
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RTL-OPT: RETHINKING THE GENERATION OF PPA-
OPTIMIZED RTL CODE AND A NEW BENCHMARK

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid advancements of AI rely on the support of integrated circuits (ICs).
Recently, large language models (LLMs) have been increasingly explored in the
generation of IC designs, mostly in Register-Transfer Level (RTL) code format,
such as Verilog or VHDL. However, most existing benchmarks focus primarily on
the accuracy of RTL code generation, rather than the optimization of IC design
quality in terms of power, performance, and area (PPA). This work critically exam-
ines RTL optimization benchmarks and highlights the challenges of assessing RTL
code quality. Our findings show that optimization assessments are complex and
existing works yield misleading results, as the perceived superiority of RTL code
often depends on the downstream synthesis tool and setup. To address these issues,
we introduce RTL-OPT, a benchmark comprising 36 digital IC designs handcrafted
by our human designers. These designs incorporate diverse optimization patterns
derived from proven industry-standard RTL practices. Such optimization oppor-
tunities are not utilized by automated downstream logic synthesis, making them
meaningful RTL code improvements. In addition, RTL-OPT covers a wide range
of RTL implementation types, including combinational logic, pipelined datapath,
finite-state machines, and memory interfaces, making it sufficiently representative.
For each design task, RTL-OPT provides a pair of RTL codes: a carefully designed
suboptimal (i.e., to-be-optimized) RTL code and an optimized RTL code as the
golden reference. LLMs are expected to take the suboptimal RTL code as input,
then generate a more optimized RTL code that leads to better ultimate PPA qual-
ity. The golden references, as a comparison baseline, reflect optimizations at the
human-expert level. RTL-OPT further provides an integrated evaluation framework
to automatically verify functional correctness and quantify PPA improvements of
the LLM-optimized RTL code. This framework enables a standardized assessment
of generative AI’s ability in hardware design optimization. RTL-OPT is available
at https://anonymous.4open.science/r/RTL-OPT-20C5.

1 INTRODUCTION

The rapid advancements of AI rely on the support of integrated circuits (ICs), which are increasingly
complex and difficult to optimize. In recent years, the adoption of Large Language Models (LLMs) in
the agile design of ICs has emerged as a promising research direction (Fang et al., 2025). Especially,
many recent works (Liu et al., 2024b; Ho et al., 2024; Liu et al., 2023a; Pei et al., 2024; Fu et al.,
2023; Chang et al., 2023; Thakur et al., 2023; Cui et al., 2024; Liu et al., 2024a; 2025; Zhao et al.,
2024) develop customized LLMs to directly generate IC designs in the format of Register-Transfer
Level (RTL) code, such as Verilog or VHDL.

Benchmarking RTL Code Generation. The RTL design is the starting point of digital IC design
implementation and requires significant human efforts and expertise. LLM-assisted RTL code
generation techniques (Liu et al., 2024b; Ho et al., 2024; Liu et al., 2025; Zhao et al., 2024) aim to
relieve engineers from the tedious RTL coding process. To enable a fair comparison among different
LLMs’ capabilities in RTL generation, high-quality benchmarks become necessary. Representative
benchmarks on RTL code generation include VerilogEval (Liu et al., 2023b) and RTLLM (Lu et al.,
2024), VerilogEval v2 (Pinckney et al., 2024), RTLLM 2.0 (Liu et al., 2024c), CVDP (Pinckney et al.,
2025), and others (DeLorenzo et al., 2024; Allam & Shalan, 2024).

1

https://anonymous.4open.science/r/RTL-OPT-20C5


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Limitation: Lack of Optimization. However, the aforementioned RTL generation benchmarks
primarily focus on the correctness of RTL code generation, without explicitly evaluating the opti-
mization of IC design’s ultimate qualities in terms of power, performance, and area (PPA). Such PPA
quality is a unique property of hardware RTL code, in comparison with software code. In hardware
design, the RTL code will be synthesized into ultimate circuit implementations using synthesis tools.
Similar to a compiler in software, synthesis tools will apply extensive logic optimizations when
converting RTL code into implementations. Thus, PPA results depend on both the RTL code quality
and the downstream synthesis process. As we will point out in this paper, this tight interplay makes
benchmarking RTL optimization particularly challenging, sometimes even misleading.

Benchmarking RTL Code Optimization. Most recently, some LLM works (Yao et al., 2024; Wang
et al., 2025; Xu et al., 2025) start to target generating more optimized RTL code, which is expected
to yield better ultimate chip quality in PPA. These works are all evaluated on the only relevant
benchmark (Yao et al., 2024), which provides sub-optimal RTL codes for LLMs to improve. However,
our study indicates that this benchmark (Yao et al., 2024) falls short in several aspects: 1) Unrealistic
designs: many sub-optimal RTL codes in this benchmark are overly contrived and fail to capture
real inefficiencies in practice; 2) Oversimplified synthesis setup: reliance on weak synthesis tools
such as Yosys (Wolf et al., 2013) leads to results that are sensitive to superficial RTL code changes
and poorly aligned with industrial-grade flows; 3) Insufficient evaluation: its assessments focus
only on area-related metrics, while neglecting power and timing. Such evaluation metric neglects the
ubiquitous trade-offs in a typical IC design process.

In this work, we first inspect the existing works on RTL optimization and rethink a key question: how
to benchmark the optimization of RTL code appropriately? We carefully inspect existing works
and downstream synthesis flows. This study reveals that evaluating RTL optimization is non-trivial and
may easily lead to misleading conclusions. Specifically, whether one RTL code is superior (i.e., more
optimized) to the other strongly depends on the synthesis tool and setup. Many “optimized” RTL codes
indicated by the prior work (Yao et al., 2024) turn out to be the same or even worse than their “sub-
optimal” RTL counterparts when different, typically more advanced, synthesis options are adopted.

Based on our aforementioned observations, we propose a new benchmark, RTL-OPT, specifically
designed to systematically evaluate LLMs’ ability in RTL design optimization. RTL-OPT consists of
36 handcrafted RTL optimization tasks targeting PPA qualities. A key distinguishing feature is that it
provides a collection of diverse and realistic optimization patterns, such as bit-width optimization,
precomputation and LUT conversion, operator strength reduction, control simplification, resource
sharing, and state encoding optimization, all derived from proven industry practices. These patterns
capture transformations that truly matter for RTL optimization and remain effective even under
advanced synthesis. It sets RTL-OPT apart from prior works that often lacked real optimization
impact. As illustrated in Figure 1, each task in RTL-OPT provides a pair of RTL codes: a deliberately
designed sub-optimal (to-be-optimized) version and an optimized version serving as the golden
reference. Any benchmarked LLM takes the sub-optimal code as input and attempts to generate a
more optimized RTL code while preserving design functionality. Specifically, RTL-OPT provides:
1) a set of 36 handcrafted tasks, ensuring comprehensive and representative coverage of real-world
design challenges; 2) an integrated evaluation framework (Figure 1), which automatically verifies
functional correctness and compares the ultimate PPA of LLM-optimized designs against the designer-
optimized golden reference.

Constructing a high-quality benchmark for RTL optimization is inherently challenging due to the
severe scarcity of open-source circuit designs, which are valuable IPs for semiconductor companies.
Most available designs are either too trivial or unsuitable for systematic evaluation. Previous
work (Yao et al., 2024) relies on contrived designs, failing to address these issues. We handcrafted 36
representative designs that cover diverse implementation types and embody established optimization
patterns. Although not at very large scale, RTL-OPT offers sufficient breadth and realism to serve as
a valuable resource for advancing LLM-based RTL optimization.

The remainder of this paper is organized as follows: Section 2 provides a systematic analysis of RTL
code optimization, including the impact of synthesis, evaluation of existing and new benchmarks,
and case studies. Based on the analysis, Section 3 introduces RTL-OPT, a new benchmark on RTL
code optimization that addresses our observed challenges. In Section 4, we present the experimental
results of different LLMs on RTL-OPT.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

 Baseline vs.

Failed

RTL-OPT 

Benchmark

Suboptimal

Designs

Optimized

Designs

Ref.v LLMs

LLM-Optimized

Designs

llm.v

LLM Agents
1

Synthesis Tool

Functional 

Equivalence Checker

2

PPA Reports

Compared 
with Ref.v

Failed

Passed

RTL-OPT Framework
Evaluation Flow

Optimized Designs

PPA Reports

Suboptimal Designs

PPA Reports

Compare

Netlists

Generated Netlists

Optimization

Prompt

.v

Figure 1: The workflow of RTL-OPT for automated benchmarking RTL optimization.

2 RETHINKING THE RTL CODE OPTIMIZATION

In this section, we introduce our comprehensive study to inspect both existing benchmark Yao et al.
(2024) on RTL code optimization and our own RTL-OPT benchmark under multiple synthesis setups.
This study reflects the limitation of overly contrived designs in existing benchmark.

2.1 IMPACT OF SYNTHESIS PROCESS ON RTL EVALUATION

According to our study, we point out that the evaluation of RTL optimization (i.e., judging which
RTL code leads to better PPA) is not a straightforward task. One primary reason is that the
ultimate design quality also depends on the synthesis process, which converts the RTL code
to the circuit implementation. The synthesis process not only affects the ultimate PPA values, but
also the comparison result between a pair of RTL codes. Specifically, differences in synthesis tools,
optimization modes, and timing constraints can all significantly affect whether and how structural
differences in RTL code are reflected in the final implementation.

Effect of Synthesis Tool. Synthesis tools can be broadly categorized into commercial and open-
source options, with Synopsys Design Compiler (DC) (des, 2021) and Yosys (Wolf et al., 2013)
being the most widely used representatives in each category. DC is an industry-standard tool offering
advanced optimization capabilities and robust handling of complex RTL constructs. In contrast,
Yosys is an open-source weaker alternative valued in academic research. These tools implement
varying optimization strategies and heuristics, so the same RTL may produce significantly different
outcomes depending on the chosen tool, directly influencing how design quality is perceived.

Effect of Compile Mode Selection. Commercial tools like Synopsys DC support multiple compile
modes. For instance, compile ultra applies more aggressive and advanced logic optimizations
compared to the basic compile mode. Its aggressive optimization by flattening or restructuring
logic tends to obscure fine-grained RTL differences.

