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Abstract

In recent years, the field of self-supervised learning has seen a surge in the develop-1

ment of mask models, which have been demonstrated to have strong performance2

on downstream tasks and efficient training. To better understand the underlying3

mechanism behind these models’ success, we propose a theoretical framework for4

understanding mask models. By treating mask modeling as a low-rank recovery5

task, we demonstrate that it is a parametric version of Spectral Clustering and6

the reconstruction loss conforms to the form of Spectral Contrastive loss. This7

means that mask modeling can be understood as a token level Contrastive Learning.8

Our framework can be used to explain why optimal masking ratios vary among9

modalities and why there is a large gap between linear probing and finetuning10

performance for mask models. Additionally, our analysis suggests that the success11

of mask models depends on the model architecture, where a token mixing layer12

and layer normalization are crucial for the success of mask models. Our framework13

has the potential to be a step stone for future algorithm and network architecture14

design in the field of self-supervised learning.15

1 Introduction16

With the rapid-growth of deep learning and its increasing demand for data, self-supervised learning17

arises as a research topic in-demand. Among the successful self-supervised learning models, mask18

models have received significant attention for their strong downstream performance and efficient19

training [15, 38, 12, 5, 23, 34, 18, 4]. However, mask-modeling has long been regarded as an20

engineering trick, and its underlying mechanism remains poorly understood.21

Empirically, we have observed that Mask Image Modelling (MIM) leads to varying performance22

improvements on different downstream tasks compared to previous baselines [15]. Specifically,23

MIM has been found to perform better on fine-grained tasks such as semantic segmentation and24

object detection, compared to classification tasks. This phenomenon leads us to hypothesize that25

the representation learned by MIM models is fundamentally similar to that of image segmentation26

(clustering).27

In this work, we propose a theoretical analysis of mask modelling by treating it as a low-rank recovery28

(LRR) task. Our analysis further demonstrates that the reconstruction loss can be rewritten as a29

Contrastive loss [10].30

The LRR problem aims to find the low-rank approximation of a given matrix, and has been used as a31

method for subspace clustering [28]. Additionally, as the optimal solution of the LRR problem is a32

combination of leading eigenvectors, we are naturally led to Spectral Clustering, which also utilizes33

leading eigenvectors [32, 26]. Our results show that MIM approximates the Spectral Clustering34

features of an image-related graph, where each node represents a patch of the image.35

By viewing the Masked Image Model (MIM) as a parametric version of Spectral Clustering, we can36

rewrite the reconstruction loss of mask models in the form of Spectral Contrastive loss on the token37
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level [14].. This allows MIM to be viewed as a token-wise Contrastive Learning method, which38

attracts similar patches while repelling dissimilar ones, resulting in smaller distances within clusters39

and larger distances between clusters. However, there are some key differences between mask models40

and traditional Contrastive Learning methods. Specifically, mask models operate on the token level,41

whereas traditional Contrastive Learning methods focus on the global feature of the entire input, and42

in mask models, positive samples are not clearly defined, but are "randomly sampled" based on the43

similarity between Spectral Clustering features.44

Based on the formulation, we could answer several concerning questions about mask models: 1) Why45

optimal masking ratio vary among modalities? 2) Why is there a large gap between linear probing and46

finetuning performance for mask models? 3) Does mask modelling rely on network architectures?47

For the first question, we argue that a critical factor that affects the goodness of pretrained features is48

the number of clusters in Spectral Clustering. For example, if we have an image with a dog on the49

grass, intuitively we should have two clusters: grass and dog. It could be less representative if we50

have more clusters and divide one of the existing clusters into different sub-clusters and repel one51

from each other. The number of clusters is given by the number of leading eigenvectors, which is52

related to the rank of reconstructed matrix in LRR problem and masking ratio in MIMs. This explains53

why we need different masking ratios in different modalities [12, 15, 34, 18].54

For the second question, it is due to the nature of token level Contrastive learning. Pretrained mask55

models learns to divide tokens into clusters, but doesn’t always learn which cluster is most related56

to the class. Therefore, token mixing layers are needed to "select" clusters. Most MIMs apply an57

extra BatchNorm layer when performing linear probing, otherwise a huge accuracy drop is witnessed58

