·) + (1− η)E(f ;β′
· , µ

′
·)

=
∑

s∈[M ]

ps

∫ (
η(f(x, s)− fβ·,µ·(x, s))

2
qs(x) + (1− η)

(
f(x, s)− fβ′

· ,µ
′
·
(x, s)

)2
q′s(x)

)
λ(dx).
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Because ηE(f ;β·, µ·)+(1−η)E(f ;β′
· , µ

′
·) is convex for f , and L2 is a Banach space, it is minimized

if for any u ∈ L2,

d

dγ
(ηE(f + γu;β·, µ·) + (1− η)E(f + γu;β′

· , µ
′
·))
∣∣∣
γ=0

= 0.

The dominated convergence theorem gives

d

dγ
(ηE(f + γu;β·, µ·) + (1− η)E(f + γu;β′

· , µ
′
·))
∣∣∣
γ=0

=
∑

s∈[M ]

ps

∫ (
η(f(x, s)− fβ·,µ·(x, s))u(x, s)qs(x)

+ (1− η)
(
f(x, s)− fβ′

· ,µ
′
·
(x, s)

)
u(x, s)q′s(x)

)
λ(dx)

=
∑

s∈[M ]

ps

∫ (
f(x, s)(ηqs(x) + (1− η)q′s(x))

−
(
ηfβ·,µ·(x, s)qs(x) + (1− η)fβ′

· ,µ
′
·
(x, s)q′s(x)

))
u(x, s)λ(dx).

Consequently, ηE(f ;β·, µ·) + (1− η)E(f ;β′
· , µ

′
·) is minimized at

f(x, s) =
ηfβ·,µ·(x, s)qs(x) + (1− η)fβ′

· ,µ
′
·
(x, s)q′s(x)

ηqs(x) + (1− η)q′s(x)
.

Hence,

ηE(f + γu;β·, µ·) + (1− η)E(f + γu;β′
· , µ

′
·)

≥
∑

s∈[M ]

ps

∫
η(1− η)qs(x)q

′
s(x)

ηqs(x) + (1− η)q′s(x)

(
fβ·,µ·(x, s)− fβ′

· ,µ
′
·
(x, s)

)2
λ(dx).

With η = 1/2, we have

η(1− η)qs(x)q
′
s(x)

ηqs(x) + (1− η)q′s(x)
=
1

4

√
qs(x)q′s(x)

1
2

√
qs(x)
q′s(x)

+ 1
2

√
q′s(x)
qs(x)

=
1

4

√
qs(x)q′s(x)

cosh( 12 ln
qs(x)
q′s(x)

)
.

Let µ̄s =
1
2 (µs + µ′

s). Then, we have√
qs(x)q′s(x)

=
1√

(2π)dσ2d
X

exp

(
− 1

4σ2
X

∥x− µs∥2 −
1

4σ2
X

∥x− µ′
s∥

2
)

=
1√

(2π)dσ2d
X

exp

(
− 1

2σ2
X

∥x− µ̄s∥2 −
1

2σ2
X

∥∥∥∥µs − µ′
s

2

∥∥∥∥2

− 1

2σ2
X

(〈
x− µ̄s,

µ′
s − µs

2
+

µs − µ′
s

2

〉))

=
1√

(2π)dσ2d
X

exp

(
− 1

2σ2
X

∥x− µ̄s∥2 −
1

2σ2
X

∥∥∥∥µs − µ′
s

2

∥∥∥∥2
)
.

Also, we have

qs(x)

q′s(x)
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=exp

(
− 1

2σ2
X

∥x− µs∥2 +
1

2σ2
X

∥x− µ′
s∥

2
)

=exp

(
− 1

σ2
X

〈
x− µ̄s,

µ′
s − µs

2
− µs − µ′

s

2

〉)
=exp

(
1

σ2
X

⟨x− µ̄s, µs − µ′
s⟩
)
.

Let X̄s ∼ N(µ̄s, σ
2
XI). Then, we have

E(f ;β·, µ·) ∨ E(f ;β′
· , µ

′
·)

≥
∑

s∈[M ]

pse
− 1

2σ2
X

∥µs−µ′
s

2 ∥2

E

[
1

4

(fβ·,µ·(X̄s, s)− fβ′
· ,µ

′
·
(X̄s, s))

2

cosh( 1
2σ2

X

〈
X̄s − µ̄s, µs − µ′

s

〉
)

]

≥
∑

s∈[M ]

pse
− 1

2σ2
X

∥µs−µ′
s

2 ∥2

E

[
1

4

(fβ·,µ·(X̄s, s)− fβ′
· ,µ

′
·
(X̄s, s))

2

cosh( 1
2σ2

X

∥∥X̄s − µ̄s

∥∥∥µs − µ′
s∥)

]
, (37)

where the last line is obtained from the Cauchy–Schwarz inequality.

By definition, we have

fβ·,µ·(x, s)− fβ′
· ,µ

′
·
(x, s)

=

〈
∥β·∥βs

∥βs∥
− ∥β

′
·∥β′

s

∥β′
s∥

, x− µ̄s

〉
−

〈
∥β·∥βs

∥βs∥
+
∥β′

·∥β′
s

∥β′
s∥

,
µs − µ′

s

2

〉

+
∑

s′∈[M ]

ps′

(
⟨βs′ − β′

s′ , µ̄s′⟩+
〈
βs′ + β′

s′ ,
µs′ − µ′

s′

2

〉)
.

