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Abstract

Short Video Hate Detection (SVHD) is increasingly vital as hate-

ful content — such as racial and gender-based discrimination —

spreads rapidly across platforms like TikTok, YouTube Shorts, and

Instagram Reels. Existing approaches face significant challenges:

hate expressions continuously evolve, hateful signals are dispersed

across multiple modalities (audio, text, and vision), and the con-

tribution of each modality varies across different hate content. To

address these issues, we introduce MoRE (Mixture of Retrieval-

augmented multimodal Experts), a novel framework designed to

enhance SVHD. MoRE employs specialized multimodal experts for

each modality, leveraging their unique strengths to identify hateful

content effectively. To ensure model’s adaptability to rapidly evolv-

ing hate content, MoRE leverages contextual knowledge extracted

from relevant instances retrieved by a powerful joint multimodal

video retriever for each target short video. Moreover, a dynamic

sample-sensitive integration network adaptively adjusts the im-

portance of each modality on a per-sample basis, optimizing the

detection process by prioritizing the most informative modalities

for each instance. Our MoRE adopts an end-to-end training strat-

egy that jointly optimizes both expert networks and the overall

framework, resulting in nearly a twofold improvement in training

efficiency, which in turn enhances its applicability to real-world sce-

narios. Extensive experiments on three benchmarks demonstrate

that MoRE surpasses state-of-the-art baselines, achieving an aver-

age improvement of 6.91% in macro-F1 score across all datasets.

Keywords

Short video hate detection, retrieval augmentation, mixture of mul-

timodal experts.

1 Introduction

Media consumption trends have increasingly shifted toward short

videos, particularly on platforms like TikTok, YouTube Shorts, and

Instagram Reels [31, 65, 71]. As a dynamic and immersive communi-

cationmedium, short video can significantly boost user engagement

and capture a larger share of daily screen time [2, 4, 7, 31]. These

videos seamlessly integrate diverse media modalities – such as

audio, text, and vision – to convey information, exerting more sub-

stantial effects on mental health and social cohesion than content

confined to a single modality.

However, this multimodal integration also enables the subtle

and covert dissemination of hateful content
1
, embedding harmful

messages across various media forms. Hateful content in short

videos often targets attributes like race, gender, or religion [11,

24, 44, 57, 67, 69] and can manifest through multiple modalities.

Moreover, the prevalence of hateful content varies across modalities,

with each contributing uniquely to its overall impact. The continual

1
Disclaimer: This paper contains discussions of violence and discriminatory content
that may be disturbing to some readers.
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Fig. 1: Illustration of motivation. (a): As new social events

emerge, the expressions of hateful content undergo constant

evolution. (b): Multimodal distribution of hateful content in

the MHClip-B dataset [63]. The blue donut chart illustrates

the distribution of hateful content across differentmodalities

– audio, text, and vision. The red donut chart depicts the

proportions of short videos that contain hateful content in

one, two, or all three modalities.

evolution of hateful content – driven by shifting social issues and

advancements in tools for AI generated content (e.g., OpenAI’s Sora

[76]) – underscores the pressing need for highly effective methods

to tackle the task of Short Video Hate Detection (SVHD).

Hateful content detection has been extensively studied in lit-

erature [1, 8–10, 14, 32, 40, 45, 48]. The majority of these works

focus on text-based analyses [1, 14, 32, 48] within microblogging

platforms such as Twitter and Facebook. With the increasing inte-

gration of images in social media posts and the advancements in

image processing technologies, researchers have expanded their

efforts to identify hateful elements in text-image posts and memes

[8–10, 40, 45], utilizing pre-trained models and incorporating task-

specific classification layers. However, despite the rapid rise in the

popularity of short videos, research on hate detection in short videos

remains very limited [13, 63]. Short videos encompass multiple

modalities, which can subtly and covertly facilitate the dissemina-

tion of hateful content. In addition, the prevalence of hateful content

varies across these modalities in short videos, which necessitates a

dynamic and adaptable detection framework that can effectively

identify hateful content across diverse modalities. Moreover, as

hateful content is subject to continuous evolution, developing an

effective and robust framework for SVHD entails addressing several

significant challenges, which are summarized as follows:

Challenge 1: Adapting to the Evolution of Hateful Content.

Hateful content continuously evolves in response to societal shifts,

becoming more subtle and increasingly difficult to detect. Fig. 1(a) il-

lustrates an evolution example through three short videos. Initially,

1
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hate expressions employed imagery related to the 9/11 attacks to

overtly criticize terrorism in the USA. Subsequently, during the

COVID-19 pandemic, more nuanced and veiled content emerged,

satirizing the response of American society. More recently, a com-

bination of video game imagery and photos from the US Capitol

attack has been utilized to critique American politics. This progres-

sion underscores the adaptive nature of hateful content over time.

Consequently, it is imperative to develop detection frameworks

that remain current and can generalize across increasingly evolving

forms of hate in short videos.

Challenge 2:HarnessingMultipleModalities forHateful Con-

tent Analysis. Short videos encompass multimodal information

such as audio, text, and visual content. Effectively utilizing data

from different modalities for hate detection poses a significant chal-

lenge. The left side of Fig. 1(b) shows the modality-wise distribution

of hateful content in the MHClip-B [63] dataset, highlighting that

each modality contributes essential information for detecting hate-

ful content, which can manifest in various forms. For instance, hate

speech may be embedded in textual overlays, discriminatory lyrics

may be presented in background music, and offensive gestures may

appear in visual streams. Therefore, it is critical to develop a mul-

timodal framework that can effectively integrate all modalities to

detect various types of hateful content in short videos.

Challenge 3: Managing Modality-Specific Influences in Hate

Detection. Not all modalities in short videos contribute equally to

hate detection; each modality plays a distinct role. As shown in the

right of Fig. 1(b), 75.3% short videos in theMHClip-B dataset contain

hateful content presented in only one or two modalities. This dis-

tribution suggests that indiscriminately integrating all modalities

could be counterproductive. The detection model may overempha-

size noisy or redundant information, misleading the learning pro-

cess and degrading detection performance. Thus, focusing on the

most informative modalities and content is crucial for accurate de-

tection. A more adaptive and selective multimodal fusion approach

is needed to dynamically adjust each modality’s contribution at the

sample level, ensuring more precise hate detection.

To address these challenges, we propose a novel Mixture of

Retrieval-augmented multimodal Experts (MoRE) framework. It

introduces contextual knowledge-augmented multimodal experts

designed to well adapt the dynamic and evolving hateful content

and effectively harnesses data dispersed across multiple modalities

in short videos for detection (i.e., Challenges 1 & 2). First, a basic

expert is developed to focus on individual modalities, including

audio, text, and vision. To adapt to the evolving nature of hate-

ful content – mimicking human learning processes [27, 28] – our

model retrieves relevant information to deepen its understanding

on specific topics. The basic expert is subsequently augmented

with contextual knowledge retrieved via a powerful joint multi-

modal video retriever, which integrates audio, textual, and visual

modalities for fine-grained video-to-video retrieval. By leveraging

contextual knowledge from the retrieved videos, the experts re-

main aware of the evolving expressions of hate, thereby enhancing

their capability to generalize to emerging forms of hateful content.

These contextual knowledge-augmented multimodal experts not

only improves the adaptability of MoRE to new hate expressions

but also ensures more accurate and comprehensive detection of

hateful content across multiple modalities.

To address the varying significance of each modality in hate

detection for different short videos (Challenge 3), MoRE incorpo-

rates a novel sample-sensitive integration network. This network

includes a modality-mixture soft router which identifies the specific

contributions of each modality’s features to hate detection in each

video, prioritizing those with the most significant impact for each

video sample. Consequently, the network accurately determines the

contributions of different modalities at the sample level, enhancing

detection performance and providing interpretability regarding the

roles of various modalities in hate detection for each short video.

Additionally, instead of a traditional two-stage training pro-

cess [6, 70, 73], we introduce a unified and effective end-to-end

training paradigm. This paradigm jointly optimizes both the ex-

perts and the overall framework, providing a scalable and applicable

solution for SVHD. In summary, the key contributions of this work

are as follows:

• Contextual Knowledge-Augmented Multimodal Experts:

We design several multimodal experts to better adapt to the con-

tinuously evolving nature of hateful content in short videos and

harness the multiple modalities in hate detection. By retrieving

relevant instances through a powerful joint multimodal video

retriever, the experts acquire contextual knowledge that deepens

their understanding of specific topics, enabling them to keep

pace with the evolving expressions of hate in short videos.

• Sample-Sensitive Integration Network:We propose a novel

adaptive integration network that evaluates the varying contri-

butions of different modalities within individual video samples

to improve the performance of hate detection. This adaptive

integration network dynamically adjusts the influence of each

modality, prioritizing those with the most significant impact on

detecting hateful content, thereby ensuring more precise and

effective detection.

• Unified End-to-End Training Paradigm:We develop an effec-

tive end-to-end training paradigm that significantly enhances the

model’s scalability and applicability, making the model highly

suitable for deployment in large-scale SVHD applications.

Extensive experiments on three real-world short video datasets

demonstrate that MoRE outperforms state-of-the-art baselines. No-

tably, our model achieves an average improvement of 6.91% in

macro-F1 score across all three datasets. Furthermore, our model

surpasses three popular Large Vision-Language Models (LVLMs),

highlighting its effectiveness and efficiency for SVHD, even when

compared to large models trained on trillions of tokens and billions

of parameters. The source codes and data required to reproduce our

results are available at https://anonymous.4open.science/r/MoRE-

SVHD and will be made public.

2 Related Work

Early studies primarily focused on identifying hate speech within

text-basedmaterials. Traditionalmachine learning approaches, such

as Support Vector Machines and Naive Bayes classifiers [33, 66],

have been commonly used for detection. With the rise of deep

learning, more advanced methods have been developed for hate

speech detection [1, 48]. Subsequently, multimodal hate detection,

which analyzes both textual and visual information in posts and

memes, has made significant progress [8–10, 40, 46]. For example,

2
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Pro-Cap [8] leverages pre-trainedmodels and prompting techniques

to generate image captions that identify hateful content. Similarly,

RGCL [46] learns hate-aware vision and language representations

through a contrastive objective and retrieved examples. However,

despite their effectiveness, these approaches are not directly appli-

cable to hate detection in videos. Unlike text-image posts or memes,

videos consist of multiple frames and incorporate various modali-

ties, making it unclear which modality carries the hateful message,

thereby highly increasing detection complexity.

Research on video-based hate detection remains limited. Recent

advancements include the introduction of benchmark datasets such

as HateMM [13] and MHClip [63]. Although baseline detection

models were provided, they simply fused audio, text, and visual

features equally for prediction. This simple design undermines their

effectiveness in SVHD, as it overlooks the dynamic nature of hateful

content and the varying significance of each modality in detect-

ing hate across different short videos. In contrast, our proposed

MoRE first retrieves the most relevant instances to construct the

contextual knowledge-augmented multimodal experts that adapt

to the evolving nature of hateful content. Then, a sample-sensitive

integration network adaptively assigns weights to these experts

at the sample level, further enhancing the prediction accuracy of

MoRE in detecting hateful content in short videos.

Additional research related to the techniques used in MoRE,

including multimodal retrieval and the Mixture of Experts (MoE),

is reviewed in Appendix A.

3 Methodology

Problem Statement. Let S = {𝑆1, · · · , 𝑆𝑁 } denote the set of short
videos on video platforms, where 𝑁 is the number of short videos.

Each short video 𝑆𝑖 is characterized by its multimodal content,

including audio, textual, and visual content, expressed as 𝑆𝑖 =

{𝑠𝑎
𝑖
, 𝑠𝑡
𝑖
, 𝑠𝑣
𝑖
}. The objective of SVHD is to determine whether a given

short video 𝑆𝑖 is hateful or non-hateful by considering all its

modal contents 𝑠𝑎
𝑖
, 𝑠𝑡
𝑖
, and 𝑠𝑣

𝑖
.

Feature Extraction. The extracted features are summarized as

follows: the audio features x𝑎
𝑖
∈ R𝑙×𝑑𝑎 , the visual features x𝑣

𝑖
∈

R𝑚×𝑑𝑣
, and the textual features x𝑡

𝑖
∈ R𝑛×𝑑𝑡 , where 𝑙 is the number

of audio frames,𝑚 is the number of key frames sampled from the

video, and 𝑛 represents the number of word tokens. 𝑑𝑎 , 𝑑𝑡 , and 𝑑𝑣
are the feature dimensions for each modality. The detailed feature

extraction process is provided in Appendix B.

