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ABSTRACT

Traffic forecasting is crucial for smart cities and intelligent transportation initia-
tives, where deep learning has made significant progress in modeling complex
spatio-temporal patterns in recent years. However, current public datasets have
limitations in reflecting the distribution shift nature of real-world scenarios, charac-
terized by continuously evolving infrastructures, varying temporal distributions,
and long temporal gaps due to sensor downtimes or changes in traffic patterns.
These limitations inevitably restrict the practical applicability of existing traffic
forecasting datasets. To bridge this gap, we present XXLTraffic, largest available
public traffic dataset with the longest timespan collected from Los Angeles,
USA, and New South Wales, Australia, curated to support research in extremely
long forecasting beyond test adaptation. Our benchmark includes both typical
time-series forecasting settings with hourly and daily aggregated data and novel
configurations that introduce gaps and down-sample the training size to better
simulate practical constraints. We anticipate the new XXLTraffic will provide a
fresh perspective for the time-series and traffic forecasting communities. It would
also offer a robust platform for developing and evaluating models designed to
tackle the extremely long forecasting problems beyond test adaptation. Our dataset
supplements existing spatio-temporal data resources and leads to new research
directions in this domain.

1 INTRODUCTION

Rapid global population growth and vehicle proliferation have intensified urban traffic congestion.
As cities expand and personal transportation reliance grows, strain on road networks leads to longer
commutes, higher fuel consumption, and increased emissions. Accurate traffic prediction is vital for
intelligent transportation systems, informing strategies to mitigate congestion and enhance mobility
through improved route planning and urban development. Effective forecasting requires capturing
long-term spatio-temporal relationships in traffic data. Long-term analysis provides context for
anomalies in short-term patterns and reveals trends influenced by population cycles, seasonal shifts,
and yearly vehicle usage changes. These insights are crucial for developing robust models that adapt
to evolving urban traffic dynamics due to demographic and vehicular changes.

In recent years, significant work has focused on both short-term and long-term traffic flow prediction.
Deep learning techniques, including Graph Neural Networks (GNNs), have been employed to extract
spatial relationships within traffic networks Jin et al. (2023), while Transformer-based architectures
have been utilized to capture temporal dependencies over various timescales Shao et al. (2023a).
Although these methods have shown promising results, they often rely on datasets that do not fully
encapsulate the complexities introduced by rapid population growth and the surging number of
vehicles, thus limiting their applicability to real-world scenarios.

There is an emerging need in intelligent transportation systems to design predictive models that extend
beyond test adaptation, effectively generalizing to real-world conditions that evolve over time. It is
important to note that our concept of ’beyond test adaptation’ differs from ’test time adaptation’ Guo
et al. (2024) as illustrated in Fig 1 that shows the distinctions between them. This shift necessitates
models that can handle the multifaceted impacts of demographic changes and vehicle proliferation
without relying solely on adaptation to specific test datasets. To achieve this, it is essential to utilize
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datasets that accurately represent these evolving conditions over extremely long periods, capturing
the intricate patterns influenced by population and vehicular growth.

Test Time Adaptation in Time-series Forecasting

Beyond Test Adaptation in Time-series Forecasting

Model

Models

Training
Data

Distribution A

Distribution A

Distribution B

Distribution C

Distribution C
Distribution B

Figure 1: Test-time adaptation in time-series forecasting
involves training a single model to fit different test domains,
horizons, or gaps. The figure above illustrates this using a
gap example. In contrast, the figure below shows our ’beyond
test adaptation’ where we train separate models for various
gap settings.

Motivated by this need, we introduce
XXLTraffic, a dataset and framework
that expands traffic forecasting be-
yond test adaptation. By incorporat-
ing extremely long-term data, XXL-
Traffic better reflects real-world sce-
narios where traffic patterns are con-
tinually affected not just by infrastruc-
ture changes like highway construc-
tion, but also by shifts in distribution
due to factors like population growth
and increasing vehicle numbers. We
will discuss existing datasets and the
specific challenges encountered in es-
tablishing XXLTraffic, highlighting
how it advances the field by providing
a more realistic and comprehensive
dataset. This facilitates the develop-
ment of models capable of adapting to
the complexities of real-world traffic
dynamics without the limitations of
traditional test adaptation approaches.

1.1 RECENT ADVANCES IN EXPANDING TRAFFIC DATASETS
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Figure 2: Our dataset is evolving and longer than
existing datasets. Existing datasets are either lim-
ited by short temporal spans or insufficient spatial
nodes. In contrast, our dataset features an evolving
growth of spatial nodes and spans over 20 years.

Real-world traffic scenarios necessitate more
complex prediction settings, involving extended
temporal horizons or broader spatial coverage
in experiments. In the temporal domain, new
settings are typically proposed based on previ-
ously published work rather than introducing
new datasets: Shao et al. (2023b) and Jia et al.
(2024) expanded input and output lengths up
to four times on existing datasets.From a spa-
tial perspective, Chen et al. (2021) published a
dataset with nodes growing annually and pro-
vided an evolving network to support new node
predictions. Wang et al. (2023a) proposed a con-
tinual learning framework with pattern expan-
sion mechanisms based on Chen et al. (2021).
Additionally, SCPT Prabowo et al. (2024) and
Large-ST Liu et al. (2024a) offered larger-scale
spatial node datasets to support subsequent re-
searchers. Recent work has explored longer tem-
poral step experimental settings and released
traffic datasets spanning up to five years and thousands of nodes. However, in specific scenarios,
such as future traffic prediction for highway planning, these data and experimental settings fall short.
As shown in Figure 2, most existing datasets have limitations in temporal span, which inspired
us to develop a dataset for expanding and extremely long traffic forecasting. This need for traffic
forecasting beyond test adaptation is crucial in various real-world scenarios. For instance, urban
planning and infrastructure investment decisions rely heavily on accurate long-term traffic predictions
to ensure that developments meet future transportation demands. Commercial real estate site selec-
tion and development also depend on knowing future traffic volumes years in advance to optimize
location choices and investment strategies. Additionally, governments can formulate more effective
environmental policies based on long-term traffic forecasts, such as implementing traffic restrictions
or promoting electric vehicles to reduce emissions. These applications highlight the importance of
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developing predictive models capable of accurately forecasting traffic patterns over extended periods,
facilitating strategic decision-making across multiple sectors. As the temporal span extends, urban
infrastructure development and road construction can lead to shifts in traffic patterns, resulting in an
evolving domain shift. This observation motivated us to provide an expanding and extremely long
traffic dataset. Additionally, the combination of these factors enables the extraction of more temporal
patterns from extremely long sequences, allowing for the possibility of longer input sequences.

