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Abstract

The widespread use of Large Language Models001
(LLMs) has made the robustness emerge as a002
critical metric in LLM evaluation. Multiple-003
choice questions(MCQs) constitute a signifi-004
cant form of LLM evaluation, which under-005
scores the importance of studying the robust-006
ness of LLMs to MCQs. While there has007
been considerable research on the robustness of008
LLMs, the majority of these studies have been009
conducted as black-box assessments in the tex-010
tual space. In this paper, we further evaluated011
the robustness of LLMs to label variants in the012
logits space. Our experiments on 3 datasets013
and 10 models show that LLMs exhibit a sig-014
nificant selection bias towards different choice015
token sets, meaning that variant choice options016
can alter the model’s confidence in answering017
questions. In particular, the smaller size mod-018
els exhibit more pronounced selection bias. We019
also found that post-training can significantly020
enhance model robustness to label variants af-021
ter comparing the base version and the instruct022
version of different LLMs. The results demon-023
strate that the evaluation in the logits space can024
tell us more about LLMs.025

1 Introduction026

Since the advent of ChatGPT, large language mod-027

els (LLMs) have undergone rapid development,028

with their capabilities continuously improving.029

These LLMs have achieved remarkable results in030

various fields, such as text generation and math-031

ematical reasoning. Notable LLMs include the032

closed-source models GPT-4 (OpenAI, 2024) and033

Gemini (Google, 2024), as well as the open-source034

models Qwen (An Yang, 2025), LLaMA (Meta,035

2024), and DeepSeek (DeepSeek-AI, 2024).036

The rapid advancement of LLMs has also intro-037

duced several issues, which present new challenges038

for LLM evaluation. For example, LLMs may ex-039

perience testing data leakage (Deng et al., 2024;040

Balloccu et al., 2024) or specifically optimization 041

for particular evaluation datasets, which can lead to 042

inflated scores on the evaluation set, resulting in the 043

invalidation of leaderboards (Zhou et al., 2023; Shi 044

et al., 2024). To address these issues, researchers 045

have proposed a variety of robustness evaluation 046

methods that introduce perturbations to the datasets 047

(Zhu et al., 2024b; Yang et al., 2024). The results 048

indicated that even the state-of-the-art LLMs may 049

exhibit significant performance decline on these 050

datasets, demonstrating the poor robustness of ex- 051

isting LLMs (Wang et al., 2023b; Pezeshkpour and 052

Hruschka, 2024). For instance, several studies have 053

shown that LLMs exhibit position bias or token bias 054

in handling MCQs (Zheng et al., 2024; Li et al., 055

2024b). 056

However, while these studies effectively evaluate 057

model capabilities, the majority adopted a black- 058

box approach, i.e., relying solely on score differ- 059

ences in the textual space. In fact, an effective 060

evaluation should not only assess the model’s tex- 061

tual score but also facilitate model optimization, 062

and it is widely acknowledged that evaluating in 063

the logits space can offer more insights for the re- 064

searchers, particularly for the trainers. 065

In this paper, we investigate the robustness 066

of LLMs against label variants in three MCQs 067

datasets, specifically by replacing the original 068

choice options with different choice token sets. We 069

conducted extensive experiments on various LLMs 070

in the logits space and identified some intriguing 071

conclusions. Our main contributions are as follows: 072

1. LLMs generally experience performance 073

drops with label variants. An analysis in the logits 074

space indicates that LLMs exhibit selection bias 075

towards different token sets, whereby specific to- 076

ken sets can lead to reduced confidence in their 077

responses. 078

2. This selection bias towards the choice token 079

set is related to the model size, with smaller models 080

exhibited more pronounced selection bias. 081
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Question: the answer of 1+1 is ?

Choices:
E. 1
F. 2
G. 3
H. 4

Prompt

Original Label Variant

Choices:
A. 1
B. 2
C. 3
D. 4

The answer is F.

The answer is F.

The answer is B.

Prediction Confidence
The original prompt The label variant prompt

Figure 1: The overview of our robustness evaluation for the label variant. For example in the figure, the
variant token set {E,F,G,H} of choices instead of the original token set {A,B,C,D}. We consider the LLMs to
potentially exhibit the following three scenarios: (1). The model can accurately answer the correct option (i.e., ‘F ’),
without a significant drop in the confidence of its choice. (2). The model’s answer is correct but its confidence has a
significant drop. (3). The model selects a wrong answer (e.g., ‘B’) and has a low confidence for it at the same time.

