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ABSTRACT

Recent work demonstrates that structured patterns in pretraining data influence
how representations of different concepts are organized in a large language
model’s (LLM) internals, with such representations then driving downstream abil-
ities. Given the open-ended nature of LLMs, e.g., their ability to in-context learn
novel tasks, we ask whether models can flexibly alter their semantically grounded
organization of concepts. Specifically, if we provide in-context exemplars wherein
a concept plays a different role than what the pretraining data suggests, can mod-
els infer these novel semantics and reorganize representations in accordance with
them? To answer this question, we define a toy “graph tracing” task wherein the
nodes of the graph are referenced via concepts seen during training (e.g., apple,
bird, etc.), and the connectivity of the graph is defined via some predefined
structure (e.g., a square grid). Given exemplars that indicate traces of random
walks on the graph, we analyze intermediate representations of the model and
find that as the amount of context is scaled, there is a sudden re-organization of
representations according to the graph’s structure. Further, we find that when ref-
erence concepts have correlations in their semantics (e.g., Monday, Tuesday,
etc.), the context-specified graph structure is still present in the representations,
but is unable to dominate the pretrained structure. To explain these results, we
analogize our task to energy minimization for a predefined graph topology, which
shows getting non-trivial performance on the task requires for the model to infer
a connected component. Overall, our findings indicate context-size may be an
underappreciated scaling axis that can flexibly re-organize model representations,
unlocking novel capabilities.

1 INTRODUCTION

A growing line of work demonstrates that large language models (LLMs) organize representations
of concepts in a manner that reflects their structure in pretraining data (Engels et al., 2024; Park
et al., 2024a;b; Anthropic AI, 2023; 2024); e.g., Engels et al. (2024) show that concepts such as
days of the week and months of the year form a cyclical organization in the latent space. More
targeted experiments in synthetic domains have corroborated such findings as well; e.g., Li et al.
(2022) use toy board games and show that LLMs can form world representations that mirror the
underlying board state. These organized representations have been argued to underlie and influence
a model’s capabilities as well (Anthropic AI, 2023; 2024; Rimsky et al., 2024). However, as a model
interacts with the world, we expect it to exhibit the ability to learn about novel concepts on-the-fly.
Currently, users address this challenge by exploiting the open-ended nature of LLMs and directly
specifying in-context the novel definition of a concept (Qin et al., 2023; Bubeck et al., 2023; Brown
et al., 2020b; Agarwal et al., 2024; Anil et al., 2024). However, one can easily expect such novel
concepts to not align with the structures internalized by the model during pretraining. For example,
assume we describe in-context to an LLM that a new corporate enterprise called Strawberry has been
announced—does the model sufficiently “understand” that we are referring to a corporate entity and
not the fruit “strawberry”?

Motivated by the above, we design a toy task that helps evaluate whether when provided an in-
context specification of a concept, an LLM alters its representations to reflect the specified task-
relevant semantics, overriding the one internalized during pretraining. In particular, our proposed
task involves a simple “graph tracing” problem, wherein the model is shown edges corresponding to
a random traversal of a graph. The nodes of this graph are intentionally referenced via concepts the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Formation of an in-context task representation mirroring a grid structure. (a) We
randomly arrange a set of tokens on a grid structure that do not reflect their semantics. (b) We then
generate sequences of tokens following a random walk on the grid which is used as the input context
to the model. (c) The model’s mean token representations projected onto the top two principal com-
ponents. As the number of in-context exemplars increases, there is a formation of representations
mirroring the grid structure underlying the data-generating process. The representations are from
the residual stream activation after layer 26.

model is extremely likely to have seen during training (e.g., apple, bird, etc.), while its connec-
tivity structure is defined using a predefined geometry (e.g., a square grid). Based on the provided
context, the model is expected to output a valid next node prediction, i.e., a node connected to the
last presented one. As we show, increasing the amount of context leads to a sudden re-organization
of representations in accordance with the graph’s connectivity. These results suggest LLMs can ma-
nipulate their representations in order to reflect information specified entirely in-context, enabling
flexibility in their downstream use. To explain these results, we draw a connection to the problem
of energy minimization on a graph, finding that achieving non-trivial accuracy on our task requires
for the model to identify connected components of the graph (and hence its structure). This result
also yields a connection to prior works studying the problem of bond percolation on a graph, mo-
tivating us to find the effect of graph size scaling on our results. Interestingly, we find the critical
amount of context needed to solve our task scales as a power law whose exponents are well-aligned
with the ones predicted in percolation theory. We thus hypothesize the model implicitly performs a
percolation-like process to yield the results observed in our experiments. Overall, our contributions
can be summarized as follows.

• Graph Navigation as a Simplistic Model of Novel Semantics. We introduce a toy graph nav-
igation task that requires a model to interpret semantically meaningful concepts as referents for
nodes in a structurally constrained graph. Inputting traces of random walks on this graph into an
LLM, we analyze whether the model alters its intermediate representations for referent concepts
to predict valid next nodes as defined by the underlying graph connectivity.

• Emergent In-Context Reorganization of Concept Representations. Our results show that as
context-size is scaled, i.e., as we add more exemplars in context, there is a sudden re-organization
of concept representations that reflects the graph’s connectivity structure. The context-specified
graph structure emerges even when we use concepts that have correlations in their semantics
(e.g., Mon, Tues, etc.), but, interestingly, is unable to dominate the pretrained structure. More
broadly, we note that the sudden reorganization observed in our results is reminiscent of emergent
capabilities in LLMs when other relevant axes, e.g., compute and model size, are scaled (Wei
et al., 2022; Srivastava et al., 2022; Lubana et al., 2024)—our results indicate context can be
deemed as yet another, and in fact a more efficient, axis for unlocking model capabilities.

