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ABSTRACT

Using the same architecture for text and image is important for AI standardization.
Recent multimodal models use a decoder-only Transformer to generate text and
an encoder-only Transformer to extract image features. Can images use exactly
the same language architecture? To answer this question, we aim at a LLaMa
decoder as vision Transformer (ViT) classifier in this paper. Specifically, we start
our trajectory by “LLaMAfy” a standard ViT step-by-step, i.e., feed-forward net,
normalization layer, causal self-attention and positional embedding, and point out
a key issue—attention collapse—that result in the failure to the network training.
Motivated by this observation, we propose post-sequence class token, enabling
causal self-attention to efficiently capture the entire image’s information. To im-
prove model optimization behavior and enhance performance, we then introduce
a soft mask strategy to gradually transform the attention from bi-directional to
causal mode. The tailored model, dubbed as image LLaMA (iLLaMA), maintains
high consistency with LLaMA architecture, while matching up well against ViT,
achieving 75.1% ImageNet top-1 accuracy with only 5.7M parameters. Scaling
the model to ∼310M and pre-training on ImageNet-21K further enhances the ac-
curacy to 86.0%. Its causal self-attention boosts computational efficiency and
learns complex representation by elevating attention map ranks. Extensive exper-
iments demonstrate iLLaMA’s reliable properties: shape-texture bias, calibration,
quantization compatibility, ADE20K segmentation and CIFAR transfer learning.
We hope our study can kindle fresh views to visual architectures in the era of
LLMs and contributes to standardized AI models.

1 INTRODUCTION

Using the same architectures for both text and images is important for building standardized AI
systems. If architectures dealing with both modalities can be fully aligned, we can economically
develop one set of operators to implement both models, and acceleration and optimization algo-
rithms (Kwon et al., 2023; Dao et al., 2022; Dao, 2024; Shah et al., 2024) designed for one modality
(e.g., text) can be seamlessly transferred to another (e.g., image).

Recent multimodal models use decoder-only large language models (LLMs, e.g., LLaMA (Touvron
et al., 2023a)) to generate text, given their superior scaling capabilities and performance. For image
feature extraction, however, encoder-only ViTs (Dosovitskiy et al., 2020) are still used. a natural
question is: can decoder-only language architectures be used to handle images?

However, the answer to this question is not intuitive. First, decoder-only architectures take a causal
mode attention to process 1D text tokens, while encoder-only counterparts use a bi-directional
mode attention to process 2D image tokens. Such intrinsic difference may affect the effective-
ness of LLaMA training on visual tasks. Second, besides the attention mode, several differences
still exist in architectural design choices between LLaMA and ViT, i.e., feed-forward network
(SwiGLU (Shazeer, 2020) vs MLP), normalization layer (RMSNorm (Zhang & Sennrich, 2019)
vs LayerNorm (Ba et al., 2016)), and positional embedding (rotary (Su et al., 2024) vs learnable).

In this paper, we move closer to answering this question by introducing a decoder-only vision Trans-
former—image LLaMA (iLLaMA), which adapts LLaMA decoder to an image classifier, as shown
in Figure 1. Our exploration roadmap starts with an empirical study: replacing the components of
LLaMA, i.e., SwiGLU, RMSNorm, causal self-attention, and RoPE into a standard ViT step-by-
step, and learn useful lessons along this adaptation process. Importantly, we observe an attention
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Figure 1: Left: iLLaMA architecture. Right: our design roadmap. Colored and gray bars
represent the results of the tiny and base models. The red line depicts the training loss of the tiny
model. iLLaMA strives to process visual tokens using standard LLaMa components, e.g., causal
self-attention. The proposed PS [cls] and soft mask strategy help overcome training challenges.

collapse issue when using causal self-attention directly for image classification, i.e., the training loss
fails to converge due to the causal attention mode. Specifically, the causal mask restricts the class
token from accessing the image’s global information, thereby hindering the model optimization. To
this end, we propose a post-sequence class token (PS [cls]) technique, repositioning the class token
to the end of image tokens (details in Section 3.1). As a result, causal mask can keep the attention
score between the class token and others, allowing the model to optimize stably. Further, we propose
a soft mask strategy—transforming bi-directional mode attention to a causal mode one during train-
ing (details in Section 3.2). Soft mask does not alter the causal self-attention during inference but
improves the network training behavior. We also evaluate the advantages of the causal self-attention
in reducing computational complexity and enhancing the attention map rank.

Equipped with the proposed post-sequence class token technique and soft mask strategy, the decoder-
only iLLaMA using pure causal attention can achieve comparable or even better classification per-
formance than its encoder-only counterparts (i.e., ViT, VisionLLaMA (Chu et al., 2024)). Beyond
ImageNet-1K classification (Deng et al., 2009), we also conduct a thorough evaluation of other
key properties of iLLaMA, including calibration, shape-texture bias, quantization compatibility,
ADE20K semantic segmentation (Zhou et al., 2019), and CIFAR transfer learning (Krizhevsky et al.,
2009). Experimental results show that iLLaMA delivers favorable and reliable performance to the
encoder-only ViT, while maintaining a pure decoder design, fully aligned with LLaMA. More impor-
tantly, a spectral analysis on the attention map shows that compared to bi-directional counterparts,
causal self-attention has a higher rank (see Figure 4), which allows for learning complex image rep-
resentation. Based on this results, please rest assured to use iLLaMA as a suitable alternative to ViT
for visual feature extraction. We summarize the contribution of our work as follows:

• We investigate several designs of using LLaMA decoder as an image classifier and learn
useful lessons along the adaptation way. iLLaMA fully aligns with LLaMA in architecture.

• We identify the attention collapse issue when applying causal mode attention, and thus
introduce a PS [cls] technique and a soft mask strategy to respectively to address this issue
and improve model training behavior.

• Extensie experiments on ImageNet, transfer learning, along with practical properties such
as quantization compatibility, calibration, shape-texture bias demonstrate that iLLaMA can
be safely used as an efficient and reliable ViT alternative for image feature extraction.

2 PRELIMINARIES

2.1 TRANSFORMER ENCODER AND DECODER.

We briefly summarize the encoder and decoder in Transformer (Vaswani et al., 2017). Both of
them basically consist of attention module and a MLP module, each followed by a residual con-
nection. The key difference between them is the mask scheme in their self-attention. Encoders use
bi-directional self-attention, and decoders employ causal self-attention and cross-attention. How-
ever, the latter is typically omitted in decoder-only LLMs (Touvron et al., 2023a;b), we thus focus
on comparing causal and bi-directional attention as follows, in terms of the mask setting. Denote
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X ∈ RN×d,O ∈ RN×d as the input and output sequences, where N and d are sequence length
and hidden dimension. Wq,Wk,Wv ∈ Rd×d denotes the linear mapping of query, key and value.
Generally, self-attention can be formulated as (set head number and batch size as 1 for simplicity):

A =
1√
d
(Wq(X) ·Wk(X)⊤), O = Softmax(A+M) ·Wv(X), Pi,j = 0, Qi,j =

{
0, i ≥ j

−∞, i < j
(1)

where i, j ∈ [1, N ], A ∈ RN×N , M ∈ RN×N denote the attention map and mask. P ∈ RN×N ,
Q ∈ RN×N are masks in the encoder and decoder, respectively. For a causal self-attention, we
have M = Q. Such design allows subsequent tokens only attend to the preceding ones, but not vice
versa. For a bi-directional self-attention, we have M = P, ensuring mutual visibility for each token.