[19, 15]. It could be due to the lack of patch selection and a BatchNorm is needed to add non-linearity.59

In contrast, we found that partially finetuning one linear layer for row mixing with the prediction60

head could much improve classification accuracy.61

For the third question, the answer is "Yes". Model architectures containing token mixing layers62

plays a crucial role in the success of mask models in classification tasks [35, 13, 24, 33]. Finetuning63

these layers allows the model to learn how to select tokens. Meanwhile, the layer normalization64

in the decoder might also be important, as it serves as a token level batch normalization, which is65

commonly used in the projection layer of Contrastive Learning models to improve performance66

[3, 19]. Therefore, we conclude that mask model is dependant of network architecture.67

In a summary, our main contributions are:68

1. We created a mathematical framework for mask image modeling by viewing it as a low-rank69

recovery problem.70

2. We found that mask model could be viewed as a token level Contrastive Learning, which71

could account for its good performance on downstream tasks.72

3. Our analysis framework could explain several important behaviors of mask models and73

guide future model architecture design and parameter choosing.74

We mainly conducted experiments on images, but our findings could be easily generalized to all75

modalities.76

2 Related Works77

2.1 Mask Image Modelling78

The recent trend in self-supervised learning is to train vision transformers using masked images to79

reconstruct the original ones. [13]. RDifferent types of reconstruction objectives, such as token-wise,80

feature-wise, and pixel-wise reconstruction, are being tested. [39, 8, 7]. These kinds of pretraining81

tasks are called Masked Image Modeling (MIM) [5]. There are two main architectures for these82

models: one that only accesses visible tokens in the encoder and attaches an extra decoder [15, 5],83

and another that passes both visible and mask tokens into the encoder and has a single linear layer as84

a decoder [38]. Our formulation is based on the first type of architecture. These mask models serve85

as a pretrain model, and for downstream tasks, we either finetune or perform linear probing. For86

classification, a linear head is appended, and the parameters are initialized from the pretrain models.87

The difference between finetuning and linear probing is that the parameters of the pretrained model88

are frozen in linear probing.89
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2.2 Theoretical Analysis of Mask Models90

Previous works on mask models have provided theoretical frameworks for understanding the attention91

operation in the encoder [6], proposed that MIMs are learning semantics [27], proved a downstream92

performance bound for linear probing with MSE loss [22], and claimed that mask models learn global93

features that are occlusion invariant [20]. Our work is distinct from these previous works in that94

we emphasize the connection between mask modeling and Contrastive Learning. One work also95

mentioned that the decoder in MIMs is performing low-rank recovery, but the authors did not link96

this to the success of MIMs [6].97

2.3 Spectral Contrastive Loss98

The Spectral Contrastive loss was proposed as a way to provide a provable guarantee for downstream99

task performance [14, 2]. However, some later work has identified issues with the formulation100

and stronger assumptions are needed to achieve the guarantee [29]. Despite this, the theoretical101

framework that connects Contrastive Learning and Spectral Clustering is still attractive. Our work is102

inspired by this analysis framework, but with several differences. In their work, the graph used for103

Spectral Clustering is inherent, and the authors argue that matrix factorization approximates the node104

representations of the graph. Our work, instead, explicitly writes out the adjacency matrix of a graph105

and shows that it is related to the MIM problem. Additionally, our work highlights the importance of106

rank, which is often overlooked in previous works.107

3 Preliminary and Notations108

3.1 Notations of Masked Autoencoder109

Our analysis mainly focus on Masked Autoencoder (MAE) style encoder-decoder structure, where the110

input size of encoder is smaller than that of decoder [15]. Denote the encoder in the mask modeling111

by f , and the decoder by g, the sampled visible subset by X , and the masked part of the original112

image by X0. We adopt the Transformer architecture as backbone, where f and g don’t change the113

shape of inputs [35].114

Definition 3.1. To train the masked autoencoder and achieve the best performance can be interpreted115

as solving the minimization problem:116

argmin
f,g,X

∥g ◦ f(X)−X0∥2F , (1)

where X ∈ RN×F , X ∈ RN0×F . We reshape the matrix of image so that N is the number of visible117

patches and N0 is the number of masked patches. We also have the loss defined as118

LMAE(f, g,X) = ∥g ◦ f(X)−X0∥2F (2)

Definition 3.2. We further define the token mixing layer with weight W ∈ RN×N , which mixes119

features on the patch level. of inputs. In transformers, the layer is the softmaxed query-key matrix.120

Figure 1: Overall structure of Mask Autoencoders. Only visible tokens are passed through the
encoder, and a decoder applies encoder features to reconstruct mask tokens.

