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Abstract001

Prompt engineering has emerged as an inte-002
gral technique for extending the strengths and003
abilities of Large Language Models (LLMs)004
to gain significant performance gains in vari-005
ous Natural Language Processing (NLP) tasks.006
This approach, which requires instructions to007
be composed in natural language to bring out008
the knowledge from LLMs in a structured009
way, has driven breakthroughs in various NLP010
tasks. Yet, there is still no structured frame-011
work or coherent understanding of the varied012
prompt-engineering methods and techniques,013
particularly in the field of Natural Language014
Generation (NLG).015

This brief survey aims to help fill that gap by016
outlining recent developments in prompt en-017
gineering, and their effect on different NLG018
tasks. We also position prompt design as an019
input-level control mechanism for NLG out-020
puts, contrasting it with fine-tuning.021

1 Introduction022

The field of artificial intelligence (AI) has ad-023

vanced significantly with the introduction of024

LLMs over the last few years. These LLMs025

have attained unprecedented performance in sev-026

eral downstream Natural Language Processing027

(NLP) tasks (Vatsal and Dubey, 2024), includ-028

ing, but not limited to, question answering, story029

telling, summarization, machine translation and030

sentiment analysis. Within this broader NLP land-031

scape, Natural Language Generation (NLG) poses032

its own challenges. Despite the fluency and ver-033

satility of LLMs, generating high-quality text for034

diverse NLG tasks often demands careful guid-035

ance that goes beyond improvements in model ar-036

chitecture (Gatt and Krahmer, 2018; Pandey and037

Roy, 2023a) or task-specific fine-tuning (Xu et al.,038

2023). In this context, prompt engineering (Liu039

et al., 2023) has emerged as a promising paradigm040

for steering LLM outputs in NLG, enabling flexi- 041

ble control over style, structure and content, with- 042

out additional retraining. Prompt engineering is a 043

technique whereby natural language instructions, 044

or prompts, are used to guide an LLM’s behav- 045

ior responses, with the aim of improving accu- 046

racy, relevance and coherence in the generated 047

output (Chen et al., 2025). This approach offers 048

a practical, low-resource alternative for advanc- 049

ing NLG applications, making it increasingly rel- 050

evant as the field moves towards building robust 051

and adaptable generation systems. 052

Prompt design plays a critical role in shaping 053

the structure and coherence of a response across 054

a wide range of NLG tasks (Schulhoff et al., 055

2024). Owing to its use of instructions and ex- 056

amples written in natural language, it constitutes 057

a bridge between users and LLMs, letting users 058

decide and guide an LLM’s behavior. Despite 059

its increasing popularity and significance, prompt 060

engineering remains underrepresented in existing 061

surveys on NLG. Most of the surveys focus on 062

innovation in architecture designs (Pandey and 063

Roy, 2023b; Zarrieß et al., 2021), evaluation meth- 064

ods (Stent et al., 2005; Sai et al., 2022; Celikyil- 065

maz et al., 2020), or the categorization of down- 066

stream tasks (Dong et al., 2022; Gatt and Krah- 067

mer, 2018; Santhanam and Shaikh, 2019). As a 068

result, there is a need for a survey focusing just on 069

prompting for NLG and its applications. 070

In this brief survey paper, we compare prompt 071

engineering with fine-tuning and decoding-level 072

strategies, present a taxonomy of prompting tech- 073

niques for NLG, analyze how prompts enable 074

control over content, structure, and style, with- 075

out retraining, demonstrating their utility in real- 076

world NLG tasks, and consider emerging trends 077

and challenges in prompt-based NLG. Our goal is 078

to formalize prompt engineering as an emerging 079

input-level control strategy and provide a founda- 080

tion for future research in prompt-based NLG. 081
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2 Comparison with Fine-Tuning and082