Effect of Clock Period Constraints. The target clock period also shapes synthesis behavior. Tight
constraints often lead to aggressive timing-driven optimizations, while relaxed constraints may reduce
differentiation between RTL variants. Choosing a realistic and consistent timing target is important
for fair and interpretable evaluation of RTL code.

2.2 INSPECTION OF EXISTING BENCHMARK

The existing benchmark (Yao et al., 2024) provides multiple pairs of sub-optimal and human-
optimized RTL designs, along with additional RTL code generated by their LLM-based optimization
experiments. Surprisingly, our study reveals that: 1) Both the human-optimized RTL designs and
the LLM-optimized RTL designs from (Yao et al., 2024) often fail to outperform their corresponding
sub-optimal counterparts after synthesis. In many cases, they are essentially the same or even worse,
particularly when advanced synthesis options are applied. 2) We observe clearly different impacts
on ultimate PPAs between different synthesis tools: commercial tool DC with strong optimization
capabilities tend to eliminate the differences between sub-optimal and optimized RTL, while open-
source Yosys often exaggerates them. Together, these results suggest that the existing benchmark
does not reliably reflect true improvements in RTL code.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Benchmark Total Yosys DC (compile, clk = 1ns) DC (compile ultra, clk = 1ns)
same worse better same trade-off worse better same trade-off worse better

Benchmark of (Yao et al., 2024) 43 13 6 24 13 7 7 16 21 1 8 13
Paper of (Yao et al., 2024) 12 1 0 11 1 4 2 5 4 1 3 4

SymRTLO (Wang et al., 2025) 13 2 1 10 2 2 1 8 4 1 3 5
RTL-OPT 36 3 0 33 0 6 0 30 0 1 0 35

Table 1: Comparison between each pair of sub-optimal and human-optimized designs from (Yao et al.,
2024) and RTL-OPT (this work). RTL-OPT shows consistent improvements (35 out of 36 better
under compile ultra), matching the expectation that expert-optimized RTL should outperform
sub-optimal versions. In contrast, prior benchmarks often show little or no improvement under
stronger synthesis settings, indicating limited reliability for benchmarking RTL optimization.

Benchmark Total DC (compile, clk = 0.1ns) DC (compile ultra, clk = 0.1ns) DC (compile ultra, clk = 1ns)
same trade-off worse better same trade-off worse better same trade-off worse better

Benchmark (Yao et al., 2024) 43 13 9 6 15 22 3 7 11 21 1 8 13
Paper (Yao et al., 2024) 12 1 4 1 6 4 1 1 6 4 1 3 4

SymRTLO (Wang et al., 2025) 13 2 2 2 7 4 0 3 6 4 1 3 5
RTL-OPT 36 0 13 0 23 0 12 0 24 0 1 0 35

Table 2: Extension of Table 1, evaluating different synthesis setup: clock period as 0.1ns and 1ns.

The evaluation results of existing benchmarks are shown in Table 1, 2 and 3. We carefully inspect
and evaluate all 43 pairs of RTL code1 from the whole benchmark released in (Yao et al., 2024).
Specifically, Table 1 compares each pair of sub-optimal and human-optimized designs, both from the
original benchmark. We evaluate whether the human-optimized reference is actually better, worse,
or the same compared with its sub-optimal RTL counterpart after synthesis2. In addition, there may
exist a “trade-off” result in the PPA comparison, indicating improvement in one PPA metric while
degradation in the other. As for Yosys, similar to prior works, we only compare the number of
cells. In Table 1, only 13 human-optimized RTL (Yao et al., 2024) out of 43 cases are better than
their sub-optimal counterparts with compile ultra. This number rises to 16 with compile
and further to 24 with Yosys. Many human-optimized RTLs are no better than sub-optimal RTL,
particularly with advanced synthesis options. It validates that commercial tools can eliminate many
contrived inefficiencies, while open-source tools often retain them, highlighting a clear discrepancy.

Table 2 extends our evaluation in Table 1 under different clock constraints, setting a tighter tim-
ing target of clock period = 0.1ns. When using the same synthesis modes (i.e., compile or
compile ultra), using a tighter timing constraint leads to slightly more cases with PPA trade-offs
and even less actually better RTL code.

Table 3 further compares the sub-optimal design with LLM-optimized designs directly released by
prior work (Yao et al., 2024). In Table 3, for both GPT-4.0 and model proposed by (Yao et al., 2024),
only 3 LLM-optimized RTL out of 12 cases are actually better than their sub-optimal counterparts
with compile ultra. The number rises to 5 out of 12 with compile. In summary, many LLM-

LLM Solution Total Yosys DC (compile, clk = 1ns) DC (compile ultra, clk = 1ns)
same worse better same trade-off worse better same trade-off worse better

GPT-4.0 13 4 3 6 3 3 2 5 4 4 2 3
Model (Yao et al., 2024) 12 3 1 8 3 4 0 5 3 6 0 3

Table 3: Comparison between each pair of sub-optimal and LLM-optimized designs released from (Yao
et al., 2024). Only 14 LLM-optimized designs used in the paper (Yao et al., 2024) are released.

1As shown in Table 1, paper of (Yao et al., 2024) and SymRTLO (Wang et al., 2025) are different subsets of
the Benchmark (Yao et al., 2024). We only successfully synthesized 43 cases out of the 54 pairs of RTL code
from the benchmark (Yao et al., 2024). For the others, we synthesized 12 out of 14 pairs and 13 out of 16 pairs,
respectively. These synthesis failures in the original benchmarks are mainly caused by Verilog syntax errors.

2The details of the synthesis process, tools, and PPA metrics used for evaluating are provided in Section 3.3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Overly contrived suboptimal and optimized RTL code in existing benchmark (Yao et al.,
2024). Both codes have the same PPA after synthesis with the commercial tool DC.

optimized RTLs turn out to be no better than sub-optimal RTL, especially with advanced synthesis
options. It indicates that under strict synthesis flows, the benchmark shows limited effectiveness. We
provide detailed data in Appendix G.2.

2.3 SAME INSPECTION OF OUR BENCHMARK

In Table 1 and 2, we also evaluate our proposed benchmark, RTL-OPT, using the same setup.
According to Table 1, 35 out of 36 human-optimized RTL codes in RTL-OPT are better when
compile ultra is adopted, and 33 out of 36 for Yosys. In Table 2, with a tight timing constraint, 23
cases remain better while 13 result in PPA trade-offs, with no cases achieving the same ultimate PPA.
Compared to the previous benchmark (Yao et al., 2024), RTL-OPT shows significant improvements
in evaluating RTL designs.

This clear validation of RTL-OPT’s benchmark quality arises from its design philosophy: it provides
genuinely sub-optimal RTL implementations with meaningful room for improvement, rather than
contrived inefficiencies that synthesis tools can remove. The detailed comparisons between the
suboptimal and optimized RTL designs in RTL-OPT are in Appendix C.

2.4 CASE STUDY OF EXISTING BENCHMARK

To further understand how such contrived RTL designs are constructed, we take a closer look
at (Yao et al., 2024) benchmark. Example 1 & 2 in Figure 2 highlight a common flaw in (Yao
et al., 2024) designs: its RTL pairs are based on unrealistic transformations that do not address
true optimization challenges in hardware design. These contrived sub-optimal examples exhibit
unnecessary inefficiencies, such as redundant computations and superfluous arithmetic operations,
which are unlikely to occur in practice. Synthesis tools can easily optimize these contrived patterns,
leading to evaluations that may overstate the effectiveness of LLMs in improving RTL quality.

In Example 1 (Yao et al., 2024), the optimized version (example1 opt) implements the logic
directly by computing s1 = a + b and then deriving the output as s2 = s1 * 2. In contrast,
the suboptimal version (example1) introduces contrived and unnecessary steps: it first computes
s1 = a + b, then redundantly adds 0 and multiplies by 1 to produce intermediate wires t1 and
t2, before summing them into s2. Such constructions are unnatural and would rarely appear in
practical RTL coding, making the benchmark example unrealistic.

In Example 2 (Yao et al., 2024), the optimized version (example2 opt) simply applies constant
folding to collapse the entire computation into one step: z = c * 67. By contrast, the suboptimal
version (example2) artificially expands this trivial logic into a sequence of assignments, first setting
a = 2, then computing b = (a * 32) + 3, and finally multiplying b by input c to obtain z.
These contrived constructions of sub-optimal cases result in an unrealistic benchmark.

In summary, these examples highlight that sub-optimal cases in (Yao et al., 2024) rely on contrived
inefficiencies rather than realistic IC design challenges. Such cases are unrepresentative of practical
RTL design and can be trivially optimized by synthesis tools, limiting the benchmark’s ability to
assess LLMs on RTL optimization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3 RTL-OPT BENCHMARK

In this section, we present RTL-OPT, a benchmark designed for evaluating RTL code optimization
with LLMs. RTL-OPT provides realistic suboptimal and optimized RTL pairs handcrafted by experts,
ensuring genuine inefficiencies and meaningful golden references. Covering diverse design types and
evaluated with both commercial and open-source tools, it offers a robust and practical resource for
advancing RTL optimization research.

3.1 BENCHMARK DESCRIPTION

The RTL-OPT consists of 36 RTL design optimization tasks. Each task provides a pair of RTL
codes: a suboptimal version and a corresponding designer-optimized version, implementing the
same functionality. All designs are manually written by hardware engineers to reflect realistic
coding styles and optimization practices, with the optimized RTL serving as the golden reference
for human-optimized PPA quality. The suboptimal RTL is not arbitrarily degraded; it represents a
valid, functionally correct design that omits specific optimization opportunities. This setup creates
meaningful optimization gaps and practical scenarios encountered in the semiconductor industry.

The 36 provided design tasks cover a variety of design types, including arithmetic units, control logic,
finite state machines (FSMs), and pipelined datapaths. These designs vary in size and complexity,
with logic area ranging from 14 to 20K cells and synthesized area ranging from 15 to 19K µm2. This
diversity ensures that the benchmark is representative of practical RTL design tasks.

RTL-OPT is fully open-sourced and provides the following artifacts to support benchmarking the
RTL optimization capabilities of LLMs: (1) 36 carefully designed RTL code pairs; (2) Corresponding
synthesized netlists from commercial synthesis tools; (3) Detailed PPA reports from electronic design
automation (EDA) tools for both suboptimal and optimized designs; (4) A complete toolchain flow,
including scripts for synthesis, simulation, and functional verification, which can also verify the
correctness of the rewritten code by LLMs.

