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Abstract

The widespread use of Large Language Models
(LLMs) has made the robustness emerge as a
critical metric in LLM evaluation. Multiple-
choice questions(MCQs) constitute a signifi-
cant form of LLM evaluation, which under-
scores the importance of studying the robust-
ness of LLMs to MCQs. While there has
been considerable research on the robustness of
LLMs, the majority of these studies have been
conducted as black-box assessments in the tex-
tual space. In this paper, we further evaluated
the robustness of LLMs to label variants in the
logits space. Our experiments on 3 datasets
and 10 models show that LLMs exhibit a sig-
nificant selection bias towards different choice
token sets, meaning that variant choice options
can alter the model’s confidence in answering
questions. In particular, the smaller size mod-
els exhibit more pronounced selection bias. We
also found that post-training can significantly
enhance model robustness to label variants af-
ter comparing the base version and the instruct
version of different LLMs. The results demon-
strate that the evaluation in the logits space can
tell us more about LLMs.

1 Introduction

Since the advent of ChatGPT, large language mod-
els (LLMs) have undergone rapid development,
with their capabilities continuously improving.
These LLMs have achieved remarkable results in
various fields, such as text generation and math-
ematical reasoning. Notable LLMs include the
closed-source models GPT-4 (OpenAl, 2024) and
Gemini (Google, 2024), as well as the open-source
models Qwen (An Yang, 2025), LLaMA (Meta,
2024), and DeepSeek (DeepSeek-Al, 2024).

The rapid advancement of LLMs has also intro-
duced several issues, which present new challenges
for LLM evaluation. For example, LLMs may ex-
perience testing data leakage (Deng et al., 2024;

Balloccu et al., 2024) or specifically optimization
for particular evaluation datasets, which can lead to
inflated scores on the evaluation set, resulting in the
invalidation of leaderboards (Zhou et al., 2023; Shi
et al., 2024). To address these issues, researchers
have proposed a variety of robustness evaluation
methods that introduce perturbations to the datasets
(Zhu et al., 2024b; Yang et al., 2024). The results
indicated that even the state-of-the-art LLMs may
exhibit significant performance decline on these
datasets, demonstrating the poor robustness of ex-
isting LLMs (Wang et al., 2023b; Pezeshkpour and
Hruschka, 2024). For instance, several studies have
shown that LLMs exhibit position bias or token bias
in handling MCQs (Zheng et al., 2024; Li et al.,
2024b).

However, while these studies effectively evaluate
model capabilities, the majority adopted a black-
box approach, i.e., relying solely on score differ-
ences in the textual space. In fact, an effective
evaluation should not only assess the model’s tex-
tual score but also facilitate model optimization,
and it is widely acknowledged that evaluating in
the logits space can offer more insights for the re-
searchers, particularly for the trainers.

In this paper, we investigate the robustness
of LLMs against label variants in three MCQs
datasets, specifically by replacing the original
choice options with different choice token sets. We
conducted extensive experiments on various LLMs
in the logits space and identified some intriguing
conclusions. Our main contributions are as follows:

1. LLMs generally experience performance
drops with label variants. An analysis in the logits
space indicates that LLMs exhibit selection bias
towards different token sets, whereby specific to-
ken sets can lead to reduced confidence in their
responses.

2. This selection bias towards the choice token
set is related to the model size, with smaller models
exhibited more pronounced selection bias.
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Figure 1: The overview of our robustness evaluation for the label variant. For example in the figure, the
variant token set { £, F, G, H} of choices instead of the original token set { A, B, C\, D}. We consider the LLMs to
potentially exhibit the following three scenarios: (1). The model can accurately answer the correct option (¢.e., ‘F"),
without a significant drop in the confidence of its choice. (2). The model’s answer is correct but its confidence has a
significant drop. (3). The model selects a wrong answer (e.g., ‘B’) and has a low confidence for it at the same time.

3. LLMs with similar performance in the tex-
tual space can be quite different in the logits space,
which underscores the necessity of evaluating mod-
els in the logits space.

4. By analyzing the performance of the base
and instruct models, we found that post-training
can enhance the robustness of the models to label
variants.

