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ABSTRACT

The rapid advancements of Al rely on the support of integrated circuits (ICs).
Recently, large language models (LLMs) have been increasingly explored in the
generation of IC designs, mostly in Register-Transfer Level (RTL) code format,
such as Verilog or VHDL. However, most existing benchmarks focus primarily on
the accuracy of RTL code generation, rather than the optimization of IC design
quality in terms of power, performance, and area (PPA). This work critically exam-
ines RTL optimization benchmarks and highlights the challenges of assessing RTL
code quality. Our findings show that optimization assessments are complex and
existing works yield misleading results, as the perceived superiority of RTL code
often depends on the downstream synthesis tool and setup. To address these issues,
we introduce RTL-OPT, a benchmark comprising 36 digital IC designs handcrafted
by our human designers. These designs incorporate diverse optimization patterns
derived from proven industry-standard RTL practices. Such optimization oppor-
tunities are not utilized by automated downstream logic synthesis, making them
meaningful RTL code improvements. In addition, RTL-OPT covers a wide range
of RTL implementation types, including combinational logic, pipelined datapath,
finite-state machines, and memory interfaces, making it sufficiently representative.
For each design task, RTL-OPT provides a pair of RTL codes: a carefully designed
suboptimal (i.e., to-be-optimized) RTL code and an optimized RTL code as the
golden reference. LLMs are expected to take the suboptimal RTL code as input,
then generate a more optimized RTL code that leads to better ultimate PPA qual-
ity. The golden references, as a comparison baseline, reflect optimizations at the
human-expert level. RTL-OPT further provides an integrated evaluation framework
to automatically verify functional correctness and quantify PPA improvements of
the LLM-optimized RTL code. This framework enables a standardized assessment
of generative Al’s ability in hardware design optimization. RTL-OPT is available
at https://anonymous.4open.science/r/RTL-OPT-20CS5.

1 INTRODUCTION

The rapid advancements of Al rely on the support of integrated circuits (ICs), which are increasingly
complex and difficult to optimize. In recent years, the adoption of Large Language Models (LLMs) in
the agile design of ICs has emerged as a promising research direction (Fang et al., 2025). Especially,
many recent works (Liu et al., 2024b; Ho et al., 2024; Liu et al., 2023a; Pei et al., 2024; Fu et al.,
2023; Chang et al., 2023; Thakur et al., 2023; Cui et al., 2024; Liu et al., 2024a; 2025; Zhao et al.,
2024) develop customized LLMs to directly generate IC designs in the format of Register-Transfer
Level (RTL) code, such as Verilog or VHDL.

Benchmarking RTL Code Generation. The RTL design is the starting point of digital IC design
implementation and requires significant human efforts and expertise. LLM-assisted RTL code
generation techniques (Liu et al., 2024b; Ho et al., 2024; Liu et al., 2025; Zhao et al., 2024) aim to
relieve engineers from the tedious RTL coding process. To enable a fair comparison among different
LLMs’ capabilities in RTL generation, high-quality benchmarks become necessary. Representative
benchmarks on RTL code generation include VerilogEval (Liu et al., 2023b) and RTLLM (Lu et al.,
2024), VerilogEval v2 (Pinckney et al., 2024), RTLLM 2.0 (Liu et al., 2024c), CVDP (Pinckney et al.,
2025), and others (DeLorenzo et al., 2024; Allam & Shalan, 2024).
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Limitation: Lack of Optimization. However, the aforementioned RTL generation benchmarks
primarily focus on the correctness of RTL code generation, without explicitly evaluating the opfi-
mization of IC design’s ultimate qualities in terms of power, performance, and area (PPA). Such PPA
quality is a unique property of hardware RTL code, in comparison with software code. In hardware
design, the RTL code will be synthesized into ultimate circuit implementations using synthesis tools.
Similar to a compiler in software, synthesis tools will apply extensive logic optimizations when
converting RTL code into implementations. Thus, PPA results depend on both the RTL code quality
and the downstream synthesis process. As we will point out in this paper, this tight interplay makes
benchmarking RTL optimization particularly challenging, sometimes even misleading.

Benchmarking RTL Code Optimization. Most recently, some LLM works (Yao et al., 2024; Wang
et al., 2025; Xu et al., 2025) start to target generating more optimized RTL code, which is expected
to yield better ultimate chip quality in PPA. These works are all evaluated on the only relevant
benchmark (Yao et al., 2024), which provides sub-optimal RTL codes for LLMs to improve. However,
our study indicates that this benchmark (Yao et al., 2024) falls short in several aspects: 1) Unrealistic
designs: many sub-optimal RTL codes in this benchmark are overly contrived and fail to capture
real inefficiencies in practice; 2) Oversimplified synthesis setup: reliance on weak synthesis tools
such as Yosys (Wolf et al., 2013) leads to results that are sensitive to superficial RTL code changes
and poorly aligned with industrial-grade flows; 3) Insufficient evaluation: its assessments focus
only on area-related metrics, while neglecting power and timing. Such evaluation metric neglects the
ubiquitous trade-offs in a typical IC design process.

In this work, we first inspect the existing works on RTL optimization and rethink a key question: how
to benchmark the optimization of RTL code appropriately? We carefully inspect existing works
and downstream synthesis flows. This study reveals that evaluating RTL optimization is non-trivial and
may easily lead to misleading conclusions. Specifically, whether one RTL code is superior (i.e., more
optimized) to the other strongly depends on the synthesis tool and setup. Many “optimized” RTL codes
indicated by the prior work (Yao et al., 2024) turn out to be the same or even worse than their “sub-
optimal” RTL counterparts when different, typically more advanced, synthesis options are adopted.

Based on our aforementioned observations, we propose a new benchmark, RTL-OPT, specifically
designed to systematically evaluate LLMs’ ability in RTL design optimization. RTL-OPT consists of
36 handcrafted RTL optimization tasks targeting PPA qualities. A key distinguishing feature is that it
provides a collection of diverse and realistic optimization patterns, such as bit-width optimization,
precomputation and LUT conversion, operator strength reduction, control simplification, resource
sharing, and state encoding optimization, all derived from proven industry practices. These patterns
capture transformations that truly matter for RTL optimization and remain effective even under
advanced synthesis. It sets RTL-OPT apart from prior works that often lacked real optimization
impact. As illustrated in Figure 1, each task in RTL-OPT provides a pair of RTL codes: a deliberately
designed sub-optimal (to-be-optimized) version and an optimized version serving as the golden
reference. Any benchmarked LLM takes the sub-optimal code as input and attempts to generate a
more optimized RTL code while preserving design functionality. Specifically, RTL-OPT provides:
1) a set of 36 handcrafted tasks, ensuring comprehensive and representative coverage of real-world
design challenges; 2) an integrated evaluation framework (Figure 1), which automatically verifies
functional correctness and compares the ultimate PPA of LLM-optimized designs against the designer-
optimized golden reference.

Constructing a high-quality benchmark for RTL optimization is inherently challenging due to the
severe scarcity of open-source circuit designs, which are valuable IPs for semiconductor companies.
Most available designs are either too trivial or unsuitable for systematic evaluation. Previous
work (Yao et al., 2024) relies on contrived designs, failing to address these issues. We handcrafted 36
representative designs that cover diverse implementation types and embody established optimization
patterns. Although not at very large scale, RTL-OPT offers sufficient breadth and realism to serve as
a valuable resource for advancing LLM-based RTL optimization.

The remainder of this paper is organized as follows: Section 2 provides a systematic analysis of RTL
code optimization, including the impact of synthesis, evaluation of existing and new benchmarks,
and case studies. Based on the analysis, Section 3 introduces RTL-OPT, a new benchmark on RTL
code optimization that addresses our observed challenges. In Section 4, we present the experimental
results of different LLMs on RTL-OPT.
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Figure 1: The workflow of RTL-OPT for automated benchmarking RTL optimization.

2 RETHINKING THE RTL CODE OPTIMIZATION

In this section, we introduce our comprehensive study to inspect both existing benchmark Yao et al.
(2024) on RTL code optimization and our own RTL-OPT benchmark under multiple synthesis setups.
This study reflects the limitation of overly contrived designs in existing benchmark.

2.1 IMPACT OF SYNTHESIS PROCESS ON RTL EVALUATION

According to our study, we point out that the evaluation of RTL optimization (i.e., judging which
RTL code leads to better PPA) is not a straightforward task. One primary reason is that the
ultimate design quality also depends on the synthesis process, which converts the RTL code
to the circuit implementation. The synthesis process not only affects the ultimate PPA values, but
also the comparison result between a pair of RTL codes. Specifically, differences in synthesis tools,
optimization modes, and timing constraints can all significantly affect whether and how structural
differences in RTL code are reflected in the final implementation.

Effect of Synthesis Tool. Synthesis tools can be broadly categorized into commercial and open-
source options, with Synopsys Design Compiler (DC) (des, 2021) and Yosys (Wolf et al., 2013)
being the most widely used representatives in each category. DC is an industry-standard tool offering
advanced optimization capabilities and robust handling of complex RTL constructs. In contrast,
Yosys is an open-source weaker alternative valued in academic research. These tools implement
varying optimization strategies and heuristics, so the same RTL may produce significantly different
outcomes depending on the chosen tool, directly influencing how design quality is perceived.

Effect of Compile Mode Selection. Commercial tools like Synopsys DC support multiple compile
modes. For instance, compile_ultra applies more aggressive and advanced logic optimizations
compared to the basic compile mode. Its aggressive optimization by flattening or restructuring
logic tends to obscure fine-grained RTL differences.