Fig. 2 provides an overview of our proposed MoRE framework

and illustrates the relationship among its core components. The fol-

lowing sections will delve into each component of MoRE, providing

detailed explanations of their roles and interactions.

3.1 Joint Multimodal Video Retriever

To provide relevant instances to make our framework better adapt

to the complex and evolving nature of hateful content, we design

a novel joint multimodal video retriever, which simultaneously

incorporates audio, textual, and visual features to perform video-to-

video retrieval, moving beyond the limitations of unimodal retrieval

methods that rely on a single modality. By jointly considering all

modalities, our strategy enables the retrieval of instances associ-

ated with the target video from multiple perspectives, leading to

significantly improved retrieval precision.

3.1.1 Memory Bank Construction. To store high-quality semantic

information as prior knowledge, we define the memory bank B,

which encodes audio, textual, and visual content using a collec-

tion of (audio, text, vision) triples. The memory bank B is typically

extensive and encompasses a wide array of concepts, yet only a

small subset is relevant to a given video. We focus on these most

pertinent instances for each short video.

3.1.2 Query Construction. To fully capture the unique characteris-

tics of each modality, we first encode the audio, textual, and visual

features independently. Specifically, for each short video 𝑆𝑖 , we first

extract its audio transcription using Whisper [53], a pre-trained

automatic speech recognition model. The transcription is then pro-

cessed by a pre-trained BERT [16] model to generate the audio

query vector r𝑎
𝑖

∈ R𝑑𝑎 . For textual retrieval, we use the BERT

model to extract semantic features from the concatenated title and

description of 𝑆𝑖 , resulting in the textual query vector r𝑡
𝑖
∈ R𝑑𝑡 .

Finally, for visual retrieval, we input the key frames of 𝑆𝑖 into a

pre-trained Vision Transformer (ViT) [19] and average the frame

representations to generate the visual query vector r𝑣
𝑖
∈ R𝑑𝑣 .

3.1.3 Weighted Similarity-based Multimodal Retrieval. To effec-

tively and comprehensively capture the relevance across audio,

textual, and visual modalities, we propose a weighted similarity-

based multimodal retrieval strategy. Specifically, given a short video

𝑆𝑖 , we compute a weighted similarity score that integrates the simi-

larities from audio, textual, and visual queries. The similarity score

between two videos 𝑆𝑖 and 𝑆 𝑗 is computed as:

Score = 𝑤𝑎 · sim(r𝑎𝑖 , r
𝑎
𝑗 ) +𝑤𝑣 · sim(r𝑣𝑖 , r

𝑣
𝑗 ) +𝑤𝑡 · sim(r𝑡𝑖 , r

𝑡
𝑗 ), (1)

where𝑤𝑎 ,𝑤𝑣 , and𝑤𝑡 are the weights assigned to the similarity of

each modality; r𝑎
𝑖
, r𝑣
𝑖
, and r𝑡

𝑖
represent the audio, visual, and textual

query vectors for video 𝑆𝑖 , respectively. The similarity function

sim(x1, x2) is defined as:

sim(x1, x2) =
x⊤

1
x2

∥x1∥ · ∥x2∥
. (2)

After calculating the similarity scores between 𝑆𝑖 and each

short video stored in B, the top-𝐾 most similar hateful videos

𝑆𝑟
𝑖

= {𝑆𝑟 𝑗
𝑖
}𝐾
𝑗=1

and the top-𝐿 most similar non-hateful videos

𝑆𝑟
𝑖

= {𝑆𝑟 𝑗
𝑖
}𝐿
𝑗=1

are selected as retrieval results. These retrieved

instances provide contextual knowledge, empowering modality

experts to more effectively address the evolving nature of hateful

content in short videos, which will be discussed in the next section.

3.2 Contextual Knowledge-Augmented

Multimodal Experts

In the context of MoE, the experts represent neural networks de-

signed to tackle particular types of tasks or data patterns. To begin

with, we propose the multimodal experts networks, where each ex-

pert network is assigned to process a specific modality. Specifically,

following the previous works [6, 70, 75], we simply define three

modality experts, where each expert network adopts a feed-forward

network (FFN) structure to capture modality-specific features,

E𝑚𝑖 = FFN(x𝑚𝑖 ), (3)

FFN(x) = (ReLU(xW1 + 𝑏1))W2 + 𝑏2, (4)

3
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Fig. 2: Overall framework of MoRE. (1): The joint multimodal video retriever identifies similar instances by considering all the

modalities. (2): The contextual knowledge-augmented multimodal experts are designed to utilize retrieved information from

(1) to adapt to evolving hate expressions, while leveraging all the modalities for accurate detection. (3): The sample-sensitive

integration network provides a flexible mixture to allocate weights to each expert in (2). "H": Hateful, "N": Non-hateful.

where𝑚 ∈ {𝑎, 𝑡, 𝑣} denotes the type of modality, E𝑚
𝑖

∈ R𝑠×𝑑 is the

representation of the modality expert for the short video 𝑆𝑖 , 𝑠 is the

sequence length, and 𝑑 is the feature dimension.

A significant limitation of the vanilla experts in prior works

lies in their inability to adapt to the evolving nature of hateful con-

tent. To address this, we propose the Bipolar Hateful Attention Net-

work (BHAN), which equips contextual knowledge from relevant

videos to the vanilla experts to make them “up-to-date”. Inspired

by contrastive learning, BHAN utilizes hateful and non-hateful in-

stances retrieved from the memory bank B, equipping experts with

contextual knowledge from both types of content. By leveraging

these contrasting examples, BHAN empowers the experts to stay

responsive to the ongoing shifts in hateful behavior and to capture

the subtle distinctions between hateful and non-hateful content.

Specifically, for each modality expert, we first feed the retrieved

hateful modality features x𝑚,𝑟
𝑖

= {x𝑚,𝑟 𝑗
𝑖

}𝐾
𝑗=1

and non-hateful modal-

ity features x̄𝑚,𝑟
𝑖

= {x̄𝑚,𝑟 𝑗
𝑖

}𝐿
𝑗=1

into the FFN to obtain the embed-

dings E𝑚,𝑟
𝑖

and Ē𝑚,𝑟
𝑖

, where 𝑚 ∈ {𝑎, 𝑡, 𝑣}. To equip the modality

expert representation E𝑚
𝑖

with bipolar contextual knowledge, we

introduce two attention mechanisms: AttHat for hateful and AttNon

for non-hateful attention. This process can be formalized as:

Ẽ𝑚,𝑐
𝑖

= AttHat (E𝑚𝑖 , E
𝑚,𝑟
𝑖

, E𝑚,𝑟
𝑖

) + AttNon (E𝑚𝑖 , Ē
𝑚,𝑟
𝑖

, Ē𝑚,𝑟
𝑖

) + E𝑚𝑖 , (5)

with the attention mechanisms AttHat and AttNon defined as:

AttHat (Q,K,V) = 𝛼 · Softmax

(
QK𝑇
√
𝑑

)
V, (6)

AttNon (Q,K,V) = (1 − 𝛼) · Softmax

(
QK𝑇
√
𝑑

)
V, (7)

where 𝛼 denotes the balance between the hateful and non-hateful

attention contributions. We then apply an attentive pooling strat-

egy [60] to Ẽ𝑚,𝑐
𝑖

∈ R𝑠×𝑑 across the sequence dimension to obtain

the representation of the contextual knowledge-augmented multi-

modal experts E𝑚,𝑐
𝑖

∈ R𝑑 for the short video 𝑆𝑖 .

3.3 Sample-Sensitive Integration Network

The considerable variability in modality characteristics across dif-

ferent short videos, along with the fact that the importance of each

modality varies significantly for detecting hateful content in dif-

ferent videos, jointly pose a major challenge for traditional modal

fusion techniques in SVHD. These methods typically apply equal

weighting to all modalities, disregarding the variation in modal

contributions across different samples during prediction. To ad-

dress this, we propose a sample-sensitive integration network that

adaptively assigns weights to each modality expert based on the

unique characteristics of input video samples, prioritizing the most

influential modalities for detecting hateful content in each video.

Specifically, we first employ a non-parametric strategy by apply-

ing average pooling to the original representations of each modality,

resulting in comprehensive representations for the three modali-

ties: x̃𝑎
𝑖
∈ R𝑑𝑎 , x̃𝑡

𝑖
∈ R𝑑𝑡 , and x̃𝑣

𝑖
∈ R𝑑𝑣 . Subsequently, we align the

modal dimensions to a uniform size and design a Modality-mixture

Soft Router (MSR) — i.e., a two-layer MLP — to generate dynamic

weights for the fusion of the multimodal experts E𝑎,𝑐
𝑖

, E𝑡,𝑐
𝑖
, and E𝑣,𝑐

𝑖
at the sample-level. This process yields the final representation for

the short video 𝑆𝑖 , which can be expressed as:

˜W𝑖 = [�̃�𝑎𝑖 , �̃�
𝑡
𝑖 , �̃�

𝑣
𝑖 ] = MSR( [Ψ𝑎 (x̃𝑎𝑖 ),Ψ𝑡 (x̃

𝑡
𝑖 ),Ψ𝑣 (x̃

𝑣
𝑖 )]), (8)

𝑤𝑚𝑖 = Softmax(�̃�𝑚𝑖 ) = 𝑒�̃�
𝑚
𝑖∑

𝑗∈{𝑎,𝑡,𝑣} 𝑒
�̃�

𝑗

𝑖

, (9)

E𝑖 =
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝑤𝑚𝑖 · E𝑚,𝑐

𝑖
, (10)

where [,] is the concatenation operation, Ψ𝑎 (·), Ψ𝑡 (·) and Ψ𝑣 (·)
denote the linear mapping functions, 𝑤𝑚

𝑖
represents the weight
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assigned to each modality expert for short video 𝑆𝑖 , and E𝑖 ∈ R𝑑 is

the final representation for prediction. E𝑖 is then fed into a predictor
(i.e., a two-layer MLP with an activation function) to generate the

classification result for short video 𝑆𝑖 : 𝑦𝑖 = Predictor(E𝑖 ).

3.4 End-to-End Training

Previous MoE-based approaches [6, 70, 73] commonly employ a

two-stage training paradigm. Each expert network is trained inde-

pendently in the first stage, and in the second stage, these experts

are integrated with a router network for joint optimization. While

this approach allows for comprehensive expert training, it intro-

duces considerable computational overhead by separate optimiza-

tion phases, limiting its efficiency in real-world applications.

In contrast, we propose amore efficient and practically applicable

end-to-end training paradigm, where the expert networks and

the overall framework are optimized jointly, leading to greater

computational efficiency. Specifically, we define the classification

outputs from each modality expert as 𝑦𝑎
𝑖
, 𝑦𝑡
𝑖
, and 𝑦𝑣

𝑖
. The joint

training process is formulated as:

𝐿joi = min{1 − 𝑓epo, 1 − 𝛿} · 𝐿exp + max{𝑓epo, 𝛿} · 𝐿ovl, (11)

𝐿exp =
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝐿BCE (𝑦𝑚𝑖 , 𝑦𝑖 ), (12)

𝐿
ovl

= 𝐿BCE (𝑦𝑖 , 𝑦𝑖 ), (13)

where 𝐿exp represents the training loss for the expert networks and

𝐿
ovl

denotes the loss for overall framework. 𝛿 represents a small pos-

itive constant (non-zero), used to ensure stability during training.

𝐿BCE is the binary cross-entropy loss. The smoothly varying weight

function 𝑓epo = (epoch
current

/epoch
total

)2
modulates the focus of

the loss during training, placing greater emphasis on modality ex-

pert training during the early stages and gradually shifting toward

optimizing the entire network in the later stages. The details of

the computational complexity analysis, the training strategy and

algorithm, as well as the mathematical proof of the effectiveness of

MoRE are provided in Appendix C-F.

4 Experiments

In this section, we conduct extensive experiments to verify the

efficacy of MoRE. Initially, we provide an overview of the datasets,

the baselines, and the metrics used, with details regarding datasets,

baselines, and implementation available in Appendix G. Additional

experiments are presented in Appendix H.

Datasets. To evaluate the efficacy of the proposedMoRE, we con-

duct comprehensive experiments on three real-world short video

datasets, including HateMM [13], MultiHateClip-Youtube (MHClip-

Y) and MultiHateClip-Bilibili (MHClip-B) [63]. Detailed dataset

statistics are presented in Table 1, with splits aligned with the orig-

inal paper. A, T, and V denote the dimension of audio, textual, and

visual features, respectively.

Baselines. We compare MoRE with 13 competitive baselines,

which can be categorized into three distinct groups: (1) Unimodal
hate detectionmethods, which utilize a singlemodality for hate detec-

tion, including BERT [16], ViViT [3], MFCC [15], and SharedCon [1].