Conditioned on ∥X̄s− µ̄s∥ = r for r > 0, X̄s follows the uniform distribution over the (d−1)-sphere
centered at µ̄s. For a random variable U uniformly distributed over the (d− 1)-sphere centered at
origin with the radius r, E[U ] = 0 and E[UU⊤] = r2/dI . Hence, for a vector v ∈ Rd and a scalar
c ∈ R, we have

E
[(〈

v, X̄s − µs

〉
+ c
)2∣∣∣∥X̄s − µ̄s∥ = r

]
=
r2

d
∥v∥2 + c2.

An elementary analysis yields that ∥X̄s − µ̄s∥2 ∼ Gamma(d2 , 2σ
2
X), where Gamma(k, θ) denotes

the Gamma distribution with the shape parameter k and scale parameter θ. From the upper bound
of the hyperbolic cosine as cosh(x) ≤ ex2/2, for a vector v ∈ Rd, scalars c ∈ R and c′ > 0, and a
random variable γ ∼ Gamma(k, θ), we have

E

[
1

cosh(c′
√
γ)

(γ
d
∥v∥2 + c2

)]
≥E
[(γ

d
∥v∥2 + c2

)
e−

c′2γ
2

]
=E

[(γ
d
∥v∥2 + c2

) ∞∑
m=0

(−1)m c′2mγm

2mm!

]

=

∞∑
m=0

(−1)m c′2m

2mm!

(
∥v∥2

d
θm+1Γ(k +m+ 1)

Γ(k)
+ c2θm

Γ(k +m)

Γ(k)

)

=

∞∑
m=0

(
−c′2θ

2

)m
1

m!

(
k∥v∥2

d
θ
Γ(k + 1 +m)

Γ(k + 1)
+ c2

Γ(k +m)

Γ(k)

)

=
k∥v∥2

d
θ

(
1 +

c′2θ

2

)k+1

+ c2
(
1 +

c′2θ

2

)k

,
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where we use the fact that the hypergeometric function 2F1(a, b, b; z) =
∑∞

m=0
Γ(a+m)
Γ(a)

zm

m! =

(1− z)−a for some b, provided |z| < 1. By setting

v =
∥β·∥βs

∥βs∥
− ∥β

′
·∥β′

s

∥β′
s∥

c =−

〈
∥β·∥βs

∥βs∥
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∥β′

·∥β′
s

∥β′
s∥
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2

〉

+
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〈
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2

〉)
c′ =

1

2σ2
X

∥µs − µ′
s∥

k =
d

2
, and θ = 2σ2

X ,

we have

E

[
(fβ·,µ·(X̄s, s)− fβ′

· ,µ
′
·
(X̄s, s))

2

cosh( 1
2σ2

X
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s∥)

]

=σ2
X

∥∥∥∥∥∥β·∥βs

∥βs∥
− ∥β

′
·∥β′

s

∥β′
s∥
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2(

1 +
∥µs − µ′

s∥2

4σ2
X

)1+ d
2

+

(
−

〈
∥β·∥βs

∥βs∥
+
∥β′

·∥β′
s

∥β′
s∥

,
µs − µ′

s

2

〉

+
∑

s′∈[M ]

ps′

(
⟨βs′ − β′

s′ , µ̄s′⟩+
〈
βs′ + β′

s′ ,
µs′ − µ′

s′

2

〉))2(
1 +
∥µs − µ′

s∥2

4σ2
X

) d
2

.

(38)
Combining Eqs (37) and (38) yields the claim.

G.4 Proof of Theorem 8

Proof of Theorem 8. It is easy to check that ds = 0, and for any v, v′ ∈ V ,∥∥∥∥∥∥βv,·∥βv,s

∥βv,s∥
− ∥βv′,·∥βv′,s

∥βv′,s∥

∥∥∥∥∥
2

=

 ∑
s′∈[M ]

ps′∥βv,s∥

2∥∥∥∥ βv,s

∥βv,s∥
− βv′,s

∥βv′,s∥

∥∥∥∥2

=

 ∑
s′∈[M ]

ps′∥βv,s∥

2 ∑
i∈[d−1]

ϵ2s
d− 1

(
vs,i − v′s,i

)2
=4

 ∑
s′∈[M ]

ps′Bs

2

ϵ2s
d− 1

dH(vs, v
′
s).

Since the density function of the Gaussian distribution is L2 integrable, E(f ; θ) =∞ if f is not L2

integrable. Hence, inff E(f ; θv) ∨ E(f ; θv′) = inff∈L2 E(f ; θv) ∨ E(f ; θv′), and we thus can apply
Theorem 7. Then, we have

inf
f
E(f ; θv) ∨ E(f ; θv′) ≥

∑
s∈[M ]

ps

 ∑
s′∈[M ]

ps′Bs

2

σ2
Xϵ2s

d− 1
dH(vs, v

′
s)

Conditioned on n·, the KL-divergence between πθv|n· and πθv′ |n· is obtained as∑
s∈[M ]

ns

(
1

2σ2
X

∥µv,s − µv′,s∥2 +
σ2
X

2σ2
ξ

∥βv,s − βv′,s∥2 +
1

2σ2
ξ

⟨µv,s, βv,s − βv′,s⟩2
)
.
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Hence, we have

DKL

(
πθv|n· , πθv′ ,n·

)
=
∑

s∈[M ]

2σ2
XB2

snsϵ
2
s

σ2
ξ (d− 1)

dH(vs, v
′
s).
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