3. LLMs with similar performance in the tex-082

tual space can be quite different in the logits space,083

which underscores the necessity of evaluating mod-084

els in the logits space.085

4. By analyzing the performance of the base086

and instruct models, we found that post-training087

can enhance the robustness of the models to label088

variants.089

2 Related Work090

LLMs are undergoing rapid development, making091

the effective evaluation of LLMs a critical area of092

research (Chang et al., 2023). Numerous studies093

have highlighted the issue of data leakage in cur-094

rent LLMs, leading to unreliable rankings on LLM095

leaderboards (Deng et al., 2024; Zhou et al., 2023;096

Balloccu et al., 2024; Shi et al., 2024). This has097

underscored the need for evaluations that measure098

the robustness and true capabilities of LLMs.099

Recently, there is a significant body of research100

focused on evaluating the robustness of LLMs.101

(Wang et al., 2023a) and (Chai et al., 2024) re-102

spectively investigated the impact of word-level103

and token-level perturbations on the performance104

of LLMs. The results indicate that LLMs are not105

robust to such perturbations. (Zhu et al., 2024a) de-106

veloped a prompt benchmark to evaluate the impact107

of different prompts on LLMs. (Shi et al., 2023) in-108

vestigated the impact of distracting information on109

the performance of LLMs, and the results indicate110

that LLMs are highly susceptible to interference111

from irrelevant context. (Li et al., 2024a; Hong 112

et al., 2024) applied perturbations to mathemati- 113

cal and code datasets to evaluate the robustness of 114

LLMs in mathematical and coding. 115

MCQs serve as a crucial assessment format for 116

evaluating the LLMs, due to their ease of construc- 117

tion and assessment (Robinson and Wingate, 2023). 118

Several studies have been conducted on the robust- 119

ness of LLMs in handling MCQs. (Zheng et al., 120

2024; Alzahrani et al., 2024; Pezeshkpour and Hr- 121

uschka, 2024) showed that LLMs commonly ex- 122

hibit token bias and position bias in MCQs, tending 123

to select specific tokens or option in specific posi- 124

tion (such as "A" or the option in the first position). 125

(Li et al., 2024b) found that the positional prefer- 126

ences in LLMs remain consistent across datasets, 127

demonstrating through a self-constructed dataset. 128

(Balepur et al., 2024) found that LLMs possess 129

the capability to answer based solely on the op- 130

tions provided, and suggested that this approach 131

is a stronger baseline than a majority baseline for 132

MCQs. 133

While substantial research focuses on LLM ro- 134

bustness in MCQs, most studies employ a black- 135

box approach, analyzing model behaviour within 136

the token space, which offers limited insights. In- 137

spired by existing methods, our study systemati- 138

cally analyzes the robustness of LLMs against dif- 139

ferent choice tokens and interprets the anomalous 140

behaviors of models from the logits space. 141
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3 Methodology142