Table 4 shows the evaluated PPA of all 36 pairs of sub-optimal and optimized designs from RTL-OPT,
using both DC and Yosys. Due to its size, this table is now in Appendix C.1. Detailed explanation of
our evaluation methodology, synthesis process, and the PPA metrics are provided in Section 3.3.

3.2 RTL-OPT ANALYSIS: OPTIMIZATION PATTERNS

The optimization patterns, which provide optimization opportunities, are derived from proven
industry-standard RTL coding practices that have a direct impact on the quality of logic synthesis.
These patterns represent how specific RTL-level modifications ultimately affect downstream synthesis
outcomes. The key optimization pattern types in the RTL-OPT benchmark are summarized as follows:

• Bit-width Optimization: Reducing register and wire widths where full precision is not necessary,
optimizing both area and power consumption.

• Precomputation & LUT Conversion: Replacing runtime arithmetic operations with precom-
puted lookup tables to eliminate complex logic units.

• Operator Strength Reduction: Substituting high-cost operators with simpler equivalents
through bit manipulation.

• Control Simplification: Flattening nested finite state machines (FSMs) or reducing unnecessary
states, streamlining control logic, and improving both area and timing.

• Resource Sharing: Consolidating duplicate logic across different cycles to maximize hardware
resource efficiency.

• State Encoding Optimization: Selecting optimal state encoding schemes (One-hot, Gray,
Binary) based on state count to balance power, area, and timing.

By integrating these optimization patterns across a diverse range of RTL designs, RTL-OPT generates
its realistic yet challenging benchmark for LLM-assisted RTL code optimization: enhancing PPA
metrics of optimized code while maintaining functional correctness.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Comparison of suboptimal and optimized RTL code examples in RTL-OPT.

To illustrate these optimization patterns, we provide two code examples from the RTL-OPT in Figure 3.
These examples compare suboptimal and optimized RTL implementations within a specific pattern
category, accompanied by discussions on the structural changes and the quantitative improvements
observed in downstream PPA metrics.

Example 1: This example in Figure 3 (left) demonstrates the optimization pattern of precomputation
& LUT conversion, where real-time arithmetic operations are replaced with precomputed values.
In the suboptimal design, the output is dynamically calculated using the sel input, requiring
multiplication at each clock cycle. The optimized design replaces this operation with a case
statement that directly assigns precomputed values based on the selection. This optimization results
in a 14% reduction in area and a 12% decrease in power consumption by eliminating arithmetic
operations and reducing signal toggling.

Example 2: This example in Figure 3 (right) demonstrates bit-width optimization, where the
physical implementation of an arithmetic operation is restructured to minimize resource usage. In
the suboptimal design, a 16-bit multiplication is followed by an addition of the least significant bit,
resulting in a larger bit-width for intermediate signals. The optimized design reduces the bit-width by
truncating the multiplication result to an 8-bit value directly and simplifying the addition operation.
This restructuring achieves a 7% reduction in area and a 6% decrease in power consumption by
reducing the width of intermediate signals and operations.

3.3 EVALUATION METHODOLOGY AND TOOLS

RTL-OPT provides a complete evaluation flow to assess LLMs’ optimization capabilities by mea-
suring the PPA of synthesized RTL code. This is achieved through a combination of synthesis,
functionality verification, and PPA evaluation, all performed using industry-standard EDA tools.

3.3.1 SYNTHESIS PROCESS

The logic synthesis process converts the initial RTL code into gate-level netlists, based on which the
PPA metrics can be quantitatively evaluated. In this work, we mainly employ DC (des, 2021) for the
synthesis of the RTL-OPT benchmark, given its established effectiveness in industrial design flows.
DC demonstrates superior capabilities in identifying inefficient RTL constructs and optimizing them
into more efficient circuit implementations, thereby minimizing sensitivity to the initial code quality.

When benchmark quality is insufficient, DC tends to synthesize both the suboptimal and optimized
RTL codes into functionally equivalent gate-level netlists, resulting in identical PPA outcomes.
This behavior reflects the limited optimization opportunities offered by low-quality benchmarks.
Conversely, open-source synthesis tools such as Yosys (Wolf et al., 2013), which provide less
aggressive optimization, may still produce differing PPA results for such code pairs, potentially
overstating the effectiveness of certain code transformations. For completeness, we also provide
synthesis results obtained using Yosys to support broader comparative analyses.

The synthesis process also involves the use of a technology library, or cell library, which is a collection
of pre-characterized standard cells such as logic gates, flip-flops, and other fundamental components.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

These cells are designed to meet specific PPA constraints. While we use Nangate45 (Si2, 2018) in
our evaluation, other libraries could also be used, though they typically require a license. The choice
of library significantly impacts the RTL optimization process, as it defines the available cells and
their performance characteristics, ultimately influencing the design’s efficiency.

3.3.2 FUNCTIONAL EQUIVALANCE VERIFICATION

After successful synthesis, the RTL code is ensured to be free of syntax errors, as it can be correctly
transformed into a gate-level netlist. Following synthesis, functional verification is essential to
ensure that the optimization steps have not introduced errors. This verification is primarily con-
ducted using Synopsys Formality (fom, 2023), which performs functional equivalence checking by
rigorously comparing the LLM-optimized RTL against the golden reference to ensure behavioral
consistency. However, for optimizations involving timing adjustments, such as pipelining, additional
dynamic verification is required. This is performed using Synopsys VCS (vcs, 2021), which employs
comprehensive testbenches to validate the design’s behavior under various operating conditions.

This combined approach ensures both logical equivalence and operational reliability of the optimized
design. A design is considered functionally valid only if it passes both formal equivalence checking
and dynamic verification for timing-critical optimizations.

3.3.3 PPA METRICS AND TRADE-OFFS IN OPTIMIZATION

To evaluate the quality of the synthesized designs, we analyze them from three aspects: Power,
Performance, and Area:

Power: The total power consumption of the synthesized design, characterized by the fundamental
equation: Pdynamic = αCV 2f , where α is the switching activity, C is the capacitance, V is the supply
voltage, and f is the clock frequency.

Performance: Evaluated through two key timing metrics: Worst Negative Slack (WNS), which
represents the largest single timing violation in the design, and Total Negative Slack (TNS), the sum
of all timing violations across failing paths.

Area: Characterized by two complementary measures: Silicon area (in µm2), which indicates the
physical implementation footprint, and Cell count, the total number of standard cells in the design,
providing a basic area estimation that does not account for cell types, placement, or routing overhead.

Trade-offs widely exist in these PPA metrics. For instance, optimizing for power may increase area,
while minimizing area could compromise power efficiency. A key challenge in RTL optimization is
managing these competing goals to achieve an optimal balance based on design constraints.

4 EXPERIMENTS

This section presents the experiments conducted to evaluate the optimization capabilities of different
LLMs on the RTL-OPT benchmark. We compare the performance of several LLMs, including
GPT-4o-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, in optimizing RTL code. The focus of
the experiments is on assessing the optimization in terms of PPA metrics, as well as the functional
correctness of the optimized designs. The results show that the two Deepseek models demonstrate
stronger optimization ability than the other evaluated LLMs. Detailed tables summarizing PPA
performance and functional correctness (Table 6) are included in Appendix D.1.

4.1 SUMMARY OF BENCHMARKING RESULTS

Figure 4 shows a summary of benchmarking results of the four evaluated LLMs. It reveals the syntax
correctness, functionality correctness, and post-optimization PPA quality performance of the various
LLMs. The overall results highlight that: ❶ There is still significant room for LLM to improve in RTL
optimization compared to human designers. ❷ Our benchmark is designed to be realistic, providing a
set of challenging tasks that reflect the complexities encountered in real-world hardware design.

Notably, the overall performance of all LLMs is not very good, reflecting the challenges in our
RTL-OPT benchmark. Many LLMs have over 10 optimized cases failed to maintain functionality cor-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

rectness. Deepseek R1 can successfully optimize about 15 sub-optimal designs, and can outperform
our human designers’ solution for around 5 designs.

When comparing these 4 LLMs, Deepseek R1 generally outperforms the other models in terms
of PPA. However, Deepseek R1 also exhibits a higher rate of functional discrepancies compared
to the other models. In contrast, models such as GPT-4o-mini and Gemini-2.5, while maintaining
high syntax correctness, achieved fewer improvements in PPA. It may imply that their optimization
strategies are either more conservative or lack effective optimizations.

4.2 DETAILED BENCHMARKING RESULTS

Figure 4: Comparison of optimization performance
across different LLMs.

One observation from the evaluation re-
sults in Figure 4 is the trade-off between
optimization and functionality. While
Deepseek R1 showed the most significant
improvements in PPA, it was also the most
prone to introducing functional errors. In
contrast, GPT-4o-mini and Gemini-2.5 ex-
hibited a more balanced approach, opti-
mizing PPA while maintaining syntax cor-
rectness. This indicates that Deepseek
R1’s aggressive optimization, though ef-
fective, tends to increase error, especially
in designs with complex timing or con-
trol logic. Conversely, GPT-4o-mini and
Gemini-2.5, while less aggressive, main-
tained functional correctness and achieved
meaningful PPA improvements. We provide more detailed LLM evaluation results in Appendix E.

For the experimental results, we summarize the performance of four LLMs across syntax correctness,
functional correctness, and PPA improvement. 1) GPT-4o-mini achieves good correctness, with
a syntax correctness rate of 97.2% and functional correctness of 75%. Though only 19.4% of
its generated code achieving better PPA than the suboptimal version. 2) Similarly, Gemini-2.5
exhibited the same trend as GPT-4o-mini: relatively high functional correctness but low performance
in PPA optimization. 3) For Deepseek V3, it gets the highest syntax correctness of 100%, and the
same functional correctness of 69.4% with Gemini-2.5. It achieved a balanced performance across
all metrics. 4)In contrast, Deepseek R1, with a syntax correctness rate of 86.1% and functional
correctness of 61.1%, produced 41.7% of the code with better PPA than the suboptimal version, and
13.9% better than designer solutions, despite its lower functional correctness.

