
Bayesian Neural Networks using HackPPL with
Application to User Location State Prediction

Beliz Gokkaya?1, Jessica Ai?1, Michael Tingley1, Yonglong Zhang2

Ning Dong1, Thomas Jiang1, Anitha Kubendran1, Arun Kumar1
1Facebook, 2University of Southern California

?{belizg, jaix}@fb.com

1 Introduction & Related Work

At Facebook, we are becoming increasingly interested in incorporating uncertainty into models used
for decision making. As a result, we are building an in-house universal probabilistic programming
language that aims to make modeling more accessible to developers and to unify the tooling experience
for existing users of Bayesian modeling. In addition, we form interfaces for common probabilistic
models on top of this language and apply these to datasets within the company.

For the less familiar reader, probabilistic programming languages (PPLs) provide a convenient syntax
for allowing users to describe generative processes composed of various sources of uncertainty. The
user may then pose probabilistic queries about their world that will be resolved using an inference
engine. Some of the more mature languages include domain specific languages such as WinBUGS
[1], JAGS [2] and Stan [3], which place some restrictions on the models a user may write in order
for inference to run more efficiently. On the other hand, the newer universal PPLs such as Church
[4], WebPPL [5] and Anglican [6] extend existing general-purpose languages and resolve queries
through a generic inference engine. In doing so, users are constrained only by the limitations of the
underlying language, although this may not always result in the most efficient model and this tradeoff
between model expressivity and inference efficiency is an ongoing area of research.

Traditionally, Bayesian neural networks (BNNs) are neural networks with priors on their weights
and biases [7, 8]. Their main advantages include providing uncertainty of predictions rather than
point estimates, built-in regularization through priors, and better performance in problem settings
such as the robot arm problem [7, 9], but are generally expensive in terms of compute time. While
probabilistic interpretations of neural networks have been studied in the past, BNNs have seen a
resurgence in popularity in recent years, particularly with alternative probabilistic approaches to
dropout [10] and backpropagation [11], and the renewed investigation of variational approximations
[12] which have made computation more tractable. There have also been more recent advances in
combining probabilistic programming and deep learning, notably by Edward [13] and Pyro [14].
These languages are built on top of existing tensor libraries and have so far focused on variational
approaches for scalable inference.

In this study, we present HackPPL as a probabilistic programming language in Facebook’s server-side
language, Hack. One of the aims of our language is to support deep probabilistic modeling by
providing a flexible interface for composing deep neural networks with encoded uncertainty and
a rich inference engine. We demonstrate the Bayesian neural network interface in HackPPL and
present initial results of a multi-class classification problem to predict user location states using
Markov Chain Monte Carlo. Through HackPPL we aim to provide tools for interacting and debugging
Bayesian models and integrate them into the Facebook ecosystem.
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2 HackPPL

2.1 Language

HackPPL is a universal probabilistic programming language written in Facebook’s server-side
language, Hack [15]. We have extended the Hack language by embedding random events into the
language in order to provide expressivity and flexibility for statistical modeling. More specifically,
our work is based on the continuation passing style transformation [16] and we use coroutines backed
by multi-shot continuations, which we have added to the Hack language. Indeed, these coroutines
constitute the building blocks of HackPPL’s trace-based implementation.

As a universal PPL, we choose to separate the modeling and inference in order to abstract away the
details of inference from users. On the modeling side, we adopt a generative modeling approach that
allows for stochastic control flow. Two important language constructs for forming a model in HackPPL
are ‘sample’ and ‘observe’, in which ‘sample’ statements enable repeated sampling from probability
distributions, whereas ‘observe’ statements enable conditioning on data. By implementing these
language constructs as coroutines, we can discriminatively explore different parts of the posterior.
Below we provide an example program in HackPPL, which demonstrates Bayesian linear regression.

Figure 1: Linear regression model in HackPPL

We also aim to provide a generic Bayesian inference engine and currently support Markov Chain
Monte Carlo (MCMC) methods, including Hamiltonian Monte Carlo, Sequential Monte Carlo,
and Variational Inference. The tensor and automatic differentiation implementations in HackPPL
are backed by PyTorch [17] to take advantage of PyTorch’s support for vectorization, GPUs and
distributed computing. In addition, we provide tools for quantitative and visual inference introspection
and for performing posterior predictive checks. We provide an example sampler in HackPPL below
for obtaining the posterior distribution of the coefficients of the linear regression model.

Figure 2: Sampler for linear regression model in HackPPL

2.2 Bayesian Neural Networks

HackPPL’s BNN implementation provides abstractions for various layer types such as dense and
convolutional layers, which allows composition of different architectures. Within each layer, users can
make use of the API to specify priors, and declare deterministic and stochastic hyperparameters. We
further build on top of these abstractions to provide a convenient syntax for creating and configuring
feedforward, recurrent and convolutional neural networks.

We demonstrate the BNN interface in HackPPL for a feedforward regressor with architecture shown
in Figure 3 and the corresponding code provided in Figure 4. Here, the weights and biases are defined
to have hierarchical Gaussian priors, where hyperpriors control the mean and variance of the priors.
Automatic relevance determination [7] is used to understand the relative relevancy of input features.
The observed data is defined to follow a Gaussian distribution centered around the predicted value.

3 Application to User Location State Prediction

We present our initial attempts to apply the BNN classifier to a user location prediction problem
at Facebook where the motivation is to learn contextual information around a user’s location at a
particular point in time. For testing purposes, our dataset contains 88 features describing the context
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Figure 3: Graphical model
of the Bayesian neural net-
work

Figure 4: Bayesian neural network for regression in HackPPL

of a particular user and we classify each user’s location into one of 5 states. We test a neural network
architecture consisting of three layers having 32 nodes each and with tanh activations. Weights and
biases are modeled using hierarchical Gaussian priors whose variances are scaled using hyperpriors.
We then use MCMC inference to obtain the posterior distribution of the neural network parameters
and inspect the posterior predictive distributions of the training and evaluation datasets.

Figure 5: Boxplot of F1-scores of posterior pre-
dictive samples against training and test data

Figure 6: Prediction uncertainty with respect to
an important feature

To assess model fit, we obtain the posterior predictive distribution and calculate the distribution of
F1-scores across the replicated dataset. We present the distribution of F1-scores obtained across
training and test datasets Figure 5. The F1-scores are comparable to results from existing frequentist
models and, as expected, we observe a larger 95% credible interval for the test data. In Figure 6, we
dive deeper by plotting the prediction of a particular state along with its uncertainty with respect to
one of the important input features. The predictions yield significant uncertainty for certain values of
this feature. Overall, we are able to understand the uncertainty in the predictions, which facilitates
diagnosing and understanding the limitations of a statistical model.
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4 Conclusion

This study introduces HackPPL as a universal probabilistic programming language and demonstrates
the Bayesian neural network API built using HackPPL. We also present our initial efforts to model user
location states using a Bayesian neural network classifier and show that by preserving the uncertainty
in the estimates, we are able to understand the limitations of the model as well as represent our
confidence in the predictions. This is vital to us at Facebook, as we are particularly interested
in understanding where our predictive models behave poorly and in representing our confidence
in predictions. Through adopting a Bayesian approach, HackPPL supports these motivations by
integrating tools targeting model improvement and debugging for maintainability of statistical models
into a machine learning developer’s workflow.
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