• An Energy Minimization Model of Structure Inference. We propose an energy minimization
model for our proposed task as a hypothesis for the mechanism employed by an LLM to re-
organize representations according to the graph’s structure. This model also draws a connection
to the theory of graph percolation, based on which we analyze the implication of graph size scaling
and, interestingly, find the critical context size needed for performing our task (for specific graph
structures) scale in accordance with percolation theory.
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Figure 2: Formation of an in-context task representations mirroring a ring structure. (a)
We randomly place words on a ring structure unrelated to their semantic meanings. (b) We then
generate sequences of tokens by randomly sampling neighboring pairs from the ring which is used
as the input context to the model. (c) The model’s mean representation of words projected onto
the top two principal components. As the number of in-context exemplars increases, there is a
formation of representations mirroring the ring structure underlying the data-generating process.
The representations are from the residual stream activation after layer 26.

2 EXPERIMENTAL SETUP: IN-CONTEXT GRAPH TRACING

We first define our setup for assessing the impact of context specification on how a model organizes
its representations. In the main paper, we primarily focus on Llama3.1-8B (henceforth Llama3)
(Dubey et al., 2024), accessed via NDIF/NNsight (Fiotto-Kaufman et al., 2024). We present results
on other models (Llama3.2-1B, Llama3.1-8B-Instruct, Gemma-2-2B, Gemma-2-9B) in App. C.2.

Task. Our proposed task, which we call in-context graph tracing, involves random walks on a
predefined graph G. Specifically, inspired by prior work analyzing structured representations learned
by sequence models, we experiment with three graphical structures: a square grid (Fig. 1 (a); Li et al.
(2022)), a ring (Fig. 2 (a); Engels et al. (2024)), and a hexagonal grid. Results for the hexagonal grid
are mostly deferred to appendix due to space constraints. To construct a square grid, we randomly
arrange the set of tokens in a 4×4 grid and add edges between horizontal and vertical neighbors. We
then perform a random walk on the graph, emitting the visited tokens as a sequence (Fig. 1 (b)). For
a ring, we add edges between neighboring nodes and we simply sample random pairs of neighboring
tokens on the graph (Fig. 2 (b)). Nodes in our graphs, denoted T = {τ0, τ1, . . . , τn}, are referenced
via concepts that the model is extremely likely to have seen during pretraining. While any choice of
concepts is plausible, we select random tokens that, unless mentioned otherwise, have no obvious
semantic correlations with one another (e.g., apple, sand, math, etc.). However, these concepts
have precise meanings associated with them in the training data, necessitating that to the extent the
model relies on the provided context, the representations are morphed according to the in-context
graph. We also note that our proposed task is similar to ones studied in literature on in-context RL,
wherein one provides exploration trajectories in-context to a model, expecting it to understand the
environment and its dynamics (aka a world model) (Lee et al., 2024b; Laskin et al., 2022). We also
highlight that a visual analog of our task, wherein one uses images instead of text tokens to represent
a concept, has been used to elicit very similar results with humans as the ones we report in this paper
using LLMs (Garvert et al., 2017; Whittington et al., 2020; Mark et al., 2020; 2024).

3 RESULTS

3.1 VISUALIZING INTERNAL ACTIVATION USING PRINCIPAL COMPONENTS

Since we are interested in uncovering context-specific representations, we input sequences from our
data-generating process to the model and first compute the mean activations for each unique token
τ ∈ T . Namely, assume a given context C := [c0, ..., cN−1], where ci ∈ T , that originates from
an underlying graph G. At each timestep, we look at a window of Nw (=50) preceding tokens (or
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all tokens if the context length is smaller than Nw), and collect all activations corresponding to each
token τ ∈ T at a given layer ℓ. We then compute the mean activations per token, denoted as hℓ

τ ∈
Rd. We further denote the stack of mean token representations as Hℓ(T ) ∈ Rn×d. Finally, we run
PCA on Hℓ(T ), and use the first two principal components to visualize model activations (unless
stated otherwise). We note that while PCA visualizations are known to suffer from pitfalls as a
representation analysis method, we provide a thorough quantitative analysis in Sec. 4 to demonstrate
that the model re-organizes concept representations according to the in-context graph structure, and
prove in Sec. 5 that the structure of the graph is reflected in the PCA visualizations because of this
re-organization of representations. We also provide further evidence on the faithfulness of PCA as
a tool for our analysis by conducting a preliminary causal analysis of the principal components,
finding that intervening on concept representations’ projections along these components affects the
model’s ability to accurately predict valid next node generations (App. C.4).

Results. Fig. 1 (c) and Fig. 2 (c) demonstrate the resulting visualizations for square grid and ring
graphs, respectively (more examples are provided in the Appendix; see Fig. 9, 10). Strikingly, with
enough exemplars, we find representations are in fact organized in accordance with the graph struc-
ture underlying the context. Interestingly, results can be skewed in the earlier layers in accordance
with semantic priors the model may have internalized during training; however, these priors are
overridden as we go deeper in the model. For example, in the ring graph (see Fig. 2), concepts
apple and orange are closer to each other in Layer 6 of the model, but become essentially an-
tipodal around layer 26, as dictated by the graph; the antipodal nature is also more prominent as
context length is increased.

We also observe that despite developing a square-grid structure when sufficient context length is
given (see Fig. 1), the structure is partially irregular; e.g., it is wider in the central regions, but
narrowly arranged in the periphery. We find this to be an artifact of frequency with which a concept
is seen in the context. Specifically, concepts that are present in the inner 2×2 region of the grid are
more frequently visited during a random walk on the graph, while the periphery of the graph has a
lower visitation frequency. The representations reflect this, thus organizing in accordance with both
structure and frequency of concepts in the context.

Overall, the results above indicate that as we scale context size, models can re-organize semantically
unrelated words to form in-context task-specific representations.