Beyond quantitative results, we also randomly inspected 40 cases where LLM-optimized designs
passed syntax checks but failed functional verification. We observed three main failure modes:
control logic inconsistencies (e.g., incorrect Boolean conditions in comparators), overly aggressive
pipelining (e.g., violating latency requirements in FSMs), and improper resource sharing (e.g.,
stale data due to register reuse). These results highlight that LLM errors often stem from subtle
design semantics rather than surface-level syntax issues. We provide the details in Appendix F.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we introduce RTL-OPT, a benchmark for hardware RTL code optimization aimed
at enhancing IC design quality. RTL-OPT includes 36 handcrafted digital IC designs, each with
suboptimal and optimized RTL code, enabling the assessment of LLM-generated RTL. An integrated
evaluation framework verifies functional correctness and quantifies PPA improvements, providing
a standardized method for evaluating generative AI models in hardware design. RTL-OPT has
significant potential to influence AI-assisted IC design by offering valuable insights and fostering
advancements. As for the limitations of RTL-OPT, it relies entirely on expert-written, manually
optimized RTL code, limiting the dataset’s scale. Expanding to a larger dataset requires advances in
automated optimization or synthetic generation of high-quality RTL, which remains challenging.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Synoposys Design Compiler®. https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/design-compiler-nxt.html, 2021.

VCS® functional verification solution. https://www.synopsys.com/verification/simulation/vcs.html,
2021.

Formality® Equivalence Checking. https://www.synopsys.com/implementation-and-signoff/signoff/
formality-equivalence-checking.html, 2023.

Ahmed Allam and Mohamed Shalan. Rtl-repo: A benchmark for evaluating llms on large-scale rtl
design projects. arXiv preprint arXiv:2405.17378, 2024.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li,
and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. arXiv preprint
arXiv:2305.14019, 2023.

Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu, Qipeng Guo, Demin
Song, Dahua Lin, Xingcheng Zhang, et al. Origen: Enhancing rtl code generation with code-to-code
augmentation and self-reflection. arXiv preprint arXiv:2407.16237, 2024.

Matthew DeLorenzo, Vasudev Gohil, and Jeyavijayan Rajendran. Creativeval: Evaluating creativity
of llm-based hardware code generation. arXiv preprint arXiv:2404.08806, 2024.

Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie. A survey of
circuit foundation model: Foundation ai models for vlsi circuit design and eda. arXiv preprint
arXiv:2504.03711, 2025.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. GPT4AIGChip: Towards next-generation AI accelerator design automation
via large language models. In International Conference on Computer-Aided Design (ICCAD),
2023.

Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. Verilogcoder: Autonomous verilog coding
agents with graph-based planning and abstract syntax tree (ast)-based waveform tracing tool. arXiv
preprint arXiv:2408.08927, 2024.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. ChipNeMo:
Domain-Adapted LLMs for Chip Design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. arXiv preprint arXiv:2309.07544, 2023b.

Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. Craftrtl: High-quality synthetic data
generation for verilog code models with correct-by-construction non-textual representations and
targeted code repair. arXiv preprint arXiv:2409.12993, 2024a.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Fully
open-source and efficient llm-assisted rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024b.

Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. Openllm-rtl: Open dataset and
benchmark for llm-aided design rtl generation. In International Conference on Computer-Aided
Design (ICCAD), 2024c.

Yi Liu, Changran Xu, Yunhao Zhou, Zeju Li, and Qiang Xu. Deeprtl: Bridging verilog understanding
and generation with a unified representation model. arXiv preprint arXiv:2502.15832, 2025.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. RTLLM: An open-source benchmark for design
rtl generation with large language model. In Asia and South Pacific Design Automation Conference
(ASP-DAC), 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and Brucek Khailany. Revis-
iting verilogeval: Newer llms, in-context learning, and specification-to-rtl tasks. arXiv preprint
arXiv:2408.11053, 2024.

Nathaniel Pinckney, Chenhui Deng, Chia-Tung Ho, Yun-Da Tsai, Mingjie Liu, Wenfei Zhou, Brucek
Khailany, and Haoxing Ren. Comprehensive verilog design problems: A next-generation bench-
mark dataset for evaluating large language models and agents on rtl design and verification. arXiv
preprint arXiv:2506.14074, 2025.

Si2. NanGate 45nm open cell library, 2018.

Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, and Ramesh
Karri. Autochip: Automating hdl generation using llm feedback. arXiv preprint arXiv:2311.04887,
2023.

Yiting Wang, Wanghao Ye, Ping Guo, Yexiao He, Ziyao Wang, Bowei Tian, Shwai He, Guoheng
Sun, Zheyu Shen, Sihan Chen, et al. Symrtlo: Enhancing rtl code optimization with llms and
neuron-inspired symbolic reasoning. arXiv preprint arXiv:2504.10369, 2025.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Austrian
Workshop on Microelectronics (Austrochip), 2013.

Zhihao Xu, Bixin Li, and Lulu Wang. Rethinking llm-based rtl code optimization via timing logic
metamorphosis, 2025. URL https://arxiv.org/abs/2507.16808.

Xufeng Yao, Yiwen Wang, Xing Li, Yingzhao Lian, Ran Chen, Lei Chen, Mingxuan Yuan, Hong
Xu, and Bei Yu. Rtlrewriter: Methodologies for large models aided rtl code optimization. arXiv
preprint arXiv:2409.11414, 2024.

Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong
Pan, Zhenxing Zhang, Rui Zhang, et al. Codev: Empowering llms for verilog generation through
multi-level summarization. arXiv preprint arXiv:2407.10424, 2024.

11

https://arxiv.org/abs/2507.16808


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality of
the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated or
polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines and
does not contribute to plagiarism or scientific misconduct.

B ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, including RTL-OPT, were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C FULL PPA QUALITY COMPARISON OF RTL-OPT

Due to space limitations, we move the full PPA evaluation results to the appendix. This section
provides the complete comparison between the suboptimal and optimized RTL designs in RTL-OPT.
Both Synopsys Design Compiler and Yosys are used for synthesis and evaluation. As PPA inherently
involves trade-offs, smaller values indicate better design quality. These results complement the main
text by presenting full numerical evidence under different synthesis constraints.

C.1 RESULTS UNDER DC COMPILE ULTRA, 1 NS

Table 4 reports the full PPA metrics of all 36 RTL-OPT designs when synthesized using Synopsys DC
with a relaxed 1ns clock period on the “compile ultra” setting. Both suboptimal and optimized RTL
codes are evaluated, enabling direct comparison. This setting highlights how expert-optimized RTL
consistently achieves superior power, performance, and area outcomes compared to the suboptimal
versions, demonstrating the reliability of RTL-OPT for benchmarking.

Design List
Provided Suboptimal Designs Provided Optimized Designs

DC Results(compile ultra, 1ns) Yosys Results DC Results(compile ultra, 1ns) Yosys Results
Cells Area Power WNS TNS Cells Area Cells Area Power WNS TNS Cells Area

1 adder 397 510.4 370.4 0.0 0.0 323 456.2 372 477.2 351.3 0.0 0.0 266 413.9
2 adder select 450 439.2 264.3 0.0 0.0 363 428.3 306 225.7 0.23 0.0 0.0 241 318.4
3 alu 64bit 1683 1645 887.8 0.0 0.0 1411 1554 1680 1557 677.1 0.0 0.0 1094 1307
4 alu 8bit 146 180 75.58 0.0 0.0 152 163.1 115 138 68.43 0.0 0.0 130 158.8
5 calculation 888 1044 0.78 -0.61 -5.66 774 900.4 755 860 0.62 -0.60 -4.83 567 661.8
6 comparator 63 56.39 0.03 0.0 0.0 40 40.70 45 41.76 0.02 0.0 0.0 40 40.70
7 comparator 16bit 102 88.31 44.57 0.0 0.0 64 62.24 116 105.3 38.83 0.0 0.0 104 105.1
8 comparator 2bit 10 9.58 4.51 0.0 0.0 11 9.31 10 8.78 3.82 0.0 0.0 10 9.31
9 comparator 4bit 23 21.28 10.86 0.0 0.0 22 21.55 21 18.35 9.25 0.0 0.0 18 17.29
10 comparator 8bit 46 44.42 22.8 0.0 0.0 45 48.15 47 41.23 20.29 0.0 0.0 33 30.86
11 decoder 6bit 97 76.61 22.74 0.0 0.0 93 99.22 87 71.55 19.54 0.0 0.0 91 78.20
12 decoder 8bit 317 257.2 50.67 0.0 0.0 390 410.7 312 246.8 50.28 0.0 0.0 300 250
13 divider 16bit 3471 3428 5088 -3.43 -75.6 1264 1412 1565 1560 2091 -3.83 -72.1 662 760.2
14 divider 32bit 14400 14296 23796 -10.69 -486 - - 6724 6703.20 11335 -10.19 -468 2419 2941
15 divider 4bit 39 40.43 21.58 0.0 0.0 52 59.05 33 33.78 15.9 0.0 0.0 39 40.96
16 divider 8bit 571 575.4 681.8 -0.50 -4.57 302 339.7 322 330.37 275.2 -0.39 -2.43 171 189.7
17 fsm 89 128.7 92.56 0.0 0.0 85 138.6 73 92.04 51.44 0.0 0.0 70 97.09
18 fsm encode 242 387.0 320.6 0.0 0.0 179 352.7 155 305.63 276.97 0.0 0.0 170 319.2
19 gray 48 67.30 85.32 0.0 0.0 63 85.92 51 69.69 66.78 0.0 0.0 67 88.84
20 mac 410 717.9 868.2 0.0 0.0 532 831.5 319 548.23 735.25 0.0 0.0 529 707
21 mul 315 378.5 421.7 -0.05 -0.13 399 485.5 315 378.5 421.7 -0.05 -0.13 397 476.4
22 mul sub 234 338.09 262.35 0.0 0.0 299 352.9 233 337.02 256.53 0.0 0.0 289 332.5
23 mux 25 31.92 10.38 0.0 0.0 8 8.51 25 21.81 8.38 0.0 0.0 34 42.29
24 mux encode 125 140.7 0.43 0.0 0.0 - - 34 36.18 0.13 0.0 0.0 - -
25 saturating add 24 69.43 67.53 0.0 0.0 58 97.36 18 67.56 65.77 0.0 0.0 42 78.47
26 selector 18 39.37 36.06 0.0 0.0 17 42.56 18 38.04 35.32 0.0 0.0 15 37.24
27 sub 16bit 132 136.2 77.92 0.0 0.0 93 96.56 124 131.9 75.46 0.0 0.0 92 98.95
28 sub 32bit 270 251.9 148.9 0.0 0.0 189 191.5 265 244.7 142.52 0.0 0.0 188 200
29 sub 4bit 12 18.35 9.29 0.0 0.0 21 22.34 10 17.82 9.29 0.0 0.0 20 22.08
30 sub 8bit 25 41.76 24.96 0.0 0.0 45 47.88 20 36.97 19.26 0.0 0.0 46 48.15
31 add sub 164 183.27 118.4 0.0 0.0 155 164.4 124 130.34 101.7 0.0 0.0 179 202.7
32 addr calcu 78 131.40 96.07 -0.03 -0.06 197 222.9 82 125.55 90.27 -0.01 -0.01 101 124.7
33 mult if 10 10.91 3.53 0.0 0.0 12 10.9 11 10.11 4.13 0.0 0.0 12 10.91
34 mux large 81 97.62 48.27 0.0 0.0 65 90.17 81 96.82 40.84 0.0 0.0 112 120.5
35 register 3731 8745 7712 0.0 0.0 4500 9735 3720 8744 7708 0.0 0.0 4507 9668
36 ticket machine 36 58.52 60.31 0.0 0.0 29 47.88 22 32.45 36.03 0 0 29 47.88