Effect of Clock Period Constraints. The target clock period also shapes synthesis behavior. Tight
constraints often lead to aggressive timing-driven optimizations, while relaxed constraints may reduce
differentiation between RTL variants. Choosing a realistic and consistent timing target is important
for fair and interpretable evaluation of RTL code.

2.2 INSPECTION OF EXISTING BENCHMARK

The existing benchmark (Yao et al., 2024) provides multiple pairs of sub-optimal and human-
optimized RTL designs, along with additional RTL code generated by their LLM-based optimization
experiments. Surprisingly, our study reveals that: 1) Both the Auman-optimized RTL designs and
the LLM-optimized RTL designs from (Yao et al., 2024) often fail to outperform their corresponding
sub-optimal counterparts after synthesis. In many cases, they are essentially the same or even worse,
particularly when advanced synthesis options are applied. 2) We observe clearly different impacts
on ultimate PPAs between different synthesis tools: commercial tool DC with strong optimization
capabilities tend to eliminate the differences between sub-optimal and optimized RTL, while open-
source Yosys often exaggerates them. Together, these results suggest that the existing benchmark
does not reliably reflect true improvements in RTL code.
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Benchmark Total Yosys DC (compile, clk = 1ns) DC (compile_ultra, clk = 1ns)

same worse Dbetter | same trade-off worse better | same trade-off worse better
Benchmark of (Yao et al., 2024) | 43 13 6 24 13 7 7 16 21 1 8 13
Paper of (Yao et al., 2024) 12 1 0 11 1 4 2 5 4 1 3 4
SymRTLO (Wang et al., 2025) 13 2 1 10 2 2 1 8 4 1 3 5
RTL-OPT |36 ] 3 o 3]0 6 0 30 | o0 1 0 35

Table 1: Comparison between each pair of sub-optimal and human-optimized designs from (Yao et al.,
2024) and RTL-OPT (this work). RTL-OPT shows consistent improvements (35 out of 36 better
under compile_ultra), matching the expectation that expert-optimized RTL should outperform
sub-optimal versions. In contrast, prior benchmarks often show little or no improvement under
stronger synthesis settings, indicating limited reliability for benchmarking RTL optimization.

DC (compile, clk = 0.1ns) | DC (compile_ultra, clk = 0.1ns) | DC (compile_ultra, clk = 1ns)

Benchmark Total
same trade-off worse better |same trade-off worse better |same trade-off worse better

Benchmark (Yao et al., 2024) | 43 13 9 6 15 22 3 7 11 21 1 8 13
Paper (Yao et al., 2024) 12 1 4 1 6 4 1 1 6 4 1 3

SymRTLO (Wang et al., 2025) | 13 2 2 2 7 4 3 6 4 1 3 5

RTL-OPT 36 0 13 0 23 0 12 0 24 0 1 0 35

Table 2: Extension of Table 1, evaluating different synthesis setup: clock period as 0.1ns and 1ns.

The evaluation results of existing benchmarks are shown in Table 1, 2 and 3. We carefully inspect
and evaluate all 43 pairs of RTL code' from the whole benchmark released in (Yao et al., 2024).
Specifically, Table 1 compares each pair of sub-optimal and human-optimized designs, both from the
original benchmark. We evaluate whether the human-optimized reference is actually better, worse,
or the same compared with its sub-optimal RTL counterpart after synthesis”. In addition, there may
exist a “trade-off” result in the PPA comparison, indicating improvement in one PPA metric while
degradation in the other. As for Yosys, similar to prior works, we only compare the number of
cells. In Table 1, only 13 human-optimized RTL (Yao et al., 2024) out of 43 cases are better than
their sub-optimal counterparts with compile_ultra. This number rises to 16 with compile
and further to 24 with Yosys. Many human-optimized RTLs are no better than sub-optimal RTL,
particularly with advanced synthesis options. It validates that commercial tools can eliminate many
contrived inefficiencies, while open-source tools often retain them, highlighting a clear discrepancy.

Table 2 extends our evaluation in Table 1 under different clock constraints, setting a tighter tim-
ing target of clock period = 0.1ns. When using the same synthesis modes (i.e., compile or
compile_ultra), using a tighter timing constraint leads to slightly more cases with PPA trade-offs
and even less actually better RTL code.

Table 3 further compares the sub-optimal design with LLM-optimized designs directly released by
prior work (Yao et al., 2024). In Table 3, for both GPT-4.0 and model proposed by (Yao et al., 2024),
only 3 LLM-optimized RTL out of 12 cases are actually better than their sub-optimal counterparts
with compile_ultra. The number rises to 5 out of 12 with compile. In summary, many LLM-

Yosys
same worse better

DC (compile, clk = 1ns)
same trade-off worse better

DC (compile_ultra, clk = 1ns)

LLM Soluti Total
olution ‘ oa same trade-off worse better

GPT-4.0 13 4 3 6 3 3 2 5 4 4 2 3
Model (Yao et al., 2024) | 12 3 1 8 3 4 0 5 3 6 0 3

Table 3: Comparison between each pair of sub-optimal and LLM-optimized designs released from (Yao
et al., 2024). Only 14 LLM-optimized designs used in the paper (Yao et al., 2024) are released.

' As shown in Table 1, paper of (Yao et al., 2024) and SymRTLO (Wang et al., 2025) are different subsets of
the Benchmark (Yao et al., 2024). We only successfully synthesized 43 cases out of the 54 pairs of RTL code
from the benchmark (Yao et al., 2024). For the others, we synthesized 12 out of 14 pairs and 13 out of 16 pairs,
respectively. These synthesis failures in the original benchmarks are mainly caused by Verilog syntax errors.

*The details of the synthesis process, tools, and PPA metrics used for evaluating are provided in Section 3.3.
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-
module examplel Example 1 Example2
( module example2 module example2_opt
input [7:0] a,b, TQdU:Le examplel_opt #( parameter BW = 64) #( parameter BW = 64)
output [7:0] s1,s2 ( (
) Pt ! ’ input [7:0] a,b, input ¢, input c,
wire [7:0] t1, t2; output [7:0] s1,s2 output z output z
assign sl = a + b; )5 ) )
assign tl = s1 + ©; S; i al?vbzf assign a = 2; assign z = ¢ *
assign t2 = s1 * 1; se=s i assign b = (a * 32) + 3; endmodule
assign s2 = tl1 + t2; endmodule assign z = ¢ * b;
endmodule endmodule
DC Results Cells Area  Power WNS TNS DC Results Cells _Area Power WNS TNS
examplel & example2 &
P 106 947 051 -0.18 -1.81 P 1 0.79 2.32 0.0 0.0
examplel_opt example2_opt

Figure 2: Overly contrived suboptimal and optimized RTL code in existing benchmark (Yao et al.,
2024). Both codes have the same PPA after synthesis with the commercial tool DC.

optimized RTLs turn out to be no better than sub-optimal RTL, especially with advanced synthesis
options. It indicates that under strict synthesis flows, the benchmark shows limited effectiveness. We
provide detailed data in Appendix G.2.

2.3 SAME INSPECTION OF OUR BENCHMARK

In Table 1 and 2, we also evaluate our proposed benchmark, RTL-OPT, using the same setup.
According to Table 1, 35 out of 36 human-optimized RTL codes in RTL-OPT are better when
compile_ultra isadopted, and 33 out of 36 for Yosys. In Table 2, with a tight timing constraint, 23
cases remain better while 13 result in PPA trade-offs, with no cases achieving the same ultimate PPA.
Compared to the previous benchmark (Yao et al., 2024), RTL-OPT shows significant improvements
in evaluating RTL designs.

This clear validation of RTL-OPT’s benchmark quality arises from its design philosophy: it provides
genuinely sub-optimal RTL implementations with meaningful room for improvement, rather than
contrived inefficiencies that synthesis tools can remove. The detailed comparisons between the
suboptimal and optimized RTL designs in RTL-OPT are in Appendix C.

2.4 CASE STUDY OF EXISTING BENCHMARK

To further understand how such contrived RTL designs are constructed, we take a closer look
at (Yao et al., 2024) benchmark. Example I & 2 in Figure 2 highlight a common flaw in (Yao
et al., 2024) designs: its RTL pairs are based on unrealistic transformations that do not address
true optimization challenges in hardware design. These contrived sub-optimal examples exhibit
unnecessary inefficiencies, such as redundant computations and superfluous arithmetic operations,
which are unlikely to occur in practice. Synthesis tools can easily optimize these contrived patterns,
leading to evaluations that may overstate the effectiveness of LLMs in improving RTL quality.

In Example 1 (Yao et al., 2024), the optimized version (examplel_opt) implements the logic
directly by computing s1 = a + b and then deriving the outputas s2 = sl x 2. In contrast,
the suboptimal version (examplel) introduces contrived and unnecessary steps: it first computes
sl = a + b, then redundantly adds 0 and multiplies by 1 to produce intermediate wires t 1 and
t 2, before summing them into s2. Such constructions are unnatural and would rarely appear in
practical RTL coding, making the benchmark example unrealistic.

In Example 2 (Yao et al., 2024), the optimized version (example?2 _opt) simply applies constant
folding to collapse the entire computation into one step: z = ¢ = 67. By contrast, the suboptimal
version (examp le?2) artificially expands this trivial logic into a sequence of assignments, first setting
a = 2,thencomputingb = (a * 32) + 3, and finally multiplying b by input c to obtain z.
These contrived constructions of sub-optimal cases result in an unrealistic benchmark.