Figure 3: In-context representations form in higher principal components in the presence
of semantic priors. (a) (Purple) Semantic links underlying days of the week. (Dashed blue) We
define a non-semantic graph structure by linking non-neighboring days and generate tokens from
this graph. (b) (Purple) The ring geometry formed by semantic links established during pre-training
remains intact in the first two principal components. (c) (Dashed blue) The non-semantic structure
provided in-context can be seen in the third and fourth principal components. Note that the star
structure in the first two components (b), which match the ground truth graphical structure of our data
generating process (a), becomes a ring in the next two principal components (c). The representations
are from the residual stream activation after layer 21.
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3.2 SEMANTIC PRIOR VS. IN-CONTEXT TASK REPRESENTATIONS

Building on results from the previous section, we now investigate the impact of using semanti-
cally correlated tokens. Specifically, we build on the results from Engels et al. (2024), who show
that representations for days of the week, i.e., tokens {Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday}, organize in a circular geometry. We randomly
permute the ordering of these tokens, arrange them on a 7-node ring graph similar to the previous
section, and evaluate whether we can override the strong pretraining prior internalized by the model.

Results. Fig. 3 (b, c) demonstrate the resulting visualizations. We find that when there is a conflict
between the semantic prior and in-context task, we observe the original semantic ring in the first two
principal components. However, the components right after in fact encode the context-specific struc-
ture: visualizing the third and fourth principal components shows the newly defined ring structure.
This indicates that the context-specified structure is present in the representations, but not dominat-
ing them. In App. C.6 Fig. 14, we report the model’s accuracy on the in-context task finding that the
model overrides the semantic prior to perform well on the task when enough context is given.

4 EFFECTS OF CONTEXT SCALING: EMERGENT RE-ORGANIZATION OF
REPRESENTATIONS

Our results in the previous section demonstrate models can re-organize concept representations in
accordance context-specified structures. We next aim to study how this behavior arises as context
is scaled—is there a continuous, monotonic improvement towards the context-specified structure as
context is added? If so, is there a trivial solution, e.g., regurgitation based on context that helps
explain these results? To analyze these questions, we must first define a metric that helps us gauge
how aligned the representations are with the structure of the graph that underlies the context.

Dirichlet Energy. We measure the Dirichlet energy of our graph G’s structure by defining an
energy function over the model representations. Specifically, for an undirected graph G with n
nodes, let A ∈ Rn×n be its adjacency matrix, and x ∈ Rn be a signal vector that assigns a value xi

to each node i. Then the Dirichlet energy of the graph with respect to x is defined as

EG(x) =
∑
i,j

Ai,j(xi − xj)
2. (1)

For high-dimensional signals, the Dirichlet energy is defined as the summation of the energy over
each dimension. Specifically, let X ∈ Rn×d be a matrix that assigns each node i with a d-
dimensional vector xi, then the Dirichlet energy of X is defined by

EG(X) =

d∑
k=1

∑
i,j

Ai,j(xi,k − xj,k)
2 =

∑
i,j

Ai,j∥xi − xj∥2. (2)

Overall, to empirically quantify the formation of geometric representations, we can measure the
Dirichlet energy with respect to the graphs underlying our data generating processes (DGPs) and
our mean token activations hℓ

τ :

EG(H
ℓ(T )) =

∑
i,j

Ai,j∥hℓ
i − hℓ

j∥2, (3)

where Hℓ(T ) ∈ Rn×d is the stack of our mean token representations hℓ at layer ℓ and i, j ∈
T are tokens from our DGP. Intuitively, the measure above indicates whether neighboring tokens
(nodes) in the ground truth graph have a small distance between their representations. Thus, as the
model correctly infers the correct underlying structure, we expect to see a decrease in Dirichlet
energy. We do note that, in practice, Dirichlet energy minimization has a trivial solution where all
nodes are assigned the same representation. While we can be confident this trivial solution does not
exist in our results, for else we would not see distinct node representations in PCA visualizations
nor high accuracy for solving our tasks, we still provide an alternative analysis in App. C.3 where
the representations are standardized to render this trivial solution infeasible. We find qualitatively
similar results with such standardized representations, but more noisy since standardization can
induce sensitivity to noise.
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Figure 4: A model continuously develops task representation as it learns to traverse novel
graphs in-context. We plot the accuracy of graph traversal and the Dirichlet energy of the graph,
computed from the model’s internal representations, as functions of context length. We note that
the Dirichlet energy never reaches a perfect zero—ruling out that the representations are learning a
degenerate structure, as was also seen in the PCA visualizations in Sec. 3. (a) A 4x4 grid graph with
16 nodes. (b) A circular ring with 10 nodes. (c) A “honey-comb” hexagonal lattice, with 30 nodes.

4.1 RESULTS: EMERGENT ORGANIZATION AND TASK ACCURACY IMPROVEMENTS

We plot Llama3’s accuracy at the in-context graph tracing task alongside the Dirichlet energy mea-
sure (for different layers) as a function of context. Specifically, we compute the “rule following
accuracy”, where we add up the model’s output probability over all graph nodes which are valid
neighbors. For instance if the graph structure is apple-car-bird-water and the current state
is car, we add up the predicted probabilities for apple and bird. This metric simply measures
how well the model abides by the graph structure, irrelevant of its accuracy.

Results are reported in Fig. 4. We see once a critical amount of context is seen by the model,
accuracy starts to rapidly improve. We find this point in fact closely matches when Dirichlet Energy
reaches its minimum value: energy is minimized shortly before the rapid increase in in-context task
accuracy, suggesting that the structure of the data is correctly learned before the model can make
valid predictions. This leads us to the claim that as the amount of context is scaled, there is an
emergent re-organization of representations that allows the model to perform well on our in-context
graph tracing task. We note these results also provide a more quantitative counterpart of our PCA
visualization results before.