3.1 Preliminaries143

The Robustness Benchmark. Constructing the144

robustness benchmark is one of the key steps for145

the robustness evaluation. Let D = {(pi, gi)}Ni=1146

denotes the original benchmark (i.e., testing147

set), where pi ∈ P is i-th prompt, and gi is148

its ground-truth label. To assess the robust-149

ness of model M, the evaluators will generate150

the robustness benchmark D̂ = {(p̂, ĝ)|p̂ =151

FP (p), ĝ = FG(g), (p, g) ∈ D}} with the textual152

perturbations, where FP and FG respectively are153

the specific functions to perturb the prompts and154

the labels.155

156

Evaluator’s Goal. A common goal for the eval-157

uators is to examine the impact of prompt per-158

turbations on model performance. Recent re-159

search(Chang et al., 2024) have introduced lots of160

evaluation methods from different perspectives in161

the textual space. In this paper, we further expand162

the evaluation space to the logits space. Specifi-163

cally, we focus on the label variant method on the164

MCQ benchmarks following the existing works165

(Alzahrani et al., 2024).166

3.2 Label Variant167

Label variant is one of the useful methods to assess168

the robustness on the MCQ benchmarks. Specifi-169

cally, this method perturbs the prompt by modify-170

ing the choice token set Tc the choice options (i.e.,171

the choice options in the question) and changes172

its ground-truth label to the corresponding variant173

version at the same time. For example, existing174

work(Alzahrani et al., 2024; Meta, 2024) modified175

the original choice token set {A,B,C,D} to the or-176

dered numerical token set {1, 2, 3, 4}, and the com-177

mon language independent token set {$,&,#,@}178

whose order is not implicitly relative. To further179

examine the models’ robustness for the label vari-180

ant, we additionally constructed the benchmark181

with Tc = {E,F,G,H}, as we consider this token182

set has a closer distance to the original token set.183

Our intuition is that the model will exhibit differ-184

ent performance of the robustness on the different185

similarities between the variant token set and the186

original token set. The example for the label variant187

prompt can be seen in Figure 2.188

Prompt 3.1: original choice token set {A,B,C,D}

Question: q
Choices:\nA. c1 \nB. c2 \nC. c3 \nD. c4
Answer: B

Prompt 3.2: variant choice token set {E,F,G,H}

Question: q
Choices:\nE. c1 \nF. c2 \nG. c3 \nH. c4
Answer: F

Prompt 3.3: variant choice token set {1,2,3,4}

Question: q
Choices:\n1. c1 \n2. c2 \n3. c3 \n4. c4
Answer: 2

Prompt 3.4: variant choice token set {$, &, #, @}

Question: q
Choices:\n$. c1 \n&. c2 \n#. c3 \n@. c4
Answer: &

Figure 2: The example for the original prompt and
the variant prompt.

3.3 Logits Space Evaluation 189

We define the confidence of the token in the pre- 190

dicted text as the highest value in its corresponding 191

logit (i.e., the probabilities vector that the model 192

predicted). Considering the predicted text always 193

contains the tokens that are not the final answer 194

(e.g., CoT), similar to existing textual evaluation 195

methods(Chang et al., 2024), we employ the post- 196

processing function f(t) to extract the final answer 197

option token, where t is the predicted text. Please 198

note there is not a one-to-one correspondence be- 199

tween the option character and its token, in fact, 200

we will map the answer option to its corresponding 201

token after the post-processing. 202

For label variant method, one of the limitations 203

of the textual evaluation method is that once 204

inference can’t accurately reflect the robustness 205

of the model. In other words, in spite of the 206

model can output the correct answer option in 207

the inference stage, the confidence of the answer 208

option may have a significant drop. As mentioned 209

in Section 3.1, to achieve an accurate assessment 210

of with robustness with lower costs, we further 211

utilized the logit of the answer option token 212

(dubbed ‘answer logit’) to assess the robustness of 213

the models from the two following perspective. 214
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215

the Confidence of the Answer option (AC). The216

model’s confidence in the answer token can reflect217

its robustness. We defined AC as the maximum218

value in the answer logit vector. The AC can be219

formulated as follows:220

AC = C(y) = max(vans) (1)221

where C(y) denotes the confidence of the answer222

token y, and vans is the answer logit vector. For223

example, by comparing the original dataset’s AC to224

the variant dataset, we can evaluate the confidence225

changes brought by the label variant.226

227

the Inner Confidence Distance (ICD). We futher228

introduce the Inner Confidence Distance (ICD),229

which denotes the distance between the variant230

token and the original token in the answer logit.231

The ICD can be formulated as follows:232

ICD =

{
C(FG(y))− C(y), if y ∈ T org

c ,

C(y)− C(F−1
G (y)), if y ∈ T var

c .