(2) Multimodal hate detection methods, which incorporate all avail-

able modalities within the short video to enhance the prediction ac-

curacy, including Pro-Cap [8], HTMM [13], RGCL [46], MHCL [63],

Mod-HATE [10] and ExplainHM [40]. (3) Large Vision-Language
Model (LVLM)-based methods, which leverage task-agnostic multi-

modal pre-training and demonstrate superior performance in visual

question answering and video captioning, including the recently

released MiniCPM-V [72], LLaVA-OV [36], and Qwen2-VL [64].

Metrics. Following prior works [13, 63], we adopt four metrics

in SVHD to comprehensively evaluate the model’s performance:

classification Accuracy (ACC), Macro-F1 score (M-F1), Macro Pre-

cision (M-P) and Macro Recall (M-R).

Table 1: Statistics of three short video datasets.

Dataset # Total # Train # Val # Test A T V

HateMM 1,083 757 109 217 128 768 768

MHClip-Y 1,000 700 100 200 128 768 768

MHClip-B 1,000 699 101 200 128 768 768

4.1 Overall Performance

To verify the superiority of our MoRE, we compare it with 13

competitive baselines on three datasets and the results are reported

in Table 2. From these results, we have the following observations:

(O1):Multimodal hate detectionmethods generally outper-

form the unimodal methods. Unimodal methods only leverage

single modality for prediction, which is prone to missing essential

information and overlooking hateful content manifesting in other

modalities, leading to weak performance. Multimodal detection

methods leverage features from all the modalities to improve the

precision of prediction. Moreover, MoRE performs best among mul-

timodal methods, as these multimodal baselines typically overlook

the evolving nature of hateful content, which requires the model to

remain current. Furthermore, these methods often adopt a vanilla

fusion strategy that treats modalities equally in modal fusion, over-

looking the varying importance of each modality across different

instances in SVHD, which requires a more flexible fusion approach.

(O2): LVLM-based methods exhibit strong performance in

SVHD. LVLM-based methods have recently gained prominence due

to their impressive performance across a wide range of multimodal

tasks. These methods leverage the latest advanced LVLMs, whose

effectiveness largely stems from extensive pre-training on large-

scale vision-language corpora, enabling them to generalize well

across many multimodal downstream tasks. Despite their strong

capability in detecting hate in short videos, MoRE outperforms

these models due to the lack of task-specific adaptation in LVLMs

required for SVHD.

(O3): MoRE outperforms all strong baseline models across

three datasets. Notably, MoRE achieves average improvements of

5.27% in ACC and 6.91% in M-F1 across all three datasets. To further

validate MoRE’s superiority, we compute the statistical differences

between MoRE and the best-performing baseline by retraining both

models five times. The resulting 𝑝-values, all below 0.05, confirm

that MoRE’s improvement over the baseline is statistically signif-

icant. These performance gains demonstrate the effectiveness of

incorporating expressive contextual knowledge from retrieved in-

stances, which enables the experts to adapt to the evolving nature of

hateful content and enhances their discriminative power. Moreover,

the sample-sensitive integration network dynamically allocates

contribution for each expert based on the characteristics of each

video sample, leading to further improvements in SVHD.
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Table 2: Experimental results of the competitive baseline models and the proposed MoRE on the HateMM, MHClip-Y and

MHClip-B datasets. ACC: Accuracy, M-F1: Macro-F1 score, M-P: Macro Precision, M-R: Macro Recall. The best results are in red

bold, while the second results are in black bold. Higher values of ACC, M-F1, M-P, and M-R indicate better performance.

HateMM MHClip-Y MHClip-B

Method ACC M-F1 M-P M-R ACC M-F1 M-P M-R ACC M-F1 M-P M-R

BERT 0.6912 0.6368 0.7008 0.6396 0.6547 0.4909 0.5522 0.5220 0.7251 0.6771 0.6839 0.6279

ViViT 0.6820 0.6670 0.6682 0.6661 0.6705 0.6143 0.6215 0.6111 0.7099 0.6610 0.6661 0.6575

MFCC 0.6543 0.6031 0.6410 0.6069 0.6650 0.4715 0.5877 0.5222 0.6307 0.5250 0.5410 0.5304

SharedCon 0.6956 0.6857 0.6872 0.6846 0.6850 0.6478 0.6484 0.6473 0.7250 0.7089 0.7325 0.7069

Pro-Cap 0.6451 0.6326 0.6335 0.6321 0.7006 0.6633 0.6633 0.6633 0.7250 0.6677 0.6606 0.6832

HTMM 0.7603 0.7278 0.7794 0.7201 0.7153 0.6319 0.6830 0.6264 0.7102 0.6183 0.6654 0.6136

RGCL 0.7558 0.7355 0.7296 0.7524 0.7133 0.6322 0.6264 0.6728 0.7250 0.7103 0.7365 0.7096

MHCL 0.7741 0.7654 0.7649 0.7659 0.7103 0.6547 0.6722 0.6486 0.7650 0.7311 0.7320 0.7302

Mod-HATE 0.6866 0.6536 0.6510 0.6760 0.6774 0.6388 0.6376 0.6702 0.6445 0.5107 0.5233 0.5046

ExplainHM 0.7315 0.6888 0.6822 0.7013 0.7250 0.6700 0.6890 0.6737 0.7500 0.7295 0.7318 0.7249

MiniCPM-V 0.7235 0.7228 0.7781 0.7635 0.6910 0.6742 0.6929 0.6740 0.7157 0.7015 0.7359 0.7044

LLaVA-OV 0.7558 0.7557 0.7790 0.7828 0.7350 0.6766 0.7045 0.6674 0.7521 0.7078 0.7143 0.7031

Qwen2-VL 0.7373 0.7371 0.7805 0.7732 0.7050 0.6677 0.6684 0.6671 0.7601 0.7326 0.7385 0.7285

MoRE 0.8341 0.8235 0.8178 0.8334 0.7750 0.7519 0.7567 0.7482 0.7850 0.7475 0.7568 0.7410

Improv. 7.75%↑ 7.59%↑ 4.78%↑ 6.46%↑ 5.44%↑ 11.13%↑ 7.41%↑ 11.01%↑ 2.61%↑ 2.03%↑ 2.48 %↑ 1.48%↑
𝑝-val. 9.72𝑒−3

8.52𝑒−3
7.44𝑒−3

7.51𝑒−3
9.91𝑒−4

3.07𝑒−4
1.47𝑒−3

3.67𝑒−4
2.29𝑒−4

1.68𝑒−3
2.62𝑒−4

3.61𝑒−3

Table 3: Ablation study on core components within MoRE.

The best results are in black bold.

HateMM MHClip-Y MHClip-B

Variant ACC M-F1 ACC M-F1 ACC M-F1

Uni Retriever 0.7972 0.7744 0.7402 0.6810 0.7790 0.7303

w/o Retriever 0.7557 0.7355 0.6950 0.6637 0.7150 0.6836

BHAN-AttHat 0.8018 0.7887 0.7610 0.6881 0.7550 0.7009

BHAN-AttNon 0.8110 0.7985 0.7550 0.7240 0.7750 0.7358

w/o BHAN 0.7880 0.7723 0.7315 0.7120 0.7001 0.6581

w/o Router 0.7882 0.7734 0.7302 0.6815 0.7211 0.6902

MoRE 0.8341 0.8235 0.7750 0.7519 0.7850 0.7475

4.2 Ablation Study

To further understand the roles of core components and multimodal

experts in our proposed MoRE framework, comprehensive ablation

studies are conducted.

4.2.1 Ablation Study on Core Components. We conduct an ablation

study to analyze the role of each core component within MoRE,

and the results are summarized in Table 3.

Effect of joint multimodal video retriever. To validate the

efficacy of the joint multimodal video retriever, we designed two

variant models: (1)Uni Retriever: replacingmultimodal joint video

retriever with an unimodal retriever, performing text-to-text re-

trieval, and (2) w/o Retriever: removing the retriever entirely by

using random samples to replace the retrieved instances. The results

demonstrate that unimodal retrieval, limited to a single modality,

fails to capture the most relevant instances, leading to suboptimal

performance. Furthermore, completely removing the retrieval pro-

cess causes a substantial drop in performance, highlighting the

crucial role of high-quality retrieved instances. In contrast, our mul-

timodal joint video retriever, which incorporates information from

all three modalities, consistently improves the retrieval quality and

strengthens the overall framework performance.

Effect of contextual knowledge-augmented multimodal

experts. To analyze the impact of contextual knowledge equipped

to the modality experts, we design three variant models: (1) BHAN-
AttHat: removing the non-hateful attention from the BHAN, (2)

BHAN-AttNon: removing the hateful attention from the BHAN,

and (3) w/o BHAN: removing the BHAN entirely. The removal

of each type of attention results in a notable performance drop,

highlighting the importance of integrating contextual knowledge

from both hateful and non-hateful relevant instances. Moreover,

eliminating the entire BHAN leads to a substantial performance

decline, underscoring the critical role of equipping modality experts

with contextual insights, which facilitates the experts to adapt the

ever-changing hate and improve their ability to distinguish the

subtle difference between content of hate and non-hate.

Effect of sample-sensitive integration network.We evaluate

the impact of the sample-sensitive integration network by designing

the variant model: w/o Router: replacing the router network with

a simple sum-based fusion method. The results indicate that equally

fusing the modalities fails to accurately detect hate in short videos.

In fact, the hateful content may manifest in different modalities,

which necessitates a flexible fusion approach, the sample-sensitive

integration network, to dynamically assign the modal contribution

for each short video instance.

4.2.2 Ablation Study on Multimodal Experts. The second ablation

study evaluates the contribution of each modality expert in detect-

ing hateful content. It employs various combinations of modality

experts in MoRE, with the results presented in Table 4. Based on

these results, we have the following observations:

(O1): Different modal experts have significantly different

impacts.Across all three datasets, we observe significant variability
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Table 4: Ablation study on multimodal experts within MoRE.

The best results are in black bold. A: Audio expert, T: Textual

expert, V: Visual expert.

HateMM MHClip-Y MHClip-B

Expert(s) ACC M-F1 ACC M-F1 ACC M-F1

{ A } 0.6451 0.5826 0.6521 0.5132 0.6497 0.4531

{ T } 0.7188 0.6972 0.7350 0.6765 0.7201 0.6880

{ V } 0.6866 0.6415 0.7002 0.5888 0.7150 0.6557

{ A, T } 0.7281 0.7004 0.7250 0.6491 0.7305 0.6614

{ A, V } 0.7373 0.6935 0.6651 0.4132 0.6850 0.5771

{ T, V } 0.8110 0.7954 0.7402 0.6739 0.7502 0.7252

MoRE 0.8341 0.8235 0.7750 0.7519 0.7850 0.7475
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Fig. 3: Visualization of modality experts contribution allo-

cation of MoRE across all three datasets. A: Audio expert, T:

Textual expert, V: Visual expert.

in the impact of each expert. The textual expert consistently plays a

more crucial role in SVHD compared to the visual and audio experts,

with the audio expert contributing the least. This observation also

aligns with the distribution of hateful content across each modality

in the dataset, as exemplified by the MHClip-B dataset shown in

the blue donut chart of Fig. 1(b).

(O2): Effectively combining all experts brings better perfor-

mance.We observe that combining multiple experts consistently

improves performance compared to using a single expert. In partic-

ular, combining textual and visual experts outperforms combining

audio with either modality expert, reinforcing the relative weakness

of the audio expert. Notably, our proposed MoRE effectively inte-

grates all three experts through the sample-sensitive integration

network to achieve optimal performance in SVHD.

To provide further insight into howMoRE leverages three modal-

ity experts, we present the average weight assigned by the router

network in MoRE to each expert across different datasets in Fig. 3.

The router consistently assigns the highest weight to the textual ex-

pert, followed by the visual expert, with the audio expert receiving

the lowest weight. It demonstrates that the router can effectively

adapt to the strengths of each expert, thereby providing an intuitive

explanation for the observed improvements in MoRE performance.

4.3 Hyper-Parameter Analysis

This experiment presents the sensitivity analysis of MoRE’s hyper-

parameters, specifically the number of retrieved videos 𝐾 and 𝐿,

on the HateMM and MHClip-Y datasets. Fig. 4 demonstrates that

the performance of MoRE is improved by adding contextual knowl-

edge retrieved from hateful and non-hateful videos to the modality

expert. However, injecting a large number of instances to the ex-

pert may result in a performance decline due to the noise (i.e., the

irrelevant videos). To achieve the optimal performance, the number
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Fig. 4: Sensitivity analysis of 𝐾 and 𝐿 on the HateMM and

MHClip-Y datasets based on M-F1.

