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Abstract

We cast real-world humanoid control as a next token prediction problem, akin to
predicting the next word in language. Our model is a causal transformer trained
via autoregressive prediction of sensorimotor sequences. To account for the multi-
modal nature of the data, we perform prediction in a modality-aligned way, and
for each input token predict the next token from the same modality. This general
formulation enables us to leverage data with missing modalities, such as videos
without actions. We train our model on a dataset of sequences from prior neural
network policies, model-based controllers, motion capture, and YouTube videos of
humans. We show that our model enables a real humanoid robot to walk in San
Francisco zero-shot. Our model can transfer to the real world even when trained
on only 27 hours of walking data, and can generalize to commands not seen during
training. These findings suggest a promising path toward learning challenging
real-world control tasks by generative modeling of sensorimotor sequences.

1 Introduction

The last decade of artificial intelligence (AI) has shown that large neural networks trained on diverse
datasets from the Internet can lead to impressive results across different settings. The core enablers of
this wave of AI have been large transformer models [37] trained by generative modeling of massive
quantities of language data from the Internet [26, 6, 27, 4]. By predicting the next word, these models
acquire rich representations of language that can be transferred to downstream tasks [26], perform
multi-task learning [27, 25], and learn in a few-shot manner [4].

Are such modeling techniques exclusive to language? Can we learn powerful models of sensory and
motor representations in a similar fashion? Indeed, we have seen that we can learn good representa-
tions of high-dimensional visual data by autoregressive modeling [5] and related masked modeling
approaches [11]. While there has been positive signal on learning sensorimotor representations in the
context of manipulation [28], this area remains largely unexplored.

In this paper, we cast humanoid control as data modeling of large collections of sensorimotor
trajectories. Like in language, we train a general transformer model to autoregressively predict
shifted input sequences. In contrast to language, the nature of data in robotics is different. It is high-
dimensional and contains multiple input modalities. Different modalities include sensors, like joint
encoders or inertial measurement units, as well as motor commands. These give rise to sensorimotor
sequences which we view as the sentences of the physical world. Adopting this perspective suggests
a simple instantiation of the language modeling framework in the robotics context. We tokenize
the input sequences and train a causal transformer model to predict shifted tokens. Importantly, we
predict complete input sequences, including both sensory and motor tokens. In other words, we are
modeling the joint data distribution as opposed to the conditional action distribution.
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Figure 1: A humanoid that walks in San Francisco. We deploy our model to the robot and test it in
various locations in San Francisco over the course of one week. Please see our project page for videos.
We show that our model enables the humanoid walk over different surfaces including walkways,
concrete, asphalt, tiled plazas, and sanded roads. Our model can follow omnidirectional velocity
commands well and enables deployment in a challenging city environment like San Francisco.
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Our core observation is that if a sequence is incomplete, i.e., some of the sensory or motor information
is missing, we can still learn from it by predicting whatever information is present and replacing the
missing tokens with learnable mask tokens. The intuition is that if the model has learned to make
good predictions, even in the absence of information, it will have acquired a better model of the
physical world. An important source of such data are human videos from the Internet. Namely, we
can observe human movement in videos but we do not get access to the motor commands or complete
sensory inputs. We demonstrate that our method can learn from such data sources effectively.

To validate our method, we apply it to the challenging task of real-world humanoid locomotion
using a full-sized humanoid robot Digit. We first construct a dataset of sensorimotor trajectories in
simulation. These include complete trajectories from a neural network policy trained with reinforce-
ment learning [29], as well as incomplete trajectories from three different sources: (i) model-based
controller, (ii) motion capture of humans, and (iii) videos of humans. We reconstruct human videos
by using computer vision techniques and approximately retarget both the motion capture and video
sequences via inverse kinematics. We then train an autoregressive transformer to model this dataset.
At test time, we execute the actions autoregressively and ignore the sensory predictions.

We demonstrate that our model can be deployed in the real world zero-shot and walk on different
surfaces. Specifically, deploy our model across a range of different locations in San Francisco over
the course of one week. Please see Figure 1 for examples and our project page for videos. To
quantitatively evaluate different aspects of our approach, we perform an extensive study in simulation.
We find that our autoregressive models trained from offline data alone can be comparable to the
state-of-the-art approaches that use reinforcement learning [29] in tested settings. We further find that
our approach can readily benefit from incomplete trajectories and has favorable scaling properties.
We encourage the readers to see the arXiv for additional experiments and ablations.

These findings suggest a promising path toward learning challenging real-world robot control tasks
by generative modeling of large collections of sensorimotor trajectories.