In summary, these examples highlight that sub-optimal cases in (Yao et al., 2024) rely on contrived
inefficiencies rather than realistic IC design challenges. Such cases are unrepresentative of practical
RTL design and can be trivially optimized by synthesis tools, limiting the benchmark’s ability to
assess LLMs on RTL optimization.
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3 RTL-OPT BENCHMARK

In this section, we present RTL-OPT, a benchmark designed for evaluating RTL code optimization
with LLMs. RTL-OPT provides realistic suboptimal and optimized RTL pairs handcrafted by experts,
ensuring genuine inefficiencies and meaningful golden references. Covering diverse design types and
evaluated with both commercial and open-source tools, it offers a robust and practical resource for
advancing RTL optimization research.

3.1 BENCHMARK DESCRIPTION

The RTL-OPT consists of 36 RTL design optimization tasks. Each task provides a pair of RTL
codes: a suboptimal version and a corresponding designer-optimized version, implementing the
same functionality. All designs are manually written by hardware engineers to reflect realistic
coding styles and optimization practices, with the optimized RTL serving as the golden reference
for human-optimized PPA quality. The suboptimal RTL is not arbitrarily degraded; it represents a
valid, functionally correct design that omits specific optimization opportunities. This setup creates
meaningful optimization gaps and practical scenarios encountered in the semiconductor industry.

The 36 provided design tasks cover a variety of design types, including arithmetic units, control logic,
finite state machines (FSMs), and pipelined datapaths. These designs vary in size and complexity,
with logic area ranging from 14 to 20K cells and synthesized area ranging from 15 to 19K zm?. This
diversity ensures that the benchmark is representative of practical RTL design tasks.

RTL-OPT is fully open-sourced and provides the following artifacts to support benchmarking the
RTL optimization capabilities of LLMs: (1) 36 carefully designed RTL code pairs; (2) Corresponding
synthesized netlists from commercial synthesis tools; (3) Detailed PPA reports from electronic design
automation (EDA) tools for both suboptimal and optimized designs; (4) A complete toolchain flow,
including scripts for synthesis, simulation, and functional verification, which can also verify the
correctness of the rewritten code by LLMs.

Table 4 shows the evaluated PPA of all 36 pairs of sub-optimal and optimized designs from RTL-OPT,
using both DC and Yosys. Due to its size, this table is now in Appendix C.1. Detailed explanation of
our evaluation methodology, synthesis process, and the PPA metrics are provided in Section 3.3.

3.2 RTL-OPT ANALYSIS: OPTIMIZATION PATTERNS

The optimization patterns, which provide optimization opportunities, are derived from proven
industry-standard RTL coding practices that have a direct impact on the quality of logic synthesis.
These patterns represent how specific RTL-level modifications ultimately affect downstream synthesis
outcomes. The key optimization pattern types in the RTL-OPT benchmark are summarized as follows:

* Bit-width Optimization: Reducing register and wire widths where full precision is not necessary,
optimizing both area and power consumption.

* Precomputation & LUT Conversion: Replacing runtime arithmetic operations with precom-
puted lookup tables to eliminate complex logic units.

e Operator Strength Reduction: Substituting high-cost operators with simpler equivalents
through bit manipulation.

* Control Simplification: Flattening nested finite state machines (FSMs) or reducing unnecessary
states, streamlining control logic, and improving both area and timing.

* Resource Sharing: Consolidating duplicate logic across different cycles to maximize hardware
resource efficiency.

» State Encoding Optimization: Selecting optimal state encoding schemes (One-hot, Gray,
Binary) based on state count to balance power, area, and timing.

By integrating these optimization patterns across a diverse range of RTL designs, RTL-OPT generates
its realistic yet challenging benchmark for LLM-assisted RTL code optimization: enhancing PPA
metrics of optimized code while maintaining functional correctness.
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Example 1 Example 2
# Suboptimal Designs X Optimized Designs # Suboptimal Designs X Optimized Designs
module examplel ( module examplel opt( module example2 ( module example2_opt (
input clk, input clk, :
input [3:0] sel, input [3:0] sel, input ‘%k’ ) input clk,
output reg [6:0] dout output reg [6:0] dout input signed [7:0] a, b, input signed [7:0] a, b,
); ); output reg signed [7:0] z output reg signed [7:0] z
)s )s
wire [6:0] dout_next; alu&j;;;fzi?cge clk) begin wire signed [15:0] t; wire signed [15:0] t;
gn dout_next = 10 + sel*3; 4'de’  : dout <= 7'dle; assign t = a * b + (1«7); assign t = a * b;
4'dl : dout <= 7'd13; wire signed [7:0] z_next =
always @(posedge clk) begin always @(posedge clk) begin t[15:8] + t[7];
dout <= dout_next; 4'd14  : dout <= 7'd52; z <= t[15:8];
end default : dout <= 7'dS5; : e
endcase end always @(posedge clk) begin
endmodule end endmodule z <= z_next;
end
endmodule endmodule
DC_Results Cells Area Power WNS TNS DC_Results Cells Area Power WNS TNS
examplel 38 56.39 0.44 -0.11  -0.38 example2 31 453.3 3.64 -1.26  -9.69
examplel_opt 31 49.74 0.39 -0.08 -0.24 example2_opt | 270 426.4 3.43 -1.25 -9.62

Figure 3: Comparison of suboptimal and optimized RTL code examples in RTL-OPT.

To illustrate these optimization patterns, we provide two code examples from the RTL-OPT in Figure 3.
These examples compare suboptimal and optimized RTL implementations within a specific pattern
category, accompanied by discussions on the structural changes and the quantitative improvements
observed in downstream PPA metrics.

Example 1: This example in Figure 3 (left) demonstrates the optimization pattern of precomputation
& LUT conversion, where real-time arithmetic operations are replaced with precomputed values.
In the suboptimal design, the output is dynamically calculated using the sel input, requiring
multiplication at each clock cycle. The optimized design replaces this operation with a case
statement that directly assigns precomputed values based on the selection. This optimization results
in a 14% reduction in area and a 12% decrease in power consumption by eliminating arithmetic
operations and reducing signal toggling.

Example 2: This example in Figure 3 (right) demonstrates bit-width optimization, where the
physical implementation of an arithmetic operation is restructured to minimize resource usage. In
the suboptimal design, a 16-bit multiplication is followed by an addition of the least significant bit,
resulting in a larger bit-width for intermediate signals. The optimized design reduces the bit-width by
truncating the multiplication result to an 8-bit value directly and simplifying the addition operation.
This restructuring achieves a 7% reduction in area and a 6% decrease in power consumption by
reducing the width of intermediate signals and operations.

3.3 EVALUATION METHODOLOGY AND TOOLS

RTL-OPT provides a complete evaluation flow to assess LLMs’ optimization capabilities by mea-
suring the PPA of synthesized RTL code. This is achieved through a combination of synthesis,
functionality verification, and PPA evaluation, all performed using industry-standard EDA tools.

3.3.1 SYNTHESIS PROCESS

The logic synthesis process converts the initial RTL code into gate-level netlists, based on which the
PPA metrics can be quantitatively evaluated. In this work, we mainly employ DC (des, 2021) for the
synthesis of the RTL-OPT benchmark, given its established effectiveness in industrial design flows.
DC demonstrates superior capabilities in identifying inefficient RTL constructs and optimizing them
into more efficient circuit implementations, thereby minimizing sensitivity to the initial code quality.

When benchmark quality is insufficient, DC tends to synthesize both the suboptimal and optimized
RTL codes into functionally equivalent gate-level netlists, resulting in identical PPA outcomes.
This behavior reflects the limited optimization opportunities offered by low-quality benchmarks.
Conversely, open-source synthesis tools such as Yosys (Wolf et al., 2013), which provide less
aggressive optimization, may still produce differing PPA results for such code pairs, potentially
overstating the effectiveness of certain code transformations. For completeness, we also provide
synthesis results obtained using Yosys to support broader comparative analyses.

The synthesis process also involves the use of a technology library, or cell library, which is a collection
of pre-characterized standard cells such as logic gates, flip-flops, and other fundamental components.
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These cells are designed to meet specific PPA constraints. While we use Nangate45 (Si2, 2018) in
our evaluation, other libraries could also be used, though they typically require a license. The choice
of library significantly impacts the RTL optimization process, as it defines the available cells and
their performance characteristics, ultimately influencing the design’s efficiency.

3.3.2 FUNCTIONAL EQUIVALANCE VERIFICATION

After successful synthesis, the RTL code is ensured to be free of syntax errors, as it can be correctly
transformed into a gate-level netlist. Following synthesis, functional verification is essential to
ensure that the optimization steps have not introduced errors. This verification is primarily con-
ducted using Synopsys Formality (fom, 2023), which performs functional equivalence checking by
rigorously comparing the LLM-optimized RTL against the golden reference to ensure behavioral
consistency. However, for optimizations involving timing adjustments, such as pipelining, additional
dynamic verification is required. This is performed using Synopsys VCS (vcs, 2021), which employs
comprehensive testbenches to validate the design’s behavior under various operating conditions.

This combined approach ensures both logical equivalence and operational reliability of the optimized
design. A design is considered functionally valid only if it passes both formal equivalence checking
and dynamic verification for timing-critical optimizations.

3.3.3 PPA METRICS AND TRADE-OFFS IN OPTIMIZATION

To evaluate the quality of the synthesized designs, we analyze them from three aspects: Power,
Performance, and Area:

Power: The total power consumption of the synthesized design, characterized by the fundamental
equation: Fyynamic = aC V2 f, where « is the switching activity, C is the capacitance, V' is the supply
voltage, and f is the clock frequency.