2 Related Work

LLMs are undergoing rapid development, making
the effective evaluation of LLMs a critical area of
research (Chang et al., 2023). Numerous studies
have highlighted the issue of data leakage in cur-
rent LLMs, leading to unreliable rankings on LLM
leaderboards (Deng et al., 2024; Zhou et al., 2023;
Balloccu et al., 2024; Shi et al., 2024). This has
underscored the need for evaluations that measure
the robustness and true capabilities of LLMs.
Recently, there is a significant body of research
focused on evaluating the robustness of LLMs.
(Wang et al., 2023a) and (Chai et al., 2024) re-
spectively investigated the impact of word-level
and token-level perturbations on the performance
of LLMs. The results indicate that LLMs are not
robust to such perturbations. (Zhu et al., 2024a) de-
veloped a prompt benchmark to evaluate the impact
of different prompts on LLMs. (Shi et al., 2023) in-
vestigated the impact of distracting information on
the performance of LLMs, and the results indicate
that LLMs are highly susceptible to interference

from irrelevant context. (Li et al., 2024a; Hong
et al., 2024) applied perturbations to mathemati-
cal and code datasets to evaluate the robustness of
LLMs in mathematical and coding.

MCQs serve as a crucial assessment format for
evaluating the LLMs, due to their ease of construc-
tion and assessment (Robinson and Wingate, 2023).
Several studies have been conducted on the robust-
ness of LLMs in handling MCQs. (Zheng et al.,
2024; Alzahrani et al., 2024; Pezeshkpour and Hr-
uschka, 2024) showed that LLMs commonly ex-
hibit token bias and position bias in MCQs, tending
to select specific tokens or option in specific posi-
tion (such as "A" or the option in the first position).
(Li et al., 2024b) found that the positional prefer-
ences in LLMs remain consistent across datasets,
demonstrating through a self-constructed dataset.
(Balepur et al., 2024) found that LLMs possess
the capability to answer based solely on the op-
tions provided, and suggested that this approach
is a stronger baseline than a majority baseline for
MCQs.

While substantial research focuses on LLLM ro-
bustness in MCQs, most studies employ a black-
box approach, analyzing model behaviour within
the token space, which offers limited insights. In-
spired by existing methods, our study systemati-
cally analyzes the robustness of LLMs against dif-
ferent choice tokens and interprets the anomalous
behaviors of models from the logits space.



3 Methodology

3.1 Preliminaries

The Robustness Benchmark. Constructing the
robustness benchmark is one of the key steps for
the robustness evaluation. Let D = {(p;, g:)} ¥,
denotes the original benchmark (i.e., testing
set), where p; € P is i-th prompt, and g; is
its ground-truth label. To assess the robust-
ness of model M, the evaluators will generate
the robustness benchmark D = {(p,§)|p =
Fp(p),g = Fa(g), (p,g) € D}} with the textual
perturbations, where Fp and F respectively are
the specific functions to perturb the prompts and
the labels.

Evaluator’s Goal. A common goal for the eval-
uators is to examine the impact of prompt per-
turbations on model performance. Recent re-
search(Chang et al., 2024) have introduced lots of
evaluation methods from different perspectives in
the textual space. In this paper, we further expand
the evaluation space to the logits space. Specifi-
cally, we focus on the label variant method on the
MCQ benchmarks following the existing works
(Alzahrani et al., 2024).

3.2 Label Variant

Label variant is one of the useful methods to assess
the robustness on the MCQ benchmarks. Specifi-
cally, this method perturbs the prompt by modify-
ing the choice token set 7. the choice options (i.e.,
the choice options in the question) and changes
its ground-truth label to the corresponding variant
version at the same time. For example, existing
work(Alzahrani et al., 2024; Meta, 2024) modified
the original choice token set { A, B, C, D} to the or-
dered numerical token set {1, 2, 3,4}, and the com-
mon language independent token set {$, &, #, @}
whose order is not implicitly relative. To further
examine the models’ robustness for the label vari-
ant, we additionally constructed the benchmark
with 7. = {E, F, G, H}, as we consider this token
set has a closer distance to the original token set.
Our intuition is that the model will exhibit differ-
ent performance of the robustness on the different
similarities between the variant token set and the
original token set. The example for the label variant
prompt can be seen in Figure 2.