2.2 RECENT LLMS-RELATED IMAGE MODELS.

Recent image models (Bai et al., 2023; Guo et al., 2024; El-Nouby et al., 2024) are trained with
an autoregressive objective, targeting at solving visual tasks. Pang et al. (Pang et al., 2023) add a
text pre-trained frozen LLM block to a ViT encoder to facilitate the performance. Our work, on
the other hand, is motivated to explore in-depth how the decoder design in LLMs can be adapted to
image models using simple supervised learning to achieve an architectural alignment. A concurrent
work VisionLLaMA (Chu et al., 2024) proposes vision models based on the LLaMA components.
Differently, we: 1) introduce causal mode attention from LLaMA, addressing the associated at-
tention collapse issue, while VisionLLaMA retains an encoder architecture; 2) develop a soft mask
technique to assist training the decoder; 3) expand the dataset to the larger ImageNet-21K to demon-
strate scalability, achieving 86.0% ImageNet accuracy that outperforms VisionLLaMA’s best results.
Block details of ViT, VisionLLaMA, and our iLLaMA are compared in Appendix A.

3 “LLAMAFY” A STANDARD VIT: A ROADMAP

In this paper, we aim at a LLaMA decoder as a vision Transformer classifier. To this end, we first
conduct an empirical study of gradually aligning LLaMA designs to a standard ViT step-by-step in
Section 3.1. These designs include 1) feed-foward network, 2) normalization layer, 3) causal self-
attention, 4) positional embedding. Further, we study training techniques to facilitate optimization
in Section 3.2. Finally, in Section 3.3, we provide an analysis in terms of efficiency and attention
map rank. We use ViT-T/16 and ViT-B/16 with around 5.7M and 86.4M parameters. We conduct
experiments on ImageNet-1K (Deng et al., 2009), following the training recipe adopted from (Liu
et al., 2023) (details in Appendix C.1). Considering the differences between visual perception and
text generation tasks, we maintain ViT’s non-autoregressive manner in our network. Each step
change and the corresponding results are reported in Appendix D.

3.1 POST-SEQUENCE CLASS TOKEN: ACHIEVING ARCHITECTURE ALIGNMENT

Feed-forward network (FFN) module is implemented as multi-layer perceptron (MLP) in ViT and
SwiGLU (Shazeer, 2020) in LLaMA. MLP consists of two sequential linear mappings. Meanwhile,
SwiGLU combines three linear mappings, allowing for the modulation of high-dimensional fea-
tures. We substitute the Transformer’s MLPs with SwiGLUs, while maintaining comparable com-
putational cost. As shown in Figure 1, this improves performance from 73.8% to 74.3%, and from
81.3% to 82.0% for the ViT-T/16 and ViT-B/16 regime. This highlights SwiGLU’s effectiveness not
only in language models but also in vision, inspiring further exploration of other components. We
will now use SwiGLU to substitute MLP in each block.

Normalization layer is the key module in Transformers for stable training i.e., layer normalization
(LN) (Ba et al., 2016) in ViT and root mean square layer normalization (RMSNorm) (Zhang &
Sennrich, 2019) in LLaMA. We replace all LNs with RMSNorms in our network and empirically
observed that the accuracy of the ViT-T/16 regime increased from 74.3% to 74.5%. However, sim-
ilar improvements in precision were not observed in the ViT-B/16 regime (from 82.0% to 81.7%).
Nonetheless, compared to LN, RMSNorm removes the shift term computation, bringing simplicity
to the network. We will use RMSNorm instead of LN as the normalization layer in each block.

Causal mode attention leads to attention collapse issue. The key component for causal mode
attention in Transformer decoders is the causal mask, i.e., a lower triangular mask matrix, illustrated
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[cls] 

image tokens [cls] 

[cls] 

image tokens [cls] 

[cls] 

image tokens [cls] 

(a) causal mask (b) causal mask w/ PS [cls] (ours) (c) modified causal mask (ablation)

Figure 2: Mask schemes. (a) causal self-attention. (b) causal self-attention with our post-sequence
class token (PS [cls]) method. (c) modified causal mask. Their ablation results are shown in Table 1.

in Eq. 1 and Figure 2(a). With such, each token can get the attention score of all its previous ones.
We add the causal mask to our network via a non-autoregressive way. The reason is that visual
perception tasks, unlike text generation, require only inference once. As a result, we observe that
the training loss fails to converge in both ViT-T/16 and ViT-B/16 regimes (line 1 in Table 1). We
posit that such issue stems from the influence of the lower triangular matrix, which prevents the
class token from “seeing” other image tokens. As illustrated in Figure 2(a), when the class token is
positioned at the start of the patch embedding, its attention score for all other image tokens gets zero
due to a causal mask. We term this as the attention collapse issue, which leads to a loss of connection
between the class token and other image patches, thereby hindering network optimization.

Table 1: Results of PS [cls] and the modified
causal mask. Training converges in both settings.

Model Tiny Train Loss Base Train Loss
None 0.1 Failed 0.1 Failed
PS [cls] 71.9 3.599 80.6 2.869
Modified 72.5 3.550 80.4 2.857

Post-sequence class token (PS [cls]). The at-
tention collapse issue stems from the inappro-
priate placement of the token. To this end, we
suggest a PS [cls] technique, by placing it at the
end of the token sequence, without changing
the causal mask, as shown in Figure 1 and 2(b).
Such modification ensures that the class token
can achieve global information about all image
tokens, while maintaining a causal self-attention property. As a result, we observe that the attention
collapse issue is eliminated and the training process starts to stabilize, leading the network perfor-
mance to 71.9% for ViT-T/16 and 80.6% for ViT-B/16 regime, respectively (line 2 in Table 1).

To test our hypothesis about the reason of the attention collapse issue, we also explore a mask
setting in Figure 2(c). In this setting, we do not change the position of the class token. Instead,
we unmask the first row of the mask (i.e., attention score of the class token) on the basis of the
causal self-attention, termed as “modified causal mask”. Ablation results (line 3 in Table 1) shows
that both settings can solve the attention collapse issue as expected, and the ”modified causal mask”
leads to a better 72.5% accuracy for ViT-T/16 regime, validating our hypothesis about the reason.
Although the results do not surpass the performance of bi-directional counterpart, they demonstrate
the potential for optimizing causal mode attention for decoder-only image models. We will employ
causal self-attention with the proposed PS [cls] method in each block.

Positional embedding. ViT use learnable positional embedding (LPE), typically adding it directly
to the patch embedding. Meanwhile, rotary positional embedding (RoPE) (Su et al., 2024) is gener-
ally applied in LLMs (Touvron et al., 2023a;b), which functions in the attention of each block. We
first use RoPE alone, which boosts the accuracy of ViT-T/16 and ViT-B/16 regimes to 72.6% and
81.2%, from 71.9% and 80.6%, respectively. The encouraging results illustrate that the concepts of
”position” in image and text do not exist an inherent gap. Since LPE functions only once before all
Transformer blocks, keeping it does not disrupt the alignment with LLaMA within each block. Thus,
we reintroduce the LPE, which improves the accuracy of ViT-T/16 regime from 72.6% to 73.2%,
suggesting that the two positional embeddings are not redundant but rather synergistic, enhancing
network performance. We will use both LPE and RoPE for positional embedding.

So far, we have studied the adaptation of LLaMA decoder as an image classifier, and as a result, we
have settled on a final architecture dubbed iLLaMA. Next, we explore improved training strategies.

3.2 SOFT MASK: IMPROVING TRAINING BEHAVIOR

Data augmentation. Mixup (Zhang et al., 2018) and cutmix (Yun et al., 2019) that we used to
train our iLLaMA (0.8 and 1.0), are borrowed from DeiT (Touvron et al., 2021)’s recipe. Unlike
the bi-directional self-attention used in DeiT, causal self-attention affects the connection between
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iLLaMA w/o soft mask

iLLaMA w/ soft mask

Training

ViT

Start End

iLLaMA w/ soft mask

Constant schedule

Linear schedule 

Bi-directional mask Causal mask

Soft mask ends

Tiny model: p74, 147

(a) soft mask scheme (b) training curves w/ or w/o soft mask

Figure 3: Soft mask. (a) Gradually transitions from a bi-directional mask into a causal mask during
training through a constant or linear schedule. (b) Ablation results of training loss and test accuracy.

image tokens. Meanwhile, these two hyper-parameters affect the content of the input image, which
further influences the subsequent embedding. Thus, we reevaluate their impact on iLLaMA opti-
mization. Specifically, we discover that a combination of 0.1 mixup and 0.1 cutmix improves the
performance of the iLLaMA-T/16 from 73.2% to 74.3%, whereas a combination of 0.95 and 1.0
leads the iLLaMA-B/16 to a 81.3% accuracy. Other ablations are detailed in Section 4.1.