3.2 Basic Low-rank Recovery Problem121

The basic low-rank recovery problem solves the following optimization problem:122

argmin
D̂

∥D̂ −D∥F subject to rank(D̂) ≤ rank(D) (3)
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Based on the Eckart–Young–Mirsky theorem [17], the low-rank approximation problem has a123

solution in terms of singular value decomposition of the original matrix, which is in the form:124

D̂ =
∑r

i=1 σiuiv
⊤
i , where σi is the ith singular and ui and vi are its corresponding left and right125

singular vectors. We could also write it as D̂ = UrΣrV
⊤
r , where Ur, Vr contains the first r columns126

of U and V , and Σr is an r × r matrix with the top r leading singular values as diagonal.127

3.3 Spectral Clustering with Normalized Adjacency Matrix128

Suppose we have a n-node graph G with the adjacency matrix A:129

A =

 w11 · · · w1n

...
. . .

...
wn1 · · · wnn

 (4)

The normalized adjacency matrix is defined as A = D− 1
2AD− 1

2 , where D is the degree matrix of130

graph G, which is a diagonal matrix such that Dii =
∑n

j=1 wij = wi. To get k cluster of the graph,131

take the leading top k eigenvectors of A as node embedding and perform k-means algorithm on the132

node embedding [26].133

4 Mask Modeling as a Patch-wise Contrastive Learning134

4.1 Mask Modeling is Low Rank Recovery135

In this section, we formalize MAE as a low-rank recovery task. As X is a smaller portion of the136

original image and f doesn’t change the size of input, f(X) naturally has a lower rank compared to137

X0. we assume the following condition is true:138

Assumption 4.1. g ◦ f(X) has a lower rank than X0.139

Remark 4.2. This assumption follows Lemma 6.1 in [6], where they prove an upper bound for the140

reconstruction with a low rank decoder assumption. Also in practice, even if g is a non-linear function141

that doesn’t guarantee low rank assumption, we find that g(f(X)) still has a very low rank. Arguably142

it is because reconstructing unseen tokens is very hard to optimize and only leading singular vectors143

can be approximated.144

Under this assumption, the minimization problem can be rewritten as145

argmin
f,g,X

∥g ◦ f(X)−X0∥2F (5)

subject to rank(g ◦ f) < rank(X0).

4.2 Mask Modeling is a Parametric Version of Spectral Clustering146

In section 3.2, it is showed that the low-rank approximation problem is solved by singular value147

decomposition of the higher-ranked matrix. Suppose the required rank is k, then the optimal solution148

is a linear combination of top k eigenvectors of X0X
⊤
0 obtained from singular value decomposition.149

Consider Spectral Clustering which clusters a graph into k connected components such that there150

is minimal effect on graph Laplacian. Spectral clustering performs dimensional reduction with k151

eigenvectors corresponding with the largest k eigenvalues of the normalized adjacency matrix.152

Both mask modeling and Spectral Clustering are utilize k eigenvectors, hence, we propose that the153

behaviors of mask modeling is similar to the behaviors of Spectral Clustering. Consequently, the154

classifier trained based on mask modeling based f and Spectral Clustering based f gives the same155

prediction. Formally we have:156

Theorem 4.3. Define weights of adjacency matrix for graph G as wij = ⟨X0r,i, X0r,j ⟩, where X0r,i157

is the low-rank approximation of the representation for ith patch of X0. Given the corresponding158

normalized adjacency matrix A , optimizing mask modeling is equivalent to optimize the following159

loss on classification downstream tasks.160

Lspec(f, g,X) =
∥∥(g ◦ f(X))(g ◦ f(X))⊤ − A

∥∥2
F

(6)
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Proof. The SVD of X0 gives X0 = UΣV ⊤, then A = X0rX
⊤
0r = UrΣ

2
rU

⊤
r .161

Since A is symmetric and D is diagonal, A is symmetric and SVD of A has the form of UA ΣA U⊤
A .