Table 4: The PPA quality comparison of RTL-OPT-provided suboptimal vs. optimized de-
signs(compile ultra, 1ns). Using both commercial DC and open-source Yosys for the RTL design
synthesis and PPA evaluations. Trade-offs are common in these PPA metrics and smaller values
indicate better performance.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.2 RESULTS UNDER DC COMPILE, 0.1 NS

Table 5 presents the full PPA metrics for the same 36 designs under a more aggressive 0.1ns clock
period constraint. Compared to the 1ns setting, these results illustrate sharper trade-offs among PPA
metrics, where aggressive timing optimization can sometimes increase power or area. Nevertheless,
the optimized RTL consistently outperforms the suboptimal RTL, reaffirming that RTL-OPT reflects
realistic and meaningful optimization challenges.

Design List
Provided Suboptimal Designs Provided Optimized Designs

DC Results (compile, 0.1ns) Yosys Results DC Results (compile, 0.1ns) Yosys Results
Cells Area Power WNS TNS Wires Cells Area Cells Area Power WNS TNS Wires Cells Area

1 adder 626 688.4 5.1 0.57 16.0 501 323 456.2 531 639.7 4.26 0.46 13.2 440 266 413.9
2 adder select 813 812.1 4.85 0.39 10.8 724 363 428.3 514 522.6 3.49 0.42 12.0 490 241 318.4
3 alu 64bit 3248 3028 16.95 0.51 29.7 2358 1411 1554 1706 1748.9 8.58 0.74 42.7 1791 1094 1307
4 alu 8bit 402 370 1.89 0.26 1.91 257 152 163.1 244 245.8 1.15 0.40 2.92 229 130 158.8
5 calculation 670 997.5 6.59 3.22 42.6 1210 774 900.4 534 761.8 5.25 3.24 44.3 927 567 661.8
6 comparator 109 98.15 0.43 0.19 0.19 111 40 40.70 90 80.60 0.34 0.21 0.21 108 40 40.70
7 comparator 16bit 296 244.4 1.06 0.18 0.52 141 64 62.24 151 169.2 0.75 0.19 0.52 357 104 105.1
8 comparator 2bit 14 14.36 0.06 0.02 0.05 40 11 9.31 16 13.03 0.05 0.01 0.02 28 10 9.31
9 comparator 4bit 25 25.80 0.11 0.06 0.15 83 22 21.55 29 23.14 0.09 0.10 0.22 45 18 17.29

10 comparator 8bit 73 71.29 0.31 0.12 0.33 170 45 48.15 81 67.30 0.28 0.12 0.34 77 33 30.86
11 decoder 6bit 204 208 0.37 0.18 9.22 106 93 99.22 132 106.7 0.32 0.04 2.53 195 91 78.20
12 decoder 8bit 781 855.9 1.28 0.27 58.8 407 390 410.7 435 373.2 0.83 0.09 20.8 617 300 250
13 divider 16bit 5037 5045 66.3 3.88 89.4 2385 1264 1412 2543 2426 26.71 4.10 90.4 2116 662 760.2
14 divider 32bit 21348 19849 275.51 12.26 586 - - - 16434 16053 164 13.68 875 8341 2419 2941
15 divider 4bit 85 84.85 0.48 0.32 1.29 112 52 59.05 64 56.13 0.23 0.17 0.59 133 39 40.96
16 divider 8bit 744 731.8 6.94 1.21 13.5 539 302 339.7 557 535.5 3.67 1.10 10.8 527 171 189.7
17 fsm 149 192.9 1.06 0.28 4.40 209 85 138.6 106 129.8 0.59 0.24 2.70 157 70 97.09
18 fsm encode 353 488.9 3.6 0.41 10.8 380 179 352.7 334 426.7 3.07 0.39 8.11 342 170 319.2
19 gray 100 109.1 0.92 0.28 2.04 142 63 85.92 81 94.70 1.04 0.23 2.34 145 67 88.84
20 mac 563 880.7 8.46 1.23 20.9 737 532 831.5 477 701.4 7.26 1.38 16.2 699 529 707
21 mul 311 453 3.64 1.26 9.69 498 399 485.5 270 426.4 3.43 1.25 9.62 494 397 476.4
22 mul sub 634 623.24 4.17 0.75 8.08 494 299 352.9 614 603.8 4.12 0.71 8.11 480 289 332.5
23 mux 40 38.30 0.11 0.01 0.07 27 8 8.51 25 31.92 0.1 0.02 0.14 68 34 42.29
24 mux encode 125 140.71 0.43 0.07 0.59 - - - 34 36.18 0.13 0.08 0.58 - - -
25 saturating add 159 176.6 1.31 0.27 2.25 122 58 97.36 127 140.9 1.08 0.36 2.86 100 42 78.47
26 selector 38 56.4 0.44 0.11 0.38 42 17 42.56 31 49.74 0.39 0.08 0.24 29 15 37.24
27 sub 16bit 234 223.2 1.31 0.27 3.48 220 93 96.56 302 263.1 1.39 0.30 3.94 181 92 98.95
28 sub 32bit 542 502.2 2.94 0.31 8.49 444 189 191.5 518 452.2 2.51 0.36 9.22 370 188 200
29 sub 4bit 37 36.71 0.17 0.10 0.35 52 21 22.34 31 29.79 0.15 0.13 0.40 43 20 22.08
30 sub 8bit 135 122.6 0.65 0.15 0.95 108 45 47.88 129 111.9 0.57 0.26 1.47 90 46 48.15
31 add sub 496 444.2 2.57 0.31 4.20 277 155 164.4 387 356.9 2.13 0.37 4.87 323 179 202.7
32 addr calcu 405 388.1 3.07 0.62 8.56 340 197 222.9 229 214.4 1.8 0.60 8.47 192 101 124.7
33 mult if 17 15.96 0.052 0.05 0.05 39 12 10.9 15 14.90 0.046 0.09 0.09 34 12 10.91
34 mux large 296 273.45 0.84 0.11 0.85 210 65 90.17 164 176.62 0.74 0.13 1.01 270 112 120.5
35 register 5003 9780 79.63 0.40 245 8096 4500 9735 4481 9583 77.87 0.37 244 8140 4507 9668
36 ticket machine 53 74.48 0.77 0.22 1.79 73 29 47.88 48 51.34 0.45 0.17 0.83 73 29 47.88

Table 5: The PPA quality comparison of RTL-OPT-provided suboptimal vs. optimized designs
(compile, 0.1ns). Using both commercial DC and open-source Yosys for the RTL design synthesis
and PPA evaluations. Trade-offs are common in these PPA metrics and smaller values indicate better
performance.

D PPA AND FUNCTIONAL CORRECTNESS OF LLM-OPTIMIZED DESIGNS

Due to space limitations, the detailed experimental results are moved to the appendix. They report
PPA quality and functional correctness for all designs optimized by GPT-4o-mini, Gemini-2.5,
Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.

Table 6 and 7 summarize the evaluated PPA performance of each LLM-optimized design and
compare it with the provided suboptimal RTL and optimized RTL (golden reference). Green cells
indicate that the PPA is better than the suboptimal RTL, and bold green cells indicate that the PPA
surpasses the optimized RTL (golden reference). The table also shows the functional correctness after

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

verification (Func column), with ✔ and ✘ representing the verification results. ✘✘ indicates that
the corresponding design contains syntax errors and fails to pass DC synthesis.

D.1 DC COMPILE ULTRA, 1 NS)

Table 6 shows the PPA quality (DC compile ultra, 1ns) and functional correctness for all LLM-
optimized designs. The specific analysis of these results is presented in Section 4.