Soft mask. When observing objects, humans tend to perceive broad connections, then focus on
specific details. Motivated by this, we propose a soft mask strategy to improve the model’s training
behavior—starting with bi-directional mode attentions in the early training epochs and gradually
shifting completely to causal mode attentions as the optimization goes. Self-attention using soft
mask can be formulated as:

A =
1√
d
(Wq(X) ·Wk(X)⊤), O = (Softmax(A)⊙ S) ·Wv(X),

S = αB+ (1− α)C, Bi,j = 1, Ci,j =

{
1, i ≥ j

0, i < j

(2)

where i, j ∈ [1, N ], S ∈ RN×N denotes the soft mask, which is defined as a linear combination
of a bi-directional mask B and a causal mask C. α is the hyper-parameter controlling the mask
configuration, i.e., soft mask degenerates into B or C when α = 1 or α = 0, respectively. As
illustrated in Figure 3(a), α involves three related hyper-parameters: 1) scheme: how α drops from 1
to 0: we try a linear or a constant scheme. 2) cutoff epochs: when will α drops to 0. 3) learning rate
(lr) warmup (He et al., 2016; Goyal et al., 2017): this hyper-parameter overlaps with the duration
of soft mask. We initially set the lr warmup epochs at 50, consistent with previous settings. When
using a linear scheme with 50 and 25 cutoff epochs, we observe an improvement in performance for
both iLLaMA-T/16 and iLLaMA-B/16 models, reaching 74.9% and 81.6% from 74.3% and 81.3%,
respectively. Ablations results are detailed in Section. 4.1. To intuitively observe the impact of
soft mask, we plot the training curve of the iLLaMA-T/16 in Figure 3(b), using a constant scheme
with 50 cutoff epochs. When soft mask ends, we observe that although there was a sharp drop in
accuracy, the model ends up achieving better performance. Similar case of the iLLaMA-B/16 are
shown in Appendix F. Additionally, we discover that a lower learning rate warmup helps iLLaMA-
T/16 achieve 75.0% top-1 accuracy, by using a constant scheme with 50 cutoff epochs. Therefore,
we use this warmup method for iLLaMA-T/16. Notably with soft mask, the final training loss within
both iLLaMA-T/16 and iLLaMA-B/16 decreases, suggesting an alleviation of potential underfitting.

3.3 ANALYSIS OF CAUSAL MODE SELF-ATTENTION

Finally, we analyze the advantages of using causal mode attention in iLLaMA, in terms of compu-
tational efficiency and image representation quality through the lens of attention map rank.

Table 2: Computational complexity. Causal mask
slightly reduces FLOPs required in the self-attention.

Mode Bi-directional Causal

FLOPs 4ND2 + 2N2D 4ND2 +N2D + (⌊N2/2⌋+ 1)D

Computational complexity. For a
self-attention with a sequence length N
and hidden dimension D, FLOPs are
reported in Table 2 (RoPE is not in-
volved as only attention related com-
putations are calculated). Causal mode
self-attention, due to lower triangular property of its attention map, slightly reduces the FLOPs com-
pared to the bi-directional baseline—the degree of reduction grows as the sequence length increases.
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Attention map rank. We examine the representation learning power of causal attention through
a spectrum analysis. Following (Wang et al., 2020; Shu et al., 2021), we perform singular value
decomposition on the attention maps of the pre-trained ViT-T/16 and iLLaMA-T/16 models. Next,
we sort the singular values and plot a curve illustrating the relationship between the cumulative nor-
malized singular values and matrix indices. The results are conducted using 30 images randomly
selected from the ImageNet-1K validation set. As shown in Figure 4, the curve of ViT exhibits con-
cave function characteristics, while the curve of iLLaMA is close to a linear function, indicating a
more uniform distribution of singular values in iLLaMA’s attention map. Approximating the matrix
rank by the index at which the cumulative normalized singular value reaches 0.8, we observe that
the index value of iLLaMA is about 48 higher than that of ViT (∼129-th v.s. ∼81-th). Under such
premise, compared to ViT, the attention map of iLLaMA can be approximated with a certain error
by a higher-rank matrix. Accordingly, the rank of the attention map may affect the expressive capa-
bilities of the learned representations (Dong et al., 2021), suggesting that the causal self-attention in
iLLaMA has the potential to learn complex visual representations, as demonstrated in Section 4.2.
Detailed results are provided in Appendix E.

difference ≈ 48

Figure 4: Rank analysis. Results of the atten-
tion map in head 1, layer 1 of the pretrained
ViT-T and iLLaMA-T with N = 197. Differ-
ence between them is about 48.

So far, we have finished the exploration process
of iLLaMA with architecture alignment and im-
proved training strategy. As a decoder-only Trans-
former, iLLaMA shows advantages in computa-
tional complexity and attention map rank via its
causal mode attention. Notably, while all com-
ponents of iLLaMA are essentially derived from
LLaMA, only relying on them is insufficient for an
effective training, as demonstrated in Section 3.3.
In fact, the proposed PS [cls] and soft mask strat-
egy effectively address this issue and assist in
iLLaMA training. However, to achieve a com-
prehensive understanding of iLLaMA’s properties,
some useful evaluation should be conducted: 1)
Scalability for large model capacities (>300M pa-
rameters) and dataset sizes (>10M training im-
ages, e.g., ImageNet-21K). 2) Other practical eval-
uation dimensions, such as model calibration,
shape-texture bias, downstream task performance, quantization compatibility, discussed below.

4 EXPERIMENTS

In this section, we provide a comprehensive evaluation of iLLaMA. We first report ablation re-
sults, e.g., the effectiveness of data augmentation and different soft mask strategies. Next, we com-
pare iLLaMA with other strong baselines on ImageNet classification. Beyond ImageNet accuracy,
we also examine its efficacy on calibration, shape-texture bias, and evaluate its compatibility with
quantization-aware training and downstream task performance.

4.1 ABLATION STUDY

Influence of data augmentation. Base on the observation in Section 3.2, we examined multiple
sets of cutmix and mixup settings, as reported in Table 5. We empirically observe that the smaller
iLLaMA-T/16 are more sensitive to two data augmentation strategies and perform better with lower
hyper-parameters, whereas the larger iLLaMA-B/16 are suited to higher ones. This may be related
to the architectural differences between LLaMA’s Transformer decoder and ViT’s encoder type.

Influence of soft mask scheduling strategies and epochs. As mentioned in Section 3.2, the pro-
posed soft mask technique includes three hyper-parameters, i.e., schedule, cutoff epochs and lr
warmup epochs. Here we evaluate the robustness of soft mask to hyper-parameter settings, with
results detailed in Table 3. Beyond the linear schedule, inspired by (Liu et al., 2023), we also im-
plemented a constant option. Additionally, we fixed the learning rate warm-up epochs at 50 and
experimented with different cutoff epochs. The results reveal that the soft mask facilitates the opti-
mization of iLLaMA under both linear and constant scheduling, suitable for models of both tiny and
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Table 3: Soft mask scheduling. Results of
tiny and base models on ImageNet-1K.

Schedule Cutoff Epochs Tiny Base
no softmask - 74.3 81.3
linear 25 74.8 81.6
linear 50 74.9 81.5
linear 100 74.9 81.5
constant 25 74.7 81.5
constant 50 74.8 81.5

Table 4: Soft mask for training loss and testing
loss. Soft mask lowers both training and testing loss
in tiny and base models, counteracting underfitting
issue and thus leading to a better optimization.