Plug in A gives
A = D− 1

2AD− 1
2

= D− 1
2UrΣ

2
rU

⊤
r D− 1

2

=
(
D− 1

2UrD
1
2

)(
D− 1

2Σ2
rD

− 1
2

)(
D− 1

2UrD
1
2

)⊤
.

Therefore, UA = D− 1
2UrD

1
2 and ΣA = D− 1

2Σ2
rD

− 1
2 .162

The SVD of X0 can be rewritten as X0r = D
1
2UA D− 1

2ΣrV
⊤
r . With Eckart–Young–Mirsky Theo-163

rem, we rewrite the minimization problem of mask modeling as164

argmin
f,g,X

∥∥∥g ◦ f(X)−D
1
2UA D− 1

2ΣrV
⊤
r

∥∥∥2

F
, (7)

whose optimal solution is D
1
2UA D− 1

2ΣrV
⊤
r . Note that D is a diagonal matrix, so we could use a165

decoder to eliminate this term, by setting g′ = D− 1
2 g. Therefore, we can discard D

1
2 , making the166

optimization problem into:167

argmin
f,g,X

∥∥∥g ◦ f(X)− UA D− 1
2ΣrV

⊤
r

∥∥∥2

F
. (8)

With some linear algebra calculation, we could further show that the right hand side of Equation 6 is168

bounded by the error of Equation 8 with big O notation, i.e. given
∥∥∥g ◦ f(X)− UA D− 1

2ΣrV
⊤
r

∥∥∥2
F
≤169

ε,
∥∥(g ◦ f(X))(g ◦ f(X))⊤ − A

∥∥2
F
≤ Cε for some constant C.170

Let M = g ◦ f(X), N = UA D− 1
2ΣrV

⊤
r , then171 ∥∥∥(g ◦ f(X))(g ◦ f(X))⊤ − A

∥∥∥2

F
=

∥∥∥(g ◦ f(X))(g ◦ f(X))⊤ − (UA D− 1
2ΣrV

⊤
r )(UA D− 1

2ΣrV
⊤
r )⊤

∥∥∥2

F

=
∥∥∥MM⊤ −NN⊤

∥∥∥2

F

=
1

4

∥∥∥(M −N)(M⊤ +N⊤) + (M +N)(M⊤ −N⊤)
∥∥∥2

F

≤ 1

4

(
∥M −N∥F

∥∥∥M⊤ +N⊤
∥∥∥
F
+ ∥M +N∥F

∥∥∥M⊤ −N⊤
∥∥∥
F

)2

= ∥M −N∥2F ∥M +N∥2F
Since N = UA D− 1

2ΣrV
⊤
r is defined by the original image and M is an approximation to N , we172

could say that ∥M +N∥2F is bounded by a constant and thus
∥∥(g ◦ f(X))(g ◦ f(X))⊤ − A

∥∥2
F
≤173

Cε, and we finish the proof.174

175

Therefore, MAE learns to approximate the Spectral Clustering features. We further discuss the176

importance of having appropriate k in Section 5.1177

4.3 Lspec is a Spectral Contrastive Loss178

Rewrite Lspec, mask modeling can be viewed as a token level Contrastive Learning. We define the179

ith row of g ◦ f(X) as
√
wiui, the predicted patch representation. We could rewrite Lspec into,180

Lspec =
∥∥(g ◦ f(X))(g ◦ f(X))⊤ − A

∥∥2
F

=
∥∥∥(g ◦ f(X))(g ◦ f(X))⊤ −D− 1

2AD− 1
2

∥∥∥2
F

=
∑
i,j

(
wij√
wiwj

− (
√
wiui)

⊤(
√
wjuj)