Performance: Evaluated through two key timing metrics: Worst Negative Slack (WNS), which
represents the largest single timing violation in the design, and Total Negative Slack (TNS), the sum
of all timing violations across failing paths.

Area: Characterized by two complementary measures: Silicon area (in m?), which indicates the
physical implementation footprint, and Cell count, the total number of standard cells in the design,
providing a basic area estimation that does not account for cell types, placement, or routing overhead.

Trade-offs widely exist in these PPA metrics. For instance, optimizing for power may increase area,
while minimizing area could compromise power efficiency. A key challenge in RTL optimization is
managing these competing goals to achieve an optimal balance based on design constraints.

4 EXPERIMENTS

This section presents the experiments conducted to evaluate the optimization capabilities of different
LLMs on the RTL-OPT benchmark. We compare the performance of several LLMs, including
GPT-40-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, in optimizing RTL code. The focus of
the experiments is on assessing the optimization in terms of PPA metrics, as well as the functional
correctness of the optimized designs. The results show that the two Deepseek models demonstrate
stronger optimization ability than the other evaluated LLMs. Detailed tables summarizing PPA
performance and functional correctness (Table 6) are included in Appendix D.1.

4.1 SUMMARY OF BENCHMARKING RESULTS

Figure 4 shows a summary of benchmarking results of the four evaluated LLMs. It reveals the syntax
correctness, functionality correctness, and post-optimization PPA quality performance of the various
LLMs. The overall results highlight that: @ There is still significant room for LLM to improve in RTL
optimization compared to human designers. ® Our benchmark is designed to be realistic, providing a
set of challenging tasks that reflect the complexities encountered in real-world hardware design.

Notably, the overall performance of all LLMs is not very good, reflecting the challenges in our
RTL-OPT benchmark. Many LLMs have over 10 optimized cases failed to maintain functionality cor-
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rectness. Deepseek R1 can successfully optimize about 15 sub-optimal designs, and can outperform
our human designers’ solution for around 5 designs.

When comparing these 4 LLMs, Deepseek R1 generally outperforms the other models in terms
of PPA. However, Deepseek R1 also exhibits a higher rate of functional discrepancies compared
to the other models. In contrast, models such as GPT-40-mini and Gemini-2.5, while maintaining
high syntax correctness, achieved fewer improvements in PPA. It may imply that their optimization
strategies are either more conservative or lack effective optimizations.

4.2 DETAILED BENCHMARKING RESULTS

One observation from the evaluation re-
sults in Figure 4 is the trade-off between B Syntax Correctness WMl PPA Better Than Suboptimal
optimization and functionality Whlle Func Correctness Il PPA Better Than Optimized

Deepseek R1 showed the most significant 351

improvements in PPA, it was also the most A2 30 1

prone to introducing functional errors. In =~ (© 25 -

contrast, GPT-40-mini and Gemini-2.5 ex- 3 5|

hibited a more balanced approach, opti- & 15

mizing PPA while maintaining syntax cor-

rectness. This indicates that Deepseek 107

R1’s aggressive optimization, though ef- 51 j
0 p

fectlvg, tends,to ncrease er,ror,’ espemally GPT-40-mini Gemini-2.5 Deepseek V3 Deepseek R1
in designs with complex timing or con- Different LLM Models

trol logic. Conversely, GPT-40-mini and

Gemini-2.5, while less aggressive, main- Figure 4: Comparison of optimization performance
tained functional correctness and achieved —across different LLMs.

meaningful PPA improvements. We provide more detailed LLM evaluation results in Appendix E.

Numbe

For the experimental results, we summarize the performance of four LLMs across syntax correctness,
functional correctness, and PPA improvement. 1) GPT-40-mini achieves good correctness, with
a syntax correctness rate of 97.2% and functional correctness of 75%. Though only 19.4% of
its generated code achieving better PPA than the suboptimal version. 2) Similarly, Gemini-2.5
exhibited the same trend as GPT-4o0-mini: relatively high functional correctness but low performance
in PPA optimization. 3) For Deepseek V3, it gets the highest syntax correctness of 100%, and the
same functional correctness of 69.4% with Gemini-2.5. It achieved a balanced performance across
all metrics. 4)In contrast, Deepseek R1, with a syntax correctness rate of 86.1% and functional
correctness of 61.1%, produced 41.7% of the code with better PPA than the suboptimal version, and
13.9% better than designer solutions, despite its lower functional correctness.

Beyond quantitative results, we also randomly inspected 40 cases where LLM-optimized designs
passed syntax checks but failed functional verification. We observed three main failure modes:
control logic inconsistencies (e.g., incorrect Boolean conditions in comparators), overly aggressive
pipelining (e.g., violating latency requirements in FSMs), and improper resource sharing (e.g.,
stale data due to register reuse). These results highlight that LLM errors often stem from subtle
design semantics rather than surface-level syntax issues. We provide the details in Appendix F.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we introduce RTL-OPT, a benchmark for hardware RTL code optimization aimed
at enhancing IC design quality. RTL-OPT includes 36 handcrafted digital IC designs, each with
suboptimal and optimized RTL code, enabling the assessment of LLM-generated RTL. An integrated
evaluation framework verifies functional correctness and quantifies PPA improvements, providing
a standardized method for evaluating generative Al models in hardware design. RTL-OPT has
significant potential to influence Al-assisted IC design by offering valuable insights and fostering
advancements. As for the limitations of RTL-OPT, it relies entirely on expert-written, manually
optimized RTL code, limiting the dataset’s scale. Expanding to a larger dataset requires advances in
automated optimization or synthetic generation of high-quality RTL, which remains challenging.
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A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, including RTL-OPT, were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.
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C FuLL PPA QUALITY COMPARISON OF RTL-OPT

Due to space limitations, we move the full PPA evaluation results to the appendix. This section
provides the complete comparison between the suboptimal and optimized RTL designs in RTL-OPT.
Both Synopsys Design Compiler and Yosys are used for synthesis and evaluation. As PPA inherently
involves trade-offs, smaller values indicate better design quality. These results complement the main
text by presenting full numerical evidence under different synthesis constraints.

C.1 RESULTS UNDER DC COMPILE_ULTRA, 1 NS

Table 4 reports the full PPA metrics of all 36 RTL-OPT designs when synthesized using Synopsys DC
with a relaxed Ins clock period on the “compile ultra” setting. Both suboptimal and optimized RTL
codes are evaluated, enabling direct comparison. This setting highlights how expert-optimized RTL
consistently achieves superior power, performance, and area outcomes compared to the suboptimal
versions, demonstrating the reliability of RTL-OPT for benchmarking.

Provided Suboptimal Designs Provided Optimized Designs

Design List DC Results(compile_ultra, 1ns) Yosys Results DC Results(compile_ultra, 1ns) Yosys Results
Cells Area Power WNS TNS |Cells Area | Cells Area Power WNS TNS |Cells Area
1 | adder 397 5104 3704 0.0 0.0 | 323 4562 || 372 4772 3513 0.0 00 | 266 413.9
2 | adder _select 450 4392 2643 0.0 0.0 | 363 4283 || 306 2257 0.23 00 0.0 | 241 3184
3 | alu_64bit 1683 1645 887.8 0.0 0.0 | 1411 1554 |/ 1680 1557 677.1 0.0 0.0 | 1094 1307
4 | alu_8bit 146 180 7558 0.0 0.0 | 152 163.1 || 115 138 6843 00 0.0 | 130 1588
5 | calculation 888 1044 0.78 -0.61 -5.66| 774 900.4 || 755 860 0.62 -0.60 -4.83| 567 661.8
6 | comparator 63 5639 0.03 00 00 | 40 4070 || 45 4176  0.02 00 00 | 40 4070
7 | comparator_16bit || 102 88.31 4457 0.0 00 | 64 6224 || 116 1053 3883 00 0.0 | 104 1051
8 | comparator_2bit 10 9.58 451 00 00 | 11 9.31 10 8.78 3.82 00 00 | 10 931
9 | comparator_4bit 23 2128 1086 00 00 | 22 2155 21 1835 925 00 00 | 18 17.29
10 | comparator_8bit 46 4442 228 00 00 | 45 48.15 47 4123 2029 00 0.0 | 33 3086
11 | decoder_6bit 97 76.61 2274 00 00 | 93 99.22 87 7155 1954 0.0 00 | 91 7820
12 | decoder_8bit 317 2572 5067 0.0 0.0 | 390 410.7 || 312 2468 5028 0.0 0.0 | 300 250
13 | divider_16bit 3471 3428 5088 -3.43 -75.6| 1264 1412 || 1565 1560 2091 -3.83 -72.1| 662 760.2
14 | divider_32bit 14400 14296 23796 -10.69 -486 | - - 6724 670320 11335 -10.19 -468 | 2419 2941
15 | divider_4bit 39 4043 2158 00 00 | 52 59.05 33 3378 159 00 00 | 39 4096
16 | divider_8bit 571 5754 681.8 -0.50 -4.57| 302 339.7 || 322 330.37 2752 -0.39 -243| 171 189.7
17 | fsm 89 1287 9256 0.0 00 | 8 138.6 73 9204 5144 00 00 | 70 97.09
18 | fsm_encode 242 387.0 3206 0.0 0.0 | 179 3527 || 155 305.63 27697 0.0 00 | 170 319.2
19 | gray 48 6730 8532 00 0.0 | 63 8592 51 69.69 6678 00 0.0 | 67 83.34
20 | mac 410 7179 8682 0.0 0.0 | 532 831.5 || 319 54823 73525 00 0.0 | 529 707
21 | mul 315 3785 421.7 -0.05 -0.13| 399 4855 || 315 3785 421.7 -0.05 -0.13| 397 4764
22 | mul_sub 234 338.09 26235 0.0 0.0 | 299 3529 || 233 337.02 256.53 0.0 0.0 | 289 3325
23 | mux 25 3192 1038 0.0 0.0 8 8.51 25 21.81 838 00 0.0 | 34 4229