GPT-4o-mini Gemini-2.5Category Cells Area Power (mW) WNS (ns) TNS (ns) Check Cells Area Power (mW) WNS (ns) TNS (ns) Check

adder - - - - - ✘ - - - - - ✘✘
adder select 450 439.17 264.34 0.00 0.00 ✔ 450 439.17 264.34 0.00 0.00 ✔
alu 64bit 1683 1645.21 887.78 0.00 0.00 ✔ 1683 1645.21 887.78 0.00 0.00 ✔
alu 8bit 146 179.55 79.58 0.00 0.00 ✔ 146 179.55 79.58 0.00 0.00 ✔
calculation - - - - - ✘ 888 1044.32 788.67 0.61 5.66 ✔
comparator 59 52.67 26.44 0.00 0.00 ✔ 54 47.61 24.64 0.00 0.00 ✔
comparator 16bit - - - - - ✘ 102 88.31 44.57 0.00 0.00 ✔
comparator 2bit 10 9.58 4.51 0.00 0.00 ✔ 10 8.78 3.82 0.00 0.00 ✔
comparator 4bit 21 18.35 9.25 0.00 0.00 ✔ 21 18.35 9.25 0.00 0.00 ✔
comparator 8bit - - - - - ✘ 48 43.36 18.56 0.00 0.00 ✔
decoder 6bit 86 71.29 19.76 0.00 0.00 ✔ 87 71.55 19.54 0.00 0.00 ✔
decoder 8bit 312 246.85 50.28 0.00 0.00 ✔ 308 246.85 49.75 0.00 0.00 ✔
divider 16bit 3445 3377.67 5030 -3.32 -73.2 ✔ 2461 2372.72 3750 7.22 156. ✔
divider 32bit 14400 14295.90 23800 10.19 468. ✔ N/A N/A N/A N/A N/A ✔
divider 4bit N/A N/A N/A N/A N/A ✔ - - - - - ✘
divider 8bit 571 575.36 681.84 0.50 4.57 ✔ 266 264.14 188.61 0.51 3.16 ✔
fsm 89 128.74 92.56 0.00 0.00 ✔ - - - - - ✘✘
fsm encode 287 416.82 337.09 0.00 0.00 ✔ 151 302.18 273.32 0.00 0.00 ✔
gray - - - - - ✘ 51 69.69 66.78 0.00 0.00 ✔
mac - - - - - ✘ - - - - - ✘
mul 315 378.52 421.67 0.05 0.13 ✔ 315 378.52 421.67 0.05 0.13 ✔
mul sub 233 337.02 256.53 0.00 0.00 ✔ 234 341.81 255.66 0.00 0.00 ✔
mux N/A N/A N/A N/A N/A ✔ N/A N/A N/A N/A N/A ✔
mux encode - - - - - ✘ N/A N/A N/A N/A N/A ✘
saturating add - - - - - ✘ 18 67.56 65.62 0.00 0.00 ✔
selector 21 44.69 39.6 0.00 0.00 ✔ 18 39.37 36.06 0.00 0.00 ✔
sub 16bit 132 136.19 77.92 0.00 0.00 ✔ 132 136.19 77.92 0.00 0.00 ✔
sub 32bit 278 252.17 146.9 0.00 0.00 ✔ 278 252.17 146.9 0.00 0.00 ✔
sub 4bit N/A N/A N/A N/A N/A ✔ - - - - - ✘
sub 8bit 27 41.50 23.91 0.00 0.00 ✔ - - - - - ✘
add sub 124 130.34 101.74 0.00 0.00 ✔ 124 130.34 101.74 0.00 0.00 ✔
addr calcu 78 131.40 96.07 0.03 0.06 ✔ - - - - - ✘
mult if 10 10.91 3.53 0.00 0.00 ✔ 10 10.91 3.53 0.00 0.00 ✔
mux large 81 96.82 40.84 0.00 0.00 ✔ - - - - - ✘
register 4625 9226.74 7540 0.00 0.00 ✔ - - - - - ✘✘
ticket machine - - - - - ✘ - - - - - ✘

Deepseek V3 Deepseek R1Category Cells Area Power (mW) WNS (ns) TNS (ns) Check Cells Area Power (mW) WNS (ns) TNS (ns) Check

adder 433 511.52 368.04 0.00 0.00 ✔ 433 511.52 368.04 0.00 0.00 ✔
adder select 450 439.17 264.34 0.00 0.00 ✔ 306 350.06 225.74 0.00 0.00 ✔
alu 64bit 1683 1645.21 887.78 0.00 0.00 ✔ 1697 1658.24 896.08 0.00 0.00 ✔
alu 8bit 146 181.94 79.22 0.00 0.00 ✔ 146 179.55 79.58 0.00 0.00 ✘
calculation 888 1044.32 788.67 0.61 5.66 ✔ 755 859.98 617.26 0.60 4.83 ✔
comparator - - - - - ✘ 46 42.29 20.87 0.00 0.00 ✔
comparator 16bit - - - - - ✘ 70 65.70 30 0.00 0.00 ✔
comparator 2bit 23 21.28 10.86 0.00 0.00 ✔ 9 7.45 3.75 0.00 0.00 ✔
comparator 4bit 46 44.42 22.8 0.00 0.00 ✔ - - - - - ✘✘
comparator 8bit 48 42.29 20.42 0.00 0.00 ✔ - - - - - ✘✘
decoder 6bit 87 71.55 19.54 0.00 0.00 ✔ 96 76.61 22.56 0.00 0.00 ✘
decoder 8bit 312 246.85 50.28 0.00 0.00 ✔ 329 267.33 54.11 0.00 0.00 ✔
divider 16bit - - - - - ✘ 3445 3377.67 5030 3.32 73.2 ✔
divider 32bit - - - - - ✘ - - - - - ✘✘
divider 4bit - - - - - ✘ 39 40.43 21.58 0.00 0.00 ✘
divider 8bit - - - - - ✘ - - - - - ✘✘
fsm 76 94.70 50.09 0.00 0.00 ✔ 73 92.04 51.44 0.00 0.00 ✔
fsm encode 138 294.20 305.96 0.00 0.00 ✔ 151 302.18 273.32 0.00 0.00 ✔
gray 51 69.69 66.78 0.00 0.00 ✔ 52 70.22 65.86 0.00 0.00 ✔
mac - - - - - ✘ 352 632.02 787.88 0.00 0.00 ✘
mul - - - - - ✘ 315 378.52 421.67 0.05 0.13 ✔
mul sub 241 344.20 261.28 0.00 0.00 ✔ 234 336.22 259.8 0.00 0.00 ✔
mux N/A N/A N/A N/A N/A ✔ N/A N/A N/A N/A N/A ✔
mux encode - - - - - ✘ 61 73.42 35.39 0.00 0.00 ✔
saturating add 18 67.56 65.77 0.00 0.00 ✔ - - - - - ✘✘
selector 18 39.37 36.06 0.00 0.00 ✔ 18 39.37 36.06 0.00 0.00 ✔
sub 16bit 122 126.88 71.97 0.00 0.00 ✔ 122 126.88 71.97 0.00 0.00 ✔
sub 32bit 278 252.17 146.9 0.00 0.00 ✔ - - - - - ✘
sub 4bit 14 19.42 10.61 0.00 0.00 ✔ 14 19.42 10.61 0.00 0.00 ✔
sub 8bit 27 41.50 23.91 0.00 0.00 ✔ 27 41.50 23.91 0.00 0.00 ✔
add sub 124 130.34 101.74 0.00 0.00 ✔ - - - - - ✘
addr calcu 82 125.55 90.27 0.01 0.01 ✔ - - - - - ✘
mult if - - - - - ✘ - - - - - ✘
mux large 89 100.02 50.57 0.00 0.00 ✔ 89 100.02 50.57 0.00 0.00 ✔
register - - - - - ✘ 3731 8745.55 7710 0.00 0.00 ✔
ticket machine - - - - - ✘ - - - - - ✘

Table 6: PPA quality (DC compile ultra, 1ns) and functional correctness for all designs optimized by
GPT-4o-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.2 PPA AND FUNCTIONAL CORRECTNESS OF LLM-OPTIMIZED DESIGNS (DC COMPILE, 1
NS)

Table 7 summarizes the PPA results and functional correctness checks for designs optimized by GPT-
4o-mini, Gemini-2.5, Deepseek V3, and Deepseek R1 on the RTL-OPT benchmark. All evaluations
are conducted under DC compile with 0.1ns clock period. This supplements Table 6, which uses a
more relaxed timing setup.

GPT-4o-mini Gemini-2.5Category Cells Area Power (mW) WNS (ns) TNS (ns) Check Cells Area Power (mW) WNS (ns) TNS (ns) Check

adder - - - - - ✘ - - - - - ✘✘
adder select 813 812.1 4.85 -0.39 -10.8 ✔ 813 812.10 4.85 -0.39 -10.8 ✔
alu 64bit 3248 3028 16.95 -0.51 -29.7 ✔ 3248 3028 16.95 -0.51 -29.7 ✔
alu 8bit 402 370 1.89 -0.26 -1.91 ✔ 402 370.01 1.89 -0.26 -1.91 ✔
calculation - - - - - ✘ 670 997.50 6.59 -3.22 -42.6 ✔
comparator 96 83.26 0.38 -0.22 -0.22 ✔ 100 88.05 0.38 -0.22 -0.22 ✔
comparator 16bit - - - - - ✘ 296 244.45 1.06 -0.18 -0.52 ✔
comparator 2bit 14 14.36 0.06 -0.02 -0.05 ✔ 16 13.03 0.05 -0.01 -0.02 ✔
comparator 4bit 33 29.26 0.18 -0.05 -0.15 ✔ 29 23.14 0.09 -0.10 -0.22 ✔
comparator 8bit - - - - - ✘ 79 83.52 0.37 -0.11 -0.31 ✔
decoder 6bit 128 109.9 0.31 -0.03 -1.74 ✔ 204 208.01 0.37 -0.18 -9.22 ✔
decoder 8bit 781 855.9 1.28 -0.27 -58.8 ✔ 354 297.4 0.66 -0.11 -24.8 ✔
divider 16bit 5037 5045 66.25 -3.88 -89.4 ✔ 3926 3895 51.75 -6.85 -155 ✔
divider 32bit 16638 16211 171.11 -13.23 -846.3 ✔ 14529 13375 154.6 -13.24 -629 ✔
divider 4bit 85 84.85 0.48 -0.32 -1.29 ✔ - - - - - ✘
divider 8bit 744 731.8 6.94 -1.21 -13.5 ✔ 531 513.38 3.58 -1.15 -11.0 ✔
fsm 149 192.8 1.06 -0.28 -4.40 ✔ - - - - - ✘✘
fsm encode 389 504.9 3.69 -0.41 -12.5 ✔ 357 448.21 3.16 -0.40 -7.95 ✔
gray - - - - - ✘ 100 109 0.92 -0.28 -2.04 ✔
mac - - - - - ✘ - - - - - ✘
mul 311 453 3.64 -1.26 -9.69 ✔ 311 453 3.64 -1.26 -9.69 ✔
mul sub 634 623.2 4.17 -0.75 -8.08 ✔ 282 381.71 2.67 -1.11 -11.6 ✔
mux 32 25.54 0.08 0.0 0.0 ✔ 32 25.54 0.08 0.0 0.0 ✔
mux encode - - - - - ✘ - - - - - ✘
saturating add - - - - - ✘✘ 127 140.98 1.08 -0.36 -2.86 ✔
selector 30 53.73 0.48 -0.18 -0.49 ✔ 38 56.39 0.44 -0.11 -0.38 ✔
sub 16bit 266 230.6 1.22 -0.27 -3.40 ✔ 266 230.62 1.22 -0.27 -3.40 ✔
sub 32bit 551 476.4 2.57 -0.35 -9.13 ✔ 551 476.41 2.57 -0.35 -9.13 ✔
sub 4bit 50 49.48 0.23 -0.16 -0.59 ✔ - - - - - ✘
sub 8bit 121 102.7 0.51 -0.23 -1.30 ✔ - - - - - ✘
add sub 496 444.22 2.57 -0.31 -4.20 ✔ 496 444.22 2.57 -0.31 -4.20 ✔
addr calcu 405 388.09 3.07 -0.62 -8.56 ✔ - - - - - ✘
mult if 17 15.96 0.05 -0.05 -0.05 ✔ 17 15.96 0.05 -0.05 -0.05 ✔
mux large 296 273.45 0.84 -0.11 -0.85 ✔ - - - - - ✘
register 4615 9480.24 78.21 -0.36 -251 ✔ - - - - - ✘✘
ticket machine - - - - - ✘ - - - - - ✘