Figure 5: A memorization solution cannot explain Llama’s ICL graph tracing performance.
We plot the rule following accuracy from Llama-3.1-8B outputs and accuracies from a simple 1-shot
and 2-shot memorization hypothesis. (a) A ring graph with 50 nodes. (b) A square grid graph with
25 nodes. In both cases, we find that the memorization solution cannot explain the accuracy ascent
curve. Instead, we find a slow phase and a fast phase, which we fit with a piecewise linear fit.
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Is there a Trivial Solution at play? An simple solution which can drive the accuracy to increase
is when the model is merely regurgitating a node’s neighbors by copying them from its context.
We call this the memorization solution. Since our accuracy metric measures rule following, this
memorization solution will achieve value 1 if the node has been observed in the context and 0 other-
wise. Here, we investigate whether this solution is plausible by sampling data using the previously
described random sampling strategy for both the grid and the ring. Since this sampling procedure
simply chooses an initial node at random with replacement, we can express the probability of a node
existing in a context of length l as:

pseen1(x) = 1−
(
n− 1

n

)l

, (4)

where x is the context and n is the number of nodes available. Note that the current node itself does
not matter as the sampling probability is uniform with replacement. Since one might expect that a
language model needs to encounter the same token twice to recognize it as an in-context exemplar,
we also define the probability that a node appeared twice as:

pseen2(x) = pseen1(x)−
(
l

1

)(
1

n

)1 (
n− 1

n

)(l−1)

. (5)

Where
(
l
1

)
= l is the binomial coefficient. To evaluate whether this hypothesis explains our results,

we plot these two memorization solutions with the observed performance of Llama-3. Fig. 5 shows
the result (a) on a ring graph with 50 nodes and (b) on a grid graph with 25 nodes. We find, in both
cases, that neither the 1-shot memorization curve nor the 2-shot memorization curve can explain the
behavior of Llama. Instead, we observe that the accuracy has two phases, a first phase where the
accuracy improves very slowly and a second phase where the log-linear slope suddenly changes to
a steeper ascent. We find that a piecewise linear fit can extract this transition point robustly, which
will be of interest in the next section.

5 EXPLAINING EMERGENT RE-ORGANIZATION OF REPRESENTATIONS: THE
ENERGY MINIMIZATION HYPOTHESIS

In this section, we put forward a hypothesis for why we are able to identify such structured represen-
tations from model internals: the model internally runs an energy minimization process in search of
the correct structural representation of the data. More formally, we claim the following hypothesis.
Hypothesis 5.1. Let n be the number of tokens, d be the dimensionality of the representations,
and H(T ) ∈ Rn×d be the stack of representations for each token learned by the model, then
EG(H((T )) decays with context length.

Minimizers of Dirichlet Energy and Spectral Embeddings. We call the k-th energy minimizer
of EG the optimal solution that minimizes EG and is orthogonal to the first k−1 energy minimizers.
Formally, the energy minimizers

{
z(k)

}n

k=1
are defined as the solution to the following problem:

z(k) = arg min
z∈Sn−1

EG(z) (6)

s.t. z ⊥ z(j),∀j ≤ k − 1, (7)

where Sn−1 is the unit sphere in n dimensional Euclidean space.

The energy minimizers are known to have the following properties (Spielman, 2019):

1. z(1) = c1 for some constant c ̸= 0, which is a degenerated solution that assigns the same
value to every node; and

2. If we use
(
z
(2)
i , z

(3)
i

)
as the coordinate of node i, it will be a good planar embedding. We

call them (2-dimensional) spectral embeddings.

Spectral embeddings are often used to a draw graph on a plane and in many cases can preserve the
structure of the graph (Tutte, 1963). In Figures 6 and 7, we show the spectral embedding results for

7
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Figure 6: Spectral embedding of a ring graph. Figure 7: Spectral embedding of a grid graph.

a ring graph and a grid graph respectively. Notice how such spectral embeddings are similar to the
representations from our models in Fig. 1 and 2.

Most importantly, we prove in Theorem B.1 that, if the representations H from the model are
minimizing the Dirichlet energy and is non-degenerated, then the first two principal components of
PCA will exactly produce the spectral embeddings z(2), z(3). Here we present an informal version
of the theorem, and defer the full version and proof to the appendix.

Theorem 5.1 (Informal Version of Theorem B.1). Let G be a graph and H ∈ Rn×d (where n ≥
d ≥ 3) be a matrix that minimizes Dirichlet energy on G with non-degenerated singular values, then
the first two principal components of H will be z(2) and z(3).

See App. B for the formal version and proof of Theorem 5.1, and Tab. 2 for an empirical validation.

Connectivity and Energy Minimization Given the relationship between spectral embeddings
(i.e., energy minimizers) and the principal components that we observe (Figures 1, 2), we hypoth-
esize that the model’s inference of the underlying structure is akin to energy minimization. If this
hypothesis is true, then we can further make connections to studies of graph percolation to predict
when we can expect emergent behavior from scaling context, a process that can be analogized to
filling in edges in a graph (i.e., the bond percolation sub-problem in percolation theory) (Newman,
2003; Hooyberghs et al., 2010). Specifically, we expect to see emergent behavior for our in-context
tasks once the model correctly infers a large connected component of the underlying graph, after
having observed a sufficient number of exemplars in the context. For the scenario of lattice struc-
tures with square and hexagonal grids, prior work has shown the percolation transition point scales
as a power law with exponents of 0.5 and 0.65 respectively (Wikipedia., 2024). Rather fascinatingly,
we find these exponents match the scaling exponents retrieved from experiments with Llama3 mod-
els! We defer details of these experiments to Sec. 5.1, and discuss the significance of a connected
component to finish this section.

Namely, we demonstrate that the moment at which we can visualize a graph using PCA implies
the moment at which the model has found a large connected component. Consider an unconnected
graph Ĝ, i.e. Ĝ has multiple connected components. Then there will be multiple degenerate solutions
to the energy minimization, which will be found by PCA. Specifically, suppose Ĝ has q connected
components, with the node set of the i-th component being Ui. Then we can construct the first q
energy minimizers in the following way: for any i ∈ [q], let the j-th value of z(i) be

z
(i)
j =

−αi j ∈
i−1⋃
k=1

Uk

1 otherwise,

(8)

where α1 = 1 and αi =

∑q

k′=i

∑
j∈U

k′ z
(i−1)

j′∑i−1
k=1

∑
j∈Uk

z
(i−1)
j

for i ∈ [q] \ {1}.
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Figure 8: A Percolation transition could explain in-context emergence. We analyze the in-context
accuracy curves based on percolation theory. The graph used in this experiment is a m × m grid
where we vary m. (a) The rule following accuracy of a graph tracing task. The accuracy show a
two phase ascent. We fit a piecewise linear function to the observed ascent to extract the transition
point. (b) We plot the context size at the transition point as a function of n, the number of nodes in
the graph. We find 0.490, similar to the 0.5 exponent expected from percolation theory.