Model Training Loss Testing Loss
tiny 2.990 1.121
+ soft mask 2.955 (↓ 0.045) 1.092 (↓ 0.029)
base 2.868 0.843
+ soft mask 2.828 (↓ 0.040) 0.831 (↓ 0.012)

base sizes. Moreover, setting the cutoff epochs to span a wide range from 25 to 100 is advantageous.
Notably, the soft mask can be easily integrated into existing code frameworks (e.g., timm (Wight-
man, 2019)) with negligible additional training costs, thereby facilitating future application.

Table 5: Mixup and cutmix ablation. Re-
sults for tiny and base models.
Mixup Cutmix Tiny Mixup Cutmix Base

0.8 1.0 73.2 0.8 1.0 81.2
0.5 0.4 73.8 0.9 0.9 81.2
0.3 0.3 73.9 0.9 1.0 81.2
0.2 0.2 74.3 1.0 1.0 81.2
0.1 0.1 74.3 0.95 1.0 81.3

Influence of soft mask for training and testing loss.
Deep neural networks often face underfitting, marked
by difficulty in continuously reducing training loss
and resulting in poor test accuracy (Liu et al., 2023).
We compare the training and testing losses of the
iLLaMA-T/16 and iLLaMA-B/16 models with and
without the use of the soft mask strategy. As shown
in Table 4, soft mask can reduce training loss in both
regimes, mitigating potential underfitting issue.

4.2 IMAGENET-1K CLASSIFICATION

We conducted experiments on the ImageNet-1K Deng et al. (2009) benchmark with different model
sizes (i.e., iLLaMA-T/S/B/L). Detailed architecture configurations are shown in Appendix A. Our
ImageNet-1K/21K (pre-)training and ImageNet-1K fine-tuning recipes are shown in Appendix C.
We also study the use of LLaMA2-7B pre-trained weights for iLLaMA initialization, and the results
are detailed in Appendix I.

ImageNet-1K training. We train iLLaMA-T/S/B on ImageNet-1K for 300 epochs with AdamW
optimizer (Loshchilov & Hutter, 2019) and a batch size of 4096. The ImageNet-1K trained iLLaMA-
T/B are, in fact, the outcome of the explorations completed in Section 3.2. For the settings of soft
mask schedule, cutoff epochs, and learning rate warmup epochs, we tune slightly for the iLLaMA-S.

ImageNet-21K pre-training. We use the “Winter21 variant of ImageNet-21K-P” (refered to as
ImageNet-21K) dataset (Ridnik et al., 2021) 1 for the large-scale pre-training of our iLLaMA, which
contains 11,060,223 training images and 522,500 testing images from 10,450 classes. Only the
training set was used. We pre-train iLLaMA-B/L on ImageNet-21K for 90 epochs using a constant
soft mask schedule, with cutoff epochs and learning rate warmup epochs set to 30 and 5, respectively.

ImageNet-1K fine-tuning. For iLLaMA-B model trained on ImageNet-1K, we fine-tune at a reso-
lution of 384×384. Similarly, for the iLLaMA-B/L model trained on ImageNet-21K, we fine-tune
at resolutions of 224×224 and 384×384, respectively. All fine-tuning was conducted for 30 epochs
using the AdamW optimizer. We follow DeiT (Touvron et al., 2021) for interpolating positional
embeddings to allow our iLLaMA to handle inputs at a higher resolution.

Results. Table 6 shows a comparison between iLLaMA and other strong baselines, including Con-
vNets (ConvNeXt (Liu et al., 2022), ConvNeXt-V2 (Woo et al., 2023)), Transformers (ViT (Doso-
vitskiy et al., 2020), Swin Transformer (Liu et al., 2021)), MLPs (PoolFormer (Yu et al., 2022),
VanillaNet (Chen et al., 2023)), and language model related models (AIM (El-Nouby et al., 2024),
ViM (Zhu et al., 2024), VMamba (Liu et al., 2024), ViL (Alkin et al., 2024), and VisionLLaMA (Chu
et al., 2024)). We present three observations: 1) The performance-parameter trade-off of iLLaMA
surpasses some LM-related models (e.g., AIM), presumably due to the causal attention and soft
mask strategy. 2) iLLaMA exhibits a superior accuracy-throughput trade-off compared to strong
hierarchical baselines such as ConvNeXt-V2-N/T/B. We attribute this to iLLaMA’s isotropic design
(each intermediate block has the same feature resolution), which benefits from a straightforward
and efficient architecture, enhancing inference speed. 3) Scalability of model capacity and dataset

1downloaded from: https://www.image-net.org/download-images.php
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Table 6: ImageNet-1K accuracy. Throughput (images/s) are tested on Nvidia A100 GPU with 1024
batch size. Hie.: Hierarchical, Iso.: Isotropic, Sup.: Supervised (pre-)training, AR.: Autoregressive
pre-training. ♠ ConvNet, ■ Vision Transformer, ♣ MLP, ✠ LM-related model, ⋆ LLaMA.
Model Dataset Used Objective Type Image Size Params MACs Throughput Acc
♠ ConvNeXt-S IN-1K Sup. Hie. 224×224 50M 8.7G 1185 83.1
♠ ConvNeXt-B IN-1K Sup. Hie. 224×224 89M 15.4G 877 83.8
♠ ConvNeXt-L IN-1K Sup. Hie. 224×224 198M 34.4G 543 84.3
♠ ConvNeXtV2-N IN-1K Sup. Hie. 224×224 15.6M 2.45G 2120 81.2
♠ ConvNeXtV2-T IN-1K Sup. Hie. 224×224 28.6M 4.47G 1362 82.5
♠ ConvNeXtV2-B IN-1K Sup. Hie. 224×224 88.7M 15.4G 645 84.3
■ Swin-S IN-1K Sup. Hie. 224×224 50M 8.7G 934 83.0
■ Swin-B IN-1K Sup. Hie. 224×224 88M 15.4G 710 83.5
■ DeiT-Ti IN-1K Sup. Iso. 224×224 5.7M 1.3G 6051 72.2
■ DeiT-S IN-1K Sup. Iso. 224×224 22.1M 4.6G 3080 79.8
■ DeiT-B IN-1K Sup. Iso. 224×224 86.4M 17.6G 1348 81.8
■ ViT-B/16 IN-21K, IN-1K Sup., Sup. Iso. 384×384 86.4M 55.5G 349 84.0
■ ViT-L/16 IN-21K, IN-1K Sup., Sup. Iso. 384×384 304.1M 191.2G 124 85.2
♣ PoolFormer-S12 IN-1K Sup. Hie. 224×224 12M 1.8G 4354 77.2
♣ PoolFormer-M48 IN-1K Sup. Hie. 224×224 73M 11.6G 768 82.5
♣ VanillaNet-5 IN-1K Sup. Hie. 224×224 15.5M 5.2G - 72.5
♣ VanillaNet-13-1.5× IN-1K Sup. Hie. 224×224 127.8M 26.5G - 82.5
✠ AIM-0.6B DFN-2B+, IN-1K AR., Sup. Iso. 224×224 0.6B - - 78.5
✠ AIM-3B DFN-2B+, IN-1K AR., Sup. Iso. 224×224 3B - - 82.2
✠ ViM-B IN-1K, IN-1K Sup., Sup. Iso. 224×224 98M - - 83.2
✠ ViL-B IN-1K, IN-1K Sup., Sup. Iso. 224×224 89M 18.6G - 82.4
✠ VMamba-B IN-1K Sup. Hie. 224×224 89M 15.4G - 83.9
✠ P-VisionLLaMA-S IN-1K Sup. Hie. 224×224 24M - - 81.6
✠ P-VisionLLaMA-L IN-1K Sup. Hie. 224×224 99M - - 83.6
✠ VisionLLaMA-L IN-1K, IN-1K Sup., Sup. Iso. 224×224 310M - - 84.6
⋆ iLLaMA-T IN-1K Sup. Iso. 224×224 5.7M 1.3G 6958 75.0
⋆ iLLaMA-S IN-1K Sup. Iso. 224×224 21.9M 4.6G 3222 79.9
⋆ iLLaMA-B IN-1K Sup. Iso. 224×224 86.3M 17.6G 1345 81.6
⋆ iLLaMA-B IN-1K Sup. Iso. 384×384 86.3M 55.5G 332 83.0
⋆ iLLaMA-B IN-21K, IN-1K Sup., Sup. Iso. 224×224 86.3M 17.6G 1345 83.6
⋆ iLLaMA-B IN-21K, IN-1K Sup., Sup. Iso. 384×384 86.3M 55.5G 332 85.0
⋆ iLLaMA-L IN-21K, IN-1K Sup., Sup. Iso. 224×224 310.2M 62.8G 456 84.8
⋆ iLLaMA-L IN-21K, IN-1K Sup., Sup. Iso. 384×384 310.2M 194.7G 116 86.0