Table 5: Presentation of the retrieval quality. H: Hateful, N:

Non-hateful. “V /A / T” refers to the cosine similarity scores

between the target video and the retrieved videos across vi-

sual, audio, and textual modalities.

Target: H Top-1: H Top-1: N

Vision

Audio I’m a prostitute. I

don’t charge body

for sex. I give man

a way for free...

That is, I look like

a prostitute and I

am charging the

man for sex...

In Greek legend,

Phryne, famous

prostitute, the god

give the body...

Text I give a way for

free; I am a lady;

Mom called me a

prostitute...

I am a prostitute;

I am a lady of the

evening dropped

pants...

In Ancient Greek

Prostitute; famous

prostitute avoid

showing...

V /A / T N/A 0.75 / 0.93 / 0.90 0.81 / 0.89 / 0.87

of retrieved hateful instances is set to 𝐾 = 50 for both datasets. For

the number of retrieved non-hateful videos, 𝐿 is set to 30 for the

HateMM dataset and 50 for the MHClip-Y dataset. Further analysis

of other parameters is provided in Appendix H.1.

4.4 Retrieval Quality Presentation

To validate the effectiveness of the proposed joint multimodal video

retriever, we randomly select a hateful video from the test set of the

MHClip-Y dataset with the retrieved results. As illustrated in Ta-

ble 5, we observe that both hateful (H) and non-hateful (N) instances

exhibit similar backgrounds and subjects, specifically featuring a

woman speaking, which closely aligns with the target video’s vi-

sual information. Furthermore, the texts and audio transcriptions

of the retrieved instances show significant content overlap with

the target video, including keywords such as “prostitute”, “body”,

and “sex”. This observation underscores the efficacy of our mul-

timodal retrieval strategy, which seamlessly integrates all three
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Fig. 5: Generalizability between the baselines: HTMM,MHCL,

and our MoRE on the HateMM and MHClip-Y datasets

modalities to retrieve the most relevant instances. Notably, the con-

tent within the text and audio transcriptions in retrieved instances

shares overlapping keywords with the target video, such as “prosti-

tute”. However, the hateful instance employs harmful and offensive

language (e.g., “charging”, “sex”, “lady”), in stark contrast to the non-

hateful instance, which engages in neutral discourse, such as the

historical story of the prostitute in “Ancient Greece”. Consequently,

by effectively learning the nuanced distinctions between hateful

and non-hateful instances, the modality experts are endowed with

enhanced discriminative capabilities. Additional presentations of

retrieved instances are presented in Appendix H.5.

4.5 Model Generalizability

To investigate the generalizability of MoRE and two competitive

baseline models, particularly their ability to adapt to the new form

of hateful content, we conduct experiments where the models are

trained on one dataset and tested on the other. The HateMM and

MHClip-Y datasets are selected due to the significant differences in

their video content, stemming from their origins on entirely distinct

online platforms. In these experiments, the memory bank M of

MoRE is constructed using the training set of the target dataset.

Initially, the models are trained on HateMM and tested on MHClip-

Y, and subsequently, this setup is reversed to train on MHClip-Y

and test on HateMM. The results are presented in Fig. 5.

Both baseline models demonstrate extremely weak performance

when confronted with previously unseen hateful content, primarily

due to their lack of design for handling generalization. In contrast,

the proposed MoRE exhibits remarkable adaptability to these new

forms of hate, as it leverages contextual knowledge from retrieved

instances in the target dataset to enable the multimodal experts to

effectively detect “unencountered” hateful content. These findings

further confirm the superiority of MoRE in adapting to the evolving

nature of hate in short videos and its ability to meet real-world de-

mands by training on one platform and generalizing across multiple

platforms.

4.6 Case Study: Model Explainability

In this section, we explore the explainability of MoRE by conducting

a case study on two randomly selected hateful short videos from the

test set of the MHClip-Y dataset. This case study aims to elucidate

how MoRE adaptively assigns weights to multimodal experts to

achieve accurate predictions for different video samples.
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Fig. 6: Case study of the MoRE’s explainability on dynami-

cally assigning weights to modality experts for each video

instance. A: Audio expert, T: Textual expert, V: Visual expert.

The first case illustrated on the left in Fig. 6 involves a short video

where hateful content, specifically “anti-Semitic” and “Muslim”, is

presented solely in the audio modality. Our MoRE successfully cap-

tures the hateful evidence by prioritizing the audio expert, assigning

it the highest weight (64.1%). The second case is more challenging,

as neither the text nor audio contains hateful content. However,

some frames in video show a group of men dressed as Catholic

nuns mocking Christianity, which constitutes the hateful element.

In this instance, MoRE effectively allocates the highest contribution

(67.2%) to the visual expert, resulting in a correct identification of

the hateful content. In contrast, the baseline model MHCL, which

treats each modality equally, fails to detect the hateful content in

these cases, leading to incorrect prediction. Additional case study

with more short videos is provided in Appendix H.6.

5 Conclusion

In this work, we propose a novel MoRE framework to address SVHD.

This multimodal framework leverages features from all modalities

to enhance the precision of SVHD. A multimodal joint video re-

triever is developed to identify the most relevant instances for the

target video. Multimodal experts gain contextual knowledge from

these retrieved hateful and non-hateful instances, enhancing their

ability to adapt to the dynamic evolution of hateful content. Addi-

tionally, a sample-sensitive integration network within MoRE adap-

tively adjusts the contributions of each expert based on different

samples, further improving performance in SVHD. Furthermore, an

end-to-end training paradigm is introduced to enhance the practical

applicability of MoRE in real-world large-scale SVHD applications.

Our extensive experiments conducted on three real-world datasets

demonstrate the effectiveness of the proposed MoRE for SVHD. In

the future, MoRE has the potential to become an important tool

for many short video platforms like TikTok and YouTube Shorts,

contributing to trustworthy AI, especially in the context of short

video recommendation platforms.
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A Additional Literature Review

A.1 Multimodal Retrieval

Multimodal retrieval aims to retrieve the most relevant instances

by leveraging information across different modalities, such as text,

vision, and audio. Previous studies have primarily focused on text-

image retrieval, with the objective of retrieving images that cor-

respond to a given text query or text that corresponds to a given

image query [22, 25, 34, 50, 55]. These earlier studies typically relied

on models that did not employ pre-training, such as Convolutional

Neural Networks (CNNs) [22] and Faster R-CNN [55], to extract

representations from both image and text data. The introduction

of powerful vision-language pre-trained models [20, 29, 37, 43, 52]

has enabled researchers to develop methods that jointly encode

text and image representations for more accurate retrieval. These

models have demonstrated significant improvements in the quality

of text-image retrieval tasks. With the growing popularity of short

video content, video retrieval has become an increasingly important

area of study. Many studies in video retrieval have focused on text-

to-video retrieval, where a text query is used to retrieve relevant

video content from large video collections [12, 17, 18, 38]. These

approaches leverage pre-trained models to generate a common

embedding space, facilitating the alignment of video and text repre-

sentations. Despite advancements in text-to-video retrieval, limited

research addresses video-to-video retrieval, where the goal is to find

the most relevant video content given a video query. In this work,

we propose a novel joint multimodal video retriever that integrates

audio, textual, and visual modalities to enable comprehensive and

precise video-to-video retrieval.

A.2 Mixture of Experts

The Mixture of Experts (MoE) was first proposed by Jacob et al. [30]

as a method to combine multiple experts, each trained on differ-

ent subsets of data, into a single powerful model. Eigen et al. [21]

extended the MoE concept to neural networks by incorporating a

layer consisting of expert networks and a trainable gating mech-

anism. This gating mechanism assigns weights to the experts on

a per-example basis, enabling MoE to produce a weighted combi-

nation of the experts’ outputs. Recently, MoE has been extensively

studied as a technique to enhance the model’s capacity in terms

of parameter size without incurring additional computational cost,

particularly in the fields of natural language processing [23, 35, 58]

and computer vision [26, 42, 49, 56, 59]. Switch Transformer [23] de-

veloped a sparse MoE architecture that improves sample efficiency

in training by minimizing communication and computational over-

head, making it effective for natural language processing tasks. In

the multimodal learning domain, LIMoE [49] presented a sparse

MoE model that allows for the simultaneous processing of both

image and text using a contrastive loss during training. Much of

the current work primarily focuses on using the sparsity of MoE to

augment model parameters, overlooking one of the key strengths

of MoE: the ability to dynamically adjust outputs based on the in-

put data through expert routing. In contrast, our work first time

introduces MoE into the task of video-based hate detection by de-

signing contextual knowledge-augmented multimodal experts to

tackle different modalities of the short video. Furthermore, a sample-

sensitive integration network is proposed to identify the specific

contributions of each modality expert’s features to hate detection

in each video.

B Feature Extraction

For the short video 𝑆𝑖 , we start by extracting its initial informa-

tion from each modality. Specifically, we isolate the audio com-

ponent from the video, resulting in the audio representation 𝑠𝑎
𝑖
.

Additionally, we uniformly sample𝑚 key frames from the video,

which contribute to the visual content information denoted as

𝑠𝑣
𝑖
= {v1

𝑖
, v2

𝑖
, . . . , v𝑚

𝑖
}. The textual information 𝑠𝑡

𝑖
incorporates the

title and description of the short video 𝑆𝑖 .

To ensure alignment with prior research [13, 63] for fair compar-

ison, we utilize the pre-trained BERT [16] and ViT [19] as textual

and visual feature extractors. This allows us to derive the text fea-

tures xt
𝑖
∈ R𝑛×𝑑𝑡 and visual features xv

𝑖
∈ R𝑚×𝑑𝑣

, where 𝑛 is the

number of word tokens, while 𝑑𝑡 and 𝑑𝑣 denote the dimensions of

the textual and visual embeddings, respectively. Specifically, the

visual embedding for each key frame is derived from the classifi-

cation token in the last hidden states of the Vision Transformer

(ViT), which serves as the global representation of the frame. For

audio feature extraction, we compute the Mel Frequency Cepstral

Coefficients (MFCC), resulting in audio features xa
𝑖
∈ R𝑙×𝑑𝑎 , where

𝑙 denotes the number of audio frames, and𝑑𝑎 represents the number

of MFCC coefficients extracted from each audio frame.

C Complexity & Efficiency

In this section, we conducted detailed complexity and efficiency

analyses of our proposed MoRE framework, offering insights into

its practical applicability.

C.1 Computational Complexity Analysis

We performed the computational complexity analysis of each main

component within the proposed MoRE, which includes the com-

plexity analysis of the joint multimodal video retriever, the contex-

tual knowledge-augmented multimodal experts, and the sample-

sensitive integration network.

• Complexity of joint multimodal video retriever. The time

consumption during retrieval is primarily associated with cal-

culating the cosine similarity between the query vector and the

vectors of the stored samples. Let 𝑑 denote the dimension of the

query vector and𝑚 represent the total number of video samples

in the memory bank B. The time complexity for retrieving each

video instance is𝑂 (𝑚𝑑). It is important to note that the retrieval

process is independent of the overall framework and is conducted

only once, effectively functioning as a data preprocessing step.

Therefore, the overall time complexity of the joint multimodal

video retriever can be considered negligible in the context of the

entire framework.

• Complexity of contextual knowledge-augmented mul-

timodal experts. The time consumption for contextual

knowledge-augmented multimodal experts primarily stems from

the Bipolar Hateful Attention Network (BHAN), which utilizes

two attention mechanisms: AttHat for hateful instances and

AttNon for non-hateful instances. The attention mechanism itself

involves operations over query, key, and value matrices, where
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Fig. 7: Runtime consumption and GPU memory usage of

several baseline models and MoRE on the HateMM dataset.
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Fig. 8: Comparison of three training strategies on macro-

F1 and runtime consumption across three datasets. HM:

HateMM, M-Y: MHClip-Y, M-B: MHClip-B.

the complexity is 𝑂 (𝑑 · 𝑛2) per attention head, with 𝑑 denot-

ing the feature dimension and 𝑛 being sequence length. Since

BHAN processes two attention mechanisms (hateful and non-

hateful) for each modality, the overall time complexity for all

three modality experts is 𝑂 (6 · 𝑑 · 𝑛2).
• Complexity of sample-sensitive integration network. The

time complexity for the sample-sensitive integration network

primarily stems from the modal-mixture soft router, which dy-

namically generates weights for modality fusion. The router is

implemented as a two-layer MLP that computes the weights

based on the input feature representations from each modality.

The time complexity of this process for all three modalities is

𝑂 (3 · 𝑑2), where 𝑑 represents the feature dimension.