This way, it is easy to check that each z(i) constructed above for i ∈ [q] has 0 energy, thus is a
global minimizer of EĜ . Moreover, all z(i)’s are orthogonal to each other. Therefore, they satisfy
our definition of the first q energy minimizers.

It is important to notice that z(i)’s above for i ∈ [q] contain no information about the structure of
the graph other than identifying each connected component. Theorem B.1 tells us that the principal
components of a non-degenerated (rank s where s > 1) solution H that minimizes the energy will
be z(2) · · · z(s+1). Thus, if the graph is unconnected, then the energy-minimizing representations
will be dominated by information-less principal components, in which we should not expect any
meaningful visualization.

The acute reader may remember that the first minimizer z(1) is a trivial solution of the energy
minimization that assigns the same value to every node. Conveniently, this is not a concern, as PCA
will rule out this degenerate solution as demonstrated in Theorem B.1.

5.1 A PERCOLATION TRANSITION UNDER GRAPH-SIZE SCALING?

Building on the relation between largest connected component and the bond percolation phase tran-
sition suggested above, we now evaluate whether empirical results on whether the critical amount
of context-size needed for achieving non-trivial accuracy matches the predicted power-law scaling
from percolation theory.

Results. We are interested in observing how critical transition points (notated Tc) scale with respect
to graph size. To this point, we repeat our experiments from Section 2, but with varying numbers of
nodes in our underlying graph G. This results in a set of accuracy curves, each of which demonstrate
a similar trajectory as that of Fig. 4. Given the consistent discontinuity in all of the resulting accuracy
curves, we then derive the critical transition points for each run by fitting bilinear piecewise splines
with a single knot that maximally explain each accuracy curve. The knots thus indicate the critical
transition points for each run. Thus we are able to derive critical transition points for varying degrees
of graph size (i.e., number of nodes per graph). The results for our square grid task are provided
in Fig. 8, with more plots available in Appendix. The exponents identified in prior work on bond
percolation in a square and hexagonal grid graph argue that we should see a power scaling with an
exponent of 0.5 and 0.65, respectively (Wikipedia., 2024). The empirical results align well with
these expected exponents, as shown in Figs. 8, 19.

6 RELATED WORK

Model Representations. Researchers have recently discovered numerous representations in neu-
ral networks. Mikolov et al. (2013) suggests that concepts are linearly represented in activations,

9
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and Park et al. (2024b) more recently suggests this may be the case for contemporary language mod-
els. Numerous researchers have found concrete examples of linear representations for human-level
concepts, including “truthfulness” (Marks & Tegmark, 2024; Burns et al., 2022; Li et al., 2023b),
“refusal” (Arditi et al., 2024), toxicity (Lee et al., 2024a), sycophancy (Rimsky et al., 2024), or
even “world models” (Li et al., 2022; Nanda et al., 2023). Park et al. (2024a) finds that hierarchi-
cal concepts are represented with a tree-like structure consisting of orthogonal vectors. A relevant
line of work includes that of Todd et al. (2023) and Hendel et al. (2023). Both papers find that
one can compute a vector from in-context exemplars that encode the task, such that adding such a
vector during test time for a new input can correctly solve the task. Language models do not always
form linear representations, however. Engels et al. (2024) find circular feature representations for
periodic concepts, such as days of the week or months of the year, using a combination of sparse
autoencoders and PCA. Csordás et al. (2024) finds that recurrent neural networks trained on token
repetition can either learn an “onion”-like representation or a linear representation, depending on
the model’s width. Unlike such prior work, we find that task-specific representations with a de-
sired structural pattern can be induced in-context. To our knowledge, our work offers the first such
investigation of in-context representation learning.

Scaling In-Context Learning Numerous works have demonstrated that in-context accuracy im-
proves with more exemplars (Brown et al., 2020a; Lu et al., 2022). With longer context lengths
becoming available, researchers have begun to study the effect of many-shot prompting (as opposed
to few-shot) (Agarwal et al., 2024; Anil et al., 2024; Li et al., 2023c). For instance, Agarwal et al.
(2024) reports improved performance on ICL using hundreds to thousands of exemplars on a wide
range of tasks. Similarly, Anil et al. (2024) demonstrate the ability to jail-break LLMs by scaling
the number of exemplars. Unlike such work that evaluates model behavior, we study the effect of
scaling context on the underlying representations, and provide a framework for predicting when
discontinuous changes in behavior can be expected via mere context-scaling.

7 DISCUSSION

In this work, we show that LLMs can flexibly manipulate their representations from structures inter-
nalized based on pretraining data to structures defined entirely in-context. To arrive at these results,
we propose a simple but rich task of graph tracing, wherein traces of random walks on a graph are
shown to the model in-context. The graphs are instantiated using predefined structures (e.g., lattices)
and concepts that are semantically interesting (e.g., to define nodes), but meaningless in the overall
context of the problem. Interestingly, we find the ability to flexibly manipulate representations is
in fact emergent with respect to context size—we propose a model based on energy minimization
and graph percolation to hypothesize a mechanism for the underlying dynamics of this behavior.
These results suggest context-scaling can unlock new capabilities, and, more broadly, this axis may
have as of yet been underappreciated for improving model abilities. In fact, we note that, to our
knowledge, our work is to first to investigate the formation of representations entirely in-context.
Our study also naturally motivates future work towards formation of world representations Li et al.
(2023a) and world models (Ha & Schmidhuber, 2018) in-context, which can have significant impli-
cations toward building general and open-ended systems as well as forecasting its safety concerns.
We also highlight the relation of our experimental setup to similar tasks studied in neuroscience lit-
erature Garvert et al. (2017); Mark et al. (2020; 2024), wherein humans are shown random walks of
a graph of visual concepts; fMRI images of these subjects demonstrate the formation of a structured
representation of the graph in the hippocampal–entorhinal cortex, similar to our results with LLMs.