24 | mux_encode 125 1407 043 00 00 - - 34 36.18 0.13 00 00 - -
25 | saturating add 24 6943 6753 00 00 | 58 97.36 18 6756 6577 00 00 | 42 7847
26 | selector 18 3937 3606 00 00 | 17 4256 18 38.04 3532 00 00| 15 3724
27 | sub_16bit 132 1362 7792 00 0.0 | 93 9656 || 124 1319 7546 0.0 00 | 92 9895
28 | sub_32bit 270 2519 1489 0.0 0.0 | 189 1915 || 265 2447 14252 0.0 0.0 | 188 200
29 | sub_4bit 12 1835 9.29 00 00 | 21 2234 10 17.82  9.29 00 00 | 20 2208
30 | sub_8bit 25 4176 2496 00 0.0 | 45 4788 20 3697 1926 00 00 | 46 48.15
31 | add_sub 164 183.27 1184 0.0 0.0 | 155 1644 || 124 130.34 101.7 0.0 0.0 | 179 202.7
32 | addr_calcu 78 13140 96.07 -0.03 -0.06| 197 2229 82 125.55 9027 -0.01 -0.01| 101 124.7
33 | mult_if 10 1091 3.53 00 00 | 12 10.9 11 10.11 413 00 00 | 12 1091
34 | mux_large 81 97.62 4827 0.0 00 | 65 90.17 81 96.82 40.84 0.0 0.0 | 112 1205
35 | register 3731 8745 7712 0.0 0.0 | 4500 9735 || 3720 8744 7708 0.0 0.0 | 4507 9668
36 | ticket_machine 36 5852 6031 00 00 | 29 4788 22 3245 36.03 0 0 29  47.88

Table 4: The PPA quality comparison of RTL-OPT-provided suboptimal vs. optimized de-
signs(compile_ultra, 1ns). Using both commercial DC and open-source Yosys for the RTL design
synthesis and PPA evaluations. Trade-offs are common in these PPA metrics and smaller values
indicate better performance.
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C.2 RESULTS UNDER DC COMPILE, 0.1 NS

Table 5 presents the full PPA metrics for the same 36 designs under a more aggressive 0.1ns clock
period constraint. Compared to the 1ns setting, these results illustrate sharper trade-offs among PPA
metrics, where aggressive timing optimization can sometimes increase power or area. Nevertheless,
the optimized RTL consistently outperforms the suboptimal RTL, reaffirming that RTL-OPT reflects
realistic and meaningful optimization challenges.

Provided Suboptimal Designs Provided Optimized Designs
Design List DC Results (compile, 0.1ns) Yosys Results DC Results (compile, 0.1ns) Yosys Results

Cells Area Power WNS TNS | Wires Cells Area | Cells Area Power WNS TNS | Wires Cells Area
1 | adder 626 6884 5.1 0.57 16.0| 501 323 456.2| 531 639.7 426 046 13.2| 440 266 4139
2 | adder_select 813 812.1 485 039 108 | 724 363 4283 514 5226 349 042 120| 490 241 3184
3 | alu_64bit 3248 3028 1695 0.51 29.7| 2358 1411 1554 || 1706 17489 8.58 0.74 42.7| 1791 1094 1307
4 | alu_8bit 402 370 189 026 1.91| 257 152 163.1|| 244 2458 1.15 040 292| 229 130 1588
5 | calculation 670 9975 659 322 42.6| 1210 774 900.4| 534 761.8 525 324 443 927 567 661.8
6 | comparator 109 98.15 043 0.19 0.19| 111 40 40.70| 90 80.60 034 0.21 021| 108 40 40.70
7 | comparator_16bit || 296 2444 1.06 0.18 0.52| 141 64 62241 151 1692 0.75 0.19 0.52| 357 104 105.1
8 | comparator_2bit 14 1436 0.06 0.02 005| 40 11 931 16 13.03 0.05 001 002| 28 10 931
9 | comparator_4bit 25 2580 0.1 0.06 0.15| 83 22 21.55|| 29 2314 0.09 0.10 022 45 18 17.29
10 | comparator_8bit 73 7129 031 0.12 033| 170 45 48.15| 81 6730 028 0.12 034| 77 33 30.86
11 | decoder_6bit 204 208 037 018 9.22| 106 93 99224 132 1067 0.32 004 253| 195 91 7820
12 | decoder_8bit 781 8559 128 0.27 58.8| 407 390 410.7| 435 3732 0.83 0.09 20.8| 617 300 250
13 | divider_16bit 5037 5045 66.3 3.88 89.4| 2385 1264 1412 || 2543 2426 26.71 4.10 904 | 2116 662 760.2
14 | divider_32bit 21348 19849 275.51 1226 586 - - - 16434 16053 164 13.68 875 | 8341 2419 2941
15 | divider _4bit 85 84.85 048 032 1.29| 112 52 59.05|| 64 56.13 023 0.17 059 133 39 40.96
16 | divider_8bit 744 7318 694 121 13.5| 539 302 339.7|| 557 5355 3.67 1.10 10.8| 527 171 189.7
17 | fsm 149 1929 1.06 028 4.40| 209 85 138.6| 106 1298 0.59 024 270 | 157 70 97.09
18 | fsm_encode 353 4889 3.6 041 10.8| 380 179 3527 334 4267 3.07 039 8.11| 342 170 319.2
19 | gray 100 109.1 092 028 2.04| 142 63 85.92 81 9470 1.04 023 234 | 145 67 88.84
20 | mac 563 880.7 846 1.23 209 | 737 532 831.5| 477 7014 726 138 162 699 529 707
21 | mul 311 453 3.64 126 9.69| 498 399 4855| 270 4264 343 125 9.62| 494 397 4764
22 | mul_sub 634 62324 417 075 8.08| 494 299 3529| 614 603.8 4.12 071 811 | 480 289 3325
23 | mux 40 3830 0.11 0.01 0.07| 27 8 851 25 3192 01 002 0.14| 68 34 4229
24 | mux_encode 125 14071 043 0.07 059 - - - 34 3618 0.13 0.08 058 - - -
25 | saturating_add 159  176.6 131 027 225| 122 58 97.36| 127 1409 1.08 036 2.86| 100 42 7847
26 | selector 38 564 044 0.1 038 42 17 4256 31 4974 039 0.08 024 29 15 3724
27 | sub_16bit 234 2232 131 027 348| 220 93 9656 302 263.1 139 030 3.94| 181 92  98.95
28 | sub_32bit 542 5022 294 031 849| 444 189 191.5| 518 4522 251 036 9.22| 370 188 200
29 | sub_4bit 37 3671 0.17 0.10 035| 52 21 22.34| 31 29.79 0.15 0.13 040| 43 20 22.08
30 | sub_8bit 135 1226 065 0.15 095| 108 45 4788 129 1119 057 026 147| 90 46 48.15
31 | add_sub 496 4442 257 031 420 277 155 1644| 387 3569 2.13 037 487| 323 179 202.7
32 | addr_calcu 405 383.1 3.07 0.62 856| 340 197 2229| 229 2144 1.8 0.60 847 | 192 101 1247
33 | mult_if 17 1596 0.052 0.05 0.05| 39 12109 15 1490 0.046 0.09 0.09| 34 12 1091
34 | mux_large 296 27345 084 011 0.85| 210 65 90.17| 164 176.62 0.74 0.13 1.01| 270 112 1205
35 | register 5003 9780 79.63 0.40 245 | 8096 4500 9735 || 4481 9583 77.87 0.37 244 | 8140 4507 9668
36 | ticket_machine 53 7448 0.77 022 1.79| 73 29 47.88 48 5134 045 0.17 083 73 29 47.88

Table 5: The PPA quality comparison of RTL-OPT-provided suboptimal vs. optimized designs
(compile, 0.1ns). Using both commercial DC and open-source Yosys for the RTL design synthesis
and PPA evaluations. Trade-offs are common in these PPA metrics and smaller values indicate better
performance.

D PPA AND FUNCTIONAL CORRECTNESS OF LLM-OPTIMIZED DESIGNS

Due to space limitations, the detailed experimental results are moved to the appendix. They report
PPA quality and functional correctness for all designs optimized by GPT-40-mini, Gemini-2.5,
Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.

Table 6 and 7 summarize the evaluated PPA performance of each LLM-optimized design and
compare it with the provided suboptimal RTL and optimized RTL (golden reference). Green cells
indicate that the PPA is better than the suboptimal RTL, and bold green cells indicate that the PPA
surpasses the optimized RTL (golden reference). The table also shows the functional correctness after
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verification (Func column), with ¢ and X representing the verification results. XX indicates that
the corresponding design contains syntax errors and fails to pass DC synthesis.

D.1 DC COMPILE_ULTRA, 1 NS)

Table 6 shows the PPA quality (DC compile_ultra, Ins) and functional correctness for all LLM-
optimized designs. The specific analysis of these results is presented in Section 4.