1.2 CHALLENGES

The ultra-dynamic challenge encompasses three key aspects: (1) Continuously evolving states of
the underlying spatio-temporal infrastructures, characterized by an expanding number of nodes over
the years. This continuous growth introduces complexity as the infrastructure adapts and expands.
(2) Evolving temporal distributions over an extremely long observation period, which is crucial for
extremely long forecasting beyond different non-contiguous train-test splits. This requires models to
adapt to changes in patterns and trends over extensive temporal spans.

We have constructed a traffic dataset with an exceptionally long temporal span and broader regional
coverage, providing aggregated data and benchmarking, as well as a benchmarking setup considering
extremely long prediction scenarios for future exploration:

• We propose XXLTraffic, a dataset that spans up to 23 years and exhibits evolutionary growth.
It includes data from 9 regions, with detailed data collection and processing procedures for
expansion and transformation. This dataset supports both temporally scalable and spatially
scalable challenges in traffic prediction.

• We present an experimental setup with temporal gaps for extremely long prediction beyong
test adaptation and provide a benchmark of aggregated versions of hourly and daily datasets.

• We provide the exploration of input features through evolving temporal distributions over an
extremely long observation period. Additionally, our datasets support zero-shot forecasting
for new sensors.

2 PRELIMINARIES

In this section, we will define traffic data and traffic prediction tasks.

Definition 1. Traffic datasets: Traffic data primarily consists of vehicle flow detection data
collected by sensors distributed across various locations in the traffic network. It is generally
represented by Xi ∈ RN×T×C , where T denotes the time steps, N denotes the number of sensors,
and C denotes the number of features.

Definition 2. Short-term traffic prediction: Short-term traffic prediction primarily focuses on
forecasting traffic speed or flow within the next hour. As shown in Equation 1, the input length α and
output length β are generally set to 12 steps.

[Xt−(α−1), ..., Xt−1, Xt] → [Xt+1, Xt+2, ..., Xt+β ], (1)

Definition 3. Long-term multivariate prediction: This task mainly focuses on long-sequence
time series prediction, which includes the traffic dataset. As shown Table 1, the sequence length can
reach up to 2880 steps.

Definition 4. Extremely Long Prediction with Gaps: Based on Equation 1, the observation and
prediction are not adjacent but are instead separated by a gap period g, as shown in the following
formula.

[Xt−(α−1), ..., Xt−1, Xt] → [Xt+g+1, Xt+g+2, ..., Xt+g+β ], (2)

3 GAPS AND COMPARISON WITH EXISTING TRAFFIC DATASETS

As shown in Table 1, existing traffic prediction work can easily be divided into short-term and
long-term settings. The short-term setting originated from the STGCNYu et al. (2018) work, while

3
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Figure 3: Our expanding and extremely long prediction addresses the existing limitations in both
short-term and long-term predictions.

the long-term setting was first introduced by LSTNet Lai et al. (2018) and subsequently established as
a widely adopted experimental framework by Informer Zhou et al. (2021). In recent years, short-term
prediction typically has a maximum step length of 12 steps, while long-term prediction reaches up to
720 steps. However, works such as Witran Jia et al. (2024) and DAN Li et al. (2024) recognized the
need for even longer step predictions in practical applications, extending the length to a maximum of
four times the typical length. Despite the differences in step lengths, their observed and predicted
values are concatenated tightly together, as shown in Equation 1. To accommodate complex real-
world scenarios, such as highway route planning predictions, it is necessary to introduce a gap of
several years between observation and prediction. Typically, existing datasets lack the temporal
coverage required to support gaps exceeding one year.At the same time, predicting several years in
advance also implies the need to forecast traffic for sensors at new locations, taking into account the
evolving nature of the road network. Even when such coverage is available, works like Wang et al.
(2023a) and Chen et al. (2021) utilize evolving datasets but do not provide sufficient data to train
models for extended durations. To overcome these gaps, our Expanding and Extremely Long Traffic
Dataset robustly supports these complex scenarios.

Table 1: Summary of recent short-term traffic forecasting and long-term multivariate forecasting

Datasets Model Series Length

Short-term

STGCN (Yu et al., 2018) {3,6,9,12}
DCRNN (Li et al., 2018), GWN (Wu et al., 2019), BTF (Chen & Sun, 2021),

{3,6,12}DMSTGCN (Han et al., 2021), GTS (Shang et al., 2021), STGODE (Fang et al., 2021),
PM-MemNet (Lee et al., 2021), STAEFormer (Liu et al., 2023)
AGCRN (Bai et al., 2020), STSGCN (Song et al., 2020), ,DSTAGNN Lan et al. (2022),

{12}D2STGNN (Shao et al., 2022), DyHSL (Zhao et al., 2023),PDFormer (Jiang et al., 2023),
MultiSPANS Zou et al. (2024), GMSDR (Liu et al., 2022)

Long-term

MTGNN (Wu et al., 2020b),LSTNet (Lai et al., 2018) {3,6,12,24}
ARU (Deshpande & Sarawagi, 2019) {12,24,48,168,336}
LogSparse_Trans (Li et al., 2019) {24,48,72,96,120,144,168,192}
AST (Wu et al., 2020a) {8,24,168,336}
SSDNet (Lin et al., 2021) {20,24,30,138}
Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),