Prompt 3.1: original choice token set {4,B,C,D}

Question: q
Choices:\nA. ¢, \nB. ¢, \nC. ¢; \nD. ¢,
Answer: B

Prompt 3.2: variant choice token set {E,F,G,H}

Question: q
Choices:\nE. ¢, \nF. ¢, \nG. ¢; \nH. c,
Answer: F

Prompt 3.3: variant choice token set {1,2,3,4}

Question: q
Choices:\nl. ¢, \n2. ¢, \n3. ¢; \n4. ¢,
Answer: 2

Prompt 3.4: variant choice token set {$, &, # @}

Question: q
Choices:\n§. ¢, \n&. ¢, \n#. c; \n@. ¢,
Answer: &

Figure 2: The example for the original prompt and
the variant prompt.

3.3 Logits Space Evaluation

We define the confidence of the token in the pre-
dicted text as the highest value in its corresponding
logit (z.e., the probabilities vector that the model
predicted). Considering the predicted text always
contains the tokens that are not the final answer
(e.g., CoT), similar to existing textual evaluation
methods(Chang et al., 2024), we employ the post-
processing function f(¢) to extract the final answer
option token, where £ is the predicted text. Please
note there is not a one-to-one correspondence be-
tween the option character and its token, in fact,
we will map the answer option to its corresponding
token after the post-processing.

For label variant method, one of the limitations
of the textual evaluation method is that once
inference can’t accurately reflect the robustness
of the model. In other words, in spite of the
model can output the correct answer option in
the inference stage, the confidence of the answer
option may have a significant drop. As mentioned
in Section 3.1, to achieve an accurate assessment
of with robustness with lower costs, we further
utilized the logit of the answer option token
(dubbed ‘answer logit’) to assess the robustness of
the models from the two following perspective.



the Confidence of the Answer option (AC). The
model’s confidence in the answer token can reflect
its robustness. We defined AC as the maximum
value in the answer logit vector. The AC can be
formulated as follows:

AC = C(y) = max(vans) (1)

where C(y) denotes the confidence of the answer
token y, and v, is the answer logit vector. For
example, by comparing the original dataset’s AC to
the variant dataset, we can evaluate the confidence
changes brought by the label variant.

the Inner Confidence Distance (ICD). We futher
introduce the Inner Confidence Distance (ICD),
which denotes the distance between the variant
token and the original token in the answer logit.
The ICD can be formulated as follows:

ICD = {C(Fa(y)) —Cy), ifyeT,
Cly) - C(F5' W), ifye T

y=f(t)

2)
where C(x) denotes the confidence of the token
x in the answer logit and F, 1 is the inverse
process of Fg. T2 is the original token set
{A,B,C,D}, and 7% is the variant version
(e.g., {E, F,G, H}). If the answer option belong
to the variant token set 7", the ICD will be
positive; otherwise, it will be negative. The robust
model should confidently provide a variant option
as an answer. In other words, the higher the ICD,

the robust the model.

4 Experimental Setup

In this section, we describe the setting of our ex-
periments. We provide detailed information on the
benchmarks used for evaluation, the LLMs evalu-
ated, and the evaluation methods employed in our
experiments.

4.1 Benchmarks

To investigate the impact of label variants, we
selected the current mainstream benchmarks, all of
which are in the form of multiple-choice questions.
To eliminate the impact of language on the results,
we included datasets in both English and Chinese.
The three datasets we ultimately selected are as

follows:

MMLU Massive Multitask Language Under-
standing (MMLU) is a comprehensive English
knowledge benchmark that covers a wide range of
domains, with questions in multiple-choice format
(Hendrycks et al., 2021).

HellaSwag Hellaswag is a dataset for common-
sense natural language inference, designed to
challenge machines to identify the most likely
continuation of an event description (Zellers et al.,
2019).

C-Eval C-Eval is a comprehensive Chinese knowl-
edge dataset that encompasses a wide range of
categories and varying levels of difficulty. The
questions in the dataset are presented in a multiple-
choice format (Huang et al., 2023).

4.2 Evaluation Metric.

Following the existing works(Li et al., 2024b), we
first utilized the textual score to evaluate the per-
formance of the model. We adopt the Ratio of the
model’s Answer to the Original options (AOR) to
further evaluate the predicted text. Moreover, as we
mentioned in Section3.3, we also utilized the AC
and the ICD to evaluate the robustness of the mod-
els. Notably, in general, we adopted their average
values for assessment.