)2

=
∑
i,j

(
w2

ij

wiwj
− 2wiju

⊤
i uj + wiwj ·

(
u⊤
i uj

)2)
(9)
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Apply the kernel trick, changing wij into Wij , such that Wij = exp(
wij

2σ2 ) [16]. With a choice of σ,181

we have Wij defined as (or approximates) the probability of ui and uj to be a positive pair. Following182

the notations of Spectral Contrastive Loss, we make Equation (9) into the form of a Contrastive loss183

[14].184

Lspec = Lcont + const, (10)

where Lcont = −2 · Eu,u+

[
u⊤u+

]
+ Eu,u−

[(
u⊤u−)2]185

Remark 4.4. In Haochen et al’s work, u+ and u− is defined as positive/negative samples, that has186

higher/lower probability to be found in u’s augmentation space. In mask models, we similarly define187

u+ as patches having higher similarity to u and u− having lower similarity to u.188

The above shows that MAE loss is equivalent to a Contrastive loss on masked tokens. We further189

show that it inherently perform Contrastive Learning on visible tokens.190

Assumption 4.5. Denote one of the original patch of the ith masked token as X0,i, the predicted191

feature ui is a linear combination of features of visible tokens, such that ui =
∑

j aju
′
j . Assume this192

transformation is made by decoder g.193

Lemma 4.6. Optimal aj is proportional to patch similarity u′⊤
j X0,i.194

Proof. Consider MAE loss with regularization, we have the optimization problem to reconstruct one195

patch:196

argmin
aj

∥∥∥∥∥∑
j

aju
′
j −X0,i

∥∥∥∥∥
2

F

+ λ
∑
j

a2
j (11)

where j = 1, 2, · · ·N , denoting the visible patch representations, and λ is the regularization strength.197

Let A = [a1, a2, · · · , aN ]⊤, U ′
:,k = [u′

1,k, u
′
2,k, · · · , u′

N,j ]
⊤ a rank-1 vector with all patches and kth198

latent feature, and X:,k = [X1,k, X2,k, · · · , XN,k]
⊤ similarly defined. X0,i,k is a scalar corresponds199

to the ith patch and kth latent feature. With Assumption 4.5, we decompose it into k rank-1200

components.201

Then Equation 12 becomes:202

argmin
A

N∑
k=1

∥∥∥A⊤U ′
:,k −X0,i,k

∥∥∥2

2
+

N∑
k=1

λ

N
∥A∥22 (12)

Apply Sherman-Morrison formula [1, 31], which states203 (
X +mn⊤

)−1

= X−1 − X−1mn⊤X−1

1 + n⊤X−1m
(13)

for any invertible matrix X and rank-1 matrix m and n.204

Then for each k, the optimal solution for A would be:205

Âk =

(
λ

N
I + U ′

:,kU
′⊤
:,k

)−1

U ′
:,kX0,i,k

= N

(
I

λ
−

I
λU

′
:,kU

′⊤
:,k

I
λ

1
N + U ′⊤

:,k
I
λU

′
:,k

)
U ′
:,kX0,i,k

=
N

λ
U ′
:,kX0,i,k − N

λ

U ′
:,k

∥∥∥U ′
:,k

∥∥∥2
2
X0,i,k

N
λ +

∥∥∥U ′
:,k

∥∥∥2
2

(14)

Since U ′ is an output of a Layer Norm layer,
∥∥∥U ′

:,k

∥∥∥2
2

is a constant, denote as C. Plug in Equation 14,206

we get the optimal solution for certain k:207

Âk =
N2

λN + λC
U ′

:,kX0,i,k (15)
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Since Equation 12 solves a sum of least square, the optimal Â is the mean of Âks, i.e. A =208
N

λN+λCU ′⊤X0,i, and each optimal aj is given by209

âj =
N

λN + λC
u′⊤
j X0,i (16)

210

Meanwhile, as there’s only one MLP layer between u′
j and Xj , we view u′

j as an approximation to211

Xj , thus212

âj ≈ N

λN + λC
XjX0,i (17)

which is proportional to the non-parametric patch similarity defined by the original image. Here we213

see the representation of masked tokens is mainly composed of similar tokens, performing Contrastive214

Learning on masked tokens inherently performs Contrastive Learning on visible tokens.215