{24,48,96,192,336,720}Linear (Li et al., 2022), Triformer (Cirstea et al., 2022), Pyraformer (Liu et al., 2021)
DSformer (Yu et al., 2023),DeepTime (Woo et al., 2023),DLinear (Zeng et al., 2023)
Witran (Jia et al., 2024) {168, 336, 720, 1440, 2880}
DAN (Li et al., 2024) {288, 672, 1440}

4 THE XXLTRAFFIC DATASETS

4.1 DATA COLLECTION

We obtained the expanding and extremely long traffic sensor data from the California Department
of Transportation (CalTrans) Performance Measurement System1 (PeMS) Chen et al. (2001) and
Transport for NSW2. PeMS is an online platform that collects traffic data from 19,561 sensors

1https://pems.dot.ca.gov/
2https://maps.transport.nsw.gov.au/egeomaps/traffic-volumes/index.html#/?z=6
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distributed across California state highways. These sensor locations are divided into nine districts.
We downloaded all the raw data for these nine districts from the initial data release up to March 20,
2024. The system automatically generates a daily data file for each district, containing data from all
sensors within each district. We have stored the complete raw data files in an open-source repository
for quick access, which will be released after the publication. The tfNSW is an open-source data
platform provided by Transport for NSW, featuring traffic flow data collected from sensors distributed
along major roads throughout the state of New South Wales of Australia. The data is available at a
minimum granularity of one hour.

Table 2: Comparison between our XXLTraffic dataset and the existing traffic datasets.

Reference Dataset Samples Nodes Time Interval Time Span Time Period

DCRNN METR-LA 34,272 207 5 mins 4 months 03/2012 - 06/2012
PEMS-BAY 52,116 325 5 mins 6 months 01/2017 - 05/2017

LSTNet Traffic 17,544 862 1 hour 2 years 01/2015 - 12/2016

STGCN PEMSD7(M) 12,672 228 5 mins 2 months 05/2012 - 06/2012
PEMSD7(L) 12,672 1026 5 mins 2 months 05/2012 - 06/2012

ASTGCN PEMSD4-I 17,002 228 5 mins 2 months 01/2018 - 02/2018
PEMSD8-I 17,856 1,979 5 mins 2 months 07/2016 - 08/2016

STSGCN

PEMS03 26,208 358 5 mins 11 months 01/2018 - 11/2018
PEMS04 16,992 307 5 mins 2 months 01/2018 - 02/2018
PEMS07 28,224 883 5 mins 2 months 05/2017 - 06/2017
PEMS08 17,856 170 5 mins 2 months 07/2016 - 08/2016

Large-ST

CA 525,888 8,600 5 mins 5 years 01/2017 - 12/2021
GLA 525,888 3,834 5 mins 5 years 01/2017 - 12/2021
GBA 525,888 2,352 5 mins 5 years 01/2017 - 12/2021
SD 525,888 716 5 mins 5 years 01/2017 - 12/2021

Ours

Full_PEMS03 2,419,488 1809 5 mins 23.00 years 03/2001 - 03/2024
Full_PEMS04 2,287,872 4,089 5 mins 21.75 years 06/2002 - 03/2024
Full_PEMS05 1,998,720 573 5 mins 19.00 years 03/2005 - 03/2024
Full_PEMS06 1,945,728 705 5 mins 18.50 years 09/2005 - 03/2024
Full_PEMS07 2,287,872 4,888 5 mins 21.75 years 06/2002 - 03/2024
Full_PEMS08 2,419,488 2,059 5 mins 23.00 years 03/2001 - 03/2024
Full_PEMS10 1,998,720 1,378 5 mins 19.00 years 03/2005 - 03/2024
Full_PEMS11 2,261,376 1,440 5 mins 21.50 years 09/2002 - 03/2024
Full_PEMS12 2,331,360 2,587 5 mins 22.16 years 01/2002 - 03/2024
tfNSW 100,056 27 60 mins 11.42 years 01/2013 - 05/2024

As illustrated in Table 2, our collected dataset significantly exceeds existing datasets in terms of
both temporal coverage and the number of spatial nodes. The dataset sample will be available on:
https://anonymous.4open.science/r/XXLTraffic-F281, which includes the raw data, sensor meta-
data (containing sensor IDs, geographical coordinates, associated road information, etc.), the data
processing pipeline code, and the processed datasets.

4.2 DATA PREPROCESSING

Based on the 23 years of raw data we collected, we conducted rigorous data filtering and aggregation.
The PeMS system has continuously evolved, expanding from a few sensors in 2001 to over 4,000
sensors in some districts today. To support our setting of extremely long forecasting with gaps, we
selected a subset of sensors that were installed in the early stages and have consistently collected new
data up to the present(named gap dataset), which is shown in the Appendix. This extensive gap
dataset effectively underpins the extremely long forecasting with gaps demonstrated in Figure 3.
Utilizing the gap dataset, we performed both hourly and daily aggregations, which will be
employed for gap-free long-term forecasting benchmarking. We will provide standard long-term
forecasting benchmarks for both the hourly and daily datasets.

4.3 DATA OVERVIEW

The XXLTraffic dataset is distributed across highways in the state of California, as illustrated in
the Figure 4a. The nine colors represent nine districts. From Figures 4b, 4c, and 4d, we can
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District 03
District 04
District 05
District 06
District 07
District 08
District 10
District 11
District 12

(a) Sensor distribution in PeMS and tfNSW

(b) District 08 in 2005 (c) District 08 in 2015 (d) District 08 in 2024

Figure 4: XXLTraffic dataset overview and its evolving development. This figure provides a global
overview and two local overviews, showcasing the diversity of sensor distribution. The lower parts
highlights a selected region to illustrate the growth and changes in traffic sensors over time.

clearly observe the evolutionary growth of the sensors. The sensors are extensively distributed across
both urban and suburban areas, offering diverse modalities. Additionally, the sensors are densely
interconnected, enabling the formation of a high-quality traffic graph dataset.