The overall complexity of MoRE stems from the matrix and vector

operations, and the calculation of these operations can be accel-

erated by GPUs or TPUs. This design makes MoRE particularly

well-suited for real-world deployments, especially for SVHD on

social media platforms and applications.

C.2 Efficiency Analysis

An empirical evaluation is conducted to assess the efficiency of the

proposed framework, MoRE, in comparison to several competitive

baseline models. This evaluation focuses on two key metrics: run-

time consumption per epoch and GPU memory usage during the

training phase. All experiments are performed on a single NVIDIA

RTX 4090 GPU with a batch size of 64, using the HateMM dataset.

The results are presented in Fig. 7.

As shown in the figures, BERT and HTMM demonstrate the

lowest resource consumption in terms of both runtime and GPU

memory, which can be attributed to their simpler model architec-

tures. However, they struggle to effectively detect hate in short

videos. In contrast, MHCL delivers relatively strong performance

in SVHD but incurs substantial computational costs due to the com-

plexity of its LSTM networks used as feature encoders. ExplainHM

incurs the highest resource overhead, primarily due to the invoca-

tion of LVLMs for conducting a multimodal debate, the use of an

additional LLM for judgment, and the fine-tuning of a T5 model

for prediction. Although MoRE is not the most resource-efficient

model, its impressive performance gains—achieving an average im-

provement of 6.91% in macro-F1 score across all three short video

datasets—justify the additional computational overhead.

D Training Strategy Comparison

In the previous section 3.4, we introduced the more efficient end-

to-end training paradigm, which optimizes the entire MoRE

framework for SVHD in a cohesive manner. In this section, we

further demonstrate the effectiveness of this training paradigm by

comparing it against two alternative strategies: (1) Separate train-

ing, which follows the prior MoE-based works [6, 70, 73]. Here,

each expert network is first trained independently, and then a joint

optimization strategy is applied to integrate the expert networks

with the overall framework. (2) Mixture-only training, a more

straightforward approach that directly optimizes the entire frame-

work without any separate training for individual modality experts.

In this approach, all components are optimized together in a single

stage, bypassing any expert-specific fine-tuning.

To comprehensively assess the effectiveness of these training

strategies, we conduct experiments on three datasets, evaluating

them from two key perspectives: model performance with macro-

F1 and training efficiency with runtime consumption. The results,

presented in Fig. 8, lead to the following conclusions:

• Performance evaluation. As shown in Fig. 8a, the mixture-only

training strategy experiences significant degradation in predic-

tion performance. This issue likely arises from the lack of inde-

pendent optimization for each expert network, which prevents

the full utilization of their specialized capabilities. In contrast,

both the separate training and the proposed end-to-end training

emphasize fully training each expert network, enhancing their

ability to detect hateful content specific to each modality, which

significantly improves final predictions.

• Efficiency evaluation. Fig. 8b highlights a clear drawback of

separate training: a substantial increase in runtime due to the

computational cost of training each expert network indepen-

dently, resulting in more than double the runtime compared to

other methods. In contrast, both the mixture-only training and

the end-to-end training approaches require only one stage of

joint training, which substantially reduces runtime.

Compared to the computationally expensive separate training

and the simplistic mixture-only training, our proposed end-to-end

paradigm achieves competitive performance similar to separate

training while significantly reducing computational costs to lev-

els comparable with mixture-only training. By jointly optimizing

the expert networks and the overall framework, it dynamically

shifts the focus from expert-specific training in the early stages

12
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Algorithm 1 Training of MoRE for short video hate detection.

Input: The short video dataset S = {𝑆1, · · · , 𝑆𝑁 }; The memory

bank B.

Output: Predicted category 𝑦 (Hate or Non-hate).

1: for each instance 𝑆𝑖 in S do

2: /∗ Joint Multimodal Video Retriever ∗/
3: Utilize all three modal queries r𝑎

𝑖
, r𝑡
𝑖
and r𝑣

𝑖
of video 𝑆𝑖 to

calculate the cosine similarities with samples in the memory

bank B (Eq.(2)).

4: Add the weighted similarities to obtain the final similarity

scores, retrieving both hateful samples 𝑆𝑟
𝑖
= {𝑆𝑟 𝑗

𝑖
}𝐾
𝑗=1

and

non-hateful samples 𝑆𝑟
𝑖
= {𝑆𝑟 𝑗

𝑖
}𝐿
𝑗=1

(Eq.(1)).

5: /∗ Contextual Knowledge-Augmented Multimodal Ex-
perts ∗/

6: Feed the features x𝑚
𝑖
,𝑚 ∈ {𝑎, 𝑣, 𝑡} from all modalities of 𝑆𝑖

into FFN to obtain the vanilla expert E𝑚
𝑖

(Eq.(3) - (4)).

7: Encode the features of retrieved hateful instances 𝑆𝑟
𝑖
and

non-hateful instances 𝑆𝑟
𝑖
into FFN to generate the contextual

knowledge E𝑚,𝑟
𝑖

and Ē𝑚,𝑟
𝑖

(Eq.(3) - (4)).

8: Equip the contextual knowledge to the vanilla expert E𝑚
𝑖

through BHAN to obtain the final representation of the

modality expert E𝑚,𝑐
𝑖

(Eq.(5) - (7)).

9: /∗ Sample-Sensitive Integration Network ∗/
10: Average the modality features of 𝑆𝑖 and align them into

a common feature space: Ψ𝑎 (x̃a𝑖 ),Ψ𝑡 (x̃
t
𝑖
),Ψ𝑣 (x̃v𝑖 ). Input the

aligned features into the soft router to assign weights for

each modality expert E𝑚,𝑐
𝑖

(Eq.(8) - (9)).

11: Fuse the modality experts with the weights to obtain the

final representation E𝑖 of instance 𝑆𝑖 for prediction (Eq.(10)).

12: /∗ End-to-End Training ∗/
13: Feed the E𝑖 into the MLP based predictor to obtain the output

𝑦𝑖 . Input the representation of each modality expert E𝑚,𝑐
𝑖

to

the predictor to obtain the output 𝑦𝑚
𝑖
.

14: Jointly training the experts and the overall framework with

BCE loss 𝐿𝑒𝑥𝑝 and 𝐿𝑜𝑣𝑙 (Eq.(11) - (13)).

15: end for

to optimizing the entire network in the late stages. This training

paradigm achieves a balance between prediction performance and

computational efficiency, making it a compelling choice for prac-

tical deployment. The complete training algorithm for MoRE is

provided in Algorithm 1.

E Proof of Effectiveness of Contextual

Knowledge-Augmented Multimodal Experts

The previous sections have demonstrated the motivation and

process behind leveraging retrieved hateful and non-hateful in-

stances to enhance the multimodal experts’ ability to detect hate

in short videos. In this section, the effectiveness of the contextual

knowledge-augmented multimodal experts within the proposed

MoRE framework is evaluated from an information-theoretic per-

spective. Specifically, for any given short video instance 𝑆𝑖 , we aim

to show that incorporating external knowledge from retrieved hate-

ful and non-hateful instances I𝑅
𝑖
into the modality experts improves

the prediction of the label 𝑦𝑖 . Let E𝑎𝑖 , E
𝑣
𝑖
, and E𝑡

𝑖
represent the audio,

textual, and visual modality experts of the instance 𝑆𝑖 , respectively.

Without loss of generality, let 𝑦𝑖 denote the category of 𝑆𝑖 . The

following proposition is then presented.

Proposition E.1. Let the mutual information 𝐼 (𝑋 ;𝑌 ) measure
the amount of information transmitted between variables 𝑋 and 𝑌 .
Then we have:

𝐼 (𝑦𝑖 ;E𝑎𝑖 , E
𝑣
𝑖 , E

𝑡
𝑖 , I
𝑅
𝑖 ) ≥ 𝐼 (𝑦𝑖 ;E𝑎𝑖 , E

𝑣
𝑖 , E

𝑡
𝑖 ) (14)

Proof of Proposition E.1. According to the definition of

mutual information, we have:

𝐼 (𝑦𝑖 ;E𝑎𝑖 , E
𝑣
𝑖 , E

𝑡
𝑖 , I
𝑅
𝑖 ) = E

[
log

P(𝑦𝑖 , E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
, I𝑅
𝑖
)

P(𝑦𝑖 )P(E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
, I𝑅
𝑖
)

]

= E

[
log

P(𝑦𝑖 , E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
)P(I𝑅

𝑖
|𝑦𝑖 , E𝑎𝑖 , E

𝑣
𝑖
, E𝑡
𝑖
)

P(𝑦𝑖 )P(E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
)P(I𝑅

𝑖
|E𝑎
𝑖
, E𝑣
𝑖
, E𝑡
𝑖
)

]

= E

[
log

P(𝑦𝑖 , E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
)

P(𝑦𝑖 )P(E𝑎𝑖 , E
𝑣
𝑖
, E𝑡
𝑖
)

]
+ E

[
log

P(I𝑅
𝑖
|𝑦𝑖 , E𝑎𝑖 , E

𝑣
𝑖
, E𝑡
𝑖
)

P(I𝑅
𝑖
|E𝑎
𝑖
, E𝑣
𝑖
, E𝑡
𝑖
)

]
= 𝐼 (𝑦𝑖 ;E𝑎𝑖 , E

𝑣
𝑖 , E

𝑡
𝑖 ) + 𝐼 (𝑦𝑖 ; I

𝑅
𝑖 |E

𝑎
𝑖 , E

𝑣
𝑖 , E

𝑡
𝑖 )

(15)

Since the conditional mutual information 𝐼 (𝑦𝑖 ; I𝑅𝑖 |E
𝑎
𝑖
, E𝑣
𝑖
, E𝑡
𝑖
) ≥ 0,

we can conclude that:

𝐼 (𝑦𝑖 ;E𝑎𝑖 , E
𝑣
𝑖 , E

𝑡
𝑖 , I
𝑅
𝑖 ) ≥ 𝐼 (𝑦𝑖 ;E𝑎𝑖 , E

𝑣
𝑖 , E

𝑡
𝑖 )

Thus, the proof of the proposition is complete. □

Proposition E.1 reveals that the contextual knowledge learned

from retrieved short video instances in the memory bank B encom-

passes more meaningful information compared to solely relying

on the visual, audio, and textual modal information within a single

instance. This finding underscores the effectiveness of our design

in leveraging contextual knowledge to enhance the capabilities of

multimodal experts in detecting hate in short videos, demonstrating

that the integration of retrieved instances significantly contributes

to the improvement of model’s performance in SVHD.

F Proof of Effectiveness of Sample-Sensitive

Integration Network

In this section, we present the theoretical proof to demonstrate the

superiority of our Sample-Sensitive Integration Network (SSIN) in

detecting hateful content in short videos compared to traditional

vanilla modality fusion strategies, which treat eachmodality equally

during the fusion process. To align with the problem definition of

SVHD provided in the main paper, we consider the three modalities

scenarios, where E𝑎
𝑖
, E𝑡
𝑖
, E𝑣
𝑖
denote the audio, textual and visual

modality experts for the short video 𝑆𝑖 , respectively.

Definition F.1 (Prediction Error). Let F (·) denote an arbitrary

modality fusion strategy, P(·) represent the predictor which re-

ceives the fused modality representations and generates the pre-

dicted category 𝑦𝑖 of the short video 𝑆𝑖 . Moreover, let 𝑦𝑖 be the

ground truth of whether the video 𝑆𝑖 is hateful or non-hateful.

The prediction error for 𝑆𝑖 is defined as the difference between the

predicted output and the ground truth:

𝛿 (F (E𝑎𝑖 , E
𝑡
𝑖 , E

𝑣
𝑖 )) = |P(F (E𝑎𝑖 , E

𝑡
𝑖 , E

𝑣
𝑖 )) − 𝑦𝑖 |. (16)
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As the ground truth 𝑦𝑖 is discrete, the value of 𝛿 (F (E𝑎
𝑖
, E𝑡
𝑖
, E𝑣
𝑖
))

has only two cases:

𝛿 (F (E𝑎𝑖 , E
𝑡
𝑖 , E

𝑣
𝑖 )) =

{
0, if 𝑦𝑖 = 𝑦𝑖 ,

1, if 𝑦𝑖 ≠ 𝑦𝑖 .
(17)

Following the prior works [39, 68], we concisely redefine the

redundant, unique, and synergistic modality interaction scenarios:

Definition F.2 (Redundancy). In the modality redundancy sce-

nario, all modalities contains the important information for accurate

prediction and they contain redundant information.

Definition F.3 (Uniqueness). In the uniqueness scenario, only

one or two modalities provides critical information for accurate

prediction. In this case, equally fuse all three modalities may lead

to error prediction while prioritizing one or two modalities can

achieve the best result.