size: After comprehensive pre-training on the expanded ImageNet-21K dataset, iLLaMA-B achieves
more than 85.0% accuracy on ImageNet-1K with under 100M parameters, significantly outperform-
ing ViT-B’s 84.0%. Upon scaling up to the larger iLLaMA-L, accuracy reaches 86.0%, exceeding
that of ViT-L pre-trained on ImageNet-21K and the AIM-7B pre-trained on the DFN-2B+ dataset.
To our knowledge, this showcases state-of-the-art performance for LLaMA-type architectures.

4.3 MODEL CALIBRATION AND SHAPE-TEXTURE BIAS

Beyond ImageNet accuracy, we also examined iLLaMA’s calibration properties and shape-texture
bias for a more detailed evaluation. Besides iLLaMA, we also explore two prevalent architectures,
i.e., ConvNeXt and DeiT3 (Touvron et al., 2022), representing ConvNets and Transformers, respec-
tively. We apply ImageNet-21K pre-trained and ImageNet-1K fine-tuned models in this section.

Model calibration. Model calibration represents the relationship between a model’s precision and
confidence across samples of varying difficulty, i.e., poor-calibrated models tend to produce overly
confident yet incorrect predictions, whereas well-calibrated models demonstrate a strong correlation
between confidence and accuracy (Guo et al., 2017). Calibration is commonly measured using the
Expected Calibration Error (ECE), where a lower ECE is favorable. ECE results for different models
on ImageNet-1K are presented in Table 8. The calibration of iLLaMA is lower than that of DeiT3,
suggesting a more reliable output confidence. We also plot the reliability diagrams (Vishniakov
et al., 2023) to intuitively compare the calibration of different models, as shown in Appendix G.

Shape-texture bias. Shape-texture bias measures the extent to which the model relies on the shape
or texture of the image when performing recognition (Geirhos et al., 2018). We generally prefer
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Table 7: Quantization results. #Bits:
w bit weights, a bit activations. 8-bit
iLLaMA-T matches 32-bit DeiT-T.

Model #Bits Tiny Small
DeiT 32-32 72.2 79.8
iLLaMA 32-32 75.0 79.9
iLLaMA 8-8 72.4 77.4

Table 8: Calibration (expected calibration error ↓) and
shape-texture bias (ratio ↑) results of ConvNeXt-B,
DeiT3-B and iLLaMA-B. We use both IN-21K pre-
trained and IN-1K fine-tuned models.

Evaluation ConvNeXt-B DeiT3-B iLLaMA-B
Calibration 0.0281 0.0415 0.0335
Shape-Texture Bias 33.30% 39.86% 41.45%

Table 9: CIFAR transfer learning.
Soft mask improves iLLaMA perfor-
mance without changing the infer-
ence architecture.

Model CIFAR10 CIFAR100
ViT-T 98.0 85.5
iLLaMA-T 97.9 84.8
+ soft mask 97.9 85.5

Table 10: ADE20K semantic segmentation results using
UperNet. We report mIoU with multi-scale testing. FLOPs
calculation are based on input sizes of (512, 512).

Backbone Input Crop. mIoU #Param. FLOPs
ViT-T 5122 39.8 10.88M 37.1G
iLLaMA-T 5122 37.7 10.86M 37.1G
ViT-B 5122 47.3 163.29M 585.7G
iLLaMA-B 5122 45.1 163.22M 585.7G

models to mimic human eye behavior, relying more on shape rather than texture (Tuli et al., 2021;
Geirhos et al., 2020). We calculate the shape ratio for all models on cue-conflict images and report
the results in Table 8, following (Vishniakov et al., 2023). Our iLLaMA shows the largest shape ratio
of 41.45% among the three compared baselines, suggesting the potential of the LLM architecture
for vision. Detailed results are provided in Appendix H.

4.4 COMPATIBILITY WITH QUANTIZATION

Since a practical goal for neural networks is deployment on low-bit hardware chips, we further
examine iLLaMA’s compatibility with quantization. We basically follow Q-ViT (Li et al., 2022)
to apply quantization-aware training (QAT) to iLLaMA, with weights and activations of all blocks’
FFN and causal self-attention layers to 8 bits. Quantization recipes and results are shown in Table 15
of Appendix C.4 and Table 7. Different sizes of low-bit iLLaMA maintain accuracy well, and 8-bit
iLLaMA-T is even compete favorably with the full-precision DeiT-T (72.4% v.s. 72.2%).

4.5 TRANSFERABILITY ON DOWNSTREAM TASKS

CIFAR transfer learning. We fine-tune ViT-T and iLLaMA-T on the CIFAR datasets (Krizhevsky
et al., 2009), including an ablation of the soft mask on iLLaMA. Detailed recipes are shown in
Appendix C.5. iLLaMA’s performance on CIFAR datasets is on par with ViT, assuring that iLLaMA
can be confidently applied in the transfer learning field as a practical alternative to ViT. Additionally,
soft mask is helpful in the relatively complicated CIFAR100, demonstrating its generalizability.

ADE20K semantic segmentation. We fine-tune our ImageNet-1K pre-trained iLLaMA and ViT
models on ADE20K (Zhou et al., 2019) dataset using UperNet (Xiao et al., 2018) to perform seman-
tic segmentation. For both iLLaMA and ViT, we set the learning rate as 6e-5 and weight decay as
0.01. Table 10 presents the results. iLLaMA’s performance is marginally lower than ViT’s, which
we attribute to the potential impact of the masking mechanism in iLLaMA’s causal attention on
high-resolution dense prediction tasks. This suggests there is still space for optimization, a subject
for future investigation.

5 CONCLUSIONS

In this paper, we systematically studies whether Transformer decoder, an architecture that has shown
amazing potential in LLMs, can also take root in learning visual representation through straightfor-
ward supervised training. The key component – causal self-attention we used – is not novel and
is inherited from existing LLM architectures, but we propose pivotal techniques, i.e., PS [cls] and
soft mask strategies, to effectively adapt them to visual tasks. The proposed iLLaMA outperforms
many ConvNets, ViTs, and MLPs on imagenet, and demonstrates robust quantization compatibility,
calibration, and shape-texture bias, thereby showing its practicality. We hope that this work will
inspire a rethinking of generic yet practical architecture that can fully unify both vision and text.
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A NETWORK CONFIGURATION

In Table 11, we provide detailed architecture configurations for iLLaMA models of various ca-
pacities. Our approach to scaling up the model size, from small to large, is similar to that of the
ViT. Thus, akin to ViT, iLLaMA benefits from the simplicity of an isotropic architecture and high
throughput, with its internal features remaining unchanged in resolution and number of channel as
the depth increases.

Table 11: iLLaMA architecture configurations.