y = f(t)
(2)233

where C(x) denotes the confidence of the token234

x in the answer logit and F−1
G is the inverse235

process of FG. T org
c is the original token set236

{A,B,C,D}, and T var
c is the variant version237

(e.g., {E,F,G,H}). If the answer option belong238

to the variant token set T var
c , the ICD will be239

positive; otherwise, it will be negative. The robust240

model should confidently provide a variant option241

as an answer. In other words, the higher the ICD,242

the robust the model.243

244

4 Experimental Setup245

In this section, we describe the setting of our ex-246

periments. We provide detailed information on the247

benchmarks used for evaluation, the LLMs evalu-248

ated, and the evaluation methods employed in our249

experiments.250

4.1 Benchmarks251

To investigate the impact of label variants, we252

selected the current mainstream benchmarks, all of253

which are in the form of multiple-choice questions.254

To eliminate the impact of language on the results,255

we included datasets in both English and Chinese.256

The three datasets we ultimately selected are as257

follows: 258

259

MMLU Massive Multitask Language Under- 260

standing (MMLU) is a comprehensive English 261

knowledge benchmark that covers a wide range of 262

domains, with questions in multiple-choice format 263

(Hendrycks et al., 2021). 264

265

HellaSwag Hellaswag is a dataset for common- 266

sense natural language inference, designed to 267

challenge machines to identify the most likely 268

continuation of an event description (Zellers et al., 269

2019). 270

271

C-Eval C-Eval is a comprehensive Chinese knowl- 272

edge dataset that encompasses a wide range of 273

categories and varying levels of difficulty. The 274

questions in the dataset are presented in a multiple- 275

choice format (Huang et al., 2023). 276

4.2 Evaluation Metric. 277

Following the existing works(Li et al., 2024b), we 278

first utilized the textual score to evaluate the per- 279

formance of the model. We adopt the Ratio of the 280

model’s Answer to the Original options (AOR) to 281

further evaluate the predicted text. Moreover, as we 282

mentioned in Section3.3, we also utilized the AC 283

and the ICD to evaluate the robustness of the mod- 284

els. Notably, in general, we adopted their average 285

values for assessment. 286

4.3 Considered LLMs 287

Since our method relies on the logit in models, we 288

considered two series of open-source models, in- 289

cluding Qwen and LLaMA. For the Qwen series 290

model, We evaluated both the 7B and 72B models 291

for versions 1.5, 2.0 and 2.5. As for LLaMA se- 292

ries, we assessed both the 8B and 70B models for 293

versions 3.0 and 3.1. Furthermore, we conducted 294

comparisons on the pre-trained (base) version and 295

the instruction-tuned (instruct) version. More de- 296

tails can be found in Appendix A.1. 297

4.4 Performance Evaluation 298

We evaluate each model on MMLU’s testing set 299

with 14042 prompts and CEval’s validation set 300

which contains 1346 prompts. For each prompt on 301

these two datasets, we use 5-shot settings. For Hel- 302

laSwag, we use its testing set with 10042 propmts 303

and select zero-shot setting for assessment. For 304

each model, we set the temperature to 0 to eliminate 305

the impact of randomness, and use vLLM(Kwon 306
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Model
MMLU CEval Hellaswag

EFGH 1234 $&#@ EFGH 1234 $&#@ EFGH 1234 $&#@

Qwen1.5-7B -2.63 -1.71 -5.63 -13.38 -3.77 -8.94 -0.65 -1.95 -12.17
Qwen2-7B -1.77 -0.75 -4.89 -1.98 -1.49 -4.07 -1.82 -1.03 -9.41
Qwen2.5-7B -1.72 -0.52 -3.35 -1.58 -0.24 -5.01 +0.03 +1.08 -4.02
Qwen1.5-72B -1.28 -0.7 -1.66 -12.59 -0.24 -3.99 -1.07 -0.15 -2.97
Qwen2-72B -1.31 -0.61 -1.52 -11.11 +0.58 -0.63 -1.14 -4.09 -2.55
Qwen2.5-72B -0.90 -0.97 -2.29 -1.59 -0.61 -4.46 -0.62 -0.69 -1.29

LLaMA3-8B -1.02 -1.09 -2.74 -1.85 -0.11 -2.89 +0.14 -2.29 -9.28
LLaMA3.1-8B -1.4 -0.43 -4.78 -0.21 -0.56 -2.74 -3.46 -2.32 -12.45
LLaMA3-70B -1.17 -0.91 -2.75 +0.49 +0.03 -2.08 -0.51 -1.32 -2.14
LLaMA3.1-70B -0.73 -0.86 -3.55 +0.67 -0.28 -2.54 +0.97 -0.76 -0.33

Table 1: The textual score gaps of different models on the variant choice token sets. The red color denotes
the score drop is bigger than 5.0. We found that the label variants generally lead to a score decline in the
models’ performance, even with similar token sets (e.g., {E,F,G,H}). Different models always exhibited varying
sensitivities to specific token sets across different datasets (e.g., Qwen series on CEval-{E,F,G,H} and LLaMA
series on MMLU-{$,&,#,@}).