Definition F.4 (Synergy). In the synergy scenario, each modal-

ity provides distinct but complementary information that, when

effectively combined, can achieve optimal predictions. In this case,

correctly assigning weights to each modality lead to the best pre-

diction.

Proposition F.5. Our proposed modality fusion strategy SSIN(·),
which dynamically adjusts the contributions of audio, textual, and
visual modalities for different video samples, achieves lower or equal
prediction error compared to the Vanilla Fusion Strategy VFS(·) across
all three modality interaction scenarios:

𝛿 (SSIN(E𝑎𝑖 , E
𝑡
𝑖 , E

𝑣
𝑖 )) ≤ 𝛿 (VFS(E

𝑎
𝑖 , E

𝑡
𝑖 , E

𝑣
𝑖 )), ∀𝑆𝑖 ∈ S. (18)

Proof of Proposition F.5. To prove this proposition, we an-

alyze the prediction errors of both SSIN(·) and VFS(·) across the
three defined modality interaction scenarios: redundancy, unique-

ness, and synergy. We begin by proposing some assumptions:

(1) Modality Experts Performance: Each modality expert E𝑚
𝑖

for

modality𝑚 ∈ {𝑎, 𝑡, 𝑣} provides an estimate of the ground truth

label 𝑦𝑖 with some probability of error 𝑃𝑚
error,𝑖

= Pr(𝑦𝑚
𝑖

≠ 𝑦𝑖 ).
(2) Independence of Errors: The errors made by different modality

experts are statistically independent. This assumption simplifies

the analysis and is reasonable when modalities are sufficiently

different.

(3) SSIN Weighting Mechanism: SSIN assigns weights𝑤𝑚
𝑖

to each

modality𝑚 for sample 𝑆𝑖 , based on the estimated reliability or

informativeness of that modality for that sample.

We aim to demonstrate that for each 𝑆𝑖 , the error probability

with SSIN is less than or equal to that with VFS:

𝑃SSIN
error,𝑖 ≤ 𝑃VFS

error,𝑖 . (19)

Redundancy scenario. In this scenario, all modalities are

equally informative and have similar error probabilities:

𝑃𝑎
error,𝑖 = 𝑃

𝑡
error,𝑖 = 𝑃

𝑣
error,𝑖 = 𝑃error . (20)

VFS: VFS assigns equal weights to all modalities. The combined

error probability is:

𝑃VFS
error,𝑖 = 𝑃error

(
1 − (1 − 𝑃error)2

)
. (21)

SSIN : SSIN recognizes that all modalities are equally informative

and assigns similar weights:

𝑤𝑎𝑖 = 𝑤𝑡𝑖 = 𝑤
𝑣
𝑖 =

1

3

. (22)

The combined error probability is the same as VFS:

𝑃SSIN
error,𝑖 = 𝑃

VFS

error,𝑖 . (23)

Uniqueness scenario. In this scenario, only a subset of modali-

ties is informative. Without loss of generality, assume that modality

𝑡 is informative, while 𝑎 and 𝑣 are non-informative with error prob-

abilities close to 0.5 (random guessing). VFS: VFS assigns equal

weights, so the non-informative modalities dilute the informative

signal. The combined error probability is higher due to the influ-

ence of noisy modalities. SSIN : SSIN assigns a higher weight to the

informative modality 𝑡 based on its lower error probability:

𝑤𝑡𝑖 > 𝑤𝑎𝑖 , 𝑤𝑡𝑖 > 𝑤𝑣𝑖 . (24)

By reducing the influence of noisy modalities, SSIN achieves a

lower combined error probability:

𝑃SSIN
error,𝑖 < 𝑃

VFS

error,𝑖 . (25)

Synergy scenario. In this scenario, each modality provides

complementary information necessary for accurate prediction. VFS:
Equally weighting modalities may not effectively capture the com-

plementary strengths, potentially leading to suboptimal integration.

SSIN : SSIN dynamically adjusts weights to optimize the fusion of

complementary information. By assigning weights proportional to

the informativeness of each modality, SSIN enhances the combined

prediction capability:

𝑃SSIN
error,𝑖 ≤ 𝑃VFS

error,𝑖 . (26)

Formal error probability calculation. Let us formalize the

error probabilities under the assumption of independent modality

errors. VFS Error Probability: For VFS, the combined prediction is

based on a majority vote or average of the modality predictions.

The error probability is:

𝑃VFS
error,𝑖 =

∑︁
odd 𝑘

©«
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝑃𝑚
error,𝑖

ª®¬
𝑘 ©«

∑︁
𝑚∈{𝑎,𝑡,𝑣}

(1 − 𝑃𝑚
error,𝑖 )

ª®¬
3−𝑘

.

(27)

SSIN Error Probability: For SSIN, the combined predictionweights

each modality according to its estimated reliability. The error prob-

ability is given by:

𝑃SSIN
error,𝑖 = Pr

©«
∑︁

𝑚∈{𝑎,𝑡,𝑣}
𝑤𝑚𝑖 𝛿

𝑚
𝑖 >

1

2

ª®¬ , (28)

where 𝛿𝑚
𝑖

is the individual modality prediction error (1 if incorrect,

0 if correct). Since SSIN assigns higher weights to more reliable

modalities (lower 𝑃𝑚
error,𝑖

), it reduces the overall error probability

compared to VFS. Conclusion In all scenarios, SSIN either matches

or outperforms VFS in terms of prediction error:

𝛿 (SSIN(E𝑎𝑖 , E
𝑡
𝑖 , E

𝑣
𝑖 )) ≤ 𝛿 (VFS(E

𝑎
𝑖 , E

𝑡
𝑖 , E

𝑣
𝑖 )), ∀𝑆𝑖 ∈ S. (29)

Therefore, SSIN achieves lower or equal prediction error com-

pared to VFS across all samples. □

By formally defining the error probabilities and demonstrating

how SSIN adjusts modality contributions to minimize prediction

errors, we have shown that SSIN is theoretically more effective than

VFS in detecting hateful content in short videos.

14
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Table 6: Characteristics of three short video datasets.

Dataset Characteristic HateMM MHClip-Y MHClip-B

Total Videos 1,083 1,000 1,000

Hateful Videos 431 82 128

Offensive Videos N/A 256 194

Non-Hateful Videos 652 662 678

Avg. Duration (s) 150.0 33.8 31.8

Languages English English Chinese

Platforms BitChute YouTube Bilibili

G Detailed Experimental Settings

G.1 Datasets

We conduct comprehensive experiments to evaluate the perfor-

mance of the proposed MoRE framework compared to baseline

models on three real-world short video datasets: HateMM [13],

MultiHateClip-YouTube (MHClip-Y), and MultiHateClip-Bilibili

(MHClip-B) [63]. The characteristics of these datasets are outlined

in terms of the total number of videos, the counts of hateful and

offensive videos, non-hateful videos, average video duration, lan-

guages, and the platforms from which the videos were sourced, as

shown in Table 6.

• HateMM: This dataset is a hateful video detection dataset, col-

lected from BitChute, an alternative video-sharing platform with

minimal content moderation. The English-language videos were

manually annotated by trained annotators. Each entry contains

the full video, and hate/non-hate label, with additional anno-

tations including frame spans indicating hateful content and

targeted communities.

• MHClip-Y, MHClip-B: These two datasets are benchmark

datasets designed for hateful video detection on YouTube and
Bilibili, respectively. Each entry in these two datasets includes

the video, its title, transcript, and detailed annotations. The anno-

tations provide rich information, including the video’s classifica-

tion (hateful, offensive, or non-hateful), specific hateful/offensive

segments with timestamps, the target victim group (e.g., Woman,

Man, LGBTQ+), and the contributing modalities (audio, textual,

and visual).

Notably, we present the binary classification experimental re-

sults in the main paper by merging the “offensive” and “hateful”

categories into a single “hateful” class. Additionally, multi-category

classification experimental results (i.e., distinguishing between hate-

ful, offensive, and non-hateful) are provided in Appendix H.2.

G.2 Baselines

To validate the efficacy of MoRE, we compare our framework with

competitive baseline models, which can be classified into three

distinct groups: (1) Unimodal hate detection methods; (2) Multi-
modal hate detection methods; and (3) Large Vision-Language Model
(LVLM)-based methods. Below, we provide detailed descriptions of

each baseline.

(1) Unimodal hate detection methods:
• BERT [16]: Given the efficacy of BERT in hate speech detection

[47], we employ BERT as a competitive unimodal baseline. The

text data, including the video title, description, and audio tran-

scription, is passed through BERT to extract features (i.e., the

[CLS] token) represented in a 768-dimensional space. These fea-

tures are subsequently fed into two fully connected (FC) layers

to yield the final prediction results.

• ViViT [3]: The Video Vision Transformer is the video version

of ViT [19], which is effective in video understanding and classi-

fication [54, 74]. We utilize ViViT to extract a 768-dimensional

feature vector from 32 sampled frames for each video. The fea-

tures are then input into two FC layers to generate the final

output.

• MFCC: MFCC plays a pivotal role in audio signal processing

and has been widely used in audio classification [5, 62]. For each

video, we generate a 128-dimensional MFCC vector, which is

then processed through two fully connected (FC) layers to obtain

the final prediction results.

• SharedCon [1]: SharedCon designs a clustering-based con-

trastive learning approach that leverages the shared semantics

among the data for implicit hate speech detection.

(2) Multimodal hate detection methods:
• Pro-Cap [8]: Pro-Cap utilizes prompting techniques to guide

pre-trained vision-language models in generating image cap-

tions associated with hateful content. It subsequently combines

these generated captions with textual information to enhance

the detection of hateful memes.

• HTMM [13]: HTMM extracts features from transcripts, video

frames, and audio frames. These features are then concatenated

and input into an MLP-based classifier to detect hateful content

in short videos.

• RGCL [46]: RGCL constructs a retrieval-based hateful memes

detection framework which learns hatefulness-aware vision and

language joint representations via an auxiliary contrastive ob-

jective and the dynamically retrieved examples.

• MHCL [63]: MHCL analyzes the significance of each modality in

the detection of hateful content within videos. It then leverages

the audio, textual, and visual features with LSTM-based feature

encoders to perform hateful video detection.

• Mod-HATE [10]: Mod-HATE develops a suite of LoRA mod-

ules and employs few-shot learning to train a module composer

that assigns weights to the modules based on their relevance.

Subsequently, the weighted composition these LoRA modules

generates the final prediction results.

• ExplainHM [40]: ExplainHM leverages a multimodal debate

between LVLMs to generate opposing rationales from harmless

and harmful perspectives. These rationales are judged by a LLM

and are distilled to fine-tune a T5 model for the final prediction,

ensuring both accuracy and explainability in harmful meme

detection.

(3) LVLM-based methods:
• MiniCPM-V [72]: MiniCPM-V is a series of end-to-end VLLMs

designed for vision-language understanding. These models ac-

cept text, images, and videos as inputs, generating high-quality

text outputs. In this study, we adopt the latest and most advanced

model in the MiniCPM-V series, MiniCPM-V 2.6, as our competi-

tive baseline.
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Fig. 9: Additional sensitivity analysis of 𝐾 , 𝐿, and 𝛼 . The met-

ric used in (a) is M-F1.

Table 7: Example of prompt for hateful detection applied in

LVLM-based methods.

Prompt: Now your task is to determine whether a short video

is hateful or non-hateful based on its title, description, audio

transcription and raw video content. If the video is hateful,

output 1; otherwise, output 0.

Video Title: { Title }

Video Description: { Description }

Audio Transcription: { Transcription }

Raw Video Content: { Raw video content (in MP4 format) }

Now give your prediction (no need analysis, return 0 or 1 only).

• LLaVA-OV [36]: LLaVA-OneVision (LLaVA-OV) is the newest

family of open MLLMs in the LLaVA series, which achieves new

state-of-the-art performance across single-image, multi-image,

and video benchmarks.

• Qwen2-VL [64]: Qwen2-VL is the latest version of the vision

language models in the Qwen model families. Qwen2-VL has the

abilities of complex reasoning and decision making and achieves

state-of-the-art performance on visual understanding bench-

marks.

Notably, for LVLM-based methods, we provide the text and raw

video content along with a specifically designed prompt to guide

the output generation. An example of the prompt is presented in

Table 7.

G.3 Implementation Details

In this section, we provide detailed implementation specifications

for our proposed MoRE along with a comprehensive overview of

the experimental setup.