Tiny (T) Small (S) Base (B) Large (L)
depth 12 12 12 24
embedding dim 192 384 768 1024
number of heads 3 6 12 16
#param. (M) 5.7 21.9 86.3 310.2
MACs (G) 1.3 4.6 17.6 62.8

We provide a block-level compar-
ison between iLLaMA and ViT
model in Figure 5. VisionL-
LaMA uses SwiGLU, and AS2D
RoPE to build LLaMA-style ar-
chitecture. Differently, we further
uses RMSNorm, modified causal
self-attention and 1D RoPE from
LLaMA to replace layer normal-
ization, bi-directional self-attention, and proposes two pivotal strategies, i.e., PS [cls] and soft mask
to help the optimization of our iLLaMA. We also keep the learnable positional embedding as ViT.

iLLaMA Block

Causal
Self-Attention

RMSNorm

SwiGLU

RMSNorm

Embedded
Patches

L×

1D RoPE

VisionLLaMA Block

Bi-Directional
Self-Attention

Layer Norm

SwiGLU

Layer Norm

Embedded
Patches

L×

AS2D RoPE

ViT Block

Bi-Directional
Self-Attention

Layer Norm

MLP

Layer Norm

Embedded
Patches

L×

Figure 5: Block level comparison. We compare ViT (Dosovitskiy et al., 2020), VisionLLaMA (Chu
et al., 2024), and iLLaMA blocks.

B PYTORCH-LIKE CODE OF ILLAMA CAUSAL SELF-ATTENTION

The PyTorch-like implementation of our iLLaMA causal self-attention is shown as Algorithm 1.
The iLLaMA code exhibits a high degree of similarity in structure and composition to the official
LLaMA code 2 released by Meta, potentially offering considerable coding cost savings in developing
a unified vision and language network with such architecture.

C EXPERIMENTAL SETTINGS

C.1 TRAINING RECIPE IN SECTION 3

Our training recipe for training the tiny and base models for Section 3 is primarily adapted from
ConvNeXt (Liu et al., 2022) and early dropout (Liu et al., 2023), summarized in Table 12.

2https://github.com/meta-llama/llama
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Algorithm 1 PyTorch code of iLLaMA causal self-attention

import torch
import torch.nn as nn

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)

def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,

) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)

class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,

proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be

compat with prev weights
self.scale = qk_scale or head_dim ** -0.5

self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)

def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor, mask: Optional[torch.
Tensor]):

B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2,

0, 1, 3, 4) # [3, B, N, self.num_heads, C // self.num_heads]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as

tuple) # [B, N, self.num_heads, C // self.num_heads]

q, k = apply_rotary_emb(q, k, freqs_cis=freqs_cis)

q = q.transpose(1, 2) # [B, self.num_heads, N, C // self.num_heads]
k = k.transpose(1, 2) # [B, self.num_heads, N, C // self.num_heads]
v = v.transpose(1, 2) # [B, self.num_heads, N, C // self.num_heads]
attn = (q @ k.transpose(-2, -1)) * self.scale # [B, self.num_heads, N, N]
attn = attn.softmax(dim=-1)
if mask is not None:

attn = attn * mask # (B, H, N, N)

x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)

return x

Basically, both regimes use the same experimental setup, with the only difference being the stochas-
tic depth rate at 0.0 and 0.4, respectively. Notably, for the ViT baseline, our experimental results are
73.8% and 81.5%, as shown in Table 17, which slightly differ from the results of 73.9% and 81.6%
reported in (Liu et al., 2023).

Utilizing only the basic training recipe with architectural modifications, the performance of iL-
LaMA’s tiny and base models achieves 73.2% and 81.2%, as shown in Table 17, yet remains below
the ViT baseline. We attribute this to the impairing effect of causal self-attention on the information
mixing among tokens. Thus, we enhance the training recipe, detailed next.

C.2 IMAGENET (PRE-)TRAINING RECIPE

As illustrated in Table 13, we provide the detailed ImageNet-1K training hyper-parameters and
ImageNet-21K pre-training hyper-parameters for the experimental results in Table 6.
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Table 12: Training settings. We report details for Section 3 in the main paper, adapted from (Liu
et al., 2023).

Training Configuration iLLaMA-T/B
Initialization:
weight init trunc. normal (0.2)
Training recipe:
optimizer AdamW (Loshchilov & Hutter, 2019)
optimizer momentum β1, β2=0.9, 0.999

Learning hyper-parameters:
base learning rate 4e-3
learning rate schedule cosine decay
weight decay 0.05
batch size 4096
training epochs 300
lr warmup epochs 50
warmup schedule linear
gradient clip None
exp. mov. avg. (EMA) (Polyak & Juditsky, 1992) None
Dropout:
dropout rate (Hinton et al., 2012) 0.0
stochastic depth rate (Huang et al., 2016) 0.0/0.4
Data augmentation:
input resolution 2242

randAugment (Cubuk et al., 2020) (9, 0.5)
random erasing (Zhong et al., 2020) 0.25
label smoothing (Szegedy et al., 2016) 0.1
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0

For the iLLaMA-T/S/B models, we train directly on ImageNet-1K and discover that models of
different sizes are suited to different soft mask settings. For instance, the soft mask schedules are
set to constant/linear/linear, respectively, with cutoff epochs designated as 50/50/25. We train the
iLLaMA-T/S/B models using 8 A100 GPUs.

We pre-trained the iLLaMA-B/L models on ImageNet-21K for 90 epochs, adhering to the practices
in (Liu et al., 2022). We set the cutoff epochs to 30, indicating that the iLLaMA models’ self-
attention fully transitions to causal self-attention after 30 epochs. We pre-train the iLLaMA-B/L
models using 8 A100 GPUs.

C.3 IMAGENET FINE-TUNING RECIPE

We present the results of fine-tuning models pre-trained on ImageNet-1K at a resolution of 384 ×
384, as well as the outcomes of fine-tuning models pre-trained on ImageNet-21K at resolutions of
224 × 224 and 384 × 384, as shown in Table 14. All ImageNet-1K fine-tuning experiments were
conducted for 30 epochs, following the convention in (Liu et al., 2022).

For the iLLaMA-B model pre-trained on ImageNet-1K, we used a relatively higher stochastic depth
rate of 0.8. For the iLLaMA-B/L models pre-trained on ImageNet-21K, we employed relatively
lower stochastic depth rates of 0.2 and 0.3, respectively.

Additionally, we standardized the cutoff epoch at 0 for our ImageNet-1K fine-tuning experiments,
ensuring the application of a causal mask in self-attention to align with the LLaMA architecture. We
also opted not to use learning rate warmup. We fine-tune the models using 8 A100 GPUs.
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Table 13: (Pre-)training settings. We report details for iLLaMa model on ImageNet-1K/ImageNet-
21K, respectively, adapted from (Liu et al., 2023). Some key training techniques are highlighted .

iLLaMA-T/S/B iLLaMA-B/L
(Pre-)Training Configuration ImageNet-1K ImageNet-21K
Initialization:
weight init trunc. normal (0.2) trunc. normal (0.2)
Training recipe:
optimizer AdamW AdamW
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

Learning hyper-parameters:
base learning rate 4e-3 1e-3
learning rate schedule cosine decay cosine decay
weight decay 0.05 0.01
batch size 4096 4096
training epochs 300 90
warmup schedule linear linear
gradient clip None None
exp. mov. avg. (EMA) None None
Dropout:
dropout rate 0.0 0.0
stochastic depth rate 0.0/0.1/0.4 0.1
Data augmentation:
input resolution 2242 2242

randAugment (9, 0.5) (9, 0.5)
random erasing 0.25 0.25
label smoothing 0.1 0.1
mixup 0.1/0.5/0.95 0.8
cutmix 0.1/0.5/1.0 1.0
Soft mask:
soft mask schedule constant/linear/linear constant
cutoff epochs 50/50/25 30
lr warmup epochs 5/5/50 5

C.4 QUANTIZATION-AWARE TRAINING RECIPE

We provide our quantization-aware training recipe for iLLaMA in Table 15. Basically we follow the
Q-ViT method proposed in (Li et al., 2022), with only weights and activations in each basic block’s
causal self-attention and FFN module are quantized to 8 bit width.