Remark 4.7. We could view the layer normalization layer in MAE’s decoders as a token level batch216

normalization, and the entire decoder as a non-linear projection layer in Contrastive Learning methods217

[3].218

Remark 4.8. Though reconstructing masked tokens make it more complicated and less explainable, it219

is required as reconstruction visible tokens could lead to a shortcut solution of identity mapping.220

5 Patch-wise Contrastive Learning Explains Mask Model Behaviors221

Based on the theoretical framework proposed, we could explain several parameter choice and222

architecture design for mask models.223

5.1 Mask Ratio for Different Modalities224

In Section 4.2, we demonstrate that mask models are a parametric version of Spectral Clustering, and225

they learn to decrease intra-cluster distances while increasing distances between different clusters226

through Contrastive Learning. Therefore, an appropriate number of clusters is a crucial factor that227

affects the quality of the features learned. When we consider each cluster has a pseudo-class label,228

too few or too many classes can both be indistinct when trying to separate the classes. Therefore, we229

define the following:230

Definition 5.1. Let s be the ratio of appropriate cluster numbers to total number of tokens. We have231

s =
num_cluster
num_tokens

=
k

N0
, (18)

where k is the number of leading eigenvectors in Spectral Clustering, and N0 is the number of tokens232

for reconstruction.233

In mask models, k is subjected to rank(g ◦ f(X)), which is determined by the number of visible234

tokens N . If we assume rank(g ◦ f(X)) is proportional to N , we have:235

s ∝ N

N0
(19)

As N
N0

= 1−mask_ratio, s is thus determined by the masking ratio.236

Intuitively we know that s is smaller for modalities with lower information density, such as video,237

vice versa. Therefore, we need a higher masking ratio for lower-density modalities and a smaller one238

for higher-information-density modalities [18, 36, 15, 34].239

5.2 Linear Probing Mask Image Models240

When tuning MIMs on image classification tasks, there is a significant gap between linear probing241

and finetuning [15]. A trick that is often used to improve linear probing performance is to append a242

batch normalization layer before the linear head [9]. Without the BN layer, and with an appropriate243

batch size, the classification accuracy can drop significantly [37].244
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We argue that this is due to the nature of token-level Contrastive Learning. MIMs only learn to create245

and separate several clusters, but do not learn which cluster is indicative of the class label. It is often246

the case that the class token from a pretrained MIM does not learn the correct cluster. Therefore,247

partially finetuning a token mixing layer can greatly boost accuracy [15]. We also argue that the BN248

layer adds non-linearity that partly serves as a token mixing layer. Therefore, we may need to rethink249

whether linear probing is a "fair" method to evaluate MIMs.250

5.3 Network Architecture Matters251

As discussed in Section 5.2, MIMs do not know how to select important tokens without finetuning.252

Therefore, a network architecture with token mixing layers is crucial for the success of mask models253

on classification tasks. Finetuning these layers allows MIMs to understand what are important254

tokens. Another important architecture design is the number of attention heads. More attention heads255

generally improves the expressive ability of mask models by offering more choices of candidate256

clusters.257

6 Experiments258

We have verified several of our assumptions and mathematical formulations with MAE models259

pretrained on Cifar10 and ImageNet-1K (IN-1K) datasets [21, 11]. The model backbones used260

for Cifar10 and ImageNet are ViT-Tiny and ViT-Base, respectively [13]. For ViT-Base on IN-1K,261

we followed the settings of MAE [15]. The parameters of ViT-Tiny on Cifar-10 are given in the262

supplementary materials. We have used the same parameters for linear probing and finetuning, as we263

found that changing the optimizer of linear probing to AdamW gives better performance [25].264

6.1 Low-rank Approximation of Different Mask Ratio265

To verify Assumption 4.1, and our claim in Section 5.1, we computed the average distance of matrix266

factorization components between the reconstructed image and the original image on the Cifar10267

dataset. Specifically, given the matrix factorization of the original image and reconstructed image:268