• Data processing.We uniformly extract 16 key frames from each

short video across all datasets to ensure consistent visual repre-

sentation. To extract audio features, we employ the open-source

library Librosa to compute the MFCC. For audio transcription,

we employ two versions of the pre-trained Whisper [53] auto-

matic speech recognition model, each separately fine-tuned for

Chinese and English audio. To generate descriptions of the video

content, we employ the pre-trained BLIP2 model, specifically

the opt-2.7b version, to caption the extracted key frames. Ad-

ditionally, we apply a chotomous image segmentation model

IS-Net [51] finetuned in background removal task to separate

the background from the subjects in the key frames.

• Details of memory bank construction. In this work, the mem-

ory bank B is composed of short videos from the training and

validation sets, thereby preventing data leakage during model

testing. However, in real-world applications, the memory bank

must be continuously updated to reflect temporal changes, en-

suring that the model can adapt to the rapidly evolving nature

of hateful content.

• Training configuration. During the retrieval, the default

weight for each modality is set to equal. For text, we set the

maximum sequence length to 512 for all datasets. For key frames,

we resize the images into 224 × 224. The number of retrieved

hateful videos 𝐾 and non-hateful videos 𝐿 are selected from the

set {10, 20, 30, 40, 50}, respectively. And the bipolar attention

balancing ratio 𝛼 is chosen from the range [0, 1]. The positive

constant 𝛿 in end-to-end training is set to 0.2. We utilize the

AdamW [41] optimizer with a learning rate of 5 × 10
−4

and a

weight decay of 5× 10
−5

for model parameters optimization. We

set the random seed to 2024. For statistical testing, where each

model is run five times, we use random seeds ranging from 2024

to 2028 and report the mean value as experimental results. For

baseline models, we strictly adhere to the settings specified in

their original papers.

• Implementation environment.All experiments are conducted

on a system equipped with an Intel(R) Core(TM) i9-14900KF

processor, an NVIDIA GeForce RTX 4090 GPU with 24 GB of

VRAM, and 128 GB of system RAM.

H Additional Experiments

H.1 Hyper-Parameter Analysis

We also conduct the sensitivity analysis of 𝐾 and 𝐿 on the MHClip-

B dataset, along with an evaluation of another hyper-parameter, 𝛼

(the bipolar attention balance ratio), across all three datasets.

• Number of retrieved videos 𝐾 and 𝐿.We analyze the sensitiv-

ity of the parameters 𝐾 and 𝐿 on the MHClip-B dataset, with the

results presented in Fig. 9(a). The findings corroborate the conclu-

sions drawn in the main paper: performance initially improves

as the number of retrieved videos of both types increases. How-

ever, including a large number of instances ultimately results in

a decline in performance, primarily due to the noise introduced

by irrelevant videos. For the MHClip-B dataset, we select 𝐾 = 50

and 𝐿 = 50 to achieve optimal performance.

• Bipolar attention balanced ratio𝛼 .We evaluate the sensitivity

of the parameter 𝛼 with the BHAN and the results are shown in

Fig. 9(b). From the results, we observe that MoRE performs best

across all datasets when 𝛼 = 0.7, reflecting a heightened focus

on hateful attention. By assigning a higher weight to hateful

attention, MoRE incorporates more contextual knowledge from

hateful instances. This aligns with the distribution of the dataset

labels, where hateful videos are relatively scarce, thus requiring

greater attention to capture the necessary contextual knowledge

from retrieved instances.
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Fig. 10: Performance of several baseline models: BERT,

HTMM and MHCL with and without main components of

MoRE on the HateMM and MHClip-Y datasets.

Table 8: Additional experimental results for the three-class

classification task on the MHClip-Y and MHClip-B datasets.

The best results are in red bold, while the second results are

in black bold. Higher values of ACC, M-F1, and M-P indicate

better performance.

MHClip-Y MHClip-B

Method ACC M-F1 M-P ACC M-F1 M-P

BERT 0.6101 0.4752 0.4771 0.5245 0.4614 0.4617

AHSC 0.5980 0.3615 0.3742 0.5133 0.3184 0.3345

Pro-Cap 0.6461 0.4942 0.4768 0.6377 0.4876 0.4994

HTMM 0.6533 0.4979 0.4814 0.6677 0.4767 0.4959

MHCL 0.6733 0.5108 0.5299 0.6544 0.4852 0.5096

MiniCPM-V 0.6578 0.5110 0.5284 0.6746 0.5033 0.5352

LLaVA-OV 0.6711 0.5095 0.5323 0.6876 0.5101 0.5668

Qwen2-VL 0.7067 0.5134 0.5814 0.6907 0.5129 0.5774

MoRE 0.7133 0.5324 0.5923 0.7001 0.5216 0.5959

𝑝-val. 5.11𝑒−2
1.26𝑒−2

3.24𝑒−2
6.43𝑒−2

7.13𝑒−2
1.87𝑒−2

H.2 Multi-Category Classification

To further validate the superior performance of our proposedMoRE,

we also conduct multi-category classification (i.e., hateful, non-

hateful, or offensive) experiments on the MHClip-Y and MHClip-B

datasets and the results are presented in Table 8. From the table,

we have the following observations:

(O1): All the models meet the performance drop. In the

multi-category classification task, the imbalanced distribution of

classes—approximately 8% hateful, 26% offensive, and 66% non-

hateful—poses significant challenges for model training and infer-

ring. Furthermore, the minimal content differences between hate-

ful and offensive videos exacerbate the classification difficulty, as

the models struggle to effectively differentiate between these two

closely related categories. Overall, these factors contribute to the

observed decline in performance across all models, including our

proposed MoRE.

(O2): LVLM-basedmethods exhibit strong performance.De-

spite the significant class imbalance in the dataset, the performance

of LVLM-based models remains robust. This can be attributed to

their zero-shot inferring paradigm, which allows these models to

leverage their extensive knowledge acquired during pre-training

stage without requiring additional fine-tuning.

(O3): MoRE outperforms all competitive baselines. Our

proposed framework MoRE leverages contextual knowledge from

videos across all three categories, enabling the expert to capture

subtle distinctions among them. Additionally, MoRE dynamically

assigns weights to each modality expert based on sample charac-

teristics, allowing precise detection of offensive and hateful con-

tent in short videos. Consequently, MoRE effectively addresses the

multi-category hate detection in short videos, demonstrating its

superiority framework design.

H.3 Model Scalability

In this section, we analyze the scalability of our proposed MoRE

by integrating its core components into various baseline models to

demonstrate their broad applicability and effectiveness in enhanc-

ing performance on detecting hate in short videos.

H.3.1 Scalability of Contextual Knowledge-Augmented Multimodal
Experts. First, we integrate the contextual knowledge from the re-

trieved hateful and non-hateful videos into baseline models BERT,

MHCL, and HTMM, and perform the experiments on the HateMM

and MHClip-Y datasets. Specifically, we add the BHAN into these

baseline models and the results are presented in Fig. 10(a) and

Fig. 10(b). From the results, we observe that incorporating this

extra knowledge significantly improves the performance of these

models on both datasets. The integrated contextual information pro-

vides up-to-date insights into evolving hateful content and enables

the models to better distinguish between hateful and non-hateful

instances. This highlights the significance of utilizing additional

knowledge to improve the model’s capability to detect evolving

hateful content.

H.3.2 Scalability of Sample-Sensitive Integration Network. Next, we
implement the sample-sensitive integration network to replace the

fusion strategies employed in these baseline models and conduct

experiments on the HateMM and MHClip-Y datasets. Specifically,

we add the router network to these baseline models and the results

are provided in Fig. 10(c) and Fig. 10(d). Our results indicate that

dynamically assigning weights to different modalities at the sample-

level significantly enhances precision in SVHD. This improvement

stems from the fact that hate can manifest in various modalities

across different short video samples, highlighting the necessity for

a more flexible fusion strategy to achieve precise detection.
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Fig. 11: t-SNE visualization of MoRE and several baseline

models: BERT, HTMM, and MHCL on the HateMM dataset.

Red points indicate the hateful samples while blue points

represent the non-hateful samples.

H.4 Visualization

We employ t-SNE [61] to visualize the embedding space of two

categories: hateful and non-hateful, and the results are presented

in Fig. 11. The embedding used in this study is the output from the

last layer of the classifier in each model. We observe that while

both HTMM and MHCL learn distinguishable features, their em-

beddings remain somewhat entangled between the two categories.

BERT, on the other hand, fails to separate the categories effectively,

showing the weakest performance. In contrast, our MoRE produces

more discriminative representations, with clearer boundaries be-

tween instances of different labels. This result underscores MoRE’s

ability to capture the nuanced distinctions between hateful and non-

hateful content in short videos by leveraging contextual knowledge

from retrieved instances and dynamically assigning weights to

each modality expert at the sample level, resulting in more accurate

predictions for detecting hateful videos.

H.5 Retrieval Quality Presentation

In this section, we further evaluate the retrieval quality by ran-

domly selecting more short video samples from the HateMM and

MHClip-Y datasets. These samples encompass both their retrieved

hateful and non-hateful instances, offering a comprehensive view

of the effectiveness of our proposed joint multimodal video re-

triever. Designed to capture similarities across audio, textual, and

visual modalities, the retriever ensures that the retrieved instances

closely match the target videos in all relevant aspects. The results

are presented in Table 9 and Table 10.

H.6 Case Study: Model Explainability

We randomly select more short videos to demonstrate the explain-

ability of our MoRE in assigning varying contributions to different

modality experts, depending on the presence of hateful content in

each modality. The results are shown in Fig. 12.

I Limitations and Future Works

In this section, we providemultiple ways which can further improve

our work in detecting hate in short videos.

• Enhancing the retriever with trainable components. In

this work, we adopt a training-free strategy in our proposed

joint multimodal video retriever, which is resource-efficient for

video-video retrieval. However, trainable components can be

incorporated into the retriever, allowing for optimization via

contrastive learning. This approach could potentially lead to

better adaptation to retrieval tasks in SVHD and may improve

the precision of search results.

• Enriching the memory bank with more valuable instances.

In the future, the memory bank B could be expanded to include

more valuable short video instances, which may enhance the

quality of contextual knowledge provided to the modality experts

and has the potential to improve performance in detecting hate

in short videos.

• Improving the explainability of the MoRE framework. In

this study, the explainability is provided by the router in the

sample-sensitive integration network, limiting it to modality-

level explainability in hate video detection. In the future, we plan

to incorporate additional components into our proposed MoRE

to offer more fine-grained explainability, allowing for deeper

insights into how each modality contributes to the detection

process.

J Broader Impacts of Our Work

Our proposed MoRE has the potential to make a significant social

impact by providing short video platformswith amore effective tool

to identify and reduce harmful content. By targeting hate speech

directed at marginalized groups based on race, gender, and other

forms of discrimination, MoRE helps foster safer online environ-

ments for users. Moreover, MoRE’s adaptive capability allows it to

keep pace with evolving hate expressions, ensuring that the system

remains effective as new forms of harmful content emerge. This

adaptability offers a sustainable solution for platforms that need to

continuously update their detection capabilities to meet the chal-

lenges posed by rapidly changing online behaviors. Additionally,

MoRE introduces an efficient training paradigm that significantly re-

duces resource consumption, making it well-suited for deployment

on short video platforms. This efficient strategy not only improves

the scalability of the model in handling large-scale video data but

also facilitates its real-world application, ensuring faster and more

effective detection of hateful content in a high-throughput environ-

ment. Finally, MoRE provides a basic level of explainability, offering

content moderators and viewers insights into why a video has been

classified as hateful. This transparency fosters greater trust in short

video hate detection systems and supports video moderators in

their decision-making process during content moderation.
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Table 9: Presentation of the retrieval quality from the HateMM dataset. H: Hateful, N: Non-hateful. “V /A /T” refers to the

cosine similarity scores between the target video and the retrieved videos across visual, audio, and textual modalities.

Target: H Top-1: H Top-2: H Top-1: N Top-2: N

Vision

Audio why did you put this

racist black male, this

nigger in the same prison

as, you know, with a

white male...

I’m sleeping And your

stinky nigger smell in my

brain Still remains, I is a

white trans-neighbor...

Just as the slave master

in that day used Tom, the

house negro, to keep the

field niggers in check...

All white people get shot

and it’s a federal case

now? I claim black man,

I didn’t pay no mind....

Arno Michalis knows

better than most the

mind of a far right-wing

white racist in the world,

He says...

Text Racist nigger attacks and

kills White; After Meet-

ing With black male Pas-

tor N Sup..

Hello nigger my old

friend; You’ve come to

rob my house again you

niggers softly crip

Nigger Barkley on Racist

and Police N; Breaking

News New Details on Of-

ficers...

We’re way past black

and white; I told you the

truth and nothing but the

truth...

racist skinhead organi-

zation in the world; He

says he was one white

supremacist ...