C.5 CIFAR TRANSFER LEARNING RECIPE

We further provide our training recipe for transfer learning on the CIFAR10 and CIFAR100 datasets,
as shown in Table 16. In our transfer learning experiments, we consistently apply a linear soft mask
schedule. However, for the CIFAR10 and CIFAR100 datasets, we use cutoff epochs of 25 and 50.

D DESIGNING ILLAMA: DETAILED RESULTS

We present the comprehensive experimental results of our exploration journey of iLLaMA in Ta-
ble 17. This table not only delineates the stepwise accuracy of both the tiny and base models, as
depicted in Figure 1, but also outlines the training loss at each step. The general trend observed is
that as the training loss of the models decreases, their accuracy increases.

Overall, the trend in changes for the base model is broadly similar to that of the tiny model. However,
in contrast to the tiny model, the implementation of RoPE coupled with subsequent integration of
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Table 14: Fine-tuning settings. We report details for iLLaMa model on ImageNet-1K, adapted
from (Liu et al., 2023). Some key training techniques are highlighted .

iLLaMA-B iLLaMA-B/L iLLaMA-B/L

(Pre-)Training Configuration
ImageNet-1K ImageNet-21K ImageNet-21K

2242 2242 2242

Fine-Tuning Configuration ImageNet-1K ImageNet-1K ImageNet-1K
Initialization:
weight init trunc. normal (0.2) trunc. normal (0.2) trunc. normal (0.2)
Training recipe:
optimizer AdamW AdamW AdamW
optimizer momentum β1, β2=0.9, 0.999 β1, β2=0.9, 0.999 β1, β2=0.9, 0.999

Learning hyper-parameters:
base learning rate 8e-5 8e-5/6e-5 1.1e-4/3.5e-5
learning rate schedule cosine decay cosine decay cosine decay
weight decay 1e-8 1e-8 1e-8
batch size 512 512 512
training epochs 30 30 30
warmup schedule linear linear linear
gradient clip None None None
exp. mov. avg. (EMA) None None None
Dropout:
dropout rate 0.0 0.0 0.0
stochastic depth rate 0.8 0.2/0.3 0.2/0.3
Data augmentation:
input resolution 3842 2242 3842

randAugment (9, 0.5) (9, 0.5) (9, 0.5)
random erasing 0.25 0.25 0.25
label smoothing 0.1 0.1 0.1
mixup 0 0 0
cutmix 0 0 0
Soft mask:
soft mask schedule constant constant constant
cutoff epochs 0 0 0
lr warmup epochs 0 0 0

LPE does not affect the base model’s performance. This lack of impact, we theorize, stems from the
base regime’s reduced susceptibility to underfitting compared to the tiny regime, hence the addition
of extra learnable parameters offers less benefit to its performance.

Notably, vanilla causal self-attention proves inadequate for model optimization—the attention col-
lapse issue effectively addressed by implementing the PS [cls] technique. Additionally, the appli-
cation of the soft mask strategy significantly contributes to the training efficacy of both model sizes.

E RANK ANALYSIS OF CAUSAL SELF-ATTENTION

Detailed visualization results. We provide rank analysis results of all 3 heads in layer 1, 4, 8,
12 of ViT-T/16 and iLLaMA-T/16 in Figure 11. We make four observations: 1) Not each head in
each layer of iLLaMA’s self-attention shows stronger concavity, suggesting that not every attention
matrix of iLLaMA has a higher rank than its ViT counterpart. 2) In most cases, particularly in the
shallow layers, the distribution of singular values in iLLaMA appears more uniform than in ViT.
3) In certain attention maps (e.g., layer 8, head 2, and layer 8, head 3), the rank of ViT’s attention
matrix is low, resulting in an skewed distribution of information. In contrast, such extreme cases
were not observed in our iLLaMA. 4) The distribution of singular values in ViT varies significantly

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 15: Quantization-aware training settings. We report details for iLLaMa model on
ImageNet-1K, adapted from (Liu et al., 2023; Li et al., 2022). Some key training techniques are
highlighted .

iLLaMA-T/S
(Pre-)Training Configuration ImageNet-1K
Initialization:
weight init trunc. normal (0.2)
Training recipe:
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999

Learning hyper-parameters:
base learning rate 3e-3/4e-3
learning rate schedule cosine decay
weight decay 0.05
batch size 4096
training epochs 300
warmup schedule linear
gradient clip None
exp. mov. avg. (EMA) None
Dropout:
dropout rate 0.0
stochastic depth rate 0.0/0.1
Data augmentation:
input resolution 2242

randAugment (9, 0.5)
random erasing 0.25
label smoothing 0.1
mixup 0.1/0.5
cutmix 0.1/0.5
Soft mask:
soft mask schedule constant/linear
cutoff epochs 50/50
lr warmup epochs 5/5

Table 16: Transfer learning settings. We report details for ViT-T and iLLaMa-T model on
CIFAR10/100, respectively, adapted from (Xu et al., 2024). Some key training techniques are
highlighted .

Transfer Learning Configuration CIFAR10 CIFAR100
For both ViT-T and iLLaMA-T:
base learning rate 2e-3 2e-3
batch size 1024 1024
training epochs 300 300
stochastic depth rate 0.0 0.0
lr warmup epochs 50 50
For iLLaMA-T only:
soft mask schedule linear linear
cutoff epochs 25 50

across different layers and heads (e.g., layer 1, head 1; layer 4, head 1; layer 8, head 1; layer 8, head
2), whereas iLLaMA’s distribution appears relatively more stable.
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Table 17: ImageNet-1K classification accuracy. We gradually replace components in ViT-T/16
and ViT-B/16 with counterparts in LLaMA, better or worse than the ViT baseline results with our
basic training recipe. Components from or modified from LLaMA are highlighted . P.E.: positional
embedding, Bd.: bi-directional self-attention, Cs.: causal self-attention.

Ablation FFN Norm Attention P.E. Tiny Train Loss Base Train Loss
ViT MLP LN Bd. LPE 72.2 - 81.8 -
results with our basic training recipe

ViT MLP LN Bd. LPE 73.8 3.451 81.5 2.828
+ LLaMa FFN SwiGLU LN Bd. LPE 74.3 3.407 82.0 2.724
+ LLaMa Norm SwiGLU RMS Bd. LPE 74.5 3.406 81.7 2.721
+ LLaMa S.A. SwiGLU RMS Cs. LPE 0.1 Failed 0.1 Failed
+ LLaMa S.A. SwiGLU RMS Cs. + PS [CLS] LPE 71.9 3.599 80.6 2.869
+ LLaMa P.E. SwiGLU RMS Cs. + PS [CLS] RoPE 72.6 3.618 81.2 2.861
+ LPE P.E. SwiGLU RMS Cs. + PS [CLS] RoPE + LPE 73.2 3.531 81.2 2.839
modify the training techniques

+ data aug. SwiGLU RMS Cs. + PS [CLS] RoPE + LPE 74.3 2.990 81.3 2.868
+ soft mask SwiGLU RMS Cs. + PS [CLS] RoPE + LPE 75.0 2.955 81.6 2.828

Base model: 103, 148

Soft mask ends

Figure 6: Training curves. Training curves for iLLaMA-B/16 regime w/ and w/o soft mask. When
soft mask ends, the model experiences a similar pattern to the training curve of iLLaMA-T/16
regime, with eventually a lower test loss observed.

F ANALYSIS FOR SOFT MASK METHOD

In this section, we plot the training curves for iLLaMA-B/16 with and without the use of the soft
mask strategy in Figure 6. We can observe that the results display a similar pattern to those of
iLLaMA-T/16 (Figure 3(b)). We set the cutoff epochs to 50 and used a constant schedule. When
soft mask ends, there is a sudden increase in training loss and a steep decline in model accuracy.
However, the final accuracy surpasses the baseline, and the training loss is also optimized to a lower
value. Such phenomenon shows the versatility of the soft mask across models of varying capacities,
and shows that causal mode can achieve strong performance when a portion of attention is masked.