Deepseek V3 Deepseek R1Category Cells Area Power (mW) WNS (ns) TNS (ns) Check Cells Area Power (mW) WNS (ns) TNS (ns) Check

adder 530 618.7 4.51 -0.43 -12.5 ✔ 597 669.8 4.78 -0.41 -11.8 ✔
adder select 813 812.1 4.85 -0.39 -10.8 ✔ 514 522.7 3.49 -0.42 -12.0 ✔
alu 64bit 3248 3028 16.95 -0.51 -29.7 ✔ 3248 3028 16.95 -0.51 -29.7 ✔
alu 8bit 402 370 1.89 -0.26 -1.91 ✔ 402 370 1.89 -0.26 -1.91 ✘
calculation 670 997.5 6.59 -3.22 -42.6 ✔ 550 808.1 5.73 3.29 44.8 ✔
comparator - - - - - ✘ 110 96.29 0.4 -0.19 -0.19 ✔
comparator 16bit - - - - - ✘ 122 107.2 0.48 -0.17 -0.48 ✔
comparator 2bit 10 9.84 0.04 -0.03 -0.03 ✔ 13 11.17 0.04 -0.03 -0.04 ✔
comparator 4bit 25 25.80 0.11 -0.06 -0.15 ✔ - - - - - ✘✘
comparator 8bit 73 71.29 0.31 -0.12 -0.33 ✔ - - - - - ✘✘
decoder 6bit 204 208.01 0.37 -0.18 -9.22 ✔ - - - - - ✘
decoder 8bit 781 856 1.28 -0.27 -58.8 ✔ 392 330.1 0.72 -0.10 -23.1 ✔
divider 16bit - - - - - ✘ 5037 5045 66.25 -3.88 -89.4 ✔
divider 32bit - - - - - ✘ - - - - - ✘✘
divider 4bit - - - - - ✘ - - - - - ✘
divider 8bit - - - - - ✘ - - - - - ✘✘
fsm 100 129.5 0.6 -0.22 -2.62 ✔ 106 129.8 0.59 -0.24 -2.70 ✔
fsm encode 372 466.8 3.46 -0.38 -9.36 ✔ 357 448.2 3.16 -0.40 -7.95 ✔
gray 100 109.1 0.92 -0.28 -2.04 ✔ 100 109.1 0.92 -0.28 -2.04 ✔
mac - - - - - ✘ - - - - - ✘
mul - - - - - ✘ 270 426.4 3.43 -1.25 -9.62 ✔
mul sub 657 654.4 4.44 -0.76 -8.08 ✔ 675 654.1 4.46 -0.70 -7.97 ✔
mux 32 25.54 0.08 0.0 0.0 ✔ 32 25.54 0.82 0.0 0.0 ✔
mux encode - - - - - ✘ 113 121.6 0.46 -0.09 -0.69 ✔
saturating add 127 140.9 1.08 -0.36 -2.86 ✔ - - - - - ✘
selector 38 56.39 0.44 -0.11 -0.38 ✔ 30 49.74 0.41 -0.18 -0.49 ✔
sub 16bit 266 230.6 1.22 -0.27 -3.40 ✔ 266 230.6 1.22 -0.27 -3.40 ✔
sub 32bit 551 476.4 2.57 -0.35 -9.13 ✔ - - - - - ✘
sub 4bit 37 37.24 0.18 -0.10 -0.30 ✔ 37 37.24 0.12 -0.10 -0.30 ✔
sub 8bit 121 102.7 0.51 -0.23 -1.30 ✔ 121 102.7 0.51 -0.23 -1.30 ✔
add sub 496 444.2 2.57 -0.31 -4.20 ✔ - - - - - ✘
addr calcu 229 214.40 1.8 -0.60 -8.47 ✔ - - - - - ✘
mult if - - - - - ✘ - - - - - ✘
mux large 173 174.5 0.62 -0.12 -0.95 ✔ 173 174.5 0.62 -0.12 -0.95 ✔
register - - - - - ✘ 5003 9780 79.63 -0.40 -245 ✔
ticket machine - - - - - ✘ - - - - - ✘

Table 7: PPA quality (DC compile, 0.1ns) and functional correctness for all designs optimized by
GPT-4o-mini, Gemini-2.5, Deepseek V3, and Deepseek R1, using the RTL-OPT benchmark.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E DETAILED LLM EVALUATION RESULTS AND STATISTICAL ANALYSIS

We re-run each LLM evaluation 5 times on RTL-OPT (36 designs), using the same prompt template
to ensure consistency. For each run, we recorded the: (1) Syntax correctness; (2) Func correctness; (3)
PPA better than suboptimal; (4) PPA better than optimized. The experimental results for 6 different
LLMs (including two open-source LLMs) are summarized below.

We summarize statistical results and conduct paired t-tests on two representative LLM pairs: Gmini
vs. DS-R1 and LLaMA vs. Qwen. We will include the complete mean ± σ and paired t-tests results
in this appendix when updating the camera-ready version.

E.1 SYNTAX CORRECTNESS (N OUT OF 36)

Run GPT-4o Gmini-2.5 DS V3 DS R1 QWEN Llama

1 36 35 36 32 34 15
2 35 31 34 32 34 17
3 36 30 36 31 31 15
4 35 34 36 30 30 14
5 35 35 36 32 34 15

Mean 35.4 33 35.6 31.4 32.6 15.2
σ 1.0 1.5 1.3 0.8 0.9 1.1

E.2 FUNCTIONAL CORRECTNESS (N OUT OF 36)

Run GPT-4o Gmini-2.5 DS V3 DS R1 QWEN Llama

1 29 26 27 24 23 13
2 28 25 21 26 20 18
3 25 24 26 25 23 17
4 27 25 25 24 21 12
5 28 28 25 26 19 17

Mean 27.4 25.6 24.8 25 21.2 15.4
σ 1.5 1.5 2.3 1.8 1.6 2.7

E.3 PPA >SUBOPTIMAL (N OUT OF 36)

Run GPT-4o Gmini-2.5 DS V3 DS R1 QWEN Llama

1 7 11 10 15 4 2
2 8 9 6 16 4 5
3 7 10 8 16 6 4
4 7 9 10 13 4 1
5 9 10 8 14 4 2

Mean 7.6 9.8 8.4 14.8 4.4 2.8
σ 0.9 0.8 1.5 1.3 1.1 1.6

E.4 PPA >OPTIMIZED (N OUT OF 36)

Run GPT-4o Gmini-2.5 DS V3 DS R1 QWEN Llama

1 2 2 5 5 1 0
2 3 2 4 6 0 1
3 1 4 5 5 2 1
4 3 2 5 5 2 0
5 2 2 3 4 1 1

Mean 2.2 2.4 4.4 5 1.2 0.6
σ 0.8 0.9 1.0 0.7 0.8 0.5

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.5 COMPARISON: GPT-4O VS. DS-R1

Metric Mean Diff t-value p-value Significance Effect Size

Syntax correctness +3.8 +6.53 0.0028 Significant 2.92 (Very Large)
Func correctness +1.6 +1.67 0.169 Not Significant 0.75 (Medium)
PPA >suboptimal -7.2 -5.81 0.004 Significant 2.60 (Very Large)
PPA >optimized -2.8 -5.83 0.004 Significant 2.61 (Very Large)

E.6 COMPARISON: LLAMA VS. QWEN

Metric Mean Diff t-value p-value Significance Effect Size

Syntax correctness -18.2 -48.40 <0.0001 Significant -21.7 (Extreme)
Func correctness -5.8 -5.39 0.006 Significant -2.41 (Very Large)
PPA >suboptimal +1.6 +2.53 0.065 Marginal 0.72 (Medium)
PPA >optimized +0.6 +1.34 0.251 Not Significant 0.30 (Small)

F QUALITATIVE ANALYSIS OF LLM FUNCTIONALITY FAILURES

As summarized in Section 4, LLMs face a fundamental trade-off: conservative approaches avoid
errors but miss optimization opportunities, while aggressive optimizations risk introducing functional
bugs despite correct syntax.

To systematically analyze failure modes, we conducted a detailed study of 40 randomly sampled
cases where LLM-generated optimizations passed syntax checks but introduced functional errors.
Our findings reveal three LLM failure categories:

• Control Logic Inconsistencies (19/40, 47.5%)

Example (comparator): LLM failed to maintain bit-priority ordering (MSB-first
comparison) and incorrectly implemented the ‘lt’ condition using wrong Boolean
logic.

• Overly Aggressive Pipelining (12/40, 30%)

Example (fsm): LLM reduced pipeline stages from 4 to 3 cycles, violating the original
design’s latency requirements and causing incorrect output timing.

• Improper Resource Sharing (9/40, 22.5%)

Example (mux): Register sharing ignored temporal dependencies, leading to stale data
being read in subsequent cycles.