It is evident that sensors at the same location may collect completely different distributions over the
course of urban evolution. As shown in Figure 5, some sensors have maintained the same distribution
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from 2005 to 2024, while others have experienced significant changes in distribution. The temporal
changes causing domain shifts present a significant challenge for our extremely long forecasting.
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Figure 5: Sensor traffic status distribution of District 8 in PeMS from 2005 to 2024 in 5a and from
2016 to 2022 in NSW in 5b. While some sensors exhibit minimal changes, others show significant
distribution differences, regardless of whether they are in low-traffic or high-traffic areas. This
presents substantial challenges for extremely long forecasting with long gaps.

4.4 XXLTRAFFIC LICENCE

The XXLTraffic dataset is licensed under CC BY-NC 4.0 International: https://creativecommons.org/
licenses/by-nc/4.0. Our code is available under the MIT License: https://opensource.org/licenses/MIT.
Please check the official repositories for the licenses of any specific baseline methods used in our
codebase.

5 EXPERIMENTS

We conducted experiments for both extremely long forecasting with gaps using gap dataset and
conventional long-term forecasting using hourly dataset and daily dataset. Additionally,
referring to the definition in Figure 3, we set the gap parameter g as 1 year, 1.5 years, and 2 years for
the gap dataset, as illustrated by Figure 6.

5.1 DATASETS

We conducted experiments on all proposed sub-datasets. To maintain consistency with previous state-
of-the-art benchmarks, we selected districts 03, 04, and 08 (widely recognized as PEMS03/04/08)
for the experiments using the gap, and districts 03, 04,07 and 08 for hourly, and daily experiments.
Results for other datasets are presented in Appendix. All sub-datasets were divided into training,
validation, and test sets using a 6:2:2 ratio. For the gap dataset, due to the extensive span of up
to 20 years resulting in a large sample size, we fixed a seed during data preprocessing to select 10%
of the dataset for training and testing to quickly demonstrate our results. The details of the datasets
used in our benchmarking is in Appendix A.1.

5.2 BASELINES

In our comparison experiments, we adopted four popular baselines, including MLP, Transformer,
and Mamba architectures. Informer Zhou et al. (2021) introduces an efficient transformer for long
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Figure 6: Problem definition. The yellow boxes represent typical predictions, the gray boxes denote
gap periods between observation and prediction, and the blue boxes indicate extended predictions.

sequence time-series forecasting using ProbSparse self-attention and self-attention distilling, enabling
encoder-decoder architectures to handle long sequences effectively. MICN Wang et al. (2023b)
proposes a multi-scale context network that models both local and global contexts for long-term
time series forecasting, capturing patterns across different temporal scales to enhance performance.
FEDformer Zhou et al. (2022) introduces a frequency-enhanced decomposed transformer that models
time series in both time and frequency domains, improving long-term forecasting by effectively
capturing temporal patterns. PatchTST Nie et al. applies transformers to time series by treating them
as sequences of patches, enabling effective long-term forecasting through self-attention over patch
representations to capture temporal dependencies.Autoformer Wu et al. (2021), an earlier state-of-
the-art model, leverages a decomposition architecture and auto-correlation mechanism to enhance
efficiency and accuracy in long-term time series forecasting, outperforming traditional Transformer
models. iTransformer Liu et al. (2024b) is the latest and most effective Transformer-based model,
utilizing attention and feed-forward networks on inverted dimensions, embedding time points into
variate tokens. DLinear Zeng et al. (2023) challenges the effectiveness of Transformer models by
proposing a simple one-layer linear model that captures temporal relations in an ordered set of
continuous points. It employs positional encoding and uses tokens to embed sub-series, preserving
some ordering information in Transformers. Lastly, Mamba Gu & Dao (2023), a well-known
sequential model from last year, uses a bidirectional Mamba block to extract inter-variate correlations
and temporal dependencies. Additionally, we have selected five SOTA baselines Yu et al. (2018);
Guo et al. (2019); Wu et al. (2019); Bai et al. (2020); Jiang et al. (2023) from traffic forecasting
domain.

5.3 IMPLEMENTATION DETAILS

We adopted the default settings of the Time-Series-Library Wu et al. (2022) to conduct a compre-
hensive comparison of baselines. We use the results of five random seeds as the average. We used
96 time steps as input and 336 time steps as ground truth. The code was implemented in PyTorch
and executed on a V100 GPU with 32GB memory and 384GB RAM, provided by NCI Australia, an
NCRIS-enabled capability supported by the Australian Government.

5.4 RESULTS OF EXTREMELY LONG FORECASTING WITH GAPS

We use Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics to evaluate performance,
averaging results across different seeds. It is observed that nearly all results are poor, highlighting the
significant challenge posed by domain shifts over time for extremely long forecasting with gaps. These
baseline results also indicate that traditional the-state-of-the-art (SOTA) rankings and methodologies

8
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Table 3: Comparison in gap dataset. The bold text indicates the best.

Gap Data Gap Metric Horizon Mamba iTrans DLinear Autof Infor FEDFo MICN Patch STGCN ASTGCN GWN AGCRN PDFor

PEMS03

1-year
MSE

96 1.457 1.636 1.500 1.301 0.673 0.934 0.514 0.803 0.556 0.765 0.676 0.596 0.621
192 1.472 1.597 1.542 1.266 0.739 0.960 0.528 0.852 0.562 0.764 0.581 0.565 0.545
336 1.434 1.512 1.531 1.137 0.699 0.849 0.493 0.825 0.561 0.717 0.582 0.580 0.574

MAE
96 0.913 0.989 0.933 0.906 0.552 0.697 0.515 0.647 0.536 0.618 0.574 0.562 0.576
192 0.922 0.970 0.945 0.867 0.581 0.715 0.513 0.664 0.539 0.626 0.546 0.543 0.536
336 0.913 0.935 0.935 0.807 0.560 0.640 0.491 0.636 0.538 0.598 0.543 0.552 0.548