Decoding-Level Control083

Prompt-based control operates at the input level,084

requiring no extra training and providing fast085

adaptability to new control goals. In contrast, fine-086

tuning allows deeper integration of control sig-087

nals by aligning an LLM’s internal representations088

with desired outputs. This achieves higher con-089

sistency than prompt-based NLG outputs, but at090

higher computational and data costs (Shin et al.,091

2025).092

Decoding-level control (e.g., constrained beam093

search, nucleus sampling adjustments) (Naseh094

et al., 2023) manipulates the generation process095

after an LLM’s next-token probabilities are com-096

puted, enabling some lexical or length constraints,097

but with limited flexibility for high-level aspects098

of generation, such as discourse structure, tone, or099

content framing (Holtzman et al., 2020).100

Thus, prompt engineering holds a unique mid-101

dle position. It is more cost-effective and adapt-102

able than fine-tuning, while offering broader con-103

trol dimensions than decoding-level control. This104

makes prompt engineering an effective strategy105

across various NLG tasks such as summarization,106

story generation, dialogue generation etc. (Vatsal107

and Dubey, 2024).108

3 Taxonomy of Prompting Techniques109

In this section, we briefly discuss different110

prompting paradigms, and how suited they are for111

different NLG tasks (Table 1). The core paradigms112

are categorized into zero-shot, few-shot, chain-of-113

thought, thread of thought, chain of event and role114

prompting.115

Zero-shot Prompting (Radford et al., 2019).116

This technique relies on carefully-curated prompts117

to guide the LLMs in performing specific NLG118

tasks, such as machine translation (MT) and story119

telling. Its strength lies in the quick deployment of120

an idea with a relatively low design effort.121

Few-shot Prompting (Brown et al., 2020).122

This technique leverages the idea of in-context123

learning to provide a few input-output pairs to im-124

prove an LLM’s understanding of a given task.125

Eliciting even a few high-quality examples has126

yielded performance gains on different NLG tasks,127

such as dialogue generation and machine transla-128

tion, steering the output towards certain stylistic129

nuances.130

Chain-of-thought (CoT) Prompting (Wei et al., 131

2022). This technique takes its inspiration from 132

how people decompose a complex task into 133

smaller sub-tasks before arriving at the final so- 134

lution. Along the same lines, this prompting 135

paradigm provides instructions to an LLM in such 136

a way that encourages a step-by-step, coherent 137

reasoning process. CoT can help LLMs plan out- 138

lines, sub-points and narrative arcs for NLG tasks 139

such as storytelling, report generation and summa- 140

rization, thereby improving global coherence. 141

Thread-of-thought (ThoT) Prompting (Zhou 142

et al., 2023). This technique, which draws its in- 143

spiration from human cognitive processes, 144

is designed to enhance the reasoning abilities of 145

LLM models by asking them to select pertinent 146

information from context comprising information 147

from diverse sources, including user queries, con- 148

versation history, and external knowledge bases. 149

ThoT has yielded substantial performance gains 150

on tasks like conversational question answering 151

and dialogue system where the generation of con- 152

textually appropriate answer is critical. 153

Chain-of-event (CoE) Prompting (Bao et al., 154

2024). This technique, which was proposed for 155

summarization, consists of four steps: (1) extract 156

specific events, (2) analyze and generalize the ex- 157

tracted events in more refined and concise form, 158

(3) filter the generalized events to retain only those 159

that cover most of the text, and (4) integrate the 160

events selected in step (3) based on their chrono- 161

logical order or level of importance. 162

Role Prompting (Kong et al., 2023). This tech- 163

nique involves assigning a role to the LLM to en- 164

hance its understanding of the task. For example, 165

if the model is prompted to act as a mathemati- 166

cian, it is likely to provide a correct step-by-step 167

explanation of a mathematical concept (Van Bu- 168

ren, 2023). It also serves as an effective implicit 169

CoT trigger, explaining its enhancements in rea- 170

soning capabilities. 171

4 Prompting for Controlled NLG 172

Despite the LLMs ability to generate fluent and 173

grammatically sound texts, other control dimen- 174

sions are important in real-world applications, 175

e.g., style, content, length and structure, which 176

might not be achievable if we allow LLMs to gen- 177

erate text freely (Ajwani et al., 2024). Control- 178

ling model outputs to fit a set of constraints is the 179

purview of controllable text generation (Lu et al., 180

2023), and prompting serves as a ‘control lever’ 181
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Table 1: Comparative Overview of Prompting Paradigms in NLG.

Prompting
Paradigm

Primary Strategy Strengths Limitations Typical NLG Tasks

Zero-shot
(Radford et al.,
2019)

No examples; relies on
pretrained generalization
to generate predictions

Minimal setup cost,
quick deployment

Sensitive to changes in
prompt phrasing

Classification, QA, and ma-
chine translation

Few-shot
(Brown et al., 2020)

In-context examples to
demonstrate task pattern

Improves task-specific
performance with few
samples

Token budget grows
with example count;
brittle to formatting

Structured generation, sum-
marization, and dialogue
generation

Chain-of-Thought
(Wei et al., 2022)