et al., 2023) to accelerate inference. All the experi-307

ments were conducted on NVIDIA A100 GPUs.308

5 Results & Analysis309

In this section, we will present the key findings310

from our extensive experiments (detailed in Section311

3) and provide further analysis of some intriguing312

observations from the logits space. More compre-313

hensive details and results of the experiments can314

be found in the Appendix A.315

5.1 The label variant is detrimental to the316

model’s performance.317

Following the existing work(Alzahrani et al., 2024;318

Meta, 2024), we first reviewed the performance of319

the instruction-tuned model’s robustness in the tex-320

tual space, and additionally evaluated the token set321

{E,F,G,H}. As shown in Table 1, most LLMs322

exhibited varying degrees of performance drops323

on the testing sets modified with different token324

sets. Moreover, we observed that the models are325

differently sensitive to the different label variant326

datasets. For example, the large size Qwen series327

models and LLaMA series models have more sig-328

nificant score drops than their small size versions329

on the Hellaswag with the token set {$,&,#,@}.330

Despite the token set {E,F,G,H} having a higher331

similarity with the original token set {A,B,C,D},332

the score drops of some Qwen series models are333

still bigger than 11%.334

As we mentioned in Section 3.3, to avoid the335

Models ABCD $&#@ Gap
Qwen2-7B 0.90 0.65 -0.25
Qwen2-72B 0.93 0.79 -0.14
LLaMA3-8B 0.91 0.57 -0.34
LLaMA3-70B 0.98 0.70 -0.28

Table 2: The AC gap between the token set
{$,&,#,@} and the token set {A,B,C,D} for dif-
ferent size models on the HellaSwag dataset. The re-
sults indicate that smaller models exhibit a significantly
larger AC gap compared to their larger counterparts,
reflecting a more pronounced token set selection bias in
the smaller models.

limitations of the textual score, we further exam- 336

ined the distribution of AC for the models. As 337

shown in Figure 3, we found that for most cases, 338

even those without significant score drops in the 339

textual space, the AC distribution of the token set 340

{$,&,#,@} tends to be more dispersed, while 341

others are concentrated around a high probabil- 342

ity. The complete AC distribution can be found 343

in Appendix A.2. Based on this observation, we 344

hypothesized that LLMs might exhibit a selection 345

bias towards different token sets. These findings 346

preliminarily demonstrated that the label variant 347

methods can lead to the robustness performance 348

drops for LLMs. More details will be discussed in 349

the following parts. 350
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LLaMA3-8B-Instruct LLaMA3-70B-Instruct Qwen2-7B-Instruct Qwen2-72B-Instruct

Figure 3: The AC distributions. We utilized Kernel Density Estimation (KDE) to illustrate the AC distributions
across various instruction-tuned models and datasets. The higher density near 1.0 on the x-axis, the better the
model’s performance on the dataset. For example, in most cases, the original token set {A,B,C,D} exhibited
higher ACs than others.