Limitations. We do emphasize that our work has a few limitations. Namely, PCA, or more broadly,
low dimensional visualizations of high dimensional data can be difficult to interpret or sometimes
even misleading. Despite such difficulties, we provide theoretical connections between energy min-
imization and principal components to provide a compelling explanation for why structures elicited
via PCA faithfully represent the in-context graph structure. Second, we find a strong, but never-
theless incomplete, causal relationship between the representations found by PCA and the model’s
predictions. We view the exact understanding of how these representations form, and the exact
relationship between the representations and model predictions as an interesting future direction,
especially given that such underlying mechanism seems to depend on the scale of the context.
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A ADDITIONAL EXPERIMENTAL DETAILS

Here we provide some additional details regarding our experimental setups.

Context Windows. Our analyses require computing mean token representations hi for every token
i ∈ T in our graphs. To do so, we grab the activations per each token in the most recent context
window of Nw tokens. Because we further require that each token is observed at least once in our
window, we use a batch of prompts, where the batch size is equal to the number of nodes in our
graph. For each prompt in the batch, we start our random traversal (or random pairwise sampling)
with a different node, ensuring that each node shows up at least once in the context. In the case
when our context length (Nc) is longer than the window, we simply use every token (Nw = Nc).

Computational Resources. We run our experiments on either A100 nodes, or by using the APIs
provided by NDIF (Fiotto-Kaufman et al., 2024).

Code Release. We will release the code for all of our experiments after the peer review process.

B THE CONNECTION BETWEEN ENERGY MINIMIZATION AND PCA
STUCTURE

In this section, for a matrix M ∈ Rn×d, we use lower case bold letters with subscript to represent
the columns for M , e.g. mk represents the k-th column of M . Moreover, we use σk(M) to
represent the k-th largest singular value of M and when M is PSD we use λk(M) to represent the
k-th largest eigenvalue of M . Moreover, we use ek to represent a vector with all-zero entries except
a 1 at entry k, whose dimension is inferred from context, and 1 to represent a vector with all entries
being 1. For a natural number n, we use [n] to represent {1, 2, · · · , n}.

In this section we use
{
z(k)

}n

k=1
to represent the k-the energy minimizers of the Dirichlet energy,

defined in Section 4. Let A ∈ Rn×n be the adjacency matrix of the graph, D = diag(A1) be the
degree matrix, and L = D−A be the Laplacian matrix. Through an easy calculation one can know
that for any vector x ∈ Rn,

EG(x) = ⟨x,Lx⟩ . (9)

Therefore, from the Spectral Theorem (e.g. Theorem 2.2.1 in Spielman (2019)), we know that zk is
the eigenvector of L corresponding to λn−k+1(L) = EG(zk).

We will show that, if a matrix H ∈ Rn×d minimizes the energy and is non-degenerated (have
several distinct and non-zero singular values), then the PCA must exactly give the leading energy
minimizers, starting from z2.

Theorem B.1. Let G be a graph and ϵ1 > ϵ2 > · · · > ϵs > 0 be s ≤ min{n, d} − 1 distinct
positive numbers. Let matrix H ∈ Rn×d be the solution of the following optimization problem:

H = arg min
X∈Rn×d

EG(X) (10)

s.t. λk(X) ≥ ϵk, ∀k ∈ [r], (11)

then the k-th principle component of H (for k ∈ [r]) will be zk+1.

Proof. We first prove that the leading left-singular vectors of H are exactly energy minimizers. Let
r = min{n, d}. Let the SVD of H be H = UΣV ⊤, where Σ = diag [σ1, σ2, · · · , σd] are the
singular values of H , and U ∈ Rn×r, V ∈ Rr×d.
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Let h′
i represents the i-th row of H . Notice that

EG(H) =
∑
i,j

Ai,j

∥∥h′
i − h′

j

∥∥2 (12)

=
∑
i,j

Ai,j

∥∥∥(ei − ej)
⊤
H

∥∥∥2 (13)

=
∑
i,j

Ai,j

∥∥∥(ei − ej)
⊤
UΣ

∥∥∥2 (14)

=
∑
i,j

r∑
k=1

σ2
k ⟨ei − ej ,uk⟩2 (15)

=

r∑
k=1

σ2
kEG(uk). (16)

Since σk’s and uk’s are independent, no matter what are the values of uk, we know that each σk

will take the smallest possible value, and from the given condition, it is σk = ϵk,∀k ∈ [s], and
σk = 0,∀k ∈ [r] \ [s].
Since uk’s are singular vectors, we have uk’s are orthogonal to each other. Using Theorem 1 in
Fan (1949), we know that for any s′ ∈ [n], the minimizer of

∑s′

k=1 EG(uk) is uk = zk,∀k ∈ [s′].
Therefore, it is evident that the minimizer of

∑s
k=1 σ

2
kEG(uk) must satisfies uk = zk,∀k ∈ [s],

since from the above argument of σk’s and the given condition condition we know that σ1 > σ2 >
· · · > σs > 0.

Now we have proved that uk = zk,∀k ∈ [s]. Next we consider the output of PCA. Let pk be the
k-th principle component output by the PCA of H . We know that pk is the eigenvector of

C = ĤĤ⊤ (17)

that corresponds to the k-th largest eigenvalue of C, where Ĥ = H − 1
n11

⊤H is the centralized
H .

From the Spectral Theorem, we have

pk = arg max
p∈Sn−1

p⊥pi,∀i≤k−1

⟨p,Cp⟩ . (18)

Let J = span{1} be the set of vectors whose every entry has the same value. Let J⊥ be the subspace
in Rn that is orthogonal to J . For a subspace K of Rn, let ΠK : Rn → Rn be the projection operator
onto K.