1.5-year
MSE

96 1.485 1.879 1.653 1.467 1.138 1.190 0.839 1.245 1.256 1.441 1.250 1.168 1.256
192 1.442 1.753 1.642 1.266 1.276 1.374 0.844 1.339 1.187 1.395 1.194 1.122 1.117
336 1.446 1.662 1.632 1.137 1.340 1.259 0.755 1.359 1.167 1.273 1.015 1.176 1.182

MAE
96 0.942 1.078 0.976 0.945 0.763 0.795 0.686 0.863 0.884 0.959 0.875 0.866 0.899
192 0.934 1.017 0.968 0.867 0.827 0.715 0.681 0.906 0.872 0.947 0.856 0.843 0.842
336 0.938 0.987 0.968 0.807 0.845 0.640 0.632 0.903 0.853 0.877 0.832 0.862 0.871

2-year
MSE

96 1.359 1.844 1.568 1.328 1.642 1.205 1.359 1.817 2.059 2.236 1.987 1.950 2.068
192 1.216 1.729 1.473 1.235 1.955 1.489 1.308 1.899 2.055 2.180 1.877 1.746 1.897
336 1.294 1.614 1.407 1.220 1.982 1.615 0.966 1.656 2.022 1.889 1.847 1.930 1.982

MAE
96 0.833 1.048 0.954 0.894 0.956 0.816 0.911 1.104 1.176 1.234 1.148 1.150 1.189
192 0.772 1.008 0.896 0.837 1.067 0.933 0.866 1.119 1.184 1.213 1.117 1.070 1.131
336 0.801 0.960 0.870 0.838 1.086 0.978 0.700 1.016 1.169 1.117 1.107 1.140 1.161

PEMS04

1-year
MSE

96 1.325 1.644 1.396 0.819 0.624 0.712 0.721 1.309 1.233 1.311 1.310 1.290 1.101
192 1.438 1.587 1.440 0.941 0.694 0.679 0.611 1.358 1.398 1.443 1.255 1.318 1.078
336 1.424 1.447 1.421 0.853 0.668 0.584 0.526 1.338 1.505 1.325 1.292 1.302 1.085

MAE
96 0.914 1.037 0.955 0.717 0.593 0.650 0.632 0.917 0.904 0.929 0.870 0.865 0.851
192 0.642 1.018 0.965 0.767 0.634 0.638 0.586 0.932 1.025 1.023 0.879 0.907 0.816
336 0.935 0.960 0.954 0.730 0.615 0.592 0.534 0.916 1.104 0.938 0.865 0.899 0.821

1.5-year
MSE

96 1.204 2.014 1.488 0.981 0.618 0.664 0.638 1.171 1.369 1.350 1.684 1.222 1.097
192 0.982 1.649 1.301 0.867 0.622 0.679 0.570 1.109 1.642 1.549 1.501 1.346 1.214
336 0.961 1.352 1.298 0.762 0.646 0.488 0.482 1.158 1.368 1.199 1.584 0.231 1.130

MAE
96 0.890 1.193 0.995 0.779 0.592 0.632 0.581 0.870 1.082 0.937 1.063 0.961 0.849
192 0.787 1.038 0.913 0.735 0.588 0.638 0.547 0.846 1.035 1.075 0.988 0.989 0.903
336 0.792 0.929 0.908 0.679 0.598 0.527 0.494 0.850 0.862 0.832 0.997 0.963 0.854

2-year
MSE

96 1.220 1.652 1.446 0.909 0.650 0.685 0.666 1.284 1.653 1.247 1.669 1.236 1.099
192 1.004 1.189 1.268 0.909 0.639 0.621 0.596 1.151 1.545 1.356 1.554 1.269 1.159
336 1.198 1.584 1.269 0.898 0.717 0.521 0.481 1.205 1.556 1.174 1.128 1.314 1.032

MAE
96 0.893 1.074 0.977 0.755 0.604 0.644 0.609 0.913 1.074 0.894 1.057 0.901 0.861
192 0.807 0.870 0.893 0.747 0.601 0.607 0.570 0.867 1.023 0.948 1.041 0.915 0.891
336 0.864 1.016 0.898 0.736 0.640 0.552 0.502 0.881 1.011 0.842 0.869 0.947 0.816

PEMS08

1-year
MSE

96 5.411 1.514 1.771 1.153 - 1.636 1.556 1.926 2.531 3.119 2.185 2.158 1.921
192 12.620 1.499 1.762 1.202 - 1.401 1.408 1.887 2.560 2.405 2.223 2.144 2.248
336 9.614 1.654 1.961 1.184 - 1.870 1.093 1.962 2.482 2.086 2.228 2.036 1.994

MAE
96 1.319 0.950 1.058 0.843 - 1.384 0.979 1.104 1.325 1.404 1.280 1.220 1.148
192 1.370 0.900 1.059 0.845 - 0.877 0.918 1.106 1.337 1.276 1.311 1.213 1.260
336 1.378 0.984 1.131 0.849 - 1.078 0.761 1.133 1.317 1.181 1.312 1.185 1.179

1.5-year
MSE

96 4.453 2.286 1.978 1.428 - 1.389 1.034 1.362 1.772 2.370 1.309 1.166 1.664
192 9.413 1.713 1.606 1.314 - 1.179 1.039 1.666 1.522 1.730 1.074 1.144 1.518
336 10.457 1.890 1.736 1.320 - 1.197 0.868 1.272 1.495 1.444 1.533 1.078 1.049

MAE
96 1.061 1.196 1.072 0.901 - 0.871 0.758 0.867 1.084 1.192 0.896 0.808 1.055
192 1.046 0.971 0.928 0.833 - 0.768 0.755 1.001 0.979 1.043 0.805 0.810 1.012
336 1.063 1.488 0.985 0.836 - 0.782 0.680 0.853 0.966 0.948 0.999 0.784 0.801

2-year
MSE

96 5.117 2.400 1.969 1.474 - 1.494 1.030 1.393 1.336 1.962 1.789 1.393 1.071
192 12.769 1.974 1.670 1.505 - 1.292 1.044 1.229 1.218 1.292 1.007 1.229 1.171
336 13.382 1.936 1.628 1.464 - 1.253 0.904 1.246 1.181 1.227 1.181 1.246 1.003