4.3 Considered LLMs

Since our method relies on the logit in models, we
considered two series of open-source models, in-
cluding Qwen and LLaMA. For the Qwen series
model, We evaluated both the 7B and 72B models
for versions 1.5, 2.0 and 2.5. As for LLaMA se-
ries, we assessed both the 8B and 70B models for
versions 3.0 and 3.1. Furthermore, we conducted
comparisons on the pre-trained (base) version and
the instruction-tuned (instruct) version. More de-
tails can be found in Appendix A.1.

4.4 Performance Evaluation

We evaluate each model on MMLU'’s testing set
with 14042 prompts and CEval’s validation set
which contains 1346 prompts. For each prompt on
these two datasets, we use 5-shot settings. For Hel-
laSwag, we use its testing set with 10042 propmts
and select zero-shot setting for assessment. For
each model, we set the temperature to 0 to eliminate
the impact of randomness, and use vLLM(Kwon



Model MMLU CEval Hellaswag

EFGH 1234 $&#@ EFGH 1234 $&#@ EFGH 1234 $&#@
Qwenl.5-7B 263  -1.71 -563 -1338 -3.77 -894 -0.65 -195 -12.17
Qwen2-7B -1.77  -075 -489 -198 -149 -407 -1.82 -1.03 -94I
Qwen2.5-7B -1.72 -0.52 -335  -158 -024 -501 +0.03 +1.08 -4.02
Qwenl.5-72B -1.28  -0.7 -1.66 -12.59 -024 -399 -1.07 -0.15 -297
Qwen2-72B -1.31 -0.61 -1.52  -11.11 +0.58 -0.63 -1.14 -4.09 -2.55
Qwen2.5-72B -090 -097 -229 -159 -061 -446 -062 -0.69 -1.29
LLaMA3-8B -1.02  -1.09 -2.74 -185 -0.11 -2.89 +0.14 -229 -9.28
LLaMA3.1-8B  -14 -043 478 021 -056 -274 -346 -2.32 -1245
LLaMA3-70B -1.17 091 -2.75 +049 +0.03 -2.08 -0.51 -1.32 -2.14
LLaMA3.1-70B -0.73 -0.86 -3.55 +0.67 -028 -2.54 4097 -0.76 -0.33

Table 1: The textual score gaps of different models on the variant choice token sets. The red color denotes
the score drop is bigger than 5.0. We found that the label variants generally lead to a score decline in the
models’ performance, even with similar token sets (e.g., { E, F, G, H}). Different models always exhibited varying
sensitivities to specific token sets across different datasets (e.g., Qwen series on CEval-{E, F, G, H} and LLaMA

series on MMLU-{$, &, #, @}).

et al., 2023) to accelerate inference. All the experi-
ments were conducted on NVIDIA A100 GPUs.

5 Results & Analysis

In this section, we will present the key findings
from our extensive experiments (detailed in Section
3) and provide further analysis of some intriguing
observations from the logits space. More compre-
hensive details and results of the experiments can
be found in the Appendix A.

5.1 The label variant is detrimental to the
model’s performance.

Following the existing work(Alzahrani et al., 2024;
Meta, 2024), we first reviewed the performance of
the instruction-tuned model’s robustness in the tex-
tual space, and additionally evaluated the token set
{E,F,G,H}. As shown in Table 1, most LLMs
exhibited varying degrees of performance drops
on the testing sets modified with different token
sets. Moreover, we observed that the models are
differently sensitive to the different label variant
datasets. For example, the large size Qwen series
models and LLaMA series models have more sig-
nificant score drops than their small size versions
on the Hellaswag with the token set {$, &, #, @}.
Despite the token set { £, F, G, H } having a higher
similarity with the original token set { A, B, C, D},
the score drops of some Qwen series models are
still bigger than 11%.