Category GPT-40-mini ‘ Gemini-2.5
Cells Area Power (mW) WNS (ns) TNS (ns) Check | Cells Area Power (mW) WNS (ns) TNS (ns) Check
adder - - - - - X - - - - - XX
adder _select 450 439.17 264.34 0.00 0.00 v 450 439.17 264.34 0.00 0.00 4
alu_64bit 1683 1645.21 887.78 0.00 0.00 v 1683 1645.21 887.78 0.00 0.00 4
alu_8bit 146 179.55 79.58 0.00 0.00 4 146 179.55 79.58 0.00 0.00 (4
calculation - - - - - X 888  1044.32 788.67 0.61 5.66 4
comparator 59 52.67 26.44 0.00 0.00 v 54 47.61 24.64 0.00 0.00 4
comparator_16bit - - - - - X 102 88.31 44.57 0.00 0.00 (4
comparator_2bit 10 9.58 4.51 0.00 0.00 v 10 8.78 3.82 0.00 0.00 v
comparator_4bit 21 18.35 9.25 0.00 0.00 v 21 18.35 9.25 0.00 0.00 4
comparator_8bit - - - - - b 4 48 43.36 18.56 0.00 0.00 (4
decoder_6bit 86 71.29 19.76 0.00 0.00 v 87 71.55 19.54 0.00 0.00 v
decoder _8bit 312 246.85 50.28 0.00 0.00 4 308  246.85 49.75 0.00 0.00 v
divider_16bit 3445 3377.67 5030 -3.32 -73.2 v 2461 237272 3750 722 156. v
divider_32bit 14400  14295.90 23800 10.19 468. v N/A N/A N/A N/A N/A v
divider_4bit N/A N/A N/A N/A N/A v - - - - - X
divider_8bit 571 575.36 681.84 0.50 4.57 v 266 264.14 188.61 0.51 3.16 v
fsm 89 128.74 92.56 0.00 0.00 v - - - - - XX
fsm_encode 287 416.82 337.09 0.00 0.00 v 151 302.18 273.32 0.00 0.00 v
gray - - - - - b 4 51 69.69 66.78 0.00 0.00 (4
mac - - - - - X - - - - - X
mul 315 378.52 421.67 0.05 0.13 v 315 378.52 421.67 0.05 0.13 v
mul_sub 233 337.02 256.53 0.00 0.00 4 234 341.81 255.66 0.00 0.00 (4
mux N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A v
mux_encode - - - - - X N/A N/A N/A N/A N/A X
saturating_add - - - - - b 4 18 67.56 65.62 0.00 0.00 v
selector 21 44.69 39.6 0.00 0.00 v 18 39.37 36.06 0.00 0.00 v
sub_16bit 132 136.19 77.92 0.00 0.00 v 132 136.19 71.92 0.00 0.00 (4
sub_32bit 278 252.17 146.9 0.00 0.00 v 278 252.17 146.9 0.00 0.00 (4
sub_4bit N/A N/A N/A N/A N/A v - - - - - X
sub_8bit 27 41.50 23.91 0.00 0.00 4 - - - - - x
add_sub 124 130.34 101.74 0.00 0.00 v 124 130.34 101.74 0.00 0.00 v
addr_calcu 78 131.40 96.07 0.03 0.06 v - - - - - X
mult_if 10 10.91 3.53 0.00 0.00 v 10 10.91 3.53 0.00 0.00 v
mux_large 81 96.82 40.84 0.00 0.00 v - - - - - X
register 4625 9226.74 7540 0.00 0.00 v - - - - - XX
ticket_machine - - - - - X - - - - - X
Category Deepseek V3 Deepseek R1
Cells Area Power (mW) WNS (ns) TNS (ns) Check | Cells Area Power (mW) WNS (ns) TNS (ns) Check
adder 433 51152 368.04 0.00 0.00 v 433 51152 368.04 0.00 0.00 4
adder_select 450 439.17 264.34 0.00 0.00 v 306 350.06 225.74 0.00 0.00 v
alu_64bit 1683 1645.21 887.78 0.00 0.00 v 1697 165824 896.08 0.00 0.00 v
alu_8bit 146 181.94 79.22 0.00 0.00 v 146 179.55 79.58 0.00 0.00 X
calculation 888  1044.32 788.67 0.61 5.66 v 755 859.98 617.26 0.60 4.83 4
comparator - - - - - X 46 42.29 20.87 0.00 0.00 4
comparator_16bit - - - - - X 70 65.70 30 0.00 0.00 v
comparator_2bit 23 21.28 10.86 0.00 0.00 v 9 745 3.75 0.00 0.00 (4
comparator_4bit 46 44.42 22.8 0.00 0.00 v - - - - - XX
comparator_8bit 48 4229 20.42 0.00 0.00 v - - - - - XX
decoder_6bit 87 71.55 19.54 0.00 0.00 v 96 76.61 22.56 0.00 0.00 X
decoder_8bit 312 246.85 50.28 0.00 0.00 v 329 267.33 54.11 0.00 0.00 v
divider_16bit - - - - - x 3445 3377.67 5030 332 732 v
divider_32bit - - - - - X - - - - - xx
divider_4bit - - - - - x 39 40.43 21.58 0.00 0.00 X
divider_8bit - - - - - X - - - - - xx
fsm 76 94.70 50.09 0.00 0.00 v 73 92.04 51.44 0.00 0.00 4
fsm_encode 138 294.20 305.96 0.00 0.00 v 151 302.18 273.32 0.00 0.00 v
gray 51 69.69 66.78 0.00 0.00 v 52 70.22 65.86 0.00 0.00 v
mac - - - - - X 352 632.02 787.88 0.00 0.00 X
mul - - - - - X 315 378.52 421.67 0.05 0.13 v
mul_sub 241 344.20 261.28 0.00 0.00 v 234 336.22 259.8 0.00 0.00 v
mux N/A N/A N/A N/A N/A v N/A N/A N/A N/A N/A (4
mux_encode - - - - - X 61 73.42 35.39 0.00 0.00 (4
saturating_add 18 67.56 65.77 0.00 0.00 v - - - - - xx
selector 18 39.37 36.06 0.00 0.00 v 18 39.37 36.06 0.00 0.00 v
sub_16bit 122 126.88 71.97 0.00 0.00 v 122 126.88 71.97 0.00 0.00 v
sub_32bit 278 252.17 146.9 0.00 0.00 v - - - - - X
sub_4bit 14 19.42 10.61 0.00 0.00 v 14 19.42 10.61 0.00 0.00 4
sub_8bit 27 41.50 23.91 0.00 0.00 v 27 41.50 2391 0.00 0.00 (4
add_sub 124 130.34 101.74 0.00 0.00 v - - - - - X
addr_calcu 82 125.55 90.27 0.01 0.01 v - - - - - X
mult_if - - - - - X - - - - - X
mux_large 89 100.02 50.57 0.00 0.00 v 89 100.02 50.57 0.00 0.00 v
register - - - - - X 3731 8745.55 7710 0.00 0.00 v
ticket_machine - - - - - X - - - - - X

Table 6: PPA quality (DC compile_ultra, 1ns) and functional correctness for all designs optimized by
GPT-40-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.
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D.2 PPA AND FUNCTIONAL CORRECTNESS OF LLM-OPTIMIZED DESIGNS (DC COMPILE, 1
NS)

Table 7 summarizes the PPA results and functional correctness checks for designs optimized by GPT-
4o-mini, Gemini-2.5, Deepseek V3, and Deepseek R1 on the RTL-OPT benchmark. All evaluations
are conducted under DC compile with 0.1ns clock period. This supplements Table 6, which uses a
more relaxed timing setup.