2 Related Work

Generative models. Generative models have been studied extensively, starting from Shannon’s
work [33] to the modern era of large language models [4]. Various such models emerged over the last
decade. Examples include GAN [10] and Diffusion models [35, 14] for generating pixels, LSTM [15]
and GPT [26] for generating language tokens. These models have been adopted for other modalities
as well [23, 9, 38]. Among these, autoregressive transformer models became the front runner, due to
the impressive scaling behaviors [17] and ability to learn from in-context examples [3]. They have
been successfully extended to other modalities as well, such as vision [5] and vision-language [32].
We explore autoregressive generative models in the context of real-world humanoid locomotion.

Transformers in robotics. Following the success of transformer models [37] in natural language
processing [26, 6, 27, 3] and computer vision [7, 11], over the last few years, there has been an
increased interest in using transformer models in robotics. We have seen several works showing that
transformers can be effective with behavior cloning. For example, [34] learns multi-task transformer
policies with language, while [2] trains language-conditioned manipulation policies from large-
scale data. [8] trains language models with embodied data. We have also seen that transformer
policies can be effective for large-scale reinforcement learning [29] as well. [28] learns sensorimotor
representations with masked prediction. [1] trains goal-conditioned policies from demonstrations.
Like this body of work, we share the goal of using transformer models for robotics but focus on
autoregressive modeling of diverse trajectories for real-world humanoid locomotion.

Humanoid locomotion. Legged locomotion has been a long-standing challenge in robotics. Hu-
manoid locomotion is particularly challenging and has been studied extensively over the the past
several decades [18, 13]. Stable locomotion behaviors have been achieved through model-based
control approaches [30, 16], while the optimization-based methods can further enable highly dynamic
humanoid motions [19]. Although significant progress has been made, learning-based approaches
have the potential to facilitate future progress due to their potential to improve from data and general-
ize to new environments. Recently, we have seen that a purely learning based approach trained with
large-scale reinforcement learning in simulation can enable real-world humanoid locomotion [29]. We
use the same architecture, an autoregressive transformer, but propose a different training procedure.
Specifically, we train the model with sequence modeling instead of reinforcement learning.
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Figure 2: Humanoid locomotion as next token prediction. We collect a dataset on trajectories
from various sources, such as from neural network policies, model-based controllers, human motion
capture, and YouTube videos of humans. Then we use this dataset to train a transformer policy by
autoregressive modeling of observations and actions. Our transformer allows a humanoid to walk
zero-shot on various terrains around San Francisco. Please see our project page for video results.

3 Approach

In this section, we assume a dataset D of sensorimotor trajectories T and describe our approach.

3.1 Objective

Each sensorimotor trajectory is a sequence of observations, such as joint positions, and actions: T =
(o1, a1, o2, a2, ..., oT , aT ). We first tokenize the sequence into K tokens to obtain t = (t1, t2, ..., tK).
Our goal is to train a neural network to model the density function p(t) autoregressively:

p(t) =

K∏
k=1

p(tk|tk−1, ..., t1) (1)

We train our model by minimizing the negative log-likelihood over our trajectory dataset, assuming a
Gaussian distribution with constant variance:

L =
∑
t∈D

− log p(t) (2)

Instead of regressing the continuous values of token elements, we could quantize each dimension into
bins or perform vector quantization. However, we found the regression approach to work reasonably
well in practice and opt for it in our experiments for simplicity.

3.2 Missing modalities

In the discussion so far we have assumed that each trajectory is a sequence of observations and
actions. Next, we show how our framework can be generalized to sequences with missing modalities,
like trajectories extracted from human videos that do not have actions. Suppose we are given a
trajectory of observations without the actions T = (o1, o2, ..., oT ). Our core observation is that we
can treat a trajectory without actions like a regular trajectory with actions masked. Namely, we can
insert mask tokens [M] to obtain T = (o1, [M], o2, [M], ..., oT , [M]). This trajectory now has the
same format as the regular trajectories and can thus be processed in a unified way. We ignore the loss
for the predictions that correspond to the masked part of inputs. Note that this principle is not limited
to actions and applies to any other modality as well, such as partially missing sensory observations.

3.3 Aligned prediction

Rather than predicting the next token in a modality-agnostic way, we make predictions in a modality-
aligned way. Namely, instead of predicting the next token in the sequence, for each input token we
predict the next token of the same modality. Please see Figure 3 for diagrams.
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Figure 3: A general framework for training with different data sources. Our data modeling allows
us to train our transformer with multiple modes of training. In the case of observation-action pairs
being available, we train our transformer to predict the next pair of observation-action. When there is
no action data available, with MoCap and internet data, we only train our transformer to predict the
next observations by masking the actions with a mask token. These two models of training allow our
model to utilize both types of data, and this enables us to scale our training in terms of data.