As we mentioned in Section 3.3, to avoid the

Models ABCD $&#@ Gap
Qwen2-7B 0.90 0.65 -0.25
Qwen2-72B 0.93 0.79 -0.14
LLaMA3-8B 0.91 0.57 -0.34
LLaMA3-70B  0.98 0.70  -0.28

Table 2: The AC gap between the token set

{$, &, #, @} and the token set {A, B, C, D} for dif-
ferent size models on the HellaSwag dataset. The re-
sults indicate that smaller models exhibit a significantly
larger AC gap compared to their larger counterparts,
reflecting a more pronounced token set selection bias in
the smaller models.

limitations of the textual score, we further exam-
ined the distribution of AC for the models. As
shown in Figure 3, we found that for most cases,
even those without significant score drops in the
textual space, the AC distribution of the token set
{8, &, #,@Q} tends to be more dispersed, while
others are concentrated around a high probabil-
ity. The complete AC distribution can be found
in Appendix A.2. Based on this observation, we
hypothesized that LLMs might exhibit a selection
bias towards different token sets. These findings
preliminarily demonstrated that the label variant
methods can lead to the robustness performance
drops for LLMs. More details will be discussed in
the following parts.
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Figure 3: The AC distributions. We utilized Kernel Density Estimation (KDE) to illustrate the AC distributions
across various instruction-tuned models and datasets. The higher density near 1.0 on the x-axis, the better the
model’s performance on the dataset. For example, in most cases, the original token set {A, B, C, D} exhibited

higher ACs than others.

5.2 The relationship between model size and
selection bias

Based on the findings in Section 5.1, we further in-
vestigated the relationship between model size and
selection bias in the logits space. We calculated
the gap between the performance on the token set
{8, &, #, @} and the token set {A, B,C, D} for
different size models across various datasets. As
shown in Table 2, the results indicated that both
Qwen and LLaMA exhibit a consistent pattern with
respect to model size on the HellaSwag. Specifi-
cally, smaller models show a larger performance
gap compared to their larger counterparts within
the same series, suggesting that smaller models
exhibit more pronounced selection bias.

The underlying causes for the more pronounced
selection bias observed in smaller models remain
uncertain. As can be observed from the Figure 4,
the behaviour of Qwen and LLaMA is consistent,
despite variations in their training data. We hypoth-
esize that this phenomenon may be attributed to
two main factors: the quantity of training data and
model capacity (number of parameters), as larger
models typically benefit from more extensive train-
ing data, and powerful model capacity.

Furthermore, we observed that despite large-
sized models exhibiting similar scores and score
gaps in the textual space, there are significant dif-
ferences when viewed from the perspective of the
logits space. As illustrated in Figure 5.2, we used
the HellaSwag dataset as an example to compare
the scores and response confidence levels of the
LLaMA and Qwen large-size models. It is evi-
dent that although the performance of LLaMA and
Qwen is comparable, the AC of LLaMA is no-
tably lower than that of Qwen. As the version
of the Qwen series is updated from 1.5 to 2.5,
both their scores and AC progressively increase,
whereas LLaMA shows a slight decline from 3 to
3.1. This analysis in the logits space inspired us
more compared to the textual space. Therefore, we
recommend that, in addition to observing score dif-
ferences, the differences in the logits space should
also be considered when evaluating or training mod-
els.

5.3 The LLMs still answered the original
options
In this section, we discuss why the Qwen series

models exhibited significant performance drops in
the CEval dataset with the token set { £, F, G, H }.
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Figure 4: The scores and the average ACs of LLaMA
70B and Qwen 72B instruct models on the Hellaswag
with the token set {$, &, #, @}. While the score per-
formance of LLaMA and Qwen models is comparable,
there are notable differences in the average AC values.
Specifically, Qwen2.5 version exhibited the highest av-
erage AC, indicating a high level of confidence in its
responses.

We conducted a detailed analysis of the model
outputs and found the models continued to
generate the original options (i.e., the token
set {A, B,C, D}) even though their real token
set had been altered. An example is shown in
Figure 6. Table 3 shows the proportion of cases
where the model outputs the original options (¢.e.,
AOR). To further explore the reason why the
models answered the original options, we exam-
ined the ICD between both original and variant
in the logit space. The main findings are as follows.