G MODEL CALIBRATION

To evaluate the calibration property, we plot the reliability diagrams of ConvNeXt-B, DeiT3-B and
the proposed iLLaMA-B using ImageNet-1K in Figure 7, following (Vishniakov et al., 2023). For
well-calibrated models, the direction of accuracy in their reliability diagrams show a roughly diago-
nal pattern, i.e., the difference between accuracy and confidence is small. Intuitively, the confidence
of the early bins of the iLLaMA presents results below the accuracy level, indicating that iLLaMA
tends to be underconfident. This observation, similar to what was noted in DeiT3, may reflect a com-
mon feature of Transformer-based architectures, and was also noted in (Vishniakov et al., 2023).
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(a) ConvNeXt-B (b) DeiT3-B (c) iLLaMA-B

Figure 7: Reliability diagram. Calibration results of (a) ConvNeXt-B (b) DeiT3-B and (c)
iLLaMA-B pretrained on ImageNet-21K and fine-tuned on ImageNet-1K.

H SHAPE-TEXTURE BIAS

We visualize the shape-texture bias results on cue-conflict images of ConvNeXt-B, DeiT3-B and
the proposed iLLaMA-B in Figure 8, following (Vishniakov et al., 2023). The three dashed lines
of different colors represent the average shape decision of the three models over all categories.
Generally, a more leftward average shape ratio indicates that the model relies more on global shape
information for recognition. iLLaMA shows higher shape scores compared to ConvNeXt and DeiT3.
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Figure 8: Shape-texture bias. Shape-texture bias results of ConvNeXt-B, DeiT3-B and iLLaMA-B
pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K. sup: supervised learning paradigm.

I INITIALIZATING ILLAMA USING PRE-TRAINED LLAMA

Table 18: Weight selection. Results of iLLaMA ini-
tialization using LLaMA2-7B pre-trained weights.

Model Initialization Tiny Small Base
iLLaMA w/ weight selection 74.5 79.9 81.4
iLLaMA w/o weight selection 75.0 79.9 81.6

Previous studies (Zhang et al., 2024) have
demonstrated that data unrelated to the im-
age modality can be used to improve the
performance of visual models. In fact,
the pre-training dataset of LLaMA, which
is entirely text, is irrelevant to the visual
tasks that iLLaMA addresses. More im-
portant, the architectural components of iLLaMA are aligned with those of LLaMA. This alignment
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facilitates our exploration of using LLaMA’s parameters to initialize iLLaMA, allowing us to fully
exploit the potential of the weights of pre-trained LLMs.

We use the pre-trained LLaMA2-7B (Touvron et al., 2023b) to initialize our iLLaMA, instead of
training from scratch. To match the dimensions of the weights, we employ the weight selection (Xu
et al., 2024) method to initialize iLLaMA-T/S/B using a subset of the LLaMA2-7B pre-trained
weights. Next, we train and evaluate the iLLaMA models, which are initialized using LLaMA2-
7B, on the ImageNet-1K dataset. Other hyperparameter settings are consistent with Section 4.2.
The results are shown in Table 18. Using LLaMA2 to initialize iLLaMA does not yield significant
performance improvements. We attribute this to two main reasons: 1) The size difference between
the two models is considerably large (LLaMA-2-7B’s 7B parameters vs. iLLaMA-T’s 5.7M pa-
rameters), resulting in a limited proportion of selected weights compared to meaningful pre-trained
weights. 2) The training strategy was not adequately optimized. We believe that when using param-
eter inheritance, the corresponding training strategy should also be adjusted. However, we continued
to use the training recipe designed for training from scratch.

iLLaMA Block

Causal
Self-Attention

RMSNorm

SwiGLU

RMSNorm

Embedded
Patches

1D RoPE

LLaMA2 Block

Causal
Self-Attention

RMSNorm

SwiGLU

RMSNorm

Embedded
Patches

1D RoPE

Initialization
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Figure 9: Initializing iLLaMA using LLaMA. iLLaMA initialization by pre-trained LLaMA2-
7B (Touvron et al., 2023b) using weight selection (Xu et al., 2024).

J LOSS LANDSCAPE

As shown in Figure 10, we visualized the loss landscape (Li et al., 2018) of the iLLaMA-T/16 and
ViT-T/16. The loss landscape of ViT and iLLaMA exhibits similar patterns, with the steepness and
bumps observed in ViT seeming to be softened.

K CLASS ACTIVATION MAPS

In this section, we plot and compare the class activation map of representative models of sev-
eral types of visual architectures, including ResNet-50 (He et al., 2016; Wightman et al., 2021),
DeiT (Touvron et al., 2021), ConvNeXt (Liu et al., 2022), and iLLaMA, using GradCAM (Selvaraju
et al., 2017). The results are shown in Figure 12. We find that iLLaMA’s CAMs shows similar
pattern to DeiT. We believe this stems from the attention-based architecture they share. We also
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(a) ViT-T/16 (b) iLLaMA-T/16

Figure 10: Loss landscape. Illustration of (a) ViT-T/16 and (b) iLLaMA-T/16.

observe differences in the finer details between the CAMs of iLLaMA and DeiT, which can be at-
tributed to the distinctions between causal mode attention and bi-directional one. We would like to
note that the mechanism by which visual models perform classification remains a black box. It is not
entirely clear which specific regions the model should focus on to achieve the correct results. Thus,
we believe it is reasonable for iLLaMA to exhibit some unique patterns that differ from others.

L LIMITATIONS

We have shown that the LLaMA architecture, enhanced by the developed post-sequence [cls] and
soft mask techniques, is adept at adapting to tasks such as visual recognition and semantic segmen-
tation. However, iLLaMA’s application remains predominantly within the realm of perception. In
fact, such decoder-only architecture, favored by LLMs in the NLP field, can do more complex tasks,
such as reasoning and generation. This may be due to their massive training data and the next sen-
tence prediction training paradigm, which is not explored by iLLaMA. Thus, a critical validation
step of aligning the architectures of text and visual models would be to construct a multi-modal
large language model that fully leverages LLaMA components. In this envisioned model, both vi-
sual and textual feature extractors would be realized through the LLaMA architecture. Futhermore,
we strongly argue that iLLaMA’s successful attempts at basic supervised training strategies and
classification tasks provide a foundation for more complex tasks, such as object detection and depth
estimation. This represents a compelling avenue for future research.

M SOCIETAL IMPACT

After the ChatGPT milestone in 2022, open-source architectures like LLaMA began to shine in the
text domain. In the real world, images and text are the two main mediums of information and data
types. For neural networks, having a unified architecture for language and vision models allows
people to process these two distinct types of information using the same structure, which aids in
the specialization of hardware implementation. This paper transfers the architecture widely used in
language models to vision models, facilitating the achievement of this goal. The pretrained models
and code provided in this paper can be used in a plug-and-play manner to serve this objective.
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(a) layer 1, head 1

0 25 50 75 100 125 150 175 200
singular value index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d 
cu

m
ul

at
iv

e 
sin

gu
la

r v
al

ue

ViT-T
iLLaMa-T

(b) layer 1, head 2
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(c) layer 1, head 3
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(d) layer 4, head 1
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(e) layer 4, head 2
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(f) layer 4, head 3
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(g) layer 8, head 1
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(h) layer 8, head 2
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(i) layer 8, head 3
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(j) layer 12, head 1
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(k) layer 12, head 2
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Figure 11: Rank analysis. Results of the self-attention matrix of all 3 heads in layer 1, 4, 8, 12 of
the pretrained ViT-T and iLLaMA-T with N = 197. In most cases, especially in shallow layers, the
singular values of iLLaMa show a more uniform distribution than ViT.
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Input RSB-ResNet-50 DeiT-Small ConvNeXt-Small iLLaMA-Small

Figure 12: Class activation maps. Results are implemented by Grad-CAM of pre-trained models on
ImageNet-1K dataset. The backbones include ResNet-50, DeiT-S, ConvNeXt-S, and our iLLaMA-
S. Input images are sampled from the validation set.
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