We have that

p1 = arg max
p∈Sn−1

⟨p,Cp⟩ (19)

= arg max
p∈Sn−1

〈
p,

(
I − 1

n
11⊤

)
HH⊤

(
I − 1

n
11⊤

)
p

〉
(20)

= arg max
p∈Sn−1

〈
ΠJ⊥(p),HH⊤ΠJ⊥(p)

〉
(21)

= arg max
p∈Sn−1

p⊥J

〈
p,HH⊤p

〉
, (22)

which, again from Spectral Theorem, is the eigenvector of the second largest eigenvalue of HH⊤,
which is u2 = z2. Using an induction and the same reasoning, it follows that for any k ∈ [s], we
have pk = zk+1. This proves the proposition.
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C ADDITIONAL RESULTS

C.1 DETAILED LAYER-WISE VISUALIZATION OF REPRESENTATIONS

In Figure 9 and Figure 10 we provide additional visualizations per layer for each of our models and
each of our data generating processes.

0.6 0.4 0.2 0.0 0.2 0.4

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Layer 0

1.0 0.5 0.0 0.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Layer 2

1.5 1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Layer 4

1.0 0.5 0.0 0.5 1.0 1.5

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Layer 6

1.0 0.5 0.0 0.5 1.0 1.5 2.0

1.0

0.5

0.0

0.5

1.0

1.5

Layer 8

1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

Layer 10

1 0 1 2

1.0

0.5

0.0

0.5

1.0

1.5

Layer 12

2 1 0 1 2 3
2

1

0

1

2

Layer 14

3 2 1 0 1 2 3 4

3

2

1

0

1

2

3
Layer 16

4 2 0 2 4

4

3

2

1

0

1

2

3

Layer 18

4 2 0 2 4

4

2

0

2

4

Layer 20

6 4 2 0 2 4 6 8

6

4

2

0

2

4

Layer 22

7.5 5.0 2.5 0.0 2.5 5.0 7.5

8

6

4

2

0

2

4

6

Layer 24

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Layer 26

10 5 0 5 10 15

10

5

0

5

10

Layer 28

15 10 5 0 5 10 15

15

10

5

0

5

10

15

Layer 30

Figure 9: We plot 2d PCA projections from every other layer in Llama3.1-8B (Dubey et al., 2024)
, given the board-traversal task. In deeper layers, we can see a clear visualization of the grid.
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Figure 10: We plot 2D PCA projections from every other layer in Llama3.1-8B (Dubey et al., 2024)
for the hexagonal grid task.
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C.2 PCA, DIRICHLET ENERGY, AND ACCURACY RESULTS ON OTHER MODELS

Here we provide results from other language models, i.e., Llama3-1B, Llama3-8B-Instruct,
Gemma2-2B, and Gemma2-9B. In Figure 11, we plot the 2d PCA projections from the last layer of
various models for various data generating processes. In Figure 12, we plot the normalized Dirichlet
energy curves against accuracy for various language models on various tasks. Across all models and
tasks, we see results similar to the main paper.
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Figure 11: We plot 2d PCA projections from the last layer of various language models, given various
data generating processes. For the grid and hexagonal graphs, we apply PCA on the last layers. For
the rings, we visualize layers 14, 10, 16, and 20 respectively. Interestingly, for Llama3.2-1B, we
find the ring representation in the 2nd and 3rd principal components.

C.3 STANDARDIZED DIRICHLET ENERGY

In Fig. 13, we report Dirichlet energy values computed after standardization of representations. This
renders the trivial solution to Dirichlet energy minimization infeasible, since assigning a constant
representation to all nodes will yield infinite energy (due to zero variance). As can be seen in our
results, the plots are qualitatively similar to the non-standardized energy results (Fig. 12), but more
noisy, especially for the ring graphs. This is expected, since standardization can exacerbate the
influence of noise, yielding fluctuations in the energy calculation.
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Figure 12: Accuracy versus normalized Dirichlet energy curves for various language models on
various tasks. For every model and task, we see energy minimized before accuracy starting to
improve.
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Figure 13: Accuracy versus zero mean centered normalized Dirichlet energy curves for various
language models on various tasks. Zero mean centering ensures that graph representations are not
using the trivial solution to energy minimization (i.e., assigning the same representation for every
node).
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C.4 CAUSAL ANALYSIS OF REPRESENTATIONS

In this section we report preliminary causal analyses of our graph representations. While fully under-
standing the mechanisms behind the formation of such representations, as well as the relationship
between said representations and model outputs are an interesting future direction, this is not the
focus of our work and thus we only ran proof-of-concept experiments.

With that said, we ask: do the principal components that encode our graph representations have any
causal role in the model’s predictions?

To test this, we attempt to “move” the location of the activations for one node of the graph to another
by simply re-scaling its principal components. Namely, assume activation hℓ

i corresponding to node
i at layer ℓ. Say we wish to “move” the activation to a different target node j. We first compute
the mean representation of node j using all activations corresponding to node j within the most
recent Nw (= 200) timesteps, notated as h̄j . Assuming the first two principal components encode
the “coordinates” of the node, we simply re-scale the principal components of hi to match that of
h̄j .

We view this approach as rather rudimentary. Namely, there are likely more informative vectors that
encode richer information, such as information about neighboring nodes. However, we do find that
the first two principal components have some causal role in the model’s predictions.

We test our re-scaling intervention on 1,000 randomly generated contexts. For each context, assum-
ing our underlying graph has n nodes, we test “moving” the activations of the last token i to all n−1
other locations in the graph. We then report the averaged metric across the resulting 1,000 × n− 1
testcases.

We report 3 metrics: accuracy (Hit@1), Hit@3, and “accumulated probability mass” on valid tokens.
Hit@1 (and Hit@3) report the percentage of times at which the top 1 (top 3) predicted token is a
valid neighbor of the target node j. For “accumulated probability mass”, we simply sum up the
probability mass allocated to all neighbors (i.e., valid predictions) of the target node j.