5.2 The relationship between model size and351

selection bias352

Based on the findings in Section 5.1, we further in-353

vestigated the relationship between model size and354

selection bias in the logits space. We calculated355

the gap between the performance on the token set356

{$,&,#,@} and the token set {A,B,C,D} for357

different size models across various datasets. As358

shown in Table 2, the results indicated that both359

Qwen and LLaMA exhibit a consistent pattern with360

respect to model size on the HellaSwag. Specifi-361

cally, smaller models show a larger performance362

gap compared to their larger counterparts within363

the same series, suggesting that smaller models364

exhibit more pronounced selection bias.365

The underlying causes for the more pronounced366

selection bias observed in smaller models remain367

uncertain. As can be observed from the Figure 4,368

the behaviour of Qwen and LLaMA is consistent,369

despite variations in their training data. We hypoth-370

esize that this phenomenon may be attributed to371

two main factors: the quantity of training data and372

model capacity (number of parameters), as larger373

models typically benefit from more extensive train-374

ing data, and powerful model capacity.375

Furthermore, we observed that despite large- 376

sized models exhibiting similar scores and score 377

gaps in the textual space, there are significant dif- 378

ferences when viewed from the perspective of the 379

logits space. As illustrated in Figure 5.2, we used 380

the HellaSwag dataset as an example to compare 381

the scores and response confidence levels of the 382

LLaMA and Qwen large-size models. It is evi- 383

dent that although the performance of LLaMA and 384

Qwen is comparable, the AC of LLaMA is no- 385

tably lower than that of Qwen. As the version 386

of the Qwen series is updated from 1.5 to 2.5, 387

both their scores and AC progressively increase, 388

whereas LLaMA shows a slight decline from 3 to 389

3.1. This analysis in the logits space inspired us 390

more compared to the textual space. Therefore, we 391

recommend that, in addition to observing score dif- 392

ferences, the differences in the logits space should 393

also be considered when evaluating or training mod- 394

els. 395

5.3 The LLMs still answered the original 396

options 397

In this section, we discuss why the Qwen series 398

models exhibited significant performance drops in 399

the CEval dataset with the token set {E,F,G,H}. 400
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LLaMA3-70B LLaMA3.1-70B Qwen1.5-72B Qwen2-72B Qwen2.5-72B
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Figure 4: The scores and the average ACs of LLaMA
70B and Qwen 72B instruct models on the Hellaswag
with the token set {$,&,#,@}. While the score per-
formance of LLaMA and Qwen models is comparable,
there are notable differences in the average AC values.
Specifically, Qwen2.5 version exhibited the highest av-
erage AC, indicating a high level of confidence in its
responses.

We conducted a detailed analysis of the model401

outputs and found the models continued to402

generate the original options (i.e., the token403

set {A,B,C,D}) even though their real token404

set had been altered. An example is shown in405

Figure 6. Table 3 shows the proportion of cases406

where the model outputs the original options (i.e.,407

AOR). To further explore the reason why the408

models answered the original options, we exam-409

ined the ICD between both original and variant410

in the logit space. The main findings are as follows.411

412

ICD and AOR are negatively correlated. We413

compared the AOR and the average ICDs for414

different versions’ instruct models. As shown415

in Table 3, with the iteration of the LLMs, in416

most cases, their AORs demonstrate a gradual417

decline and their ICDs increase at the same time.418

Notably, Qwen2-72B-Instruct’s AOR has actually419

increased even in contrast to its older version.420

Figure 5 also illustrates that the density of the ICD421

around −1.0 has increased in Qwen2-72B-Instruct422

compared to its pre-trained version. These results423

indicate a certain degree of negative correlation424

between AOR and ICD. Moreover, we also finded425

the LLaMA3.1 instructed models (both 8B and426

70B) have a significant drop compared to the 3.0427

versions. This conclusion is consistent with the428

findings that we presented in Section 5.2.429

430

Efficient post-training is benefit for the robust-431

Model
Base Instruct

AOR ICD AOR ICD
Qwen1.5-7B 11.89 35.75 19.91 30.41
Qwen2-7B 43.83 14.13 1.71 84.35

Qwen2.5-7B 3.79 59.68 0.97 93.12
Qwen1.5-72B 22.81 30.41 14.56 64.62
Qwen2-72B 23.03 40.18 16.64 63.12

Qwen2.5-72B 7.43 63.57 0.30 96.45
LLaMA3-8B 0.00 42.26 0.07 78.99

LLaMA3.1-8B 0.00 47.91 0.00 65.81
LLaMA3-70B 0.15 61.67 0.07 92.41

LLaMA3.1-70B 0.00 58.72 0.07 73.83

Table 3: The AOR and ICD for different models on
CEval dataset with the token set {E,F,G,H}. In
most cases, the instruct model exhibited the lower AOR
and the higher ICD than its base version. Moreover,
Qwen and LLaMA exhibit markedly different behaviors.
e.g. Both Qwen2.5 instruct and LLaMA 3.1 instruct
have near-zero AORs, but Qwen2.5 demonstrates higher
ICDs.