Category GPT-40-mini Gemini-2.5
Cells Area Power (mW) WNS (ns) TNS (ns) Check | Cells Area  Power (mW) WNS (ns) TNS (ns) Check
adder - - - - - X - - - - - XX
adder_select 813 812.1 4.85 -0.39 -10.8 v 813 812.10 4.85 -0.39 -10.8 v
alu_64bit 3248 3028 16.95 -0.51 -29.7 v 3248 3028 16.95 -0.51 -29.7 v
alu_8bit 402 370 1.89 -0.26 -1.91 v 402 370.01 1.89 -0.26 -1.91 v
calculation - - - - - X 670  997.50 6.59 -3.22 -42.6 v
comparator 96 83.26 0.38 -0.22 -0.22 v 100 88.05 0.38 -0.22 -0.22 v
comparator_16bit - - - - - X 296 24445 1.06 -0.18 -0.52 v
comparator_2bit 14 14.36 0.06 -0.02 -0.05 v 16 13.03 0.05 -0.01 -0.02 v
comparator_4bit 33 29.26 0.18 -0.05 -0.15 v 29 23.14 0.09 -0.10 -0.22 v
comparator _8bit - - - - - X 79 83.52 0.37 -0.11 -0.31 v
decoder_6bit 128 109.9 0.31 -0.03 -1.74 v 204 208.01 0.37 -0.18 -9.22 v
decoder _8bit 781 855.9 1.28 -0.27 -58.8 v 354 2974 0.66 -0.11 -24.8 v
divider_16bit 5037 5045 66.25 -3.88 -89.4 v 3926 3895 51.75 -6.85 -155 v
divider_32bit 16638 16211 171.11 -13.23 -846.3 v 14529 13375 154.6 -13.24 -629 v
divider_4bit 85 84.85 0.48 -0.32 -1.29 v - - - - - X
divider_8bit 744 731.8 6.94 -1.21 -13.5 v 531 513.38 3.58 -1.15 -11.0 v
fsm 149 192.8 1.06 -0.28 -4.40 v - - - - - XX
fsm_encode 389 504.9 3.69 -0.41 -12.5 v 357 44821 3.16 -0.40 -7.95 v
gray - - - - - X 100 109 0.92 -0.28 -2.04 v
mac - - - - - x - - - - - x
mul 311 453 3.64 -1.26 -9.69 v 311 453 3.64 -1.26 -9.69 v
mul_sub 634 623.2 4.17 -0.75 -8.08 v 282 381.71 2.67 -1.11 -11.6 v
mux 32 25.54 0.08 0.0 0.0 v 32 25.54 0.08 0.0 0.0 v
mux_encode - - - - - X - - - - - X
saturating_add - - - - - XX 127 140.98 1.08 -0.36 -2.86 v
selector 30 53.73 0.48 -0.18 -0.49 v 38 56.39 0.44 -0.11 -0.38 v
sub_16bit ‘ 266 230.6 1.22 -0.27 -3.40 v 266 230.62 1.22 -0.27 -3.40 v
sub_32bit 551 476.4 2.57 -0.35 -9.13 v 551 476.41 2.57 -0.35 -9.13 v
sub_d4bit ‘ 50 49.48 0.23 -0.16 -0.59 v - - - - - X
sub_8bit 121 102.7 0.51 -0.23 -1.30 v - - - - - X
add_sub 496 44422 2.57 -0.31 -4.20 v 496  444.22 2.57 -0.31 -4.20 v
addr_calcu 405 388.09 3.07 -0.62 -8.56 v - - - - - X
mult_if 17 15.96 0.05 -0.05 -0.05 v 17 15.96 0.05 -0.05 -0.05 v
mux_large 296 273.45 0.84 -0.11 -0.85 v - - - - - X
register 4615  9480.24 78.21 -0.36 -251 v - - - - - xXx
ticket machine | - - - - - X - - - - - x
Category Deepseek V3 Deepseek R1
Cells Area  Power (mW) WNS (ns) TNS (ns) Check | Cells Area Power (mW) WNS (ns) TNS (ns) Check
adder 530 618.7 4.51 -0.43 -12.5 v 597  669.8 4.78 -0.41 -11.8 (4
adder _select 813 812.1 4.85 -0.39 -10.8 v 514 5227 3.49 -0.42 -12.0 v
alu_64bit 3248 3028 16.95 -0.51 -29.7 v 3248 3028 16.95 -0.51 -29.7 (4
alu_8bit 402 370 1.89 -0.26 -1.91 v 402 370 1.89 -0.26 -1.91 x
calculation 670 9975 6.59 -3.22 -42.6 4 550  808.1 5.73 3.29 44.8 v
comparator - - - - - X 110 96.29 0.4 -0.19 -0.19 v
comparator_16bit - - - - - X 122 107.2 0.48 -0.17 -0.48 v
comparator_2bit 10 9.84 0.04 -0.03 -0.03 v 13 1117 0.04 -0.03 -0.04 (4
comparator_4bit 25 25.80 0.11 -0.06 -0.15 v - - - - - XX
comparator_8bit 73 71.29 0.31 -0.12 -0.33 v - - - - - XX
decoder_6bit 204 208.01 0.37 -0.18 -9.22 v - - - - - x
decoder _8bit 781 856 1.28 -0.27 -58.8 4 392 3301 0.72 -0.10 2231 v
divider_16bit - - - - - X 5037 5045 66.25 -3.88 -89.4 v
divider_32bit - - - - - X - - - - - XX
divider_4bit - - - - - X - - - - - X
divider_8bit - - - - - X - - - - - XX
fsm 100 1295 0.6 -0.22 -2.62 v 106 129.8 0.59 -0.24 -2.70 v
fsm_encode 372 466.8 3.46 -0.38 -9.36 v 357 4482 3.16 -0.40 -1.95 v
gray 100 109.1 0.92 -0.28 -2.04 v 100 109.1 0.92 -0.28 -2.04 v
mac - - - - - X - - - - - X
mul - - - - - X 270 4264 343 -1.25 -9.62 v
mul_sub 657 654.4 4.44 -0.76 -8.08 v 675 654.1 4.46 -0.70 -7.97 v
mux 32 25.54 0.08 0.0 0.0 v 32 25.54 0.82 0.0 0.0 v
mux_encode - - - - - X 113 121.6 0.46 -0.09 -0.69 (4
saturating_add 127 140.9 1.08 -0.36 -2.86 v - - - - - X
selector 38 56.39 0.44 -0.11 -0.38 4 30 4974 0.41 -0.18 -0.49 v
sub_16bit 266  230.6 1.22 -0.27 -3.40 4 266  230.6 1.22 -0.27 -3.40 v
sub_32bit 551 4764 2.57 -0.35 -9.13 4 - - - - - x
sub_4bit 37 37.24 0.18 -0.10 -0.30 v 37 3724 0.12 -0.10 -0.30 4
sub_8bit 121 1027 0.51 -0.23 -1.30 v 121 1027 0.51 -0.23 -1.30 v
add_sub 496 4442 2.57 -0.31 -4.20 v - - - - - X
addr_calcu 229 21440 1.8 -0.60 -8.47 v - - - - - X
mult_if - - - - - X - - - - - X
mux_large 173 1745 0.62 -0.12 -0.95 v 173 1745 0.62 -0.12 -0.95 v
register - - - - - X 5003 9780 79.63 -0.40 -245 v
ticket_machine - - - - - X - - - - - X

Table 7: PPA quality (DC compile, 0.1ns) and functional correctness for all designs optimized by
GPT-40-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.
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E DETAILED LLM EVALUATION RESULTS AND STATISTICAL ANALYSIS

We re-run each LLM evaluation 5 times on RTL-OPT (36 designs), using the same prompt template
to ensure consistency. For each run, we recorded the: (1) Syntax correctness; (2) Func correctness; (3)
PPA better than suboptimal; (4) PPA better than optimized. The experimental results for 6 different
LLMs (including two open-source LL.Ms) are summarized below.

We summarize statistical results and conduct paired t-tests on two representative LLM pairs: Gmini
vs. DS-R1 and LLaMA vs. Qwen. We will include the complete mean * ¢ and paired t-tests results
in this appendix when updating the camera-ready version.

E.1 SYNTAX CORRECTNESS (N OUT OF 36)

Run | GPT-4o | Gmini-2.5 | DS V3 | DSRI | QWEN | Llama

1 36 35 36 32 34 15
2 35 31 34 32 34 17
3 36 30 36 31 31 15
4 35 34 36 30 30 14
5 35 35 36 32 34 15
Mean | 354 33 356 | 314 | 326 | 152
o 1.0 ‘ 15 ‘ 13 ‘ 0.8 ‘ 0.9 ‘ 1.1

E.2 FUNCTIONAL CORRECTNESS (N OUT OF 36)

Run | GPT-40 | Gmini-2.5 | DS V3 | DSRI | QWEN | Llama

1 29 26 27 24 23 13
2 28 25 21 26 20 18
3 25 24 26 25 23 17
4 27 25 25 24 21 12
5 28 28 25 26 19 17
Mean 274 25.6 24.8 25 21.2 154
o 1.5 1.5 23 1.8 1.6 2.7

E.3 PPA >SUBOPTIMAL (N OUT OF 36)

Run | GPT-40 | Gmini-2.5 | DS V3 | DSR1 | QWEN | Llama

1 7 11 10 15 4 2
2 8 9 6 16 4 5
3 7 10 8 16 6 4
4 7 9 10 13 4 1
5 9 10 8 14 4 2
Mean | 7.6 9.8 84 | 148 | 44 2.8
o 0.9 ‘ 0.8 ‘ 1.5 ‘ 13 ‘ 11 ‘ 1.6

E.4 PPA >OPTIMIZED (N OUT OF 36)

Run | GPT-4o | Gmini-2.5 | DS V3 | DSRI | QWEN | Llama

1 2 2 5 5 1 0
2 3 2 4 6 0 1
3 1 4 5 5 2 1
4 3 2 5 5 2 0
5 2 2 3 4 1 1
Mean 2.2 2.4 4.4 5 1.2 0.6
o 0.8 ‘ 0.9 ‘ 1.0 ‘ 0.7 ‘ 0.8 ‘ 0.5
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E.5 COMPARISON: GPT-40 vs. DS-R1

Metric | Mean Diff | t-value | p-value | Significance |  Effect Size
Syntax correctness +3.8 +6.53 | 0.0028 Significant 2.92 (Very Large)
Func correctness +1.6 +1.67 0.169 | Not Significant 0.75 (Medium)
PPA >suboptimal -71.2 -5.81 0.004 Significant 2.60 (Very Large)
PPA >optimized -2.8 -5.83 0.004 Significant 2.61 (Very Large)

E.6 COMPARISON: LLAMA VSs. QWEN

Metric | Mean Diff | t-value | p-value | Significance | Effect Size
Syntax correctness -18.2 -48.40 | <0.0001 Significant -21.7 (Extreme)
Func correctness -5.8 -5.39 0.006 Significant -2.41 (Very Large)
PPA >suboptimal +1.6 +2.53 0.065 Marginal 0.72 (Medium)
PPA >optimized +0.6 +1.34 0.251 Not Significant 0.30 (Small)

F QUALITATIVE ANALYSIS OF LLM FUNCTIONALITY FAILURES

As summarized in Section 4, LLMs face a fundamental trade-off: conservative approaches avoid
errors but miss optimization opportunities, while aggressive optimizations risk introducing functional

bugs despite correct syntax.

To systematically analyze failure modes, we conducted a detailed study of 40 randomly sampled
cases where LLM-generated optimizations passed syntax checks but introduced functional errors.

Our findings reveal three LLM failure categories:

* Control Logic Inconsistencies (19/40, 47.5%)

Example (comparator): LLM failed to maintain bit-priority ordering (MSB-first
comparison) and incorrectly implemented the ‘It’ condition using wrong Boolean

logic.