Table 1 reports our results for our ring and grid tasks. We include results for re-scaling with 2 or 3
principal components, as well as null interventions and interventions with a random vector. Overall,
we find that the principal components have some causal effect on the model’s output predictions, but
does not provide a full explanation.

Ring Grid Hex
Hit@1 Hit@3 Prob Hit@1 Hit@3 Prob Hit@1 Hit@3 Prob

Interv. (n=2) 0.61 0.91 0.6 0.57 0.95 0.55 0.30 0.32 0.69
Interv. (n=3) 0.77 0.96 0.76 0.68 0.98 0.65 0.42 0.46 0.82
Null Interv. 0.20 0.50 0.20 0.17 0.33 0.16 0.07 0.20 0.05

Random Interv. 0.17 0.47 0.19 0.16 0.37 0.17 0.06 0.18 0.05

Table 1: Intervention results for our ring and grid tasks. We demonstrate that often times, simply
re-scaling the principal component for each token representation can “move” the token to a different
position in the graph. However, we note that our simple re-scaling approach does not perfectly
capture a causal relationship between principal components and model predictions.

C.5 EMPIRICAL SIMILARITY OF PRINCIPAL COMPONENTS AND SPECTRAL EMBEDDINGS

Theorem 5.1 predicts that if the model representations are minimizing the Dirichlet energy, the first
two principal components will be equivalent to the spectral embeddings (z(2), z(3).

Here we empirically measure whether the first two principal components are indeed equivalent to
the spectral embeddings. In Table 2, we measure the cosine similarity scores between the principal
components and spectral embeddings.

C.6 ACCURACY OF IN-CONTEXT TASKS WITH A CONFLICTING SEMANTIC PRIOR.

What would happen when an in-context task which contradicts a semantic prior is given to a model?
Namely, Engels et al. (2024) show that words like days of the week have a circular representation.
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cos sim(PC 1, z(2)) cos sim(PC 2, z(3))
Grid 0.950 0.954
Ring 0.768 0.785
Hex 0.745 0.755

Table 2: Absolute value of cosine similarity scores of principal components from model activations
and spectral embeddings. We empirically observe that in practice, these coordinates end up being
very similar. For the grid and hexagon, we use principal components from the last layer, while for
the ring, we use an earlier layer (layer 10) in which the ring is observed.

In our experiment, we randomly shuffle tokens for days of the week (i.e., tokens {Mon, Tue,
Wed, Thu, Fri, Sat, Sun} to define a new ring, and give random neighboring pairs from
the newly defined ring as our in-context task.

Figure 14 demonstrates the accuracy when given an in-context task that is contradictory to a semantic
prior. Interestingly, we first observe the model make predictions that reflects the original semantic
prior (pink). This accuracy drops very quickly as the model captures that the semantic rule is not
being followed. With more exemplars, we see a slow decay of the remaining semantic accuracy and
a transition in the model’s behavior as it begins to make predictions that reflect the newly defined
ordering of our ring (blue).
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Figure 14: In-context structure overrides semantic prior. Given an in-context task that contra-
dicts a model’s semantic prior, we observe the model transition from making predictions that adhere
to the semantic prior (pink) to predictions that reflect the newly defined in-context task.

Furthermore, in Fig. 15, we quantify the Dirichlet energy computed only from certain PC dimen-
sions. We find that energy minimization happens in the dimensions corresponding to the in-context
structure.
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Figure 15: Energy minimization happens in the in-context component dimensions. We show
the Dirichlet energy depending on the context given when taking 1) all 2) semantic (PCA 1,2) 3)
in-context (PCA 3,4) dimensions. We show that energy minimization happens in PCA 3,4 corre-
sponding to the in-context dimensions.
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C.7 ADDITIONAL EMPIRICAL VERIFICATIONS OF TRANSITION PREDICTIONS

Here we provide additional details for empirically verifying our predictions for model transitions.

Figures 16, 17, and 18 demonstrate detailed accuracy curves for a wide range of graph sizes.

Figure 16: Emergent behavior for varying task complexity (graph size) for the Hexagonal task.
We plot the accuracy for varying levels of complexity (graph size) for the hexagonal in-context
task. Interestingly, regardless of graph size, we see an abrupt, discontinuous change in the model’s
performance. Figure 19 demonstrates that we can predict when such abrupt change can be expected
as a function of task complexity.
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Figure 17: Emergent behavior for varying task complexity (graph size) for the grid task. We
plot the accuracy for varying levels of complexity (graph size) for the grid in-context task. Interest-
ingly, regardless of graph size, we see an abrupt, discontinuous change in the model’s performance.
Figure 8 demonstrates that we can predict when such abrupt changes can be expected as a function
of task complexity.
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Figure 18: Emergent behavior for varying task complexity (graph size) for the ring task.
We plot the accuracy for varying levels of complexity (graph size) for the ring in-context task.
Interestingly, regardless of graph size, we again see an abrupt, discontinuous change in the model’s
performance.

Figure 19: Analyzing a Hexagonal graph tracing task using Percolation theory. We analyze
the in-context accuracy curves based on percolation theory. The graph used in this experiment is a
m×m hexagonal grid where we vary m. (a) The rule following accuracy of the graph tracing task.
The accuracy again shows a two phase ascent like Fig. 8. We fit a piecewise linear function to the
observed ascent to extract the transition point. (b) We plot the context size at the transition point
as a function of n, the number of nodes in the graph. We find 0.666, matching well the ∼ 0.6527
exponent expected from percolation theory on a hexagonal graph.

Figure 20: Hexagonal graph tracing accuracies compared to the memorization solution The
rule following accuracies on the hexagonal graph compared to the memorization model in Sec. 4.1.
Hexagonal graph with a) 48 b) 70 c) 126 d) 286 nodes. Generally we find that the hexagonal graph
tracking accuracy from Llama-3.1-8B (Dubey et al., 2024) is lower than the 1,2-shot memorization
model, indicating that there might be a different underlying process.
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