G REPRODUCTION OF EXISTING BENCHMARK WITH MULTIPLE SYNTHESIS
FLOWS

G.1 REPRODUCTION OF (YAO ET AL., 2024) DESIGNS WITH MULTIPLE SYNTHESIS FLOWS

Table 8 provides reproduction results for 14 designs originally optimized by (Yao et al., 2024). Both
the baseline (original) and expert-optimized versions are evaluated using our unified flow, across
three synthesis settings: Yosys, DC compile (0.1ns), and DC compile ultra (1ns). This ensures fair
comparisons across benchmarks and demonstrates the effectiveness of our pipeline in capturing prior
work.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Design List Yosys DC (compile, 0.1ns) DC (compile ultra, 1ns)
Cells Area Cells Area Power WNS TNS Cells Area Power WNS TNS

case1 18 57.99 - - - - - - - - - -
case1 opt 12 30.86 - - - - - - - - - -

case2 37 44.95 - - - - - - - - - -
case2 opt 37 44.95 - - - - - - - - - -

case3 107 129.3 289 255.1 2.25 mW -0.41 -3.23 26 98.95 74.85 uW 0.0 0.0
case3 opt 102 127.7 289 255.1 2.25 mW -0.41 -3.23 26 98.95 74.85 uW 0.0 0.0

case4 304 347.1 576 550.9 3.75 mW -0.51 -3.72 204 267.06 169.5 uW 0.0 0.0
case4 opt 262 310.7 553 529.9 3.80 mW -0.50 -3.65 233 291.27 165.6 uW 0.0 0.0

case5 10933 12457 6546 11104 173.7 mW -4.15 -413.6 6047 9668 19.99 mW -1 -56.61
case5 opt 10504 11980 6044 10469 168.9 mW -4.22 -418.1 5962 9600 19.98 mW -1.02 -56.7

case6 37 59.32 53 60.38 484.8 uW -0.22 -0.68 28 41.76 42.93 uW 0.0 0.0
case6 opt 21 28.99 23 28.99 284.1 uW -0.15 -0.28 11 19.95 23.42 uW 0.0 0.0

case7 24 38.84 22 34.31 418.7 uW -0.15 -0.46 16 28.99 40.65 uW 0.0 0.0
case7 opt 11 19.95 11 18.35 215.8 uW -0.12 -0.25 8 15.96 21.90 uW 0.0 0.0

case8 1471 1720 1353 2242 13.90 mW -0.92 -58.2 703 831.2 634.7 uW 0.0 0.0
case8 opt 661 758.1 1771 1962 14.87 mW -0.95 -57.0 711 834.7 647.3 uW 0.0 0.0

case9 1716 2010 1336 2420 13.31 mW -1.05 -65.7 729 886.3 636.4 uW 0.0 0.0
case9 opt 776 926.5 1757 1984 16.50 mW -1.00 -70.6 973 965.1 982.7 uW 0.0 0.0

case10 24 43.89 25 31.92 103.8 uW -0.02 -0.14 25 31.92 10.38 uW 0.0 0.0
case10 opt 24 8.51 40 38.30 114.8 uW -0.01 -0.07 25 21.81 8.38 uW 0.0 0.0

case11 2 1.86 9 5.32 16.07 uW 0.0 0.0 1 1.06 252.5 nW 0.0 0.0
case11 opt 1 1.86 6 2.93 7.28 uW 0.0 0.0 1 1.06 252.5 nW 0.0 0.0

case12 1 1.86 3 0.0 374.8 nW 0.0 0.0 3 0.0 37.48 nW 0.0 0.0
case12 opt 1 1.06 1 1.06 2.59 uW 0.0 0.0 1 1.06 258.8 nW 0.0 0.0

case13 3 1.86 3 5.59 16.93 uW -0.03 -0.03 5 5.05 1.77 uW 0.0 0.0
case13 opt 2 1.86 2 3.72 12.41 uW -0.03 -0.03 5 5.05 1.77 uW 0.0 0.0

case14 4 1.86 6 7.98 28.15 uW -0.10 -0.10 5 5.05 1.77 uW 0.0 0.0
case14 opt 3 1.86 6 6.65 23.20 uW -0.08 -0.08 5 5.05 1.77 uW 0.0 0.0

Table 8: Reproduction PPA results of 14 designs in (Yao et al., 2024) (both original and expert-
optimized versions) using Yosys and DC synthesis flows.

G.2 REPRODUCTION OF (YAO ET AL., 2024) GPT-OPTIMIZED DESIGNS

Table 9 and Table 10 provide the PPA reproduction of designs optimized by GPT-based methods
and (Yao et al., 2024) own optimization strategies, respectively. These results help evaluate the
generalizability of our flow when applied to designs outside the RTL-OPT benchmark and provide
fair comparisons across different optimization methodologies. The same three synthesis settings are
used (Yosys, DC compile 0.1ns, and DC compile ultra 1ns), under our unified evaluation flow.

Design List Yosys DC (compile, 0.1ns) DC (compile ultra, 1ns)
Cells Area Cells Area Power WNS TNS Cells Area Power WNS TNS

case1 GPT 18 57.99 18 57.99 584.6 uW -0.24 -0.24 18 57.99 61.13 uW 0.00 0.00
case2 GPT 37 44.95 - - - - - - - - -
case3 GPT 107 129.3 289 255.1 2.25 mW -0.41 -3.23 26 98.95 74.85 uW 0.00 0.00
case4 GPT 290 326.6 637 602.8 4.04 mW -0.47 -3.33 205 265.5 159.5 uW 0.00 0.00
case5 GPT 10627 12090 5987 10483 165.9 mW -4.18 -408 5962 9600 19.98 mW -1.02 -56.72
case6 GPT 37 59.32 50 59.85 492.7 uW -0.25 -0.73 25 38.57 40.19 uW 0.00 0.00
case7 GPT 26 44.69 30 43.62 522.1 uW -0.15 -0.55 17 34.31 47.46 uW 0.00 0.00
case8 GPT 844 952.3 2129 1915 15.04 mW -0.67 -44.17 704 932.1 722.7 uW 0.00 0.00
case9 GPT 844 952.3 2129 1915 15.04 mW -0.67 -44.17 704 932.1 722.7 uW 0.00 0.00
case10 GPT 24 21.38 32 25.54 81.96 uW 0.0 0.0 25 21.81 8.382 uW 0.00 0.00
case11 GPT 3 1.862 3 5.59 16.86 uW -0.03 -0.03 4 3.724 1.339 uW 0.00 0.00
case12 GPT 1 1.064 1 1.06 2.59 uW 0.0 0.0 1 1.064 258.8 nW 0.00 0.00
case13 GPT 3 5.586 6 5.59 20.58 uW 0.0 0.0 5 5.054 1.767 uW 0.00 0.00
case14 GPT 2 3.724 5 4.26 16.58 uW 0.0 0.0 4 3.724 1.248 uW 0.00 0.00

Table 9: Reproduction PPA results of GPT-4 optimized designs in (Yao et al., 2024) using Yosys and
DC synthesis flows.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Design List Yosys DC (compile, 0.1ns) DC (compile ultra, 1ns)
Cells Area Cells Area Power WNS TNS Cells Area Power WNS TNS

case1 ours 14 39.9 13 40.96 431.3 uW -0.21 -0.28 14 39.90 44.67 uW 0.0 0.0
case2 ours 37 44.95 76 69.43 383.9 uW -0.17 -1.07 9 32.45 15.31 uW 0.0 0.0
case3 ours 107 129.3 289 255.1 2.251 mW -0.41 -3.23 26 98.95 74.85 uW 0.0 0.0
case4 ours 168 178.8 396 371.9 2.212 mW -0.44 -3.46 153 163.32 110.87 uW 0.0 0.0
case5 ours 10540 12016 6329 10642 170.7 mW -4.14 -409.54 5962 9600.21 19.98 mW -1.02 -56.72
case6 ours 20 28.73 23 28.99 284.1 uW -0.15 -0.28 11 19.95 23.42 uW 0.0 0.0
case7 ours 23 35.64 23 34.58 385.6 uW -0.14 -0.47 14 27.40 35.59 uW 0.0 0.0
case8 ours 908 1063 2136 1916 14.75 mW -0.69 -44.12 709 939.78 746.77 uW 0.0 0.0
case9 ours 956 1173 2595 2354 19.54 mW -0.95 -61.83 847 1341.97 1.075 mW 0.0 0.0
case10 ours - - - - - - - - - - -
case11 ours 1 1.862 7 4.788 15.60 uW 0.0 0.0 2 1.330 370.2 nW 0.0 0.0
case12 ours 1 1.062 1 1.064 2.588 uW 0.0 0.0 1 1.064 258.8 nW 0.0 0.0
case13 ours - - - - - - - - - - -
case14 ours 4 1.862 6 7.98 28.15 uW -0.1 -0.1 5 5.054 1.767 uW 0.0 0.0

Table 10: Reproduction PPA results of RTLRewriter optimized their own designs using Yosys and
DC synthesis flows.

H LLM PROMPT GENERATION PROCESS

The complete implementation of the LLM prompt generation and evaluation pipeline for the RTL-
OPT benchmark is available in the anonymous repository. The core prompt generation process
is implemented in Results/LLM Test result/llm gen.py, (available in the anonymous
repository).

20


	Introduction
	Rethinking the RTL Code Optimization
	Impact of Synthesis Process on RTL Evaluation
	Inspection of Existing Benchmark
	Same Inspection of Our Benchmark
	Case Study of Existing Benchmark

	RTL-OPT Benchmark
	Benchmark Description
	RTL-OPT Analysis: Optimization Patterns
	Evaluation Methodology and Tools
	Synthesis Process
	Functional Equivalance Verification
	PPA Metrics and Trade-offs in Optimization


	Experiments
	Summary of Benchmarking Results
	Detailed Benchmarking Results

	Conclusions and Limitations
	LLM Usage
	Ethics Statement
	Full PPA Quality Comparison of RTL-OPT
	Results under DC Compile_ultra, 1 ns
	Results under DC Compile, 0.1 ns

	PPA and Functional Correctness of LLM-Optimized Designs
	DC Compile_ultra, 1 ns)
	PPA and Functional Correctness of LLM-Optimized Designs (DC Compile, 1 ns)

	Detailed LLM Evaluation Results and Statistical Analysis
	Syntax Correctness (N out of 36)
	Functional Correctness (N out of 36)
	PPA >Suboptimal (N out of 36)
	PPA >Optimized (N out of 36)
	Comparison: GPT-4o vs. DS-R1
	Comparison: LLaMA vs. Qwen

	Qualitative Analysis of LLM Functionality Failures
	Reproduction of Existing Benchmark with Multiple Synthesis Flows
	Reproduction of yao2024rtlrewriter Designs with Multiple Synthesis Flows
	Reproduction of yao2024rtlrewriter GPT-Optimized Designs

	LLM Prompt Generation Process