ICD and AOR are negatively correlated. We
compared the AOR and the average ICDs for
different versions’ instruct models. As shown
in Table 3, with the iteration of the LLMs, in
most cases, their AORs demonstrate a gradual
decline and their ICDs increase at the same time.
Notably, Qwen2-72B-Instruct’s AOR has actually
increased even in contrast to its older version.
Figure 5 also illustrates that the density of the ICD
around —1.0 has increased in Qwen2-72B-Instruct
compared to its pre-trained version. These results
indicate a certain degree of negative correlation
between AOR and ICD. Moreover, we also finded
the LLaMA3.1 instructed models (both 8B and
70B) have a significant drop compared to the 3.0
versions. This conclusion is consistent with the
findings that we presented in Section 5.2.

Efficient post-training is benefit for the robust-

Model Base Instruct

AOR ICD AOR 1ICD
Qwenl.5-7B 11.89 35.75 1991 3041
Qwen2-7B 4383 14.13 1.71 84.35
Qwen2.5-7B 3,79  59.68 097 93.12
Qwenl.5-72B 2281 3041 1456 64.62
Qwen2-72B 23.03 40.18 16.64 63.12
Qwen2.5-72B 743  63.57 030 96.45
LLaMA3-8B 0.00 4226 0.07 78.99
LLaMA3.1-8B  0.00 4791 0.00 65.81
LLaMA3-70B 0.15 61.67 0.07 9241
LLaMA3.1-70B 0.00 58.72 0.07 73.83

Table 3: The AOR and ICD for different models on
CEval dataset with the token set {F, F, G, H}. In
most cases, the instruct model exhibited the lower AOR
and the higher ICD than its base version. Moreover,
Qwen and LLaMA exhibit markedly different behaviors.
e.g. Both Qwen2.5 instruct and LLaMA 3.1 instruct
have near-zero AORs, but Qwen2.5 demonstrates higher
ICDs.
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Figure 5: The ICD distributions. In all cases, instruct
models exhibited the better performance than their pre-
trained versions. ¢.e., the density of the ICDs round 1.0
significantly increased.

ness. To further demonstrate the relationship be-
tween ICD and AOR, we take a closer look at the
differences between the base models and the in-
struct models for Qwen and LLaMA series model.
As shown in Table 3, for the Qwen series mod-
els, although the AOR metric of instruct model
decreases with model version iterations, the AOR
of the base models remains relatively high with low
average ICDs. Post-training is a common method
for enhancing model capabilities. As shown in



Prompt: LA T2 # [F X Tt EALW 4 & A 2k 470, Ek i
PHEFHAR. \nfE AME K F %, LLOLI11110 4 & flag, HIE
A011011111111111111110010, 3K 3] 4 3% B B A fw JLAS0_ \nE.
1\nF. 2\nG. 3\nH. 4\n&%:

Ground-truth: G

Response: C

Figure 6: A badcase for the CEval dataset with the
token set { £, F', G, H}. The ground-truth label is ‘G’,
but the model answer the ‘C’.

Figure 5, compared with the base models, all the
instruction-tuned models have a significantly im-
provement in the average ICD. For example, the
average ICD of Qwen2-72B-Instruct is 23% higher
than its pre-trained version. Notably, LLaMA3.1
has lower average ICD than its 3.0 version both in
pre-trained model and post-trained model, which is
consistent with the findings in the second section,
but the post-training still provided 15% improve-
ment. These results illustrate the efficient post-
training can make a significant improvement for
the robustness of the models. Similar conclusions
were obtained on other datasets and models as well,
more details can be found in Appendix A.3.

6 Conclusion

In this paper, we have investigated the robustness
of Large Language Models (LLMs) against label
variants in MCQs datasets. Extensive experiments
on various LLMs and datasets show that LLMs gen-
erally experience a decline in performance when
the choice tokens are varied. An analysis in the
logits space revealed that LLMs exhibit a selection
bias towards different token sets, which can lead to
reduced confidence in their responses. This find-
ing indicates that even state-of-the-art models do
not rely solely on the content of the question when
answering MCQs, underscoring the importance of
improving model robustness and conducting robust-
ness evaluations. Further analysis indicates that the
selection bias towards the choice token set is re-
lated to the model size, specifically, smaller models
exhibit more pronounced selection bias compared
to larger models. We hypothesize that this is the
combined effects of the training data and model ca-
pacity. By comparing the performance of base and
instruct models, we demonstrated that post-training
can significantly enhance the robustness of LLMs
to label variants. This finding has important impli-
cations for improving the reliability and robustness
of LLMs in practical applications. Furthermore,
our study highlights that models with comparable