Figure 5: The ICD distributions. In all cases, instruct
models exhibited the better performance than their pre-
trained versions. i.e., the density of the ICDs round 1.0
significantly increased.

ness. To further demonstrate the relationship be- 432

tween ICD and AOR, we take a closer look at the 433

differences between the base models and the in- 434

struct models for Qwen and LLaMA series model. 435

As shown in Table 3, for the Qwen series mod- 436

els, although the AOR metric of instruct model 437

decreases with model version iterations, the AOR 438

of the base models remains relatively high with low 439

average ICDs. Post-training is a common method 440

for enhancing model capabilities. As shown in 441
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Prompt:以下是中国关于计算机网络考试的单项选择题，请选出其
中的正确答案。\n使用位填充方法，以01111110为位首flag，数据
为011011111111111111110010，求问传送时要添加几个0____\nE.
1\nF. 2\nG. 3\nH. 4\n答案:

Ground-truth: G

Response: C

Figure 6: A badcase for the CEval dataset with the
token set {E,F,G,H}. The ground-truth label is ‘G’,
but the model answer the ‘C’.

Figure 5, compared with the base models, all the442

instruction-tuned models have a significantly im-443

provement in the average ICD. For example, the444

average ICD of Qwen2-72B-Instruct is 23% higher445

than its pre-trained version. Notably, LLaMA3.1446

has lower average ICD than its 3.0 version both in447

pre-trained model and post-trained model, which is448

consistent with the findings in the second section,449

but the post-training still provided 15% improve-450

ment. These results illustrate the efficient post-451

training can make a significant improvement for452

the robustness of the models. Similar conclusions453

were obtained on other datasets and models as well,454

more details can be found in Appendix A.3.455

6 Conclusion456

In this paper, we have investigated the robustness457

of Large Language Models (LLMs) against label458

variants in MCQs datasets. Extensive experiments459

on various LLMs and datasets show that LLMs gen-460

erally experience a decline in performance when461

the choice tokens are varied. An analysis in the462

logits space revealed that LLMs exhibit a selection463

bias towards different token sets, which can lead to464

reduced confidence in their responses. This find-465

ing indicates that even state-of-the-art models do466

not rely solely on the content of the question when467

answering MCQs, underscoring the importance of468

improving model robustness and conducting robust-469

ness evaluations. Further analysis indicates that the470

selection bias towards the choice token set is re-471

lated to the model size, specifically, smaller models472

exhibit more pronounced selection bias compared473

to larger models. We hypothesize that this is the474

combined effects of the training data and model ca-475

pacity. By comparing the performance of base and476

instruct models, we demonstrated that post-training477

can significantly enhance the robustness of LLMs478

to label variants. This finding has important impli-479

cations for improving the reliability and robustness480

of LLMs in practical applications. Furthermore,481

our study highlights that models with comparable482

performance in textual space can exhibit significant 483

disparities in the logits space. This observation 484

points to the necessary for a more nuanced evalu- 485

ation approach, incorporating logits space analy- 486

ses to capture the full spectrum of model behavior. 487

Overall, our findings contribute valuable insights 488

into the robustness of LLMs to label variants in 489

MCQs dataset, and underscore the importance of 490

evaluating LLM from both textual and logits per- 491

spectives. 492

7 Limitations 493

Our study requires extracting the answer option 494

from the predicted text and relies on the logits out- 495

put by the model. Consequently, our method has 496

the following limitations. 497

Our current evaluation is limited to assessing the 498

logit space of a single token, thus it can only be 499

assessed on the multiple-choice question (MCQ) 500

datasets. In scenarios where the ground-truth la- 501

bel of the prompt comprises multiple tokens, our 502

method will be ineffective. Furthermore, in more 503

complex situations where the ground-truth label 504

is not only one, e.g., mathematical expressions al- 505

ways have multiple valid variants, our method is 506

currently incapable of handling such variability. 507

Additionally, even within MCQ datasets, our ap- 508

proach might encounter failures when the models 509

hava a bad instruction following. 510

Our approach is heavily reliant on the logits out- 511

put by the model, therefore, currently, our evalua- 512

tion can only be applied to the open-source models. 513

This limitation precludes us from further assessing 514

the closed-source models like GPT-4. Moreover, 515

our evaluation does not directly reveal the underly- 516

ing reasons for variations performance in the logit 517

space. In future work, we will further investigate 518

how the training dataset and internal model fea- 519

tures influence the logits and the overall model’s 520

performance. 521

References 522

Norah Alzahrani, Hisham Alyahya, Yazeed Alnumay, 523
Sultan AlRashed, Shaykhah Alsubaie, Yousef Al- 524
mushayqih, Faisal Mirza, Nouf Alotaibi, Nora Al- 525
Twairesh, Areeb Alowisheq, M Saiful Bari, and 526
Haidar Khan. 2024. When benchmarks are targets: 527
Revealing the sensitivity of large language model 528
leaderboards. In Proceedings of the 62nd Annual 529
Meeting of the Association for Computational Lin- 530
guistics (Volume 1: Long Papers), pages 13787– 531