X0 =
∑r

i=1 σ0,iuiv
⊤
i and X̂0 =

∑r
i=1 σ̂0,iûiv̂i

⊤ respectively, we compute
∥σ0,iuiv

⊤
i −σ̂0,iûiv̂i

⊤∥2

2

∥σ0,iuiv⊤
i ∥2

2

269

for i = 1, 2, 3, 4, 5 and models with 50%, 60%, 70%, 80%, 90% mask ratio, shown in Figure 2. Our270

results demonstrate: 1. The reconstructed image is low-rank, since the distances are increasing with271

index, which means that the leading components are more closely approximated. 2. A higher mask272

ratio tends to have smaller number of clusters, as the slope is steeper when mask ratio is higher.273

6.2 Visualizing cluster results of MAE features274

In Section 4.3, we argued that MAE is a token level Contrastive Learning, which could result in275

good zero-shot segmentation results. Here we demonstrate a few non-cherry-picked segmentation276

examples by performing K-means on MAE features in Figure 2.277

Figure 2: Distances between leading ma-
trix factorization components of recon-
structed image and original image.

Figure 3: K-means on MAE encoder fea-
tures.
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6.3 Different Probing Methods278

In Table 1, we compare three different probing methods mentioned in Section 5.2. We conducted279

our experiments on both Cifar10 and IN-1K datasets with linear probing with a linear head (LP),280

non-learnable batch normalization + linear probing (BN + LP), and partial finetuning (Partial FT).281

For partial finetuning, we tune a linear head and the last qkv projection layer in the encoder, which is282

also linear.283

We observe that a non-learnable BN layer can significantly improve the linear probing performance284

while a learnable token mixing layer can further improve the performance. The performance gain285

here is larger than what is typically seen in other Contrastive Learning models [9]. This phenomenon286

provides support for our assumption that the class token learned through the MIM pretext task may287

not accurately select clusters highly relevant to class labels. The incorporation of token mixture layers288

enables the reselection of clusters and leads to a performance boost.289

Dataset LP BN+LP Partial FT

Cifar10 64.4 76.6 (+12.2) 83.3 (+6.7)
IN-1K 48.0 68.0 (+20.0) 69.3 (+1.3)

Table 1: Classification accuracy with different
probing methods.

Heads LP FT

3 64.4 89.7
6 67.5 (+3.1) 90.2 (+0.5)

Table 2: Classification accuracy with different
attention head numbers.

6.4 Ablation on Number of Attention Heads290

This experiment supports our assertion in Section 5.3 that the number of attention heads can impact291

the performance of MIMs. We pretrained a ViT-Tiny on Cifar10 with 3 and 6 attention heads292

respectively and their downstream task accuracy with linear probing (without BN) and finetuning293

are shown in Table 2. By increasing the number of heads, we observed a significant improvement in294

accuracy for both linear probing and finetuning on the classification task.295

7 Discussion296

While mask modeling can be seen as a variant of Contrastive Learning at the token level, it is much297

different from traditional Contrastive methods. The primary distinction lies in the definition of298

positive and negative pairs: mask modeling methods derive these pairs from natural signals, whereas299

Contrastive methods use externally sourced human knowledge. This fundamental difference also300

impacts the data augmentation approach used in each method, with mask modeling employing301

weak augmentation, and Contrastive methods depending on strong augmentations. It thus raises302

the intriguing question of whether there could be a unified approach to the augmentation process.303

Furthermore, there’s a compelling need to explore how mask models can be successfully employed in304

the arena of multimodal self-supervised learning, especially given the challenge that natural signals305

often do not align across different modalities.306

8 Conclusion307

In this paper, we propose a theoretical framework for analyzing mask models. We discover that mask308

modeling is a form of Contrastive Learning at the token level, which may account for its success. Our309

framework also addresses important questions regarding the behavior of mask models. We hope that310

our study will offer valuable insights into designing self-supervised learning algorithms and model311

architectures.312

Limitation While our paper puts forth a theoretical framework to analyze mask models and elucidates313

their relationship with Contrastive Learning, we remain unable to provide a provable guarantee for314

the downstream performance of self-supervised pretraining models. The persisting challenge to315

fully comprehend Contrastive Learning - specifically, the inductive bias inherent in neural networks -316

continues to apply to mask models as well [30].317
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