* Overly Aggressive Pipelining (12/40, 30%)

Example (£ sm): LLM reduced pipeline stages from 4 to 3 cycles, violating the original

design’s latency requirements and causing incorrect output timing.

* Improper Resource Sharing (9/40, 22.5%)

Example (mux): Register sharing ignored temporal dependencies, leading to stale data

being read in subsequent cycles.

G REPRODUCTION OF EXISTING BENCHMARK WITH MULTIPLE SYNTHESIS

FLOWS

G.1 REPRODUCTION OF (YAO ET AL., 2024) DESIGNS WITH MULTIPLE SYNTHESIS FLOWS

Table 8 provides reproduction results for 14 designs originally optimized by (Yao et al., 2024). Both
the baseline (original) and expert-optimized versions are evaluated using our unified flow, across
three synthesis settings: Yosys, DC compile (0.1ns), and DC compile ultra (1ns). This ensures fair
comparisons across benchmarks and demonstrates the effectiveness of our pipeline in capturing prior

work.
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Desien List Yosys DC (compile, 0.1ns) DC (compile_ultra, 1ns)

g Cells  Area | Cells Area Power WNS TNS | Cells Area Power WNS TNS
casel 18 57.99 - - - - - - - - - -
casel _opt 12 30.86 - - - - - - - - - -
case2 37 44.95 - - - - - - - - - -
case2_opt 37 44.95 - - - - - - - - - -
case3 107 1293 | 289 2551 225mW -041 -3.23 26 98.95 74.85uW 0.0 0.0
case3_opt 102 127.7 | 289 2551 225mW -041 -323 26 98.95 74.85uW 0.0 0.0
case4 304 347.1 | 576 5509 3.75mW  -0.51 -3.72 | 204 267.06 169.5uW 0.0 0.0
case4_opt 262 310.7 | 553 5299 3.80mW -050 -3.65 233 29127 165.6uW 0.0 0.0
case5 10933 12457 | 6546 11104 173.7mW -4.15 -413.6 | 6047 9668  19.99 mW -1 -56.61
case5_opt 10504 11980 | 6044 10469 168.9mW -422 -418.1 | 5962 9600 1998 mW -1.02 -56.7
case6 37 59.32 53 60.38 484.8uW -022 -0.68 28 4176  4293uW 0.0 0.0
case6_opt 21 28.99 23 2899 284.1uW -0.15 -0.28 11 19.95 23.42uW 0.0 0.0

case7 H 24 38.84‘ 22 3431 418.7uW  -0.15 -0.46‘ 16 28.99  40.65uW 0.0 0.0

case7 _opt 11 19.95 11 18.35 2158uW -0.12 -0.25 8 1596  21.90 uW 0.0 0.0
case8 1471 1720 | 1353 2242 1390 mW -0.92 -582 | 703 831.2 634.7uW 0.0 0.0
case8_opt 661 758.1 | 1771 1962 1487mW -095 -57.0 | 711 8347 647.3uW 0.0 0.0
case9 1716 2010 | 1336 2420 1331mW -1.05 -657 | 729 8863 6364uW 0.0 0.0
case9_opt 776 926.5 | 1757 1984 1650 mW -1.00 -70.6 | 973 9651 982.7uW 0.0 0.0
casel0 24 43.89 25 31.92  103.8uW -0.02 -0.14 25 3192 10.38uW 0.0 0.0
casel0_opt 24 8.51 40 3830 114.8uW  -0.01 -0.07 25 21.81 8.38 uW 0.0 0.0
casell 2 1.86 9 532 16.07uW 0.0 0.0 1 1.06 2525aW 0.0 0.0
casell_opt 1 1.86 6 2.93 7.28 uW 0.0 0.0 1 1.06 252.5aW 0.0 0.0
casel2 1 1.86 3 0.0 374.8nW 0.0 0.0 3 0.0 37.48nW 0.0 0.0
casel2_opt 1 1.06 1 1.06 2.59 uW 0.0 0.0 1 1.06 258.8nW 0.0 0.0
casel3 3 1.86 3 5.59 16.93uW  -0.03 -0.03 5 5.05 1.77 uW 0.0 0.0
casel3_opt 2 1.86 2 372  1241uW  -0.03 -0.03 5 5.05 1.77 uW 0.0 0.0
casel4 4 1.86 6 798  28.15uW -0.10 -0.10 5 5.05 1.77 uW 0.0 0.0
casel4_opt 3 1.86 6 6.65 2320uW -0.08 -0.08 5 5.05 1.77 uW 0.0 0.0

Table 8: Reproduction PPA results of 14 designs in (Yao et al., 2024) (both original and expert-
optimized versions) using Yosys and DC synthesis flows.

G.2 REPRODUCTION OF (YAO ET AL., 2024) GPT-OPTIMIZED DESIGNS

Table 9 and Table 10 provide the PPA reproduction of designs optimized by GPT-based methods
and (Yao et al., 2024) own optimization strategies, respectively. These results help evaluate the
generalizability of our flow when applied to designs outside the RTL-OPT benchmark and provide
fair comparisons across different optimization methodologies. The same three synthesis settings are
used (Yosys, DC compile 0.1ns, and DC compile ultra 1ns), under our unified evaluation flow.

Desien List Yosys DC (compile, 0.1ns) DC (compile_ultra, 1ns)

g Cells  Area | Cells Area Power WNS TNS | Cells Area Power WNS TNS
casel GPT 18 57.99 18 57.99 584.6uW -024 -0.24 18 5799 61.13uW  0.00  0.00
case2_GPT 37 44.95 - - - - - - - - R
case3_GPT 107 129.3 | 289 2551 225mW -041 -3.23 26 9895 74.85uW  0.00 0.00

case4_GPT 290 3266 | 637 602.8 4.04mW -047 -333 205 2655 159.5uW  0.00 0.00
case5S_GPT 10627 12090 | 5987 10483 1659 mW -4.18 -408 | 5962 9600 1998 mW -1.02 -56.72
case6_GPT 37 59.32 50 59.85  492.7uW  -025 -0.73 25 3857 40.19uW  0.00 0.00
case7_GPT 26 44.69 30 43.62 522.1uW  -0.15 -0.55 17 3431 47.46uW  0.00 0.00
case8_GPT 844 9523 | 2129 1915 15.04mW -0.67 -44.17 | 704 932.1 722.7uW  0.00 0.00
case9_GPT 844 9523 | 2129 1915 15.04 mW -0.67 -44.17 | 704 932.1 722.7uW  0.00 0.00
casel0_GPT 24 21.38 32 2554 81.96uW 0.0 0.0 25 21.81 8382uW  0.00 0.00
casell_GPT 3 1.862 3 5.59 16,86 uW  -0.03  -0.03 4 3724 1.339uW  0.00 0.00
casel2_GPT 1 1.064 1 1.06 2.59 uW 0.0 0.0 1 1.064 258.8nW  0.00 0.00
casel3_GPT 3 5.586 6 559  2058uW 0.0 0.0 5 5.054 1.767uW  0.00 0.00
casel4_GPT 2 3.724 5 4.26 16.58uW 0.0 0.0 4 3724  1.248uW  0.00 0.00

Table 9: Reproduction PPA results of GPT-4 optimized designs in (Yao et al., 2024) using Yosys and
DC synthesis flows.
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Design List Yosys DC (compile, 0.1ns) DC (compile_ultra, 1ns)
8 Cells Area | Cells Area Power WNS TNS Cells Area Power WNS TNS
casel_ours 14 39.9 13 4096 431.3uW  -0.21 -0.28 14 39.90 44.67 uW 0.0 0.0

case2_ours 37 44.95 76 69.43  383.9uW  -0.17 -1.07 9 3245 15.31 uW 0.0 0.0
case3_ours 107 1293 | 289 255.1 2251mW -041 -3.23 26 98.95 74.85 uW 0.0 0.0

case4_ours 168 1788 | 396 3719 2212mW -044  -346 153 16332 110.87uW 0.0 0.0
case5_ours 10540 12016 | 6329 10642 170.7 mW -4.14 -409.54 | 5962 9600.21 1998 mW -1.02 -56.72
case6_ours 20 28.73 23 28.99 284.1uW  -0.15 -0.28 11 19.95 23.42 uW 0.0 0.0

case7_ours 23 35.64 23 3458 385.6uW -0.14  -047 14 27.40 35.59 uW 0.0 0.0
case8_ours 908 1063 | 2136 1916 1475mW -0.69 -44.12 | 709  939.78 746.77uW 0.0 0.0
case9_ours 956 1173 | 2595 2354 19.54mW -095 -61.83 847 134197 1.075mW 0.0 0.0
casel0_ours -

1.862 4788 15.60uW 0.0 0.0 1.330 370.2 nW 0.0 0.0

casell_ours 1 7 2

casel2_ours 1 1.062 1 1.064 2.588uW 0.0 0.0 1 1.064 258.8 nW 0.0 0.0
casel3_ours - - - - - - - - - - -
casel4_ours 4 1.862 6 798  28.15uW  -0.1 -0.1 5 5.054 1.767 uW 0.0 0.0

Table 10: Reproduction PPA results of RTLRewriter optimized their own designs using Yosys and
DC synthesis flows.

H LLM PROMPT GENERATION PROCESS

The complete implementation of the LLM prompt generation and evaluation pipeline for the RTL-
OPT benchmark is available in the anonymous repository. The core prompt generation process
is implemented in Results/LLM Test_result/llm gen.py, (available in the anonymous
repository).
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