8

https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744
https://doi.org/10.18653/v1/2024.acl-long.744


13805, Bangkok, Thailand. Association for Compu-532
tational Linguistics.533

Baosong Yang An Yang. 2025. Qwen2.5 technical re-534
port. Preprint, arXiv:2412.15115.535

Nishant Balepur, Abhilasha Ravichander, and Rachel536
Rudinger. 2024. Artifacts or abduction: How do537
LLMs answer multiple-choice questions without the538
question? In Proceedings of the 62nd Annual Meet-539
ing of the Association for Computational Linguis-540
tics (Volume 1: Long Papers), pages 10308–10330,541
Bangkok, Thailand. Association for Computational542
Linguistics.543

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango,544
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A More experiment details 683

LLaMA3.1-8B

LLaMA3.1-70B

Qwen1.5-7B

Qwen1.5-72B

Qwen2.5-7B

Qwen2.5-72B

Figure 7: The AC distributions. Supplementary for Figure 3.

A.1 The score details of conducted experiments 684

The performance of different models across various choice token sets and datasets is shown in Table 4. 685

A.2 A Comprehensive Distribution of ACs 686

As shown in Figure 7, in most cases, the label variant will lead to a AC drop, particularly within the token 687

set {$,&,#,@}. Interestingly, the AC of Qwen2.5-72B-Instruct on HellaSwag with the variant token 688

sets is even higher than that of the original token set {A,B,C,D}. 689
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Model
MMLU CEval Hellaswag

ABCD EFGH 1234 $&#@ ABCD EFGH 1234 $&#@ ABCD EFGH 1234 $&#@

Qwen1.5-7B 61.97 59.33 60.26 56.33 72.18 58.81 68.42 63.25 67.44 66.79 65.49 55.27
Qwen2-7B 70.89 69.12 70.14 66.0 83.0 81.02 81.5 78.92 78.91 77.08 77.89 69.5
Qwen2.5-7B 74.32 72.6 73.8 70.96 78.76 77.18 78.52 73.75 81.17 81.2 82.25 77.16
Qwen1.5-72B 77.36 76.08 76.66 75.7 84.21 71.62 83.97 80.22 87.78 86.72 87.63 84.83
Qwen2-72B 82.76 81.45 82.15 81.24 88.94 77.83 89.52 88.32 91.42 90.29 87.33 88.87
Qwen2.5-72B 84.21 83.31 83.25 81.92 89.3 87.71 88.69 84.84 90.6 89.98 89.91 89.32

LLaMA3-8B 68.27 67.26 67.19 65.53 53.86 52.01 53.75 50.97 74.64 74.78 72.35 65.36
LLaMA3.1-8B 69.24 67.83 68.81 64.46 55.64 55.42 55.08 52.9 75.32 71.84 73.0 62.87
LLaMA3-70B 80.99 79.81 80.08 78.24 66.97 67.46 67.0 64.89 88.71 88.2 87.39 86.57
LLaMA3.1-70B 82.28 81.55 81.42 78.73 69.14 69.82 68.86 66.6 86.53 87.5 85.77 86.2

Table 4: The performance of different models across various choice token sets and datasets.

A.3 A Comprehensive Distribution of ICDs690

As shown in Figure 8, Figure 9, and Figure 10, in all cases, the pre-trained base model exhibited an691

increase in ICD after post-training, i.e., the density of ICD around 1.0 increased.692

Figure 8: The ICD distributions. Supplementary for Figure 5 on the CEval dataset with the token set {E,F,G,H}.
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Figure 9: The ICD distributions. Supplementary for Figure 5 on the CEval dataset with the token set {1, 2, 3, 4}.
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Figure 10: The ICD distributions. Supplementary for Figure 5 on the CEval dataset with the token set {$,&,#,@}.
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