performance in textual space can exhibit significant
disparities in the logits space. This observation
points to the necessary for a more nuanced evalu-
ation approach, incorporating logits space analy-
ses to capture the full spectrum of model behavior.
Overall, our findings contribute valuable insights
into the robustness of LL.Ms to label variants in
MCQs dataset, and underscore the importance of
evaluating LL.M from both textual and logits per-
spectives.

7 Limitations

Our study requires extracting the answer option
from the predicted text and relies on the logits out-
put by the model. Consequently, our method has
the following limitations.

Our current evaluation is limited to assessing the
logit space of a single token, thus it can only be
assessed on the multiple-choice question (MCQ)
datasets. In scenarios where the ground-truth la-
bel of the prompt comprises multiple tokens, our
method will be ineffective. Furthermore, in more
complex situations where the ground-truth label
is not only one, e.g., mathematical expressions al-
ways have multiple valid variants, our method is
currently incapable of handling such variability.
Additionally, even within MCQ datasets, our ap-
proach might encounter failures when the models
hava a bad instruction following.

Our approach is heavily reliant on the logits out-
put by the model, therefore, currently, our evalua-
tion can only be applied to the open-source models.
This limitation precludes us from further assessing
the closed-source models like GPT-4. Moreover,
our evaluation does not directly reveal the underly-
ing reasons for variations performance in the logit
space. In future work, we will further investigate
how the training dataset and internal model fea-
tures influence the logits and the overall model’s
performance.
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Figure 7: The AC distributions.
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Supplementary for Figure 3.

The performance of different models across various choice token sets and datasets is shown in Table 4.

A.2 A Comprehensive Distribution of ACs

As shown in Figure 7, in most cases, the label variant will lead to a AC drop, particularly within the token
set {$, &, #, @}. Interestingly, the AC of Qwen2.5-72B-Instruct on HellaSwag with the variant token

sets is even higher than that of the original token set {A, B, C, D}.
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Model MMLU CEval Hellaswag
ABCD EFGH 1234 $&#@ ABCD EFGH 1234 $&#@ ABCD EFGH 1234 $&#@

Qwenl.5-7B 6197 5933 6026 5633 72.18 5881 6842 6325 6744 66.79 6549 5527
Qwen2-7B 70.890  69.12 70.14 66.0 83.0 81.02 815 7892 7891 77.08 77.89 69.5
Qwen2.5-7B 7432 72.6 73.8 7096 7876  77.18 7852 7375 81.17 812 8225 77.16
Qwenl.5-72B 77136  76.08 76.66 75.7 8421 71.62 8397 8022 8778 86.72 87.63 84.83
Qwen2-72B 8276 8145 82.15 81.24 8894 77.83 89.52 8832 9142 9029 87.33 88.87
Qwen2.5-72B 8421 8331 8325 8192 893 87.71 88.69 84.84 90.6 89.98 8991 89.32
LLaMA3-8B 6827 6726 67.19 6553 5386 52.01 5375 50.97 74.64 7478 7235 6536
LLaMA3.1-8B 6924 6783 68.81 6446 5564 5542 55.08 529 7532 71.84 730 6287
LLaMA3-70B 80.99 79.81 80.08 78.24 6697 6746 67.0 6489 8871 88.2 87.39 86.57
LLaMA3.1-70B 8228 81.55 81.42 7873 69.14 69.82 68.86 66.6 86.53 875 85.77 86.2

Table 4: The performance of different models across various choice token sets and datasets.

A.3 A Comprehensive Distribution of ICDs

As shown in Figure 8, Figure 9, and Figure 10, in all cases, the pre-trained base model exhibited an
increase in ICD after post-training, i.e., the density of ICD around 1.0 increased.
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Figure 8: The ICD distributions. Supplementary for Figure 5 on the CEval dataset with the token set { F, F', G, H }.
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Figure 10: The ICD distributions. Supplementary for Figure 5 on the CEval dataset with the token set {$, &, #, @Q}.
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