MAE
96 0.953 1.232 1.069 0.895 - 0.885 0.740 0.856 0.868 1.069 1.017 0.856 0.792
192 0.933 1.070 0.942 0.883 - 0.795 0.741 0.813 0.819 0.795 0.761 0.813 0.826
336 0.946 1.056 0.926 0.874 - 0.772 0.685 0.814 0.806 0.842 0.813 0.814 0.768

tfNSW

1-year
MSE

96 1.480 1.236 1.166 1.320 1.354 1.377 1.219 0.946 1.176 1.404 1.451 1.283 1.070
192 1.543 1.088 1.184 1.599 1.229 1.312 1.262 1.026 1.495 1.547 1.580 1.267 1.019
336 1.459 1.099 1.196 1.477 1.242 1.219 1.366 0.949 1.517 1.617 1.534 1.048 0.822

MAE
96 0.845 0.822 0.748 0.879 0.777 0.895 0.778 0.778 0.776 0.874 0.871 0.824 0.756
192 0.867 0.733 0.758 0.961 0.757 0.890 0.799 0.821 0.880 0.889 0.904 0.828 0.753
336 0.847 0.739 0.763 0.934 0.776 0.838 0.833 0.774 0.901 0.910 0.892 0.786 0.710

1.5-year
MSE

96 1.745 1.355 1.372 1.658 1.615 1.440 1.204 1.025 1.220 1.286 1.598 1.249 1.153
192 1.784 1.260 1.367 1.666 1.484 1.452 1.251 1.058 1.624 1.615 1.620 1.228 1.095
336 1.628 1.284 1.385 1.515 1.500 1.346 1.203 0.995 1.621 1.621 1.220 1.163 1.049

MAE
96 0.944 0.877 0.846 1.016 0.879 0.919 0.778 0.807 0.785 0.813 0.940 0.809 0.790
192 0.968 0.818 0.846 0.997 0.854 0.932 0.789 0.823 0.934 0.902 0.950 0.808 0.792
336 0.939 0.835 0.854 0.945 0.883 0.871 0.770 0.788 0.945 0.900 0.814 0.811 0.775

2-year
MSE

96 1.364 1.019 1.008 1.319 1.101 1.318 1.033 0.848 1.201 1.331 1.414 1.124 0.969
192 1.195 0.884 1.024 1.319 1.054 1.222 1.094 0.909 1.287 1.061 1.109 1.058 0.941
336 1.588 0.907 1.166 1.233 0.787 1.056 0.959 0.865 1.260 0.996 1.011 0.960 0.917

MAE
96 0.857 0.782 0.742 0.907 0.713 0.879 0.745 0.727 0.785 0.823 0.862 0.749 0.702
192 0.783 0.701 0.749 0.891 0.721 0.855 0.737 0.757 0.831 0.726 0.755 0.722 0.737
336 0.903 0.730 0.748 0.849 0.639 0.766 0.691 0.714 0.810 0.693 0.695 0.749 0.715

are no longer effective. Notably, MICN, which performs the worst under conventional data and
settings, shows the best performance in our setting. This is understandable because Autoformer’s
core technology focuses on exploring the correlation within the data itself. This insight suggests that
future efforts to tackle this problem should place greater emphasis on leveraging the intrinsic potential
of the data. Additionally, we have compiled the training time for one epoch of all the baselines on the
largest dataset, PEMS04_gap, and the smallest dataset, tfNSW, as shown in Table 7.

Considering that our dataset provides an extensive temporal range for training, we can theoretically
extend the input step length considerably. We extended the 96 steps input from Table 3 to a maximum
of 1440 steps for testing. As shown in Table 4, the performance improves significantly with the
increase in input step length, further demonstrating the substantial potential of our dataset for deep
exploration.
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Table 4: Results of ablation study with 4 different input step lengths

DLinear (Input Length) 96 192 336 720
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03_gap 1-year gap
96 1.500 0.933 1.455 0.912 1.462 0.906 1.392 0.887
192 1.542 0.945 1.147 0.910 1.457 0.906 1.445 0.906
336 1.531 0.935 1.447 0.907 1.462 0.906 1.439 0.904

5.5 RESULTS OF HOURLY AND DAILY FORECASTING

We believe that both the hourly and daily datasets are equally significant. Multi-scale, diverse
datasets can provide the community with valuable references. We observe that the performance
degrades progressively from the hourly to the daily to the gap datasets. Smaller time scales help
reduce complexity and uncertainty, thereby improving prediction accuracy. Research has shown that
clustering at different scales can enhance model performance Wang et al. (2024). Therefore, our
aggregated version of the data will contribute new external features to the community.

Table 5: Comparison in hourly and daily datasets

Methods Mamba iTransformer DLinear Autoformer
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03_agg

Hourly
96 0.144 0.222 0.530 0.535 0.159 0.222 0.241 0.346
192 0.173 0.237 0.215 0.289 0.153 0.208 0.235 0.340
336 0.158 0.220 0.519 0.527 0.167 0.216 0.260 0.362

Daily
96 0.754 0.503 0.606 0.419 0.602 0.426 0.771 0.537
192 0.968 0.604 0.781 0.500 0.794 0.509 0.897 0.577
336 1.210 0.706 0.967 0.579 0.984 0.584 1.058 0.630

PEMS04_agg

Hourly
96 0.137 0.244 0.240 0.339 0.161 0.245 0.178 0.295
192 0.132 0.239 0.260 0.361 0.142 0.223 0.175 0.288
336 0.121 0.216 0.226 0.413 0.145 0.226 0.197 0.316

Daily
96 0.672 0.499 0.534 0.442 0.507 0.415 0.644 0.506
192 0.720 0.549 0.634 0.508 0.610 0.483 0.749 0.580
336 0.795 0.602 0.706 0.555 0.663 0.522 0.728 0.569