3.4 Joint training

We have two options for training on collections that contain diverse trajectories in terms of noise
levels or modality subsets. We can either train jointly with all data at once, including complete and
incomplete trajectories. Alternatively, we can first pre-train on noisy and incomplete trajectories. This
can be viewed as providing a good initialization for then training on complete trajectories. And then
fine-tune the model on complete data with actions. We find that both approaches work comparably in
our setting and opt for joint training in the majority of the experiments for simplicity.

3.5 Model architecture

Our model is a transformer [37] with a fairly standard architecture. Given the trajectories from either
complete or incomplete data, we first tokenize the trajectories into tokens. We learn separate linear
projection layers for each modality but share weights across time. To encode the temporal information
we use positional embeddings. Let us assume oi ∈ Rm and ai ∈ Rn, then:

ti = concat(oi, ai), (3)

h0
i = Wti, (4)

where W ∈ Rd×(m+n) is a linear projection layer to project concatenated observation and action
modalities to d dimensional embedding vector. The superscript 0 indicates the embedding at 0-th
layer, i.e., the input layer. When action is unavailable, we use a mask token [M] ∈ Rn to replace ai,
and [M] is initialized as a random vector and learned end-to-end with the whole model. The model
takes the sequence of embedding vectors H0 = {h0

1, h
0
2, ..., h

0
t} as input.

The transformer architecture contains L layers, each consisting of a multi-head self-attention module
and an MLP module. Assume the output of the layer l is Hl, then the layer l + 1 output is computed
as follows:

H̃l = LayerNorm(Hl) (5)

H̃l = H̃l +MHSA(H̃l) (6)

Hl+1 = H̃l +MLP (H̃l) (7)

Here, the multi-head self-attention has causal masking, where the token only attends to itself and
the past tokens. Once the tokens are processed through all the layers, we project the embedding to
predicted states and actions, by learning a linear projection layer Ŵ ∈ R(m+n)×d:

t̂i+1 = ŴhL
i (8)

ôi+1 = (t̂i+1)0:m (9)

âi+1 = (t̂i+1)m:(m+n) (10)
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Figure 4: Training dataset. To train our model, we construct a dataset of trajectories coming from
four different sources. (i) neural network policy: provides trajectories with complete observations
and actions. (ii) model-based controller: produces trajectories from the same robot morphology
but without actions. (iii) motion capture of humans: does not contain actions and is approximately
retargeted onto the robot. (iv) internet videos of humans: sequences of human poses are first
reconstructed via computer vision techniques and then approximately retargeted onto the robot.

Then we train the transformer with the objective in (2). In the cases where the token is masked, we
do not apply any losses. We train our transformer with both types of data, as shown in Figure 3. This
allows us to use various sources of data, thus enabling scaling in terms of data.

3.6 Model inference

At inference time, our transformer model always has access to observation-action pairs. In this
setting, we apply our transformer model autoregressively for each observation-action pair token. By
conditioning on past observations and actions, we predict the next action (or observation-action pair)
and execute the predicted action. We then record the ground-truth observation from the robot and
discard the predicted observation. We use the ground-truth observation and predicted action as the
next set of tokens and append them to the past tokens to predict the next observation-action pair.

4 Dataset

Our approach motivates building a dataset of trajectories for training our model. We construct a
dataset of trajectories from four different sources: (i) a neural network policy, (ii) a model-based
controller, (iii) human motion capture, and (iv) human videos from YouTube. An illustration of
trajectories from different data sources is shown in Figure 4. We describe each data source next.

4.1 Neural network trajectories

As the first source of training trajectories, we use a state-of-the-art neural network policy trained
with large-scale reinforcement learning in simulation [29]. Specifically, this policy was trained with
billions of samples from thousands of randomized environments in Isaac Gym [22]. We run this
policy in the physics simulator developed by Agility Robotics and collect 10k trajectories of 10s each
on flat ground, without domain randomization. Each trajectory is conditioned on a velocity command
sampled from a clipped normal distribution as follows: linear velocity forward [0.0, 1.0] m/s, linear
velocity sideways [−0.5, 0.5] m/s, and turning angular velocity [−0.5, 0.5] rad/s.

Since we have access to the data generation policy, we are able to record complete observations
as well as the exact actions that the model predicted. We use this set as our source of complete
sensorimotor trajectories that have complete observations as well as ground truth actions.