V /A /T N/A 0.70 / 0.93 / 0.88 0.66 / 0.85 / 0.90 0.68 / 0.90 / 0.89 0.66 / 0.86 / 0.91

Target: N Top-1: H Top-2: H Top-1: N Top-2: N

Vision

Audio Jews were imbued with

hatred of Christian Euro-

peans. In Israel terroriz-

ing Christians and Mus-

lim Palestinians...

That is the right thing.

Are you Jewish? So we

know how the Jewish

people discriminate

against Christians...

Takeme to church. I have

to confess my sins to the

Muslim. The number 9

is coming to my mind. 9

Christians...

Last year, he angered

Jewish groups when he

sang these words. When

Christ did things to free

the oppressed...

The Holocaust is big

business because Ger-

many so far has given

the Jews, Jewish ships, I

think, at least...

Text The Jewish role in vio-

lence South Africa; ter-

rorizing European Chris-

tians and Muslim Pales-

tinians...

The godly thing is to kill

me; how the Jewish peo-

ple feel about Christians;

yes Christians are idol

worshlpers...

Can I Take You To

church; we are all for

Muslim, out to kill all

you Christians, but don’t

forget, we are...

Rabbi Marvin Heyer, an

activist for Jewish causes,

who was outraged; I said,

Christ did things ...

Then people don’t re-

alize who brought the

slaves to America. They

were Jewish ships; Wait

a minute...

V /A /T N/A 0.61 / 0.90 / 0.91 0.65 / 0.89 / 0.86 0.72 / 0.87 / 0.86 0.70 / 0.80 / 0.77
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2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

Table 10: Presentation of the retrieval quality from the MHClip-Y dataset. H: Hateful, N: Non-hateful. “V /A / T” refers to the

cosine similarity scores between the target video and the retrieved videos across visual, audio, and textual modalities.

Target: H Top-1: H Top-2: H Top-1: N Top-2: N

Vision

Audio Oh, my mom said that

I’m a prostitute. I don’t

charge body for sex. I

give man a way for free...

That is, I look like a pros-

titute and I am charging

the richest man in the

world for sex...

Top 10 Countries with

most prostitutes Coun-

tries; Top10 Dominican

Republic, Top9...

In Greek legend, Phryne,

famous prostitute, the

god have given her this

body...

Ramchandra Khan sent

a very beautiful, very at-

tractive prostitute to Shri

Haridas Thakur...

Text I give a way for free and

pay 530; Because I am a

lady; Mom called me a

prostitute...

I am a prostitute; I am

a lady of the evening

dropped pants and the

prices...

Top 10 Countries With

Most Prostitutes in the

world; short sex educa-

tion edits...

In Ancient Greek Prosti-

tute tried to escape death;

famous prostitute avoid

showing...

Prostitute Sent to De-

fame; WATCH FULL

VIDEO on (Secret to

become spiritual)...

V /A /T N/A 0.75 / 0.93 / 0.90 0.69 / 0.77 / 0.74 0.81 / 0.89 / 0.87 0.71 / 0.67 / 0.75

Target: H Top-1: H Top-2: H Top-1: N Top-2: N

Vision

Audio Straight women hate

men more than anybody.

Because lesbians can’t

hate men that much

because queers don’t

have to deal with them...

I discovered lesbian peo-

ple and holy, holy hell.

When I had that first,

one of my first queer

breakups, the physical

pain hit me. It may...

The question is, who

speaks to children about

the lesbian? The mom

and dad family, the per-

son who has given her

life to raising...

If you’re outing, No, I

overheard her telling a

friend that she is lesbian,

the queer, non-binary

and I am obligated by the

school to tell you...

I am lesbian and I love

that this person is just

fully playing a game

right behind you. She’s

deaf. She’s deaf? My bad.

You do your boo-boo....

Text Chosen family podcast;

lesbians can not hate

man; if you go on line

and you meet queers;

#gay #lgbt...

lesbians share #queer

break-up stories ashgavs

Makingemi chosenfam-

ilypod #love #dating

#heartbreak #lgbt...

Disney Forces Lesbian

Couple Into Lightyear

#Shorts #Lightyear #Dis-

ney #LGBT #AndrewKla-

van #DailyWire

As queer Parents at

School #shorts #lgbt

#gay; Follow Me, I have

something to tell you

about your child...

lesbian comedian acci-

dentally roasts deaf per-

son #lgbt #pride #com-

edy #jokes #stand up; I

love this person...

V /A /T N/A 0.84 / 0.91 / 0.94 0.71 / 0.79 / 0.84 0.78 / 0.88 / 0.92 0.81 / 0.76 / 0.81
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2363
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2366
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2379
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2383
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2385
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2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419
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2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

I was like, yeah, 

Ma, I'm not a 

prostitute.  I don't 

charge body for 

sex.  I give  m a n 

that away for free... 

Target Top-1: H Top-1: N

Vision

# Hot Dog

# Hot Dog

Text

Audio That is, I  look like 

a prostitute and I 

am charging  the 

richest man in the 

world or one of 

them for sex...

A  prostitute,

managed to avoid 

sentence.  How 

could I  commit  if 

the gods give me 

this body...

Mom called me a 

prostitute; I give a 

way for  free and 

pay 530 Because I 

am a lady...

I am a prostitute; I 

am a lady  of the 

evening dropped 

m y  p a n t s  s h e 

dropped her price...

In Ancient Greek 

Prostitute Escaped 

Death;  prostitute  

avoid  showing the 

INSPARKLY...

I was like, yeah, 

Ma, I'm not a 

prostitute.  I don't 

charge body for 

sex.  I give  m a n 

away for free... 

Target Top-1: H Top-1: N

Vision

Text

Audio That is, I look like 

a prostitute and I 

am charging the 

richest man in the 

world or one of 

them for sex...

A  prostitute,

managed to avoid 

sentence.  How 

could I  commit  if 

the gods give me 

this body...

Mom called me a 

prostitute; I give 

a way for free and 

pay 530 Because I 

am a lady...

I am a prostitute; 

I am a lady of the 

evening dropped 

pants she dropped 

her price...

In Ancient Greek 

Prostitute  Tr ie d 

t o  Escap  Death; 

famous prostitute  

avoid showing...

I was like, yeah, 

Ma, I'm not a 

prostitute.  I don't 

charge body for 

sex.  I give  m a n 

away for free... 

Target Top-1: H Top-1: N

Vision

Text

Audio That is, I look like 

a prostitute and I 

am charging the 

richest man in the 

world or one of 

them for sex...

A  prostitute,

managed to avoid 

sentence.  How 

could I  commit  if 

the gods give me 

this body...

I give a way for 

free and pay 530 

Because I am a 

lady; Mom called 

me a prostitute

I am a prostitute; 

I am a lady of the 

evening dropped 

pants she dropped 

her price...

In Ancient Greek 

Prostitute  Tr ie d 

t o  Escap  Death; 

famous prostitute  

avoid showing...

Case 1 Case 2

Ground 

Truth

Allocation

Short

Video

MoRE

Sen. Ted Cruz 

Man Handles 

Dick Durbin 

#shorts #politics 

#news #shorts

# Hateful

# Hateful

# Hateful

# Hateful

Case 3

Vision Text

He is likely to be anti-Semitic or a 

terrorist because he is Muslim. 

Now, you have just impugned ...

Audio

# Hateful

Catholic Drag 

Queens #baseball 

#dragqueen #mlb 

#CrainandCo 

#News #Sports 

Vision Text

The Los Angeles Dodgers found 

t h e m s e l v e s  i n  h o t  w a t e r

this week when they invited the ...

Audio

Vision Text

Hi, I am a great magician. Can I 

show you a magic trick? Sure. 

Okay, this is a pen. I am hiding...

Audio

Best For Pussy 

Pick-Upline 

Ever Pt30 !! On 

Omegle |Cute 

India Girl

# Hateful

MHClip # Non-hateful # Non-hateful # Hateful

A (22.3%)

V (22.3%)

T (22.3%) T (22.3%) V (22.3%)

A (22.3%)

Case 1 Case 2

Ground 

Truth

Allocation

Short

Video

MoRE

Sen. Ted Cruz 

Man Handles 

Dick Durbin 

#shorts #politics 

#news #shorts

# Hateful

# Hateful

# Hateful

# Hateful

Case 3

Vision Text

He is likely to be anti-Semitic or 

a terrorist because he is Muslim. 

Now, you have just impugned ...

Audio

Catholic Drag 

Queens 

#baseball 

#dragqueen 

#CrainandCo 

#News #Sports 

Vision Text

The Los Angeles Dodgers found 

t h e m s e l v e s  i n  h o t  w a t e r

this week when they invited the ...

Audio

MHClip # Non-hateful # Non-hateful

A (64.1%)

V (20.7%)

T (15.2%) T (16.7%) V (67.2%)

A (16.1%)

Case 1 Case 2

Ground 

Truth

Allocation

Short

Video

MoRE

What Every 

Nice Guy  Ben 

Shapiro reacts 

to  on 

Whatever 

podcast

# Hateful

# Hateful

# Hateful

# Hateful

Vision Text

Someone who watches their 

woman get fucked by another 

man and is okay with it. 

Audio

George Santos 

Claims Being 

Transgender 

Is A Mental 

Health Issue

Vision Text

I don't agree with 

Transgender. I don't agree 

with genderism as being  ...

Audio

MHCL # Non-hateful

A (60.5%)

V (17.6%)

T (21.9%) T (45.7%) V (13.9%)

A (40.4%)

LLM

LLM

目标文

本

检索池 若干图像

生成器
目标图

像(缺失)

多模态大模型的动态适应性研究

LLM
LLM

查询

检索池 若干图像

重新排

名器

多模态大模型的检索鲁棒性研究

排序后的

若干图像

LLM

查询

多模态大模型的可解释性研究

响应
响应的

解释

Case 3

# Hateful

# Hateful

 Jesus 

complained 

about the 

pharisees not 

stoning the 

adulteress 

Vision Text

Jesus was complaining about 

the Pharisees not stoning the 

adulteress to death...

Audio

# Hateful

V (30.6%)

A (32.5%)
MHClip

Case 4

# Hateful

Vision Text

Hi, I am a great magician. Can 

I show you a magic trick? 

Sure. Okay, this is a pen...

Audio

B e s t  F o r 

Pussy Pick-

Upline Ever 

P t 3 0  ! !  O n 

Omegle |Cute 

India Girl

# Hateful

# Non-hateful

Case 1 Case 2

Ground 

Truth

Allocation

Short

Video

MoRE

Sen. Ted Cruz 

Man Handles 

Dick Durbin 

#shorts  #news 

#shorts

# Hateful

# Hateful

# Hateful

# Hateful

Vision Text

He is likely to be anti-Semitic 

or a terrorist because he is 

Muslim.   Now you have...

Audio

Catholic Drag 

Queens 

#baseball 

#dragqueen 

#CrainandCo  

Vision Text

The Los Angeles Dodgers 

found themselves in hot water

this week when they invite...

Audio

MHCL # Non-hateful # Non-hateful

A (64.1%)

V (20.7%)

T (15.2%) T (16.7%) V (67.2%)

A (16.1%)

Dataset

# Hateful

MHClip-Y MHClip-Y MHClip-Y MHClip-Y

T (36.9%)
T (58.9%)

A (21.2%) V (19.9%)

Case 5 Case 6

Ground 

Truth

Allocation

Short

Video

MoRE

Guyana 

produce 

wifey, your 

country: 

odalisque and 

concubine 

# Hateful

# Hateful

# Hateful

# Hateful

Vision Text

No word in audio.

Audio

Vision Text

Why should you be promoted? 

Sir, please look at how I have 

performed. 

Audio

Promotion is 

important  

boss ke Saath 

romance

MHCL # Non-hateful # Non-hateful

T (64.8%)

A (12.8%)

V (22.4%) T (28.3%) V (49.6%)

A (22.1%)

Case 7

# Hateful

# Hateful

Vaginal 

Jesus; 

Affirmative 

apartheid

Vision Text

Baila, baila, baila Baila, baila, 

baila Baila, baila, baila Baila, 

baila, baila

Audio

# Non-hateful

V (40.0%)

A (16.9%)

Case 8

# Hateful

Vision Text

Fucking white racist of shit, 

you little fucking toasty-ass 

bitch...

Audio

No text.

# Hateful

# Non-hateful

Dataset MHClip-Y MHClip-Y HateMM HateMM

T (43.1%)

V (19.3%)

T (9.7%) A (71.0%)

# Hateful

Fig. 12: Case study of the MoRE’s explainability on dynamically assigning weights to modality experts for each video instance.

A: Audio expert, T: Textual expert, V: Visual expert.
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