PEMS07_agg

Hourly
96 0.212 0.302 0.375 0.425 0.203 0.259 0.307 0.390
192 0.201 0.288 0.297 0.368 0.182 0.231 0.313 0.391
336 0.191 0.245 0.126 0.156 0.190 0.241 0.291 0.364

Daily
96 1.719 0.736 1.426 0.613 1.414 0.606 1.703 0.762
192 2.005 0.842 1.772 0.730 1.756 0.720 1.903 0.804
336 2.290 0.949 2.078 0.819 2.051 0.813 2.171 0.884

PEMS08_agg

Hourly
96 0.245 0.287 0.363 0.379 0.253 0.272 0.305 0.377
192 0.269 0.292 0.341 0.354 0.254 0.259 0.340 0.401
336 0.283 0.298 0.369 0.369 0.281 0.272 0.452 0.468

Daily
96 0.870 0.558 0.766 0.486 0.746 0.478 0.913 0.604
192 1.023 0.635 0.911 0.554 0.906 0.548 1.026 0.648
336 1.161 0.697 1.024 0.617 1.022 0.602 1.127 0.689

6 PROSPECTS AND CONSTRAINTS

Prospects. Our dataset spans the longest time period among existing datasets, and it is not only the
largest spatially, but also evolving in growth. It can continue to update in line with the updates from
the PeMS system in the future. It is specifically designed for various complex scenarios, such as
those already mentioned, including extremely long forecasting with long gaps, and hourly and daily
predictions. Additionally, zero-shot forecasting designed for evolving growth scenarios will also be
included in Appendix.

Constraints. The limitations of our dataset are also quite evident. Due to the sheer size of our dataset,
it requires more computational resources. However, with the maturation of large language models
and foundational models, we believe its large volume will become an advantage, contributing more
diverse data to the spatio-temporal large model community.
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A APPENDIX

A.1 DATASET

To support our setting of extremely long forecasting with gaps, we selected a subset installed in the
early stages and have consistently collected new data up to the present, which is shown as follows:

Table 6: Overview of Gap, Hourly, and Daily Aggregated Data Based on Processed Raw Data

Datasets(Gap/Hour/Day) Time Period Nodes
PEMS03_gap&agg 03/2001 - 03/2024 151
PEMS04_gap&agg 06/2002 - 03/2024 822
PEMS05_gap&agg 03/2012 - 03/2024 103
PEMS06_gap&agg 12/2009 - 03/2024 130
PEMS07_gap&agg 06/2002 - 03/2024 3062
PEMS08_gap&agg 03/2001 - 03/2024 212
PEMS10_gap&agg 06/2007 - 03/2024 107
PEMS11_gap&agg 09/2002 - 03/2024 521
PEMS12_gap&agg 01/2002 - 03/2024 1543

tfNSW 01/2013 - 05/2024 27

A.2 RESULTS

Table 7: Model Training Time Comparison. The training time for all baselines per epoch is measured
in seconds.

Baselines Mamba iTransformer DLinear Autoformer Informer FEDFormer MICN PatchTST STGCN ASTGCN GWN AGCRN PDFormer

PEMS04_gap1 396.3 1310.2 237.9 1656.7 652.5 900.9 409.8 3649.4 2425.9 7921.9 4110.4 13369.1 8013.9
tfNSW_gap1 13.7 44.1 7.4 148.2 73.3 380.1 101.2 55.3 37.3 228.8 50.4 658.6 47.9

Here we provided the results of District 5,6,10,11,12, as shown in Table 8 and Table 9:

Additionally, we provided the results of naive zero-shot forecasting, as shown in Table 10. The poor
performance of this method indicates significant potential for improvement.
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Table 8: Comparison in hourly and daily datasets in District 05,06,10,11,12. The symbol − indicates
that the result is an outlier.

Methods Mamba iTransformer DLinear Autoformer
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

PEMS05_agg

Hourly
96 0.121 0.205 0.226 0.324 0.148 0.236 0.155 0.272
192 0.118 0.197 0.214 0.312 0.132 0.216 0.159 0.268
336 0.115 0.194 0.220 0.318 0.134 0.217 0.167 0.274

Daily
96 0.655 0.511 0.654 0.510 0.607 0.477 0.650 0.522
192 0.798 0.598 0.775 0.576 0.698 0.535 0.643 0.512
336 0.907 0.614 0.787 0.582 0.745 0.556 0.764 0.578

PEMS06_agg

Hourly
96 0.142 0.234 0.269 0.336 0.188 0.254 0.164 0.271
192 0.138 0.218 0.256 0.326 0.166 0.227 0.188 0.291
336 0.137 0.207 0.226 0.413 0.171 0.227 0.197 0.316

Daily
96 0.516 0.419 0.414 0.389 0.405 0.340 0.518 0.437
192 0.642 0.485 0.543 0.468 0.510 0.395 0.580 0.460
336 0.734 0.519 0.675 0.492 0.596 0.437 0.658 0.481

PEMS10_agg

Hourly
96 0.213 0.256 0.391 0.413 0.272 0.309 0.260 0.346
192 0.205 0.250 0.387 0.412 0.246 0.277 0.380 0.417
336 0.211 0.255 0.394 0.413 0.258 0.281 0.329 0.386

Daily
96 1.161 0.671 0.926 0.513 0.951 0.567 1.079 0.647
192 1.459 0.784 1.414 0.730 1.228 0.681 1.429 0.786
336 1.715 0.855 1.478 0.768 1.451 0.751 1.552 0.817

PEMS11_agg

Hourly
96 - 0.472 - 0.538 - 0.306 - 0.800
192 - 0.470 - 0.443 - 0.291 - 0.742
336 - 0.487 - 0.435 - 0.300 - 0.745

Daily
96 - - - - - - - -
192 - - - - - - - -
336 - - - - - - - -

PEMS12_agg

Hourly
96 0.145 0.237 0.083 0.157 0.174 0.242 0.188 0.287
192 0.142 0.226 0.091 0.159 0.154 0.216 0.196 0.289
336 0.146 0.217 0.104 0.170 0.162 0.219 0.209 0.298

Daily
96 1.373 0.621 1.456 0.622 1.052 0.510 1.348 0.649
192 1.722 0.726 1.675 0.678 1.403 0.611 1.548 0.686
336 2.066 0.823 1.984 0.641 1.654 0.675 1.801 0.746
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Table 9: Comparison in gap dataset in District 05,06,07,10,11,12. The bold text indicates the best.