4.2 Model-based trajectories

As the second source of trajectories, we use the model-based controller developed by Agility Robotics.
It is the controller that is deployed on the Digit humanoid robot and available in the simulator provided
by Agility Robotics as well. We collect 20k trajectories of walking on a flat ground of 10 seconds
each, where we sample the velocity commands as follows: linear velocity forward [−1.0, 1.0] m/s,
linear velocity sideways [−1.0, 1.0] m/s, and turning angular velocity [−1.0, 1.0] rad/s.
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The model-based controller outputs joint torques, which are not consistent with our joint position
action space. Thus, we only record the observations without the actions. This data serves as a source
of trajectories with accurate observations from the same robot morphology but without the actions.

4.3 Human motion capture trajectories

As the next source of trajectories, we use the motion capture (MoCap) recordings of humans from the
KIT dataset [24] distributed via the AMASS repository [21]. This data was recorded using optical
marker-based tracking in a laboratory setting. The dataset consists of ∼4k trajectories. We use a
subset of ∼1k standing and walking trajectories. We exclude motions like dancing and jumping.

In addition to not containing the ground truth actions, the MoCap trajectories come with an additional
challenge: different morphology. Namely, MoCap trajectories capture human keypoint positions in
3D and over time. In order to use these trajectories for training a robot, we solve an inverse kinematics
problem to approximate the corresponding robot poses. Please see the arXiv for additional details.

4.4 Trajectories from YouTube videos

Internet videos of people doing various activities are potentially a vast source of training data for
humanoid robots. However, the raw pixels have no information about the state and actions of the
human. To recover this, we first we run a computer vision tracking algorithm PHALP [31] to extract
sequences of 3D human poses. This provides an estimate of the 3D joints of the human body
SMPL [20] parameters and a noisy estimate of the human joints in the world coordinates.

We use the human body joint positions to retarget the motion to the humanoid robot using the inverse
kinematics optimization, like in the case of motion capture data discussed previously. After we
retarget the motions from human videos to humanoid robot trajectories, we filter out the trajectories
with high reconstruction error. Note that the scale of this data comes with the cost of being noisy.

5 Experiments

We evaluate our approach on the challenging task of humanoid locomotion. We perform outdoor
experiments on real hardware and systematic evaluations in simulation. We encourage the readers to
see the extended version of this work on arXiv, which includes additional experiments and ablations.

5.1 Experimental setup

Robot platform. We use the Digit humanoid robot developed by Agility Robotics. It is a full-sized
humanoid that is 1.6m tall and weighs 45 kilograms. The robot has 36 degrees of freedom including
the floating base, 20 of which are actuated. Due to its high dimensionality and the four-bar linkage
structure, it is challenging to simulate accurately which makes it particularly interesting for learning
approaches like ours that can learn from data, without requiring an explicit model or a simulator.

Model. Our model has a hidden size of 192 dimensions, with 4 layers of self-attention layers and
MLP layers. Each self-attention has 4 heads. We use LayerNorm before each attention layer and
ReLU activation after the MLP layer. We use a BatchNorm layer to process the input before the
transformer model. When predicting a token at time k, to keep the context length at a reasonable size,
we only keep the past 16 steps in input. In Section 5.6, we show the model is able to scale up to more
parameters and longer context length and achieve higher performance. We train on 4 NVIDIA A100s.

5.2 Real-world deployment

We begin by reporting the results from the real-world experiments. Specifically, we deploy our model
to the robot and evaluate it at various locations in San Francisco over the course of one week. Please
see Figure 1 for examples and project page for videos. We find that our model is able to walk over a
variety of surfaces including walkways, concrete, asphalt, tiled plazas, and dirt roads. Note that the
deployment in a large city environment, like San Francisco, is more challenging than in constrained
laboratory environments. The city environment is crowded with pedestrians, less controlled, and less
forgiving. This makes the error tolerance low and requires a model that works consistently well.
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Figure 5: Comparison to state of the art, tra-
jectory adherence. The robot is commanded to
walk starting from the origin with a fixed heading
command of 0.5 m/s and varying yaw commands
in [−0.4, 0.4] rad/s. We plot the desired (dotted)
and actual (solid) trajectories for our policy and
a reinforcement-learning trained policy (RL).

Figure 6: Tracking error comparisons. Left:
We find that our model can follow yaw commands
more accurately than the state-of-the-art RL pol-
icy [29]. Right: We see that our model can benefit
from unlabeled trajectories without actions which
is a promising signal for scaling our method to
large datasets of diverse trajectories.

5.3 Evaluation metrics

Next, we evaluate the models in simulation under two metrics: tracking error and prediction error.
Tracking error measures how accurately the robot follows a specific command. The prediction error is
the next token prediction loss measured on a separate set of validation data. We introduce two metrics
with details as follows and show that two metrics can consistently predict locomotion performance.