Step-by-step reasoning in
prompt

Enhances reasoning
transparency and accu-
racy

Verbose outputs; per-
formance gain is task-
dependent

Explainable generation,
multi-turn QA, and arith-
metic/logical explanation

Thread-of-Thought
(Zhou et al., 2023)

Maintains context across
turns using guided flow

Improves discourse and
context tracking; suit-
able for long dialogues

Harder to automate
threading; needs clear
structure

Conversational QA, data-
to-text generation

Chain-of-Event
(Bao et al., 2024)

Extracts and compresses
event chains in stages

Improves summary co-
herence and fluency

Narrow scope; task-
specific design

Multi-document summa-
rization

Role Prompting
(Kong et al., 2023)

Assigns persona or role
to guide behavior

Boosts creativity, diver-
sity, and task framing

Relies on accurate per-
sona crafting

Dialogue agents, story gen-
eration, creative writing

for steering the outputs of LLMs, without requir-182

ing extensive parameter fine-tuning.183

4.1 Content Control: Topical Constraints184

and Lexical Anchoring185

The limits of generative LLMs are unclear, yet186

from research perspective, we must be able to187

determine what makes them successful and what188

causes them to fail (Lu et al., 2023). Carefully189

crafted prompts can enforce topical constraints190

by explicitly specifying the domain or keywords191

to be included in the output. For example, “192

Generate a short explanation about the challenges193

blind and low vision individuals face in access-194

ing data visualizations in educational settings” can195

anchor the generation of text around the relevant196

topic and subtopics. Similarly, lexical anchor-197

ing, which refers to specifying important infor-198

mation to the LLM before reaching a decision,199

can guide the model to generate domain-specific200

information without re-training (Tian and Zhang,201

2024). For example, prompting with “Write a202

paragraph about the challenges in web accessibil-203

ity for blind users. Make sure to include the terms204

tactile graphics, screen reader, and access bar-205

rier" anchors the model in accessibility terminol-206

ogy and context. These approaches are useful for207

NLG tasks such as question answering (Zhu et al.,208

2021), story telling (Fan et al., 2018), and summa-209

rization (Xu et al., 2024) etc.210

4.2 Structure Control: Length and Discourse211

Organization212

Users often expect generated texts to fall within213

a specific length range, making length controlled214

generation an important topic (Jie et al., 2024). 215

For pre-trained language models, the most widely 216

applied technique for length control is prompt- 217

based fine-tuning (e.g., ‘summarize in two sen- 218

tences’ or ‘provide a bullet-point list of advan- 219

tages of living in coastal areas) (Liu et al., 2023). 220

In addition, prompts can also guide an LLM to 221

simulate the discourse structure of human-written 222

text (Ghazvininejad et al., 2022). 223

4.3 Style Control: Formality, Emotion, and 224

Tone 225

Prompting can effectively condition the formality 226

level (‘write in a formal academic style’ vs. ‘ex- 227

plain in a casual, friendly tone’), emotional color- 228

ing (‘write a comforting message to someone anx- 229

ious about exams’), and persona-based tone (’as a 230

supervisor, advise on thesis writing’). Drawing its 231

inspiration from the impact of language on human 232

performance, EmotionPrompt (Li et al., 2023) uti- 233

lizes emotional cues to help improve an LLM’s 234

emotional appeal. Compared to style transfer 235

methods requiring paired data or explicit attribute 236

modeling, prompting offers a flexible and low- 237

resource alternative (Yang and Carpuat, 2025). In 238

addition to written output, the emotional prompts 239

may be used to control and guide the emotional 240

tone of synthesized speech (Bott et al., 2024). 241

5 Evaluation and Prompt Robustness 242

5.1 Evaluation Metrics 243

To systematically understand the impact of prompt 244

engineering, we need to look at different metrics 245

that how prompting impacts the generated output’s 246

quality and it is necessary to look at both, human- 247
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centered and automatic, metrics to capture out-248

put quality comprehensively. Both methods have249

their own pros and cons. Human-centered evalu-250

ation is more in-line with human intuition, but is251

more time-consuming and expensive (Paul et al.,252

2024). On the other hand, automatic evaluation253

is much quicker and less expensive than human-254

centered. However the best way to use an evalu-255

ation an LLM-generated output’s quality depends256

on the specific application (Stent et al., 2005).257

Human Evaluation: Human evaluation depend258

on human evaluators to assess the quality of the259

generated output and are often employed to cap-260

ture dimensions difficult to quantify automatically261

such as coherence, fluency, relevance, and factual-262

ity (Holtzman et al., 2020). Human evaluations are263

increasingly used to assess tasks where the gener-264

ated content is more abstract, such as writing and265

summarization (Stiennon et al., 2020; Yao et al.,266

2023; Wang et al., 2024).267

Automatic Evaluation: Automatic evaluation268

uses algorithms to assess the quality of the out-269

put by an LLM, measuring the efficacy of differ-270

ent prompting strategies. Metrics such as BLEU271

(Papineni et al., 2002), ROUGE (Lin, 2004), and272

METEOR (Banerjee and Lavie, 2005) remain273

widely used for surface-level text similarity, while274

BERTScore (Zhang et al., 2019) aims to assess at275

a higher semantic level. In the context of safe and276

responsible text generation, toxicity and bias score277

(Gehman et al., 2020) are significantly employed278

to so that the prompt formulations do not uninten-279

tionally elicit harmful content. However, these au-280

tomated metrics often fail to capture the assess-281

ment results of human evaluators fully and there-282

fore must be used with caution (Sai et al., 2022).283

5.2 Prompt Sensitivity and Brittleness284

LLM-generated outputs can be highly sensitive285

and variable to the prompt phrasing and structure,286

with performance often differing markedly across287

models and tasks based on these nuances (Zhuo288

et al., 2024; Chatterjee et al., 2024; Salinas and289

Morstatter, 2024). This sensitivity manifests in290

two formats: i) local sensitivity refers to the small291

lexical changes such as synonyms or reordering292

of instructions may lead to noticeable difference293

in tone, quality and relevance of the generated re-294

sponse. ii). global brittleness refers to changes in295

prompt length or specificity can lead to failures in296

adhering to the intended task, indicating a lack of297

robustness in prompt-based control compared to 298

more structured fine-tuning methods. 299

To mitigate prompt sensitivity and brittleness, 300

prompt tuning (Lester et al., 2021) was introduced 301

where soft prompt vectors are learned while keep- 302

ing the LLM parameters frozen. This works in a 303

different way than manual prompt design, which 304

allows for creativity and iterative experimentation. 305

While manual design allows for domain-specific 306

control with low resources, prompt tuning offers 307

improved consistency across tasks by optimizing 308

prompts in a differentiable manner. 309

6 Emerging Trends and Open Challenges 310

The field of prompt engineering is evolving 311

through various key trends. Prompting with re- 312

trieval augmented generation (RAG) (Lewis et al., 313

2020) enforce factual grounding and reduce hal- 314

lucinations by pairing text generation with re- 315

trieval. Prompt engineering as programming 316

(Sharma et al., 2024) is capturing attentions via 317

prompt DSL, a domain-specific language for re- 318

fining prompts and monitoring the inputs to the 319

LLM-based chatbots. 320

A persistent challenge is prompt’s generaliza- 321

tion and transferability across different domains, 322

as many prompts remain fragile and task-specific 323

(Perez et al., 2021). Also, with plenty of pre- 324

trained LLMs to choose from, how to choose them 325

to better leverage prompt-based learning is an- 326

other interesting and difficult problem (Liu et al., 327

2023). Furthermore, there are fairly wide variety 328

of tuning strategies available for prompts, LLMs, 329

or both. However, given that this research field is 330

at emergent stage, we still lack a systematic under- 331

standing of the tradeoffs between these methods. 332

7 Conclusion 333

Prompting has evolved into a core technique 334

for LLM-driven NLG, enabling controlled, ef- 335

ficient generation without retraining. However, 336

prompt design often involves repetitive and time- 337

consuming debugging, as small phrasing changes 338

can lead to unpredictable outputs. 339

To advance the field, prompt engineering should 340

be formalized with frameworks, benchmarks and 341

theory that support robust, scalable, and reusable 342

prompt design for the next generation of NLG sys- 343

tems. There is also a pressing need for evaluation 344

metrics that more accurately reflect the effective- 345

ness and control capabilities of prompts. 346
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8 Limitations347

Despite offering a focused overview of prompt en-348

gineering for NLG, this survey has several lim-349

itations. Findings discussed are largely concep-350

tual and may not generalize across domains, lan-351

guages, or LLM architectures without further em-352

pirical validation. While we highlight issues such353

as prompt sensitivity and evaluation gaps, practi-354

cal mitigation strategies and theoretical modeling355

could not be explored in depth. Future work is356

needed to extend the taxonomy, assess general-357

izability across multilingual settings, and ground358

prompt engineering in more rigorous empirical359

and theoretical frameworks.360
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