Methods Mamba iTransformer DLinear Autoformer
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

PEMS05_gap

1-year gap
96 2.079 1.209 1.945 1.164 1.291 0.916 1.065 0.796

192 2.132 1.256 1.984 1.185 1.750 1.099 1.063 0.809
336 2.377 1.340 2.067 1.234 1.894 1.144 1.135 0.827

1.5-year gap
96 1.852 1.122 1.879 1.078 1.683 1.054 1.060 0.785

192 1.929 1.182 1.593 1.032 1.633 1.045 0.912 0.712
336 2.370 1.313 2.214 1.071 0.794 1.184 1.345 0.882

2-year gap
96 1.868 1.106 1.580 0.969 1.602 1.018 0.828 0.672

192 2.219 1.274 1.481 0.958 1.589 1.027 1.018 0.772
336 2.695 1.212 2.207 1.201 1.922 1.139 1.186 0.839

PEMS06_gap

1-year gap
96 1.806 1.066 0.875 0.692 1.173 0.837 1.216 0.859

192 1.928 1.112 1.227 0.848 1.410 0.942 0.961 0.751
336 2.181 1.212 1.594 1.003 1.501 0.976 0.992 0.769

1.5-year gap
96 1.549 0.997 1.331 0.891 1.484 0.963 0.885 0.710

192 1.746 1.054 1.077 0.778 1.353 0.920 1.010 0.768
336 1.605 1.018 1.500 0.961 1.587 1.011 0.955 0.739

2-year gap
96 1.226 0.851 1.864 1.106 1.691 1.033 1.013 0.768

192 0.949 0.720 1.343 0.879 1.259 0.858 0.853 0.691
336 0.945 0.710 1.550 0.970 1.415 0.934 0.955 0.739

PEMS07_gap

1-year gap
96 1.719 1.006 1.756 1.024 1.680 1.024 1.215 0.867

192 1.637 0.996 1.816 1.061 1.776 1.043 1.202 0.852
336 1.637 0.991 1.784 1.028 1.774 1.034 1.098 0.774

1.5-year gap
96 1.571 0.972 1.705 1.016 1.585 0.987 1.184 0.844

192 1.578 0.982 1.657 1.004 1.624 0.996 1.088 0.800
336 1.818 1.127 1.712 1.028 1.668 1.036 0.991 0.729

2-year gap
96 5.411 1.319 2.055 1.149 1.746 1.048 1.099 0.802

192 12.620 1.370 2.006 1.128 1.705 1.002 1.284 0.875
336 9.614 1.378 1.812 1.057 1.605 0.968 0.972 0.734

PEMS10_gap

1-year gap
96 2.310 1.233 0.882 0.698 1.466 0.963 1.208 0.865

192 2.878 1.396 1.606 0.993 1.834 1.106 1.152 0.860
336 2.584 1.327 1.413 0.825 1.887 1.121 1.130 0.830

1.5-year gap
96 2.181 1.206 1.812 1.052 1.765 1.057 1.368 0.913

192 2.525 1.318 1.645 0.986 1.791 1.069 1.151 0.828
336 2.488 1.310 2.051 1.134 1.976 1.139 1.111 0.809

2-year gap
96 1.165 0.822 2.772 1.383 1.977 1.119 1.188 0.845

192 1.082 0.792 1.974 1.084 1.490 0.932 0.971 0.751
336 1.021 0.764 2.157 1.168 1.619 0.989 1.096 0.809

PEMS11_gap

1-year gap
96 5.199 0.891 5.417 0.997 5.276 0.936 4.930 0.854

192 5.300 0.920 5.504 1.029 5.393 0.974 5.114 0.867
336 5.251 0.901 5.410 0.985 5.364 0.955 4.830 0.849

1.5-year gap
96 5.871 0.968 6.045 1.296 5.914 1.224 5.691 0.878

192 5.968 1.012 6.121 1.314 5.993 1.229 5.792 0.884
336 6.167 1.074 6.214 1.326 6.025 1.299 5.947 0.967

2-year gap
96 5.914 0.996 6.136 1.318 5.945 1.243 5.761 0.978

192 6.541 1.043 6.213 1.327 6.014 1.289 6.245 1.001
336 6.541 1.086 6.221 1.332 6.024 1.300 6.268 1.024

PEMS12_gap

1-year gap
96 1.751 1.025 1.624 1.002 1.611 1.005 1.060 0.789

192 1.726 1.024 1.424 0.929 1.537 0.972 1.150 0.840
336 1.751 1.029 1.672 1.015 1.683 1.017 0.889 0.719

1.5-year gap
96 1.554 0.967 1.479 0.921 1.468 0.910 0.954 0.875

192 1.401 0.898 1.314 0.867 1.301 0.862 0.943 0.869
336 1.417 0.906 1.322 0.869 1.298 0.859 0.921 0.846

2-year gap
96 0.956 0.704 0.876 0.671 0.872 0.664 0.846 0.659

192 0.846 0.656 0.813 0.653 0.806 0.649 0.785 0.628
336 0.814 0.628 0.789 0.631 0.776 0.624 0.754 0.617
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Table 10: Results of zero shot forecasting in PEMS03. In this study, we utilized the inputs from 151
existing nodes in PEMS03 to predict 52 new nodes, resulting in a test set comprising a total of 203
nodes.

Datasets 96 192 336
Metrics MSE MAE MSE MAE MSE MAE

PEMS03_gap
1-year gap 4.658 3.465 4.945 3.648 5.198 3.892

1.5-year gap 4.891 3.657 5.124 3.842 5.263 3.996
2-year gap 4.547 3.410 4.895 3.539 5.103 3.758
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