Tracking error. In all experiments, the robot starts from rest in a simulated environment and is
issued a constant natural walking command consisting of a desired heading velocity sampled in
[0.35, 0.70] m/s, angular velocity sampled in [−0.4, 0.4] rad/s, and zero lateral velocity. We compute
x∗(t), the ideal robot base position trajectory that fully satisfies the velocity command v∗(t) at all
time steps. To measure the accuracy of command tracking, we define the position tracking error
as 1

T

∑T
t=0 ∥x(t)− x∗(t)∥. Each trajectory lasts for a duration of 10 seconds. For all evaluation

experiments, we use the MuJoCo simulator [36] which is able to simulate the Digit robot accurately.

Prediction error. Since the model is trained with the next token prediction, we evaluate the prediction
error on a set of validation data that is held out from training data and contains state-action trajectories
collected from the RL policy. This is similar to the language modeling evaluation for large language
models [12]. We test both state and action prediction errors and add them together as the error metric.

5.4 Comparison to the state of the art

Trajectory adherence. We compare our model to a neural network controller trained with re-
inforcement learning (RL) [29]. Figure 5 presents a visual comparison of the trajectory adher-
ence of our controller against these state-of-the-art baselines. Starting with a robot at the ori-
gin, we plot the actual trajectory of the robot with eleven different yaw commands selected from
{0.00,±0.05,±0.10,±0.20,±0.30,±0.40} rad/s. For each model, we jointly plot the desired and
actual path traced by the robot base. Our model exhibits better tracking than the RL controller at all
turning speeds, and achieves close to perfect tracking for straight-line walking.

Quantitative evaluation. In Figure 6, left, we repeat the above comparison to the RL controller
(N = 245), with the full range of heading and yaw velocities mentioned in Section 5.3. We plot the
mean position tracking error, binned by the commanded angular yaw. While both models have lower
tracking errors at lower yaw, ours consistently outperforms the baseline RL policy. Note that our
model was trained on a dataset that includes the trajectories from the same baseline RL policy.

5.5 Training with action-free data

One of the benefits of our approach is that it can be applied to trajectories from diverse sources,
including with missing information such as actions, like in the case of human videos. In Figure 6,
right, we compare the performance of training only with complete trajectories to joint training
with both complete and incomplete trajectories. We observe that including incomplete trajectories
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Figure 7: Scaling studies. We find that our approach has favorable scaling properties, and that the
performance improves with the dataset size (left), context length (middle), and model size (right).

consistently leads to better performance. This suggests that incomplete trajectories can still provide
useful signal and is a promising signal for scaling our approach to large datasets of diverse trajectories.

5.6 Scaling studies

Training data. In Figure 7, left, we report the performance of our model as the size of the training
dataset increases. We find that training on more trajectories results in a considerably lower position
tracking error. This is a promising signal for scaling our approach to larger datasets in future work.

Context length. In Figure 7, middle, we study the effect of increasing the number of tokens used in
the context window of the transformer model. We observe that the larger context windows result in
better performance which suggests that our model is able to benefit from the additional context.

Model size. In Figure 7, right, we compare the models of increasing size (1M, 2M, 8M) by varying
the embedding dimension (144, 192, 384), number of attention heads (3, 4, 12), and number of
transformer blocks (4, 4, 6). We see that the error decreases monotonically with model size.

5.7 Prediction error correlates with performance
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Figure 8: Prediction error correlation.

We collect 14 models trained with different train-
ing recipes, model architectures, data size and
types, and compute the tracking and prediction
errors for each of them. In Figure 8, we re-
port the tracking and prediction errors of all the
models in a single scatter plot. We can see that
tracking and prediction error are highly corre-
lated with Pearson coefficient r = 0.87. This
suggests that the prediction error is predictive
of performance, and that models with lower pre-
diction error on the validation set are likely to
follow input commands with higher accuracy.

6 Discussion

Limitations. Our approach still lags behind state-of-the-art MPC controllers and is weaker than
the state-of-the-art RL controllers in some regards, most notably robustness. In principle, we could
scale our model to millions of YouTube trajectories. However, a major obstacle for doing this is the
reliability of computer vision techniques which require a considerable amount of curation in practice.

Conclusion. We explore real-world humanoid locomotion. Our model is trained on a collection of
trajectories, which come from prior neural network policies, model-based controllers, human motion
capture, and YouTube videos of humans. We show that our model enables a full-sized humanoid to
walk in the real-world zero-shot. These findings suggest a promising path toward learning challenging
real-world robot control tasks by generative modeling of